Infusion device and methods

Information

  • Patent Grant
  • 12073941
  • Patent Number
    12,073,941
  • Date Filed
    Thursday, November 10, 2022
    2 years ago
  • Date Issued
    Tuesday, August 27, 2024
    2 months ago
Abstract
Medical devices, systems, and methods related thereto a glucose monitoring system having a first display unit in data communication with a skin-mounted assembly, the skin-mounted assembly including an in vivo sensor and a transmitter. The first display unit and a second display unit are in data communication with a data management system. The first display unit comprises memory that grants a first user first access level rights and the second display unit comprises memory that grants a second individual second access level rights.
Description
BACKGROUND OF THE INVENTION

A variety of medical devices are employed to monitor a health condition. For example, devices include those designed to enable a user to manage a health condition based at least in part on the level of analyte in the body. These types of devices include analyte determination devices, drug delivery devices, and the like.


Such analyte devices have become widely used in recent years for people with diabetes. Diabetics have typically measured their blood glucose level by lancing a finger tip or other body location (i.e., alternate site) to draw blood, applying the blood to a disposable test strip in a hand-held meter and allowing the meter and strip to perform an electrochemical test of the blood to determine the current glucose concentration. Such discrete or individual, in vitro tests are typically conducted at least several times per day. Detailed descriptions of such glucose monitoring systems and their use are provided in U.S. Pat. No. 7,058,437, issued to TheraSense, Inc., on Jun. 6, 2006, which is incorporated by reference herein in its entirety.


In vivo glucose monitoring devices are designed to provide continuous glucose monitoring. Some of these continuous systems employ a disposable, transcutaneous sensor that is inserted into the skin to measure glucose concentrations in interstitial fluid. A portion of the sensor protrudes from the skin and is coupled with a durable controller and transmitter unit that is attached to the skin with adhesive. A wireless handheld unit is used in combination with the skin-mounted transmitter and sensor to receive glucose readings periodically, such as once a minute. At a predetermined time interval, such as every three, five or seven days, the disposable sensor is removed and replaced with a fresh sensor which is again coupled to the reusable controller and transmitter unit. With this arrangement, a person with diabetes may continuously monitor their glucose level with the handheld unit. The handheld unit of the in vivo system can also include an in vitro test strip meter for conducting individual tests as described above. The in vitro test strip meter can be used to calibrate the continuous monitoring system each time a new in vivo sensor is implanted. Additionally, the in vitro test strip meter can be used as back up in case the in vivo system fails, a new sensor is equilibrating, or when the transmitter must be turned off, such as during takeoffs and landings when aboard an airliner. Detailed descriptions of such a continuous glucose monitoring system and its use are provided in U.S. Pat. No. 6,175,752, which is incorporated by reference herein in its entirety.


Drug delivery devices, including wholly implantable infusion pumps and pumps that infuse drug through a transcutaneously placed fluid channel such as flexible tubing, are devices that enable the controllable administration of a drug to a user. Pumps may be under the control or semi-control of a healthcare monitoring device or may be controlled by the user. Examples of such include insulin pumps used by diabetics to administer insulin for glucose control.


The purpose of in vitro or in vivo glucose monitoring, and insulin delivery devices, is to assist people with diabetes in keeping their blood glucose within a predetermined range. If a person's blood glucose level rises too high, hyperglycemia can occur. The short term effects of hyperglycemia can include fatigue, loss of cognitive ability, mood swings, excessive urination, excessive thirst and excessive hunger. Of more immediate concern, if a person's blood glucose level drops too low, hypoglycemia can occur. Like hyperglycemia, symptoms of hypoglycemia also include fatigue and loss of cognitive ability. If unchecked, however, hypoglycemia can quickly lead to loss of consciousness or coma. Some diabetics have little or no symptoms of hypoglycemia, or find it difficult to distinguish between symptoms of hyperglycemia and hypoglycemia. Long term effects of not keeping blood glucose levels within a proper range include health complications such as cardiovascular disease, chronic renal failure, retinal damage which can lead to blindness, nerve damage, impotence, and gangrene with risk of amputation of toes, feet, and even legs. Clearly, proper glucose monitoring and corrective action based on the monitoring is essential for people with diabetes to maintain their health.


Also of importance is compliance to a glucose monitoring regime. Compliance may be particularly difficult with persons who require supervision, e.g., young children or mentally impaired individuals. Compliance may include strict adherence to healthcare provider and/or caregiver provider instructions. If healthcare instructions change, it is necessary that the user be timely notified of such changes. Likewise, it is important that instructions be readily available in case a person needs to be reminded thereof.


SUMMARY OF THE INVENTION

Before summarizing the invention, it is to be understood that the invention is applicable to in vitro analyte monitoring devices, in vivo analyte monitoring devices, and a drug infusion devices. Unless otherwise indicated, specific reference herein to only one of such devices is only for the sake of brevity and not intended to limit the scope of the invention. Furthermore, the subject invention is described primarily with respect to glucose monitoring devices and insulin infusion pumps, where such descriptions are not intended to limit the scope of the invention. It is to be understood that the subject invention is applicable to any suitable analyte monitoring device and drug infusion device.


According to aspects of some embodiments of the present invention, a medical device (in vitro analyte monitoring device, in vivo analyte monitoring device, drug infusion device) is provided with alert features. These alert features assist a user in maintaining proper analyte levels. Blood glucose is one of many analytes that may be maintained using aspects of the present invention. For each user, an ideal or target analyte range can be established. Above and below this ideal range, upper and lower ranges of moderate concerns, respectively, can also be established. Above the upper range of moderate concern, an upper range of high concern can be established. Similarly, below the lower range of moderate concern, a lower range of high concern can also be established. By way of example, a user can make in vitro blood glucose measurements, such as with a handheld meter and test strip. In some embodiments of the invention, the user can be alerted by the test meter when a measurement falls within either of the upper or lower ranges of moderate concern. The alert may indicate to the user which of the upper and lower ranges of moderate concern the measurement falls into.


According to other aspects of the invention, a medical device (in vitro analyte monitoring device, in vivo analyte monitoring device, drug infusion device) is provided with alarm features. These alarm features also assist a user in maintaining a proper analyte (e.g., blood glucose) level. As described above, upper and lower blood glucose ranges of high concern can be established. In some embodiments of the invention, a test meter can be provided with alarms that warn the user when a measurement falls within either of the upper or lower ranges of high concern. Preferably, the alarm indicates to the user which of the upper and lower ranges of high concern the measurement falls into. Additionally, it is preferable that the alarms indicate a higher level of urgency than do the previously described alerts. Note that a user's analyte level may pass from an ideal range, through a range of moderate concern and into a range of high concern before the user conducts an analyte measurement. In such cases, the user may be provided with an alarm without receiving an alert first.


According to other aspects of the invention, an analyte monitoring system is provided with reminder features. The reminder features also assist a user in maintaining a proper analyte (e.g., glucose) level. Analyte ranges of moderate or high concern can be established, as described above. In some embodiments of the invention, a test meter can have a reminder feature that is triggered when a measurement value falls into a range of moderate or high concern. The reminder can prompt the user after a predetermined period of time to take another analyte measurement to ensure that the analyte level is heading toward or has returned to the ideal range. Such a reminder feature can be particularly helpful since it frees the user from either trying to remember when to retest or from setting an external alarm, if available. For those users that require supervision, such as children, the reminder feature automatically assists the caregiver by providing the user with a retest reminder, even when the caregiver is not present to perform the task of reminding.


According to various aspects of the invention, the above-described alerts, alarms and reminders can be conveyed to the user visually, such as with a graphical user interface (GUI) or light emitting diode(s) (LED). In one embodiment of the invention, a fixed-segment liquid crystal display (LCD) is used as the GUI, with the value of the analyte measurement appearing in flashing numerals when not in the ideal range. In addition, or in an alternative embodiment, up and down arrow icons can be provided to display when an analyte measurement is in the upper or lower range of moderate and/or high concern. For example, a solid arrow icon can be displayed when the level is in the range of moderate concern, and a flashing arrow can be displayed when the level is in the range of high concern. Different icons can be used depending on whether the level is in the range of moderate or high concern. For instance, an arrow icon having a first size can be displayed when the analyte level is in the range of moderate concern, and a larger or vertically displaced arrow icon can be displayed when the level is in the range of high concern. Alternatively, a horizontal arrow can be displayed when the analyte level is in the ideal range, an arrow inclined upward or downward can be displayed when the level is in the upper or lower range of moderate concern, respectively, and an arrow inclined at a steeper upward or downward angle can be displayed when the level is in the upper or lower range of high concern, respectively. Alternatively, the opposite directions of the above arrows can be used to be indicative of the course of action to be taken rather than whether the current level is high or low. For instance, a high analyte level may display a downward pointed arrow to indicate that the user should lower his or her analyte level. In other embodiments, symbols such as +, − and = can be used to indicate high, low and on track readings, respectively. The use of a dot matrix display instead of or in combination with a fixed element display may be employed, e.g., to allow for more flexibility in providing alerts and/or alarms and/or reminders to a user. Text may be shown on the display, with or without accompanying icons, and with or without user feedback, to provide information to the user about a particular alert, alarm and/or reminder. For example, after a test result falling into a range of concern, text may appear explaining the significance of the results, proposing one or more courses of action, and/or indicating that the user should re-test after a certain period of time. After such a period of time has elapsed, a further text message may appear which may include instructions to conduct further tests. Some text messages may be downloaded or otherwise activated as part of a prescription from a Health Care Provider.


To reduce size and/or cost of a meter, one or more LEDs may be used to convey an alert, alarm or reminder to a user. For instance, a single LED can be illuminated when the analyte measurement is not in the ideal range. The LED can be solid when in the range of moderate concern, and flashing when in the range of high concern. Different colors in one or more LEDs can indicate different ranges. For instance green can indicate the analyte level is in the ideal range, yellow can indicate the level is in a range of moderate concern and red can indicate the level is in a range of high concern. Two LEDs can be used to indicate whether the value is high or low (or whether the user's analyte level should be raised or lowered). Three LEDs can be used, for instance with a first LED indicating an analyte level below the ideal range, a second LED indicating a level in the ideal range, and a third LED indicating a level above the ideal range. Four LEDs can be used to indicate an analyte level in the lower range of high concern, the lower range of moderate concern, the upper range of moderate concern and the upper range of high concern, respectively. A fifth LED can be added to indicate a level in the ideal range.


In addition to or instead of visual indicators of alerts, alarms and reminders, a glucometer constructed according to aspects of the present invention can incorporate audible or physical feedback. Since diabetes can adversely affect a person's eyesight, such forms of user interface can become necessary. In one embodiment of the invention, a meter can emit an audible tone to indicate an analyte reading that is outside of the ideal range. A high tone can be used to indicate a reading that is above the ideal range while a low tone can be used to indicate a reading that is below. A pulsing or intermittent tone can be used to indicate a reading that is in a range of high concern. A varying number of pulses and other variations can be employed to indicate what range the analyte reading is in. Similarly, a vibratory signal, such as used in cell phones, can be used with different variations for indicating alerts, alarms and reminders to a user.


According to various aspects of the invention, the above-described alerts, alarms and reminders can be set with default parameters during manufacture, and/or may be settable by a HCP (Health Care Professional such as a Doctor or Certified Diabetes Educator) with levels corresponding to prescribed values for a user, and/or may be user configurable. In one embodiment of the invention, a meter is provided that is set to automatically remind the user to retest after a predetermined period of time, which may be preset or configured, after a test that falls outside of an ideal analyte range. The meter may be configured to allow the user or healthcare professional to disable this feature. In an alternative embodiment, the meter is provided “out of the box” with such a reminder feature disabled, but with provisions to allow the user or healthcare professional to enable it and/or set configuration parameters. A meter can be provided that allows different reminder parameters depending on whether the underlying analyte measurement is in a range of moderate concern or a range of high concern. In one embodiment, the medical device reminds the user with a first audible signal to retest a first time period (e.g. about 30 minutes) after a test result falling in a range of moderate concern, and reminds the user with a second audible signal to retest after a second time period (e.g. about 15 minutes) after a test result falling in a range of high concern. In certain embodiments, the second audible signal has a higher volume level and/or longer duration than the first audible signal, and the second time period may be shorter than the first time period. In this embodiment, the second audible signal can also be accompanied with a vibratory signal. In this or alternative embodiments, the first and/or second signals can continue or repeat if not acknowledged by the user, such as with the push of a button, or with an actual test being conducted. The parameters of the reminders can also be different based on whether the analyte reading is above or below the ideal range, and/or can vary depending on the actual value of the analyte measurement. For each reminder (alert or alarm) the settings may include, but are not limited to, the analyte value, time to reminder, type of reminder (e.g. visual, audible, vibratory, or a combination thereof), persistence of the reminder (e.g. once, once a minute for n times, or once a minute until acknowledged), and the number of times (n) a persistent reminder will repeat.


According to certain embodiments, a medical device can be provided with alert, alarm and reminder settings, or other healthcare information that can be configured and locked by an authorized individual such as an individual in a supervisory role, e.g., a HCP or caregiver. The information may be locked until an access code is supplied, such as by an authorized individual, e.g., a HCP or a caregiver. Such an arrangement prevents those under the care of a HCP from changing a prescription or those receiving guidance from a caregiver, for instance children, from modifying configuration values. This prevents intentional or unintentional changes to the configuration values. It also prevents the bypassing of alerts, alarms or reminders, such as when a user wants to engage in behavior that may affect analyte levels, e.g., eat improperly. According to other aspects, configuration settings may be set through a medical device data port, such as when the medical device is connected to a computer for the uploading and/or downloading of information. In certain embodiments, a medical device may be configured to enable a limited number of individuals, e.g., HCP and/or a caregiver, to set and lock configuration values through the data port.


Application of the inventive aspects described herein is not limited to blood glucose monitoring and/or insulin infusion. For example, analytes may be monitored in other substances such as interstitial fluid. Moreover, monitoring of analytes other than glucose, such as lactate, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hematocrit, hemoglobin (e.g. HbA1c), hormones, ketones, lactate, oxygen, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin, in samples of body fluid. Meters may also be configured to determine the concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, warfarin and the like. Such analytes can be monitored in blood, interstitial fluid, saliva, urine and other bodily fluids. It should also be noted that fewer or additional analyte measurement ranges from those described herein can be used. This includes not using ranges at all, but instead using, e.g., absolute values, formulas, lookup tables or similar concepts known to those skilled in the art to determine if or what type of alert, alarm, reminder or other indication should be made to the user for a particular analyte measurement result.





BRIEF DESCRIPTION OF THE DRAWINGS

Each of the figures diagrammatically illustrates aspects of the invention. Of these:



FIG. 1 is plan view showing an exemplary embodiment of an analyte monitoring system, such as a glucometer system, constructed according to aspects of the present invention;



FIG. 2 is a block diagram of an exemplary embodiment of an insulin delivery device;



FIG. 3 is a block diagram illustrating an exemplary embodiment of an insulin therapy management system that incorporates the delivery device of FIG. 2;



FIG. 4 is a detail example of various alert and alarm displays, one of which is shown in the system of FIG. 1;



FIG. 5 is a graph depicting an example of how the glucose level of a user might vary over the course of a portion of a day;



FIG. 6 is a graph depicting the glucose levels shown in FIG. 3 with testing points added, some of which occur as a result of a reminder (alert or alarm);



FIGS. 7A and 7B show exemplary embodiments of a medical device with restrictive user control;



FIG. 8 shows the medical device of FIG. 7B connected to an exemplary embodiment of a data management system; and



FIG. 9 shows an exemplary embodiment of application software that may run on the data management system of FIG. 8.





Variation of the invention from that shown in the figures is contemplated.


DETAILED DESCRIPTION

The following description focuses on one variation of the present invention. The variation of the invention is to be taken as a non-limiting example. It is to be understood that the invention is not limited to particular variation(s) set forth and may, of course, vary. Changes may be made to the invention described and equivalents may be substituted (both presently known and future-developed) without departing from the true spirit and scope of the invention. In addition, modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention.



FIG. 1 shows a top view of an exemplary analyte medical system 10, e.g., a glucometer system in this particular embodiment. Analyte medical device 10 may be an electrochemical or optical system. System 10 includes a handheld meter 12 and disposable test strip 14. Test strip 14 can be inserted into or removed from test strip port 16 of meter 12 for physical and electrical interconnection therewith. Meter 12 includes an LCD display 18 for displaying information to the meter user, and buttons 20, 22 and 24 for receiving input from the user.


In general, to take a blood glucose measurement with meter 12, a user inserts a new test strip 14 into port 16 of meter 12. Either before of after strip insertion into the meter, a user then lances a fingertip or other part of the body (i.e. alternate site) to draw a small drop of blood 26 to the surface of the skin. The meter and strip are positioned over the drop of blood 26 so that one of the sample chamber ends 28 is touching the drop of blood 26. While this particular example teaches the use of a side-fill strip, it should be noted that an end-fill, top-fill or other type of test strip may be utilized. Moreover, the analyte testing need not use a test strip at all. For instance, certain test meters may utilize a rotary test wheel for making multiple measurements, rather than individual test strips. In the present example, surface tension (wicking) automatically draws a small amount of blood 26 into the sample chamber and an electrochemical test is automatically performed by meter 12 to determine the glucose concentration in the blood 26. The glucose level 30 is then displayed on meter 12. As noted above, the subject invention is also applicable to continuous analyte monitoring systems and drug infusion devices.


The present invention may also find use with infusion systems for infusing an agent to a user such as drug infusion systems, e.g., insulin infusion systems. Such infusion systems may be wholly implantable systems or external systems. External infusion devices are typically connected to an infusion set which includes a cannula that is placed transcutaneously through the skin of the patient to infuse a select dosage of an agent. For example, external insulin infusion devices are typically connected to an infusion set which includes a cannula that is placed transcutaneously through the skin of the patient to infuse a select dosage of insulin based on the infusion device's programmed basal rates or any other infusion rates as prescribed by the patient's HCP. A user may be able to control the insulin pump device to administer additional doses of insulin during the course of wearing and operating the infusion device such as for, administering a carbohydrate bolus prior to a meal. Certain infusion devices may include a food database that has associated therewith, an amount of carbohydrate, so that the patient may better estimate the level of insulin dosage needed for, for example, calculating a bolus amount.



FIG. 2 is a block diagram of an exemplary embodiment of an insulin delivery for use with the present invention. Insulin delivery device 620 in one embodiment includes a processor 710 operatively coupled to a memory unit 740, an input unit 720, a display unit 730, an output unit 760, and a fluid delivery unit 750. In one embodiment, the processor 710 includes a microprocessor that is configured for and capable of controlling the functions of the insulin delivery device 620 by controlling and/or accessing each of the various components of the insulin delivery device 620. In one embodiment, multiple processors may be provided as safety measure and to provide redundancy in case of a single processor failure. Moreover, processing capabilities may be shared between multiple processor units within the insulin delivery device 620 such that pump functions and/or control may be performed faster and more accurately.


Input unit 720 operatively coupled to the processor 710 may include a jog dial, key pad buttons, a touch pad screen, or any other suitable input mechanism for providing input commands to the insulin delivery device 620. More specifically, in case of a jog dial input device, or a touch pad screen, for example, the patient or user of the insulin delivery device 620 may manipulate the respective jog dial or touch pad in conjunction with the display unit 730 which performs as both a data input and output unit. The display unit 730 may include a touch sensitive screen, an LCD screen, or any other types of suitable display unit for the insulin delivery device 620 that is configured to display alphanumeric data as well as pictorial information such as icons associated with one or more predefined states of the insulin delivery device 620, or graphical representation of data such as trend charts and graphs associated with the insulin infusion rates, trend data of monitored glucose levels over a period of time, or textual notification to the patients.


Output unit 760 operatively coupled to the processor 710 may include an audible alarm including one or more tones and/or preprogrammed or programmable tunes or audio clips, or vibratory alert features having one or more pre-programmed or programmable vibratory alert levels. In one embodiment, the vibratory alert may also assist in priming the infusion tubing to minimize the potential for air or other undesirable material in the infusion tubing. Also shown is the fluid delivery unit 750 which is operatively coupled to the processor 710 and configured to deliver the insulin doses or amounts to the patient from the insulin reservoir or any other types of suitable containment for insulin to be delivered (not shown) in the insulin delivery device 620 via an infusion set coupled to a subcutaneously positioned cannula under the skin of the patient.


Memory unit 740 may include one or more of a random access memory (RAM), read only memory (ROM), or any other types of data storage units that is configured to store data as well as program instructions for access by the processor 710 and execution to control the insulin delivery device 620 and/or to perform data processing based on data received from, e.g., an analyte monitoring system 610, a remote terminal 640 (HCP or caregiver), the patient 630 or any other data input source (see for example FIG. 3).



FIG. 3 is a block diagram illustrating an insulin therapy management system 600 that includes an insulin infusion device and an analyte monitoring system. The insulin therapy management system 600 includes an analyte monitoring system 610 operatively coupled to an insulin delivery device 620, which may be in turn, be operatively coupled to a remote terminal 640. Analyte monitoring system 610 is, in one embodiment, coupled to the patient 630 so as to monitor or measure the analyte levels of the patient. Moreover, the insulin delivery device 620 is coupled to the patient using, for example, an infusion set and tubing connected to a cannula (not shown) that is placed transcutaneously through the skin of the patient so as to infuse medication such as, for example, insulin, to the patient.


In one embodiment, the analyte monitoring system 610 may include one or more analyte sensors subcutaneously positioned such that at least a portion of the analyte sensors are maintained in fluid contact with the patient's analytes. The analyte sensors may include, but not limited to short term subcutaneous analyte sensors or transdermal analyte sensors, for example, which are configured to detect analyte levels of a patient over a predetermined time period, and after which, a replacement of the sensors is necessary.


The one or more analyte sensors of the analyte monitoring system 610 is coupled to a respective one or more of a data transmitter unit which is configured to receive one or more signals from the respective analyte sensors corresponding to the detected analyte levels of the patient, and to transmit the information corresponding to the detected analyte levels to a receiver device, and/or insulin delivery device 620. That is, over a communication link, the transmitter units may be configured to transmit data associated with the detected analyte levels periodically, and/or intermittently and repeatedly to one or more other devices such as the insulin delivery device and/or the remote terminal 640 for further data processing and analysis. The transmitter units of the analyte monitoring system 610 may be, in one embodiment, configured to transmit the analyte related data substantially in real time to the insulin delivery device 620 and/or the remote terminal 640 after receiving it from the corresponding analyte sensors such that the analyte level such as glucose level of the patient 630 may be monitored in real time.


The transmitter units of the analyte monitoring system 610 may be configured to directly communicate with one or more of the remote terminal 640 or the insulin delivery device 620. Furthermore, within the scope of the present invention, additional devices may be provided for communication in the insulin therapy management system 600 including additional receiver/data processing unit, remote terminals (such as a HCP terminal and/or a bedside terminal in a hospital environment, for example).


The insulin delivery device 620 may include in one embodiment, but is not limited to, an external infusion device such as an external insulin infusion pump, an implantable pump, a pen-type insulin injector device, a patch pump, an inhalable infusion device for nasal insulin delivery, or any other type of suitable delivery system.


In one embodiment, the analyte monitoring system 610 includes a strip port configured to receive a test strip for capillary blood glucose testing. In one aspect, the glucose level measured using the test strip may in addition, be configured to provide periodic calibration of the analyte sensors of the analyte monitoring system 610 to assure and improve the accuracy of the analyte levels detected by the analyte sensors.


Exemplary in vitro and in vivo analyte monitoring system and drug infusion systems that may be adapted for the present invention include, but are not limited to, those described in U.S. Pat. Nos. 6,175,752; 6,329,161; 6,284,478; 6,916,159; 7,041,468; 7,077,328, and U.S. patent application Ser. Nos. 11/383,945; 11/365,168; 11/386,915; 11/396,181; 11/396,182, and elsewhere, the disclosures of which are herein incorporated in their entirety by reference.


According to aspects of the present invention, an alert and/or alarm 32 can also be shown on display 18 indicating, for example, whether the current measurement falls within a predetermined range, such as an ideal glucose range, an upper or lower range of moderate concern or an upper or lower range of high concern.


Referring now to FIG. 4, a further example of alert and alarm displays 32 is shown. A steeply downwardly inclined arrow 34 (e.g. from about −60 to about −90 degrees) can be used to indicate a glucose reading in a lower range of high concern, such as below 50 mg/dL. A moderately downwardly inclined arrow 36 (e.g. from about −30 to about −45 degrees) can be used to indicate a glucose reading in a lower range of moderate concern, such as about 50 mg/dL to about 75 mg/dL. A horizontal arrow 38 (e.g. about 0 degrees) can be used to indicate a glucose reading in an ideal range, such as about 75 mg/dL to about 175 mg/dL. A moderately upwardly inclined arrow 40 (e.g. about 30 or about 45 degrees) can be used to indicate a glucose reading in an upper range of moderate concern, such as about 175 mg/dL to about 250 mg/dL. Finally, a steeply upwardly inclined arrow 42 (e.g. from about 60 to about 90 degrees) can be used to indicate a glucose reading in an upper range of high concern, such as above about 250 mg/dL. As previously indicated above, various other visual elements, and/or audible or physical indicators can be used to provide the user with an alert or an alarm.


Referring now to FIG. 5, an example of blood glucose values for a user is shown. Curve 100 depicts how the user's blood glucose might change with time over a portion of a day. In this example, the ideal range for the user is about 75 mg/dL to about 175 mg/dL, shown with reference numeral 110 and bounded by dashed lines 112 and 114. The ranges of moderate concern are about 50 mg/dL to about 75 mg/dL (lower alert zone 116, bounded by dashed lines 112 and 118) and about 175 mg/dL to about 250 mg/dL (upper alert zone 120, bounded by dashed lines 114 and 122). The ranges of high concern are below about 50 mg/dL (lower alarm zone 124, below dashed line 118) and above about 250 mg/dL (upper alarm zone 126, above dashed line 122).


In FIG. 5 the glucose values (100) begin at about 150 mg/dL, rise to about 195 mg/dL (101), fall to about 155 mg/dL (102), rise to about 270 mg/dL (103), fall to about 60 mg/dL (104), rise to about 90 mg/dL (105), fall to about 40 mg/dL (106), and end at about 100 mg/dL.



FIG. 6 shows the same blood glucose values 100 as FIG. 5 but adds the testing that was performed by that user, some of which occurs as a result of a reminder (alert and/or alarm and/or reminder). For example, after a light meal (snack) the user tests with a reading of 193 mg/dL (201) that falls in the upper alert zone (120). This reading may cause meter 12 to generate an alert to the user, e.g., flashing display, beep, or the like, that his or her glucose is in an upper level of moderate concern, as previously described above. The meter may alert the user substantially immediately after the determination of the reading in the upper alert zone, or sometime thereafter as described below. Regardless of whether the user is notified substantially immediately of a reading in an alert zone (or other zone of concern as described herein), the meter may also be configured to remind the user to perform a re-test after a predetermined amount of time following a reading in a zone of importance (alarm zone or alert zone). For example, after the above-described meter reading in upper alert zone 120, a meter reminder may notify the user to perform a test after a predetermined amount of time, e.g., about 5 minutes, e.g., about 10 minutes, e.g., about 20 minutes, e.g., about 30 minutes, etc., and may periodically remind a user until a test is performed or until the reminder is cleared by the user. For example, the user may respond to the reading and alert (if alerted) with modest therapy and some time later (e.g., about 30 minutes), a reminder prompts the user to test, resulting in a reading of 160 mg/dL (202) that falls in the ideal zone (110).


Later, after a large meal the user tests with a reading of 268 mg/dL (203) that falls in the upper alarm zone (126). This reading causes meter 12 to generate an alarm to the user that his or her glucose is in an upper level of high concern. The user responds to the reading with an appropriate therapy and some time later (e.g. 20 minutes), a reminder prompts the user to test, resulting in a reading of 232 mg/dL (204) that falls in the upper alert zone (120). This reading causes meter 12 to generate an alert to the user that his or her glucose is in an upper level of moderate concern. The user may note that the previous therapy was appropriate and again, some time later (e.g. 30 minutes), a reminder prompts the user to test again, resulting in a reading of 156 mg/dL (205) that falls in the ideal zone (110) and confirms the previous therapy was appropriate.


Still later, after having exercised but not having eaten the user feels slightly symptomatic and tests with a reading of 61 mg/dL (206) that falls in the lower alert zone (116). This reading causes meter 12 to generate an alert to the user that his or her glucose is in a lower level of moderate concern. The user responds by eating a light meal (snack) and some time later (e.g. 25 minutes), a reminder prompts the user to test, resulting in a reading of 81 mg/dL (207) that falls in the ideal zone (110).


Yet later still, the user feels symptomatic and tests with a reading of 41 mg/dL (208) that falls in the lower alarm zone (124). This reading causes meter 12 to generate an alarm indicating that the glucose level is in a lower level of high concern. The user responds by eating a modest meal and some time later (e.g. 15 minutes), a reminder prompts the user to test, resulting in a reading of 63 mg/dL (209) that falls in the lower alert zone (116). This reading causes meter 12 to generate an alert indicating that the glucose level is now in a lower level of moderate concern. The user may note that the previous therapy (meal) was appropriate or may eat a small amount (snack) and again some time later (e.g. 25 minutes), a reminder prompts the user to test, resulting in a reading of 99 mg/dL (210) that falls in the ideal zone (110) and confirms the course of therapy was appropriate.


It should be noted that in this example, tests 201, 203, 206 and 208 were initiated by the user based on events known by the user to cause changes in blood glucose, or based on symptoms experienced by the user. More importantly, the user was prompted to perform tests 202, 204, 205, 207, 209 and 210 by a meter constructed according to aspects of the present invention. These prompts or timed reminders assist the user in performing appropriate tests in a timely manner. These tests in turn facilitate the user's important goal of keeping his or her blood glucose level in the ideal zone 110 to maintain the user's short-term and long-term health.


Embodiments also include supervisor-controllable, including person-restrictive (e.g., user-restrictive), medical devices. Configurations of a medical device may be settable and/or lockable by a supervisor (e.g., a HCP, parent or guardian, caregiver, or the like), e.g., remotely or by direct action (e.g., using a user interface of the device, or the like). For example, certain configurations of a medical device may be settable and/or lockable by a first person (e.g., a HCP) having a first access level (e.g., full access such as full Read/Write permission) and certain configurations that may be settable and/or lockable by a second person (e.g., a caregiver) having a second access level (e.g., limited Read/Write permission). The medical device may be settable and/or lockable by a third person (e.g., a user under the supervision of the first and second persons) having a third access level (e.g., further limited, e.g., Read only—including no rights to modify previously inputted data). Any number of persons may have certain or limited access rights to a medical device. For example, certain embodiments include medical devices having certain configurations settable and/or lockable by a HCP and certain other features settable and/or lockable by a caregiver. A user may be completely restricted from modifying the configurations set by the HCP and/or caregiver.


Configurations may be access controlled with an access code (e.g., password protected, voice authentication, USB token protected, or other manner of authenticating a user) to allow access permissions for a specific individual, medical device, computer, or group of individuals. When permission is set, the type and level of access granted to an individual, computer, or group is granted. For example, various degrees of, e.g., Read and Write and View permissions may be granted to different persons, as described above.


Different codes may provide different rights. For example an HCP code may enable a HCP to enter prescriptive information and/or delete and/or modify stored prescriptive (“Rx”) information, where prescriptive information is broadly defined relevant information prescribed by a HCP. Prescriptive information may include patient-specific data and may include but is not limited to, one or a plurality of basal rates, insulin ideal analyte ranges, alert and alarm thresholds, medication type (e.g., insulin type), medication dose including total daily dose (e.g., total daily insulin dosage), drug sensitivity (e.g., insulin sensitivity), when to take a medication, how to take a medication, when to treat a condition, how to treat a condition, when to elevate concerns to a HCP or caregiver, reminder schemes (e.g., setting times of reminders), etc. The above is not an exhaustive list, e.g., for treating diabetes, information may also include insulin/carbohydrate information, and other relevant information. In this manner, a medical device may be customizable by a HCP to include user-specific prescriptive information, some of which may not relate to values or settings in the medical device but may be made available for reference purposes only (e.g., as a text note such as those commonly displayed on a PDA, or the like). A medical device may be lockable by a HCP, who may also set access levels for others such as for a caregiver and/or user. In this manner, a HCP (or other designated individual) may serve as the “Administrator” having the ability to control access at a granular level, establishing access levels on a person-by-person basis.


In addition to, or instead of HCP provided configurations, a caregiver may also enter and/or lock configurations of a medical device. In many embodiments, at least some of the configurations under caregiver control differ at least in part from configurations reserved for HCP control, which would be prescriptive in nature, as described above. Caregiver access may enable a caregiver to enter caregiver information and/or delete and/or modify stored caregiver information. Caregiver information includes, but is not limited to the ability to set and lock any value or user restriction not previously set and locked by the HCP such as non-prescriptive alarm values, user menu access, and other user privileges such as data transfer (e.g., upload to a PC) and storage options (e.g., read-only or read-write access to various data). For example, a HCP may set and lock values and allowed options (e.g., lock menus). The caregiver access allowed by the HCP can set and lock that which the HCP did not lock. Caregiver access may provide the caregiver with the ability to lock and/or unlock user features, such as providing the user with increased access over time as the user begins to understand and appreciate the subtleties and complexities of various features (e.g., setting correct values such as alarm thresholds and reminder time values or accessing menus that show information that might be confusing if not interpreted properly). Similarly, the user may be able to access that allowed by the caregiver (and HCP), and may be able to set that which is not locked.


The configurations may be set and/or locked by inputting data directly into the medical device using, e.g., a user interface, or may be accomplished indirectly including remotely, e.g., via a computer system connected to a network, where a network represents any uni- or bi- directional communication link suitable for communicating data, such as a wide-area network, local area network, or a global computer network like the World Wide Web (“the Web”). Accordingly, embodiments include a web-based data management system that allows persons to controllably access and/or manipulate and/or share information, depending on a given person's permission level. Each HCP and/or caregiver and/or medical device user may interact with a computing device suitable for accessing the data management system via a network. For example, a personal computer, laptop computer, phone such as a cellular telephone, a personal digital assistant (PDA), etc., may be used. The communication device typically executes communication software, typically a web browser such as INTERNET EXPLORER from Microsoft Corporation of Redmond, Wash., or the like, in order to communicate with the data management system.


Once configurations are set, e.g., by a HCP, caregiver or user, the stored information may be employed by the medical device in the execution of healthcare management, e.g., glucose monitoring. The stored information may be conveyed to a user in audible format and/or visual and/or tactile format. For example, prescriptive information inputted by a HCP may be visually displayed on the display of a medical device, e.g., as an icon (e.g., an “Rx” icon, as a note (similar to displayed PDF notes), or the like), or may be in audible or tactile form.



FIG. 7A shows the hierarchal permission scheme of an embodiment of a medical device 300 having restrictive control, e.g., restrictive caregiver and user control. The most critical settings and portions of the user interface (e.g. the ability to set values and activate menu items) may be set by a HCP. Values that must be prescribed by a HCP are in the HCP Only portion of the user interface as bounded by the dashed line 310. Additional values prescribed by the HCP are included in the HCP settings region 320 as bounded by the solid line 330. For example, the HCP may restrict access to various options and menus (e.g., data transfer and storage parameters) and may set and lock various values such as, for example, the lower threshold for high concern and the associated alarm parameters. A caregiver (e.g. a parent) may set additional restrictions by the Caregiver settings region 340 as bounded by the solid line 350. For example, the caregiver may set and lock the previously unlocked upper threshold for high concern and the associated alarm parameters and set preferred values for other threshold and the associated alarm parameters without locking those values (i.e., the user may update those values at a later time). Finally, the user of the medical device is allowed access to the User Allowed portion of the user interface as bounded by the dashed line 360 along with a portion of the user interface that is always allowed, which is included in the User region 370 of the user interface.



FIG. 7B shows medical device 300 of FIG. 7A, but in this embodiments there is no caregiver and the User region 370 includes of all portions of the user interface that are not restricted by the HCP in the HCP settings region 320.



FIG. 8 shows medical device 300 as connected to a Data Management System (DMS) 400 through connection 410 which may be wired or wireless. The DMS 400 may interface too many medical devices where only one is shown, and each may be of similar or differing types (e.g. analyte meter (such as a blood glucose meter), continuous analyte monitor (such as a continuous glucose monitor), or drug infusion pump (such as an insulin pump)).



FIG. 9 shows application software (SW) that runs on the DMS 400 where the DMS Application SW 500 interfaces to the medical device (not shown) via connection 410. SW 500 may be embodied on a computer readable medium. The DMS Application SW 500 also interfaces to the HCP Application SW 510, the Caregiver Application SW 520, and the User Application SW 530 through SW connections 540, 550 and 560 respectively. Each of the HCP, Caregiver and User Application SW modules has the same restrictive user controls (e.g. privileges and restrictions) to those that are set directly on the medical device while allowing a more complete user interface, such as a Graphical User Interface (GUI) such as those commonly found on PC computers. Additional features available only on the DMS 400 through the GUI (e.g. advanced data graphing features) may also be subject to similar restrictive user controls as described for the medical device.


As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “an,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.

Claims
  • 1. A computing device in data communication with a skin-mounted assembly comprising an in vivo glucose sensor and a transmitter unit, the computing device comprising: one or more processors;one or more memory units operatively coupled to the one or more processors and including program instructions stored therein which, when executed by the one or more processors, causes the one or more processors to: receive, via user input, individual hierarchical access level rights including at least first access level rights and second access level rights, wherein the first access level rights enable a first individual to view first level parameters of a plurality of parameters of the computing device, and wherein the second access level rights enable a second individual to view second level parameters of the plurality of parameters using the computing device, the second level parameters at least being different than the first level parameters, wherein the first level parameters and the second level parameters relate to data indicative of a glucose level, the data received from the skin-mounted assembly;transmit the first access level rights to a data management system, wherein the first access level rights are associated with a first device associated with the first individual; andtransmit the second access level rights to the data management system, wherein the second access level rights are associated with a second device associated with the second individual;receive, from the skin-mounted assembly, the data indicative of the glucose level; andtransmit the data indicative of the glucose level to the data management system,wherein the first access level rights are configured to cause the data management system to transmit a notification including the data indicative of the glucose level to the first device.
  • 2. The computing device of claim 1, wherein the computing device receives the data indicative of the glucose level from the in vivo glucose sensor via the transmitter unit.
  • 3. The computing device of claim 2, wherein the in vivo glucose sensor is an in vivo continuous glucose sensor.
  • 4. The computing device of claim 1, wherein the first level parameters comprises a first visual representation of the data indicative of the glucose level from the computing device and the second level parameters comprises a second visual representation of the data indicative of the glucose level from the computing device, wherein the first visual representation is different from the second visual representation.
  • 5. The computing device of claim 4, wherein the first visual representation of the data indicative of the glucose level comprises a first glucose trend chart and the second visual representation of the data indicative of the glucose level comprise a second trend chart.
  • 6. The computing device of claim 1, wherein the first access level rights enable the first individual to modify, set, or lock first level parameters of the plurality of parameters of the computing device, and wherein the first level parameters include at least prescriptive parameters.
  • 7. The computing device of claim 6, wherein the prescriptive parameters include one or more of a basal rate, a target analyte range, an alert or alarm threshold, a medication type, a medication dose, a total daily medication dose, a drug sensitivity, a parameter associated with when to take medication, a parameter associated with how to take medication, a parameter associated with when to treat a health condition, a parameter associated with how to treat the health condition, and a reminder scheme.
  • 8. The computing device of claim 1, wherein the second access level rights enable the second individual to set, modify, or lock the second level parameters of the plurality of parameters using the computing device, the second level parameters at least being different than first level parameters locked by the first individual, and wherein the second level parameters include at least non-prescriptive parameters.
  • 9. The computing device of claim 8, wherein the non-prescriptive parameters include one or more of an alarm value, a user menu access parameter, a data transfer and storage parameter, and a reminder associated therewith.
  • 10. The computing device of claim 8, wherein the second level parameters further include prescriptive parameters that have not been locked by the first individual.
  • 11. A method performed by a computing device in data communication with a skin-mounted assembly comprising an in vivo glucose sensor and a transmitter unit, the method comprising: configuring a computing device with an access level hierarchy to provide individual hierarchical access level rights including at least first access level rights and second access level rights, wherein the first access level rights enable a first individual to view first level parameters of a plurality of parameters of the computing device, and wherein the second access level rights enable a second individual to view second level parameters of the plurality of parameters using the computing device, the second level parameters at least being different than the first level parameters, wherein the first level parameters and the second level parameters relate to data indicative of a glucose level, the data received from the skin-mounted assembly;transmitting the first access level rights to a data management system, wherein the first access level rights are associated with a first device associated with the first individual;transmitting the second access level rights to the data management system, wherein the second access level rights are associated with a second device associated with the second individual;receiving, from the skin-mounted assembly, the data indicative of the glucose level; andtransmitting the data indicative of the glucose level to the data management system,wherein the first access level rights are configured to cause the data management system to transmit a notification including the data indicative of the glucose level to the first device.
  • 12. The method of claim 11, further comprising configuring the computing device to be in data communication with an in vivo analyte sensor.
  • 13. The method of claim 12, wherein the in vivo analyte sensor is an in vivo continuous glucose sensor.
  • 14. The method of claim 11, wherein the first level parameters comprises a first visual representation of the data indicative of the glucose level from the computing device and the second level parameters comprises a second visual representation of the data indicative of the glucose level from the computing device, wherein the first visual representation is different from the second visual representation.
  • 15. The method of claim 14, wherein the first visual representation of the data indicative of the glucose level comprises a first glucose trend chart and the second visual representation of the data indicative of the glucose level comprise a second trend chart.
  • 16. The method of claim 14, wherein the first level parameters include at least prescriptive parameters.
  • 17. The method of claim 16, wherein the prescriptive parameters include one or more of a basal rate, a target analyte range, an alert or alarm threshold, a medication type, a medication dose, a total daily medication dose, a drug sensitivity, a parameter associated with when to take mediation, a parameter associated with how to take medication, a parameter associated with when to treat a health condition, a parameter associated with how to treat the health condition, and a reminder scheme.
  • 18. The method of claim 11, wherein the second level parameters include at least non-prescriptive parameters.
  • 19. The method of claim 18, wherein the non-prescriptive parameters include one or more of an alarm value, a user menu access parameter, a data transfer and storage parameter, and a reminder associated therewith.
  • 20. The method of claim 18, wherein the second level parameters further include prescriptive parameters that have not been locked by the first individual.
US Referenced Citations (1215)
Number Name Date Kind
2915579 Mendelsohn Dec 1959 A
3374337 Burley Mar 1968 A
3510747 Petrides May 1970 A
3541892 Kubinek et al. Nov 1970 A
3606592 Madurski et al. Sep 1971 A
3750687 Williams Aug 1973 A
3843455 Bier Oct 1974 A
3923060 Elinwood Dec 1975 A
3930493 Williamson Jan 1976 A
3938140 Garcia et al. Feb 1976 A
3994799 Yao et al. Nov 1976 A
4001604 Parks et al. Jan 1977 A
4018547 Rogen Apr 1977 A
4048551 Bosik Sep 1977 A
4121282 Ohsawa Oct 1978 A
4146029 Elinwood Mar 1979 A
4172770 Semerskv et al. Oct 1979 A
4193397 Tucker et al. Mar 1980 A
4268173 Barnard et al. May 1981 A
4288793 Lotscher Sep 1981 A
4309156 Gonner et al. Jan 1982 A
4360019 Potner et al. Nov 1982 A
4362052 Heath et al. Dec 1982 A
4401122 Clark, Jr. Aug 1983 A
4439197 Honda et al. Mar 1984 A
4441968 Emmer et al. Apr 1984 A
4447224 DeCant, Jr. et al. May 1984 A
4458686 Clark, Jr. Jul 1984 A
4467811 Clark, Jr. Aug 1984 A
4472113 Rogen Sep 1984 A
4474309 Solomon Oct 1984 A
4486190 Reinicke Dec 1984 A
4494950 Fischell Jan 1985 A
4512348 Uchigaki et al. Apr 1985 A
4524343 Morgan et al. Jun 1985 A
4529401 Leslie et al. Jul 1985 A
4531235 Brusen Jul 1985 A
4562751 Nason et al. Jan 1986 A
4563249 Hale Jan 1986 A
4570492 Walsh Feb 1986 A
4573994 Fischell et al. Mar 1986 A
4574809 Talish et al. Mar 1986 A
4633878 Bombardieri Jan 1987 A
4655880 Liu Apr 1987 A
4678408 Nason et al. Jul 1987 A
4685903 Cable et al. Aug 1987 A
4686624 Blum et al. Aug 1987 A
4736748 Nakamura et al. Apr 1988 A
4755173 Konopka et al. Jul 1988 A
4811564 Palmer Mar 1989 A
4850959 Findl Jul 1989 A
4851827 Nicholas Jul 1989 A
4866396 Tamura Sep 1989 A
4883409 Strohmeier et al. Nov 1989 A
4890621 Hakkv Jan 1990 A
4953552 DeMarzo Sep 1990 A
4976590 Baldwin Dec 1990 A
4979509 Hakky Dec 1990 A
4984581 Stice Jan 1991 A
5004532 Hale et al. Apr 1991 A
5012667 Kruse May 1991 A
5019974 Beckers May 1991 A
5036861 Sembrowich et al. Aug 1991 A
5051880 Harm et al. Sep 1991 A
5061914 Bush et al. Oct 1991 A
5078683 Sancoff et al. Jan 1992 A
5079920 Whitehead et al. Jan 1992 A
5081421 Miller et al. Jan 1992 A
5101814 Palti Apr 1992 A
5124661 Zelin et al. Jun 1992 A
5139023 Stanley et al. Aug 1992 A
5155695 Stein Oct 1992 A
5190041 Palti Mar 1993 A
5205819 Ross et al. Apr 1993 A
5207666 Idriss et al. May 1993 A
5211371 Coffee May 1993 A
5211626 Frank et al. May 1993 A
5223822 Stommes et al. Jun 1993 A
5262305 Heller et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5267026 Kawahara et al. Nov 1993 A
5278997 Martin Jan 1994 A
5284423 Holdsworth et al. Feb 1994 A
5284425 Holtermann et al. Feb 1994 A
5291614 Baker et al. Mar 1994 A
5291887 Stanley et al. Mar 1994 A
5320725 Gregg et al. Jun 1994 A
5324599 Oyama et al. Jun 1994 A
5325280 Tortola et al. Jun 1994 A
5349852 Kamen et al. Sep 1994 A
5356786 Heller et al. Oct 1994 A
5366292 Voss Nov 1994 A
5368028 Palti Nov 1994 A
5371687 Holmes, II et al. Dec 1994 A
5372133 Hogen Esch Dec 1994 A
5376070 Purvis et al. Dec 1994 A
5382331 Banks Jan 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5398681 Kuperschmidt Mar 1995 A
5404585 Vimpari et al. Apr 1995 A
5406301 Ravid Apr 1995 A
5428307 Dendinger Jun 1995 A
5445611 Eppstein et al. Aug 1995 A
5448992 Kuperschmidt Sep 1995 A
5458140 Eppstein et al. Oct 1995 A
5469025 Kanemori et al. Nov 1995 A
5479486 Saii Dec 1995 A
5494562 Maley et al. Feb 1996 A
5497772 Schulman et al. Mar 1996 A
5505713 Van Antwerp Apr 1996 A
5507288 Bocker et al. Apr 1996 A
5515390 Benton May 1996 A
5517434 Hanson et al. May 1996 A
5526844 Kamen et al. Jun 1996 A
5527288 Gross et al. Jun 1996 A
5533389 Kamen et al. Jul 1996 A
5543678 Hoiberg Aug 1996 A
5559528 Ravid Sep 1996 A
5568400 Stark et al. Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5573506 Vasko Nov 1996 A
5575770 Melskv et al. Nov 1996 A
5576535 Oosterwiik et al. Nov 1996 A
5586553 Halili et al. Dec 1996 A
5593852 Heller et al. Jan 1997 A
5594906 Holmes, II et al. Jan 1997 A
5596261 Suyama Jan 1997 A
5601435 Quv Feb 1997 A
5604404 Sahara Feb 1997 A
5615671 Schoonen et al. Apr 1997 A
5620579 Genshaw et al. Apr 1997 A
5622413 Kim et al. Apr 1997 A
5622482 Lee Apr 1997 A
5628324 Sarbach May 1997 A
5634468 Platt et al. Jun 1997 A
5640954 Pfeiffer et al. Jun 1997 A
5645709 Birch et al. Jul 1997 A
5660163 Schulman et al. Aug 1997 A
5661643 Blakely et al. Aug 1997 A
5662461 Ono Sep 1997 A
5665222 Heller et al. Sep 1997 A
5671301 Kuperschmidt Sep 1997 A
5685844 Marttila Nov 1997 A
5695949 Galen et al. Dec 1997 A
5703928 Galloway et al. Dec 1997 A
5707502 McCaffrev et al. Jan 1998 A
5708247 McAleer et al. Jan 1998 A
5711861 Ward et al. Jan 1998 A
5711868 Maley et al. Jan 1998 A
5722397 Ennstein Mar 1998 A
5738220 Geszler Apr 1998 A
5741211 Renirie et al. Apr 1998 A
5748872 Norman May 1998 A
5759510 Pillai Jun 1998 A
5771890 Tamada Jun 1998 A
5774254 Berlin Jun 1998 A
5786439 Van Antwerp et al. Jul 1998 A
5790297 Berlin Aug 1998 A
5791344 Schulman et al. Aug 1998 A
5812102 Sprole et al. Sep 1998 A
5814020 Gross Sep 1998 A
5814599 Mitragotri et al. Sep 1998 A
5815303 Berlin Sep 1998 A
5822715 Worthington et al. Oct 1998 A
5825488 Kohl et al. Oct 1998 A
5848990 Cirelli et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5856631 Julien Jan 1999 A
5858001 Tsals et al. Jan 1999 A
5873026 Reames Feb 1999 A
5875417 Golden Feb 1999 A
5885211 Ennstein et al. Mar 1999 A
5899855 Brown May 1999 A
5913833 Elstrom et al. Jun 1999 A
5918603 Brown Jul 1999 A
5919167 Mulhauser Jul 1999 A
5923512 Brownlow et al. Jul 1999 A
5931814 Alex et al. Aug 1999 A
5947921 Johnson et al. Sep 1999 A
5948512 Kubota et al. Sep 1999 A
5951582 Thome et al. Sep 1999 A
5951836 McAleer et al. Sep 1999 A
5954643 Van Antwerp et al. Sep 1999 A
5965380 Heller et al. Oct 1999 A
5968011 Larsen et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5972199 Heller et al. Oct 1999 A
5993411 Choi Nov 1999 A
5994878 Ostergaard et al. Nov 1999 A
5997501 Gross et al. Dec 1999 A
6001067 Shults et al. Dec 1999 A
6002961 Mitragotri et al. Dec 1999 A
6011486 Casey Jan 2000 A
6014577 Henning et al. Jan 2000 A
6017328 Fischell et al. Jan 2000 A
6018678 Mitragotri et al. Jan 2000 A
6023629 Tamada Feb 2000 A
6024539 Blomquist et al. Feb 2000 A
6026320 Carlson et al. Feb 2000 A
6027459 Shain et al. Feb 2000 A
6027496 Loomis et al. Feb 2000 A
6027692 Galen et al. Feb 2000 A
6032059 Henning et al. Feb 2000 A
6032155 de la Huerga Feb 2000 A
6041253 Kost et al. Mar 2000 A
6041665 Hussain Mar 2000 A
6059546 Brenan et al. May 2000 A
6063039 Cunningham et al. May 2000 A
6064368 Kang May 2000 A
6066243 Anderson et al. May 2000 A
6067017 Stewart et al. May 2000 A
6067463 Jeng et al. May 2000 A
6071249 Cunningham et al. Jun 2000 A
6071251 Cunningham et al. Jun 2000 A
6073031 Helstab et al. Jun 2000 A
6077660 Wong et al. Jun 2000 A
6081104 Kem Jun 2000 A
6082289 Cavallaro Jul 2000 A
6083710 Heller et al. Jul 2000 A
6085871 Karamata Jul 2000 A
6086575 Meislov Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6093156 Cunningham et al. Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6103033 Say et al. Aug 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6129823 Hughes et al. Oct 2000 A
6132363 Freed Oct 2000 A
6132371 Dempsey et al. Oct 2000 A
6134461 Say et al. Oct 2000 A
6142939 Ennstein et al. Nov 2000 A
6143164 Heller et al. Nov 2000 A
6144303 Federman Nov 2000 A
6144869 Bemer et al. Nov 2000 A
6144922 Douglas et al. Nov 2000 A
6147342 Kucher Nov 2000 A
6154855 Norman Nov 2000 A
6155992 Henning et al. Dec 2000 A
6157442 Raskas Dec 2000 A
6160449 Klomsdorf et al. Dec 2000 A
6162202 Sicurelli et al. Dec 2000 A
6162611 Heller et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6173160 Liimatainen Jan 2001 B1
6175752 Say et al. Jan 2001 B1
6180416 Kurnik et al. Jan 2001 B1
6185452 Schulman et al. Feb 2001 B1
6186982 Gross et al. Feb 2001 B1
6192891 Gravel et al. Feb 2001 B1
6201721 Suranyi et al. Mar 2001 B1
6201980 Darrow et al. Mar 2001 B1
6203288 Kottke Mar 2001 B1
6206841 Cunningham et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6215206 Chitayat Apr 2001 B1
6222514 DeLuca Apr 2001 B1
6228100 Schraga May 2001 B1
6232370 Kubota et al. May 2001 B1
6233471 Bemer et al. May 2001 B1
6233539 Brown May 2001 B1
6242961 Liu et al. Jun 2001 B1
6245060 Loomis et al. Jun 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6262708 Chu Jul 2001 B1
6272364 Kurnik Aug 2001 B1
6278425 DeLuca Aug 2001 B1
6280587 Matsumoto Aug 2001 B1
6283926 Cunningham et al. Sep 2001 B1
6283951 Flaherty et al. Sep 2001 B1
6284478 Heller et al. Sep 2001 B1
6288653 Shih Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6298254 Tamada Oct 2001 B2
6298255 Cordero et al. Oct 2001 B1
6299578 Kurnik et al. Oct 2001 B1
6301499 Carlson et al. Oct 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309351 Kurnik et al. Oct 2001 B1
6312888 Wong et al. Nov 2001 B1
6315721 Schulman et al. Nov 2001 B2
6326160 Dunn et al. Dec 2001 B1
6329161 Heller et al. Dec 2001 B1
6331244 Lewis et al. Dec 2001 B1
6338790 Feldman et al. Jan 2002 B1
6341232 Conn et al. Jan 2002 B1
6356776 Bemer et al. Mar 2002 B1
6360888 Mcivor et al. Mar 2002 B1
6366793 Bell et al. Apr 2002 B1
6368141 Van Antwerp et al. Apr 2002 B1
6368274 Van Antwerp et al. Apr 2002 B1
6372371 Iarochenko et al. Apr 2002 B1
6375344 Hanson et al. Apr 2002 B1
6375638 Nason et al. Apr 2002 B2
6377894 Deweese et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6381496 Meadows et al. Apr 2002 B1
6393318 Conn et al. May 2002 B1
6403944 MacKenzie et al. Jun 2002 B1
6405066 Essenpreis et al. Jun 2002 B1
6408402 Norman Jun 2002 B1
6417074 Koolev et al. Jul 2002 B2
6418332 Mastrototaro et al. Jul 2002 B1
6419642 Marchitto et al. Jul 2002 B1
6421389 Jett et al. Jul 2002 B1
6425829 Julien Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6432585 Kawakami et al. Aug 2002 B1
6437379 Kopley et al. Aug 2002 B2
6438385 Heinonen et al. Aug 2002 B1
6438414 Conn et al. Aug 2002 B1
6442413 Silver Aug 2002 B1
6445374 Albert et al. Sep 2002 B2
6453195 Thompson Sep 2002 B1
6461329 Van Antwerp et al. Oct 2002 B1
6462162 Van Antwerp et al. Oct 2002 B2
6464848 Matsumoto Oct 2002 B1
6466807 Dobson et al. Oct 2002 B1
6466810 Ward et al. Oct 2002 B1
6468222 Mault et al. Oct 2002 B1
6471980 Sirhan et al. Oct 2002 B2
6472991 Schulman et al. Oct 2002 B1
6475196 Vachon Nov 2002 B1
6478736 Mault Nov 2002 B1
6480730 Darrow et al. Nov 2002 B2
6482158 Mault Nov 2002 B2
6482176 Wich Nov 2002 B1
6484045 Holker et al. Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6485138 Kubota et al. Nov 2002 B1
6485461 Mason et al. Nov 2002 B1
6485465 Morberg et al. Nov 2002 B2
6492180 Brown et al. Dec 2002 B2
6498043 Schulman et al. Dec 2002 B1
6506168 Fathallah et al. Jan 2003 B1
6511412 Freed Jan 2003 B1
6513532 Mault et al. Feb 2003 B2
6514460 Fendrock Feb 2003 B1
6514689 Han et al. Feb 2003 B2
6514718 Heller et al. Feb 2003 B2
6522530 Bang Feb 2003 B2
6525330 Paolini et al. Feb 2003 B2
6526298 Khalil et al. Feb 2003 B1
6529772 Carlson et al. Mar 2003 B2
6530915 Eppstein et al. Mar 2003 B1
6535753 Raskas Mar 2003 B1
6537243 Henning et al. Mar 2003 B1
6540675 Aceti et al. Apr 2003 B2
6540891 Stewart et al. Apr 2003 B1
6543224 Barooah Apr 2003 B1
6544212 Galley et al. Apr 2003 B2
6546269 Kurnik Apr 2003 B1
6549796 Sohrab Apr 2003 B2
6551276 Mann et al. Apr 2003 B1
6554798 Mann et al. Apr 2003 B1
6558320 Causey, III et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6564807 Schulman et al. May 2003 B1
6565509 Say et al. May 2003 B1
6565738 Henning et al. May 2003 B1
6569157 Shain et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6571200 Mault May 2003 B1
6576117 Iketaki et al. Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
6579498 Eglise Jun 2003 B1
6579690 Bonnacaze et al. Jun 2003 B1
6582393 Sage, Jr. Jun 2003 B2
6585644 Lebel et al. Jul 2003 B2
6586971 Naffziger et al. Jul 2003 B1
6587705 Kim et al. Jul 2003 B1
6589229 Connelly et al. Jul 2003 B1
6594514 Bemer et al. Jul 2003 B2
6595919 Bemer et al. Jul 2003 B2
6596016 Vreman et al. Jul 2003 B1
6600997 Deweese et al. Jul 2003 B2
6602469 Maus et al. Aug 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6610012 Mault Aug 2003 B2
6612306 Mault Sep 2003 B1
6615061 Khalil et al. Sep 2003 B1
6615074 Mickle et al. Sep 2003 B2
6618603 Varalli et al. Sep 2003 B2
6620106 Mault Sep 2003 B2
6623501 Heller et al. Sep 2003 B2
6629934 Mault et al. Oct 2003 B2
6633095 Swope et al. Oct 2003 B1
6633772 Ford et al. Oct 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6641533 Causey, III et al. Nov 2003 B2
6645142 Braig et al. Nov 2003 B2
6648821 Lebel et al. Nov 2003 B2
6650064 Guthrie et al. Nov 2003 B2
6653091 Dunn et al. Nov 2003 B1
6656158 Mahoney et al. Dec 2003 B2
6656159 Flaherty Dec 2003 B2
6659948 Lebel et al. Dec 2003 B2
6659980 Morberg et al. Dec 2003 B2
6668196 Villegas et al. Dec 2003 B1
6669663 Thompson Dec 2003 B1
6669669 Flaherty et al. Dec 2003 B2
6670806 Wendt et al. Dec 2003 B2
6673596 Sayler Jan 2004 B1
6679841 Boian et al. Jan 2004 B2
6687522 Tamada Feb 2004 B2
6687546 Lebel et al. Feb 2004 B2
6692457 Flaherty Feb 2004 B2
6694191 Starkweather et al. Feb 2004 B2
6695885 Schulman et al. Feb 2004 B2
6699218 Flaherty et al. Mar 2004 B2
6702857 Brauker et al. Mar 2004 B2
6723072 Flaherty et al. Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6730200 Stewart et al. May 2004 B1
6731976 Penn et al. May 2004 B2
6733446 Lebel et al. May 2004 B2
6736777 Kim et al. May 2004 B2
6736797 Larsen et al. May 2004 B1
6738654 Sohrab May 2004 B2
6740059 Flaherty May 2004 B2
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6743635 Neel et al. Jun 2004 B2
6746582 Heller et al. Jun 2004 B2
6749587 Flaherty Jun 2004 B2
6752785 Van Antwerp et al. Jun 2004 B2
6752787 Causey, III et al. Jun 2004 B1
6758810 Lebel et al. Jul 2004 B2
6764581 Forrow et al. Jul 2004 B1
6768425 Flaherty et al. Jul 2004 B2
6770030 Schaupp et al. Aug 2004 B1
6770729 Van Antwerp Aug 2004 B2
6773563 Matsumoto Aug 2004 B2
6779984 Lilie et al. Aug 2004 B2
6789195 Prihoda et al. Sep 2004 B1
6790178 Mault et al. Sep 2004 B1
6794195 Colvin, Jr. Sep 2004 B2
6799861 Naghi et al. Oct 2004 B2
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6816742 Kim et al. Nov 2004 B2
6818348 Venkatesan et al. Nov 2004 B1
6830558 Flaherty et al. Dec 2004 B2
6832114 Whitehurst et al. Dec 2004 B1
6833540 MacKenzie et al. Dec 2004 B2
6835553 Han et al. Dec 2004 B2
6837858 Cunningham et al. Jan 2005 B2
6839596 Nelson et al. Jan 2005 B2
6840912 Kloepfer et al. Jan 2005 B2
6849237 Housefield et al. Feb 2005 B2
6850790 Bemer et al. Feb 2005 B2
6859831 Gelvin et al. Feb 2005 B1
6862465 Shults et al. Mar 2005 B2
6872200 Mann et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6881551 Heller et al. Apr 2005 B2
6892085 Mcivor et al. May 2005 B2
6893396 Schulze et al. May 2005 B2
6895265 Silver May 2005 B2
6898451 Wuori May 2005 B2
6899683 Mault et al. May 2005 B2
6899684 Mault et al. May 2005 B2
6904301 Raskas Jun 2005 B2
6907127 Kravitz et al. Jun 2005 B1
6908535 Rankin et al. Jun 2005 B2
6916159 Rush et al. Jul 2005 B2
6918874 Hatch et al. Jul 2005 B1
6922576 Raskas Jul 2005 B2
6922578 Ennstein et al. Jul 2005 B2
6923764 Aceti et al. Aug 2005 B2
6927749 Klemm Aug 2005 B1
6931327 Goode, Jr. et al. Aug 2005 B2
6936029 Mann et al. Aug 2005 B2
6949816 Brown et al. Sep 2005 B2
6950708 Bowman, IV et al. Sep 2005 B2
6952603 Gerber et al. Oct 2005 B2
6955650 Mault et al. Oct 2005 B2
6958129 Galen et al. Oct 2005 B2
6958705 Lebel et al. Oct 2005 B2
6960192 Flaherty et al. Nov 2005 B1
6961448 Nichols Nov 2005 B2
6974437 Lebel et al. Dec 2005 B2
6979326 Mann et al. Dec 2005 B2
6990366 Say et al. Jan 2006 B2
6990372 Perron et al. Jan 2006 B2
6997911 Klitmose Feb 2006 B2
6997920 Mann et al. Feb 2006 B2
6999810 Bemer et al. Feb 2006 B2
7003340 Say et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7005857 Stiene et al. Feb 2006 B2
7006858 Silver et al. Feb 2006 B2
7010356 Jog et al. Mar 2006 B2
7011630 Desai et al. Mar 2006 B2
7018360 Flaherty et al. Mar 2006 B2
7020508 Stirovic et al. Mar 2006 B2
7024245 Lebel et al. Apr 2006 B2
7024249 Weisner et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7029444 Shin et al. Apr 2006 B2
7029455 Flaherty Apr 2006 B2
7034677 Steinthal et al. Apr 2006 B2
7041468 Drucker et al. May 2006 B2
7043287 Khalil et al. May 2006 B1
7052251 Nason et al. May 2006 B2
7058437 Buse et al. Jun 2006 B2
7067498 Wolf et al. Jun 2006 B2
7070591 Adams et al. Jul 2006 B2
7072738 Bonney et al. Jul 2006 B2
7074307 Simpson et al. Jul 2006 B2
7077328 Krishnaswamy et al. Jul 2006 B2
7079901 Loftin et al. Jul 2006 B1
7081195 Simpson et al. Jul 2006 B2
7083593 Stultz Aug 2006 B2
7086277 Tess et al. Aug 2006 B2
7092762 Loftin et al. Aug 2006 B1
7097983 Markovskv et al. Aug 2006 B2
7098803 Mann et al. Aug 2006 B2
7108711 Vogel et al. Sep 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7114502 Schulman et al. Oct 2006 B2
7123206 Hess et al. Oct 2006 B2
7133710 Acosta et al. Nov 2006 B2
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7136704 Schulman Nov 2006 B2
7137964 Flaherty Nov 2006 B2
7144384 Gorman et al. Dec 2006 B2
7149581 Goedeke Dec 2006 B2
7153212 Karten et al. Dec 2006 B1
7154398 Chen et al. Dec 2006 B2
7155729 Andrew et al. Dec 2006 B1
7163511 Conn et al. Jan 2007 B2
7167818 Brown Jan 2007 B2
7171274 Starkweather et al. Jan 2007 B2
7174199 Bemer et al. Feb 2007 B2
7181261 Silver et al. Feb 2007 B2
7186566 Qian Mar 2007 B2
7186791 Bruno et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7193521 Morberg et al. Mar 2007 B2
7198603 Penner et al. Apr 2007 B2
7202734 Raab Apr 2007 B1
7205409 Pei et al. Apr 2007 B2
7207974 Safabash et al. Apr 2007 B2
7208119 Kurtock et al. Apr 2007 B1
7211048 Naiafi et al. May 2007 B1
7218017 Chitayet et al. May 2007 B1
7225535 Feldman et al. Jun 2007 B2
7226278 Nason et al. Jun 2007 B2
7226442 Shennard, Jr. et al. Jun 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7258666 Brown Aug 2007 B2
7261691 Asomani Aug 2007 B1
7266400 Fine et al. Sep 2007 B2
7267665 Steil et al. Sep 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7283867 Strother et al. Oct 2007 B2
7291497 Holmes et al. Nov 2007 B2
7299080 Acosta et al. Nov 2007 B2
7301463 Paterno Nov 2007 B1
7303549 Flaherty et al. Dec 2007 B2
7310544 Brister et al. Dec 2007 B2
7318816 Bobroff et al. Jan 2008 B2
7323091 Gillette et al. Jan 2008 B1
7324949 Bristol Jan 2008 B2
7343188 Sohrab Mar 2008 B2
7357329 Sakamura Apr 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7371247 Boeker et al. May 2008 B2
7379765 Petisce et al. May 2008 B2
7406105 DelMain et al. Jul 2008 B2
7424318 Brister et al. Sep 2008 B2
7436511 Ruchti et al. Oct 2008 B2
7460898 Brister et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7480138 Kogan et al. Jan 2009 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7510526 Merry et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7570018 Waguespack Aug 2009 B2
7583190 Reggiardo et al. Sep 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7602310 Mann et al. Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7620437 Reggiardo Nov 2009 B2
7632228 Brauker et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640048 Dobbles Dec 2009 B2
7651596 Petisce et al. Jan 2010 B2
7654956 Brister et al. Feb 2010 B2
7657297 Simpson et al. Feb 2010 B2
7661146 Karimzadeh Feb 2010 B2
7711402 Shults et al. May 2010 B2
7713574 Brister et al. May 2010 B2
7715893 Karnath et al. May 2010 B2
7768408 Reggiardo et al. Aug 2010 B2
7775444 DeRocco et al. Aug 2010 B2
7778795 Fukushima et al. Aug 2010 B2
7801582 Peyser Sep 2010 B2
7850621 Briggs et al. Dec 2010 B2
7981034 Jennewine et al. Jan 2011 B2
7882611 Shah et al. Feb 2011 B2
7899545 John Mar 2011 B2
7911010 Stetler Mar 2011 B2
7954385 Raisanen Jun 2011 B2
8005524 Brauker Aug 2011 B2
8047811 Rush et al. Nov 2011 B2
8080003 Burton Dec 2011 B1
8192394 Estes et al. Jun 2012 B2
8226891 Sloan et al. Jul 2012 B2
8448240 Hammoutene May 2013 B2
8777853 Kamath Jul 2014 B2
8808228 Brister Aug 2014 B2
8974386 Peyser Mar 2015 B2
9703956 Watson Jul 2017 B1
9986942 Brauker Jun 2018 B2
10133866 Kumar Nov 2018 B1
10503904 Singh Dec 2019 B1
10542004 Perez Jan 2020 B1
10642753 Steinberg May 2020 B1
11417109 Theimer Aug 2022 B1
11556664 Levy Jan 2023 B2
20010016682 Bemer et al. Aug 2001 A1
20010016683 Darrow et al. Aug 2001 A1
20010016710 Nason et al. Aug 2001 A1
20010020124 Tamada Sep 2001 A1
20010023095 Kopley et al. Sep 2001 A1
20010024864 Kopley et al. Sep 2001 A1
20010029340 Mault et al. Oct 2001 A1
20010034502 Moberg et al. Oct 2001 A1
20010034617 Kimata Oct 2001 A1
20010037060 Thompson et al. Nov 2001 A1
20010037069 Carlson et al. Nov 2001 A1
20010041830 Varalli et al. Nov 2001 A1
20010044581 Mault Nov 2001 A1
20010044588 Mault Nov 2001 A1
20010049470 Mault et al. Dec 2001 A1
20010053891 Ackley Dec 2001 A1
20010056255 Kost et al. Dec 2001 A1
20020002326 Causey, III et al. Jan 2002 A1
20020002328 Tamada Jan 2002 A1
20020004640 Conn et al. Jan 2002 A1
20020010414 Coston et al. Jan 2002 A1
20020013551 Zaitsu Jan 2002 A1
20020019022 Dunn et al. Feb 2002 A1
20020019612 Watanabe et al. Feb 2002 A1
20020026937 Mault Mar 2002 A1
20020027164 Mault et al. Mar 2002 A1
20020028995 Mault Mar 2002 A1
20020032374 Holker et al. Mar 2002 A1
20020040208 Flaherty et al. Apr 2002 A1
20020042090 Heller et al. Apr 2002 A1
20020042561 Schulman et al. Apr 2002 A1
20020045808 Ford et al. Apr 2002 A1
20020047867 Mault et al. Apr 2002 A1
20020053637 Conn et al. May 2002 A1
20020062069 Mault May 2002 A1
20020065682 Goldenberg May 2002 A1
20020068858 Braig et al. Jun 2002 A1
20020077765 Mault Jun 2002 A1
20020077766 Mault Jun 2002 A1
20020087056 Aceti et al. Jul 2002 A1
20020091312 Bemer et al. Jul 2002 A1
20020091454 Vasko Jul 2002 A1
20020099568 Turner Jul 2002 A1
20020103425 Mault Aug 2002 A1
20020107433 Mault Aug 2002 A1
20020107476 Mann et al. Aug 2002 A1
20020109600 Mault et al. Aug 2002 A1
20020118090 Park et al. Aug 2002 A1
20020119711 Van Antwerp et al. Aug 2002 A1
20020124017 Mault Sep 2002 A1
20020128977 Nambiar Sep 2002 A1
20020133378 Mault et al. Sep 2002 A1
20020161286 Gerber et al. Oct 2002 A1
20020165732 Ezzeddine Nov 2002 A1
20020169394 Eppstein et al. Nov 2002 A1
20020169439 Flaherty et al. Nov 2002 A1
20020173703 Lebel et al. Nov 2002 A1
20020177764 Sohrab Nov 2002 A1
20020193679 Malave et al. Dec 2002 A1
20030009133 Ramey Jan 2003 A1
20030023182 Mault et al. Jan 2003 A1
20030023317 Brauker et al. Jan 2003 A1
20030028089 Galley et al. Feb 2003 A1
20030028120 Mault et al. Feb 2003 A1
20030032868 Graskov et al. Feb 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030040683 Rule et al. Feb 2003 A1
20030050546 Desai et al. Mar 2003 A1
20030050575 Diermann et al. Mar 2003 A1
20030055380 Flaherty et al. Mar 2003 A1
20030060692 Ruchti et al. Mar 2003 A1
20030060765 Campbell et al. Mar 2003 A1
20030065254 Schulman et al. Apr 2003 A1
20030065257 Mault et al. Apr 2003 A1
20030065273 Mault et al. Apr 2003 A1
20030065274 Mault et al. Apr 2003 A1
20030065275 Mault et al. Apr 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030074144 Freed Apr 2003 A1
20030078560 Miller et al. Apr 2003 A1
20030100040 Bonnacaze et al. May 2003 A1
20030100821 Heller et al. May 2003 A1
20030105407 Pearce, Jr. et al. Jun 2003 A1
20030107487 Korman et al. Jun 2003 A1
20030108976 Braig et al. Jun 2003 A1
20030118460 Lilie et al. Jun 2003 A1
20030130616 Steil et al. Jul 2003 A1
20030130866 Turner Jul 2003 A1
20030134347 Heller et al. Jul 2003 A1
20030135100 Kim et al. Jul 2003 A1
20030135333 Aceti et al. Jul 2003 A1
20030153820 Bemer et al. Aug 2003 A1
20030153821 Bemer et al. Aug 2003 A1
20030154405 Harrison Aug 2003 A1
20030158472 Sohrab Aug 2003 A1
20030158707 Doi Aug 2003 A1
20030167035 Flaherty et al. Sep 2003 A1
20030175806 Rule et al. Sep 2003 A1
20030176933 Lebel et al. Sep 2003 A1
20030181851 Mann et al. Sep 2003 A1
20030181852 Mann et al. Sep 2003 A1
20030187338 Say et al. Oct 2003 A1
20030187525 Mann et al. Oct 2003 A1
20030191376 Samuels et al. Oct 2003 A1
20030191431 Mann et al. Oct 2003 A1
20030195403 Bemer et al. Oct 2003 A1
20030195462 Mann et al. Oct 2003 A1
20030198558 Nason et al. Oct 2003 A1
20030199825 Flaherty Oct 2003 A1
20030199837 Vachon Oct 2003 A1
20030208110 Mault et al. Nov 2003 A1
20030208113 Mault Nov 2003 A1
20030208133 Mault Nov 2003 A1
20030208154 Close et al. Nov 2003 A1
20030208409 Mault Nov 2003 A1
20030212346 Yuzhakov et al. Nov 2003 A1
20030212364 Mann et al. Nov 2003 A1
20030212379 Bylund Nov 2003 A1
20030214304 Karinka et al. Nov 2003 A1
20030217966 Tapsak et al. Nov 2003 A1
20030225360 Ennstein et al. Dec 2003 A1
20030225361 Sabra Dec 2003 A1
20030226695 Mault Dec 2003 A1
20030232370 Trifiro Dec 2003 A1
20030235817 Bartkowiak et al. Dec 2003 A1
20040010207 Flaherty et al. Jan 2004 A1
20040011671 Shults et al. Jan 2004 A1
20040015131 Flaherty et al. Jan 2004 A1
20040018486 Dunn et al. Jan 2004 A1
20040019321 Sage et al. Jan 2004 A1
20040027253 Marsh et al. Feb 2004 A1
20040030226 Quy Feb 2004 A1
20040034289 Teller et al. Feb 2004 A1
20040039256 Kawatahara et al. Feb 2004 A1
20040041749 Dixon Mar 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040054263 Moerman et al. Mar 2004 A1
20040059201 Ginsberg Mar 2004 A1
20040059284 Nash et al. Mar 2004 A1
20040064088 Gorman et al. Apr 2004 A1
20040064096 Flaherty et al. Apr 2004 A1
20040064133 Miller et al. Apr 2004 A1
20040068230 Estes et al. Apr 2004 A1
20040072357 Stiene et al. Apr 2004 A1
20040073095 Causey, III et al. Apr 2004 A1
20040077995 Ferek-Petric Apr 2004 A1
20040085215 Moberg et al. May 2004 A1
20040087888 DiGianfilippo May 2004 A1
20040096959 Stiene et al. May 2004 A1
20040100376 Lye et al. May 2004 A1
20040106858 Say et al. Jun 2004 A1
20040106859 Say et al. Jun 2004 A1
20040106860 Say et al. Jun 2004 A1
20040108226 Polychronakos et al. Jun 2004 A1
20040115067 Rush et al. Jun 2004 A1
20040116847 Wall Jun 2004 A1
20040116866 Gorman et al. Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040122488 Mazar Jun 2004 A1
20040132220 Fish Jul 2004 A1
20040133092 Kain Jul 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040153032 Garribotto et al. Aug 2004 A1
20040158137 Eppstein et al. Aug 2004 A1
20040162473 Sohrab Aug 2004 A1
20040164961 Bal et al. Aug 2004 A1
20040167383 Kim et al. Aug 2004 A1
20040167464 Ireland et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171921 Say et al. Sep 2004 A1
20040172290 Leven Sep 2004 A1
20040176913 Kawatahara et al. Sep 2004 A1
20040176984 White Sep 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040193025 Steil et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20040202576 Aceti et al. Oct 2004 A1
20040207054 Brown et al. Oct 2004 A1
20040208780 Faries, Jr. et al. Oct 2004 A1
20040210184 Kost et al. Oct 2004 A1
20040223877 Kim et al. Nov 2004 A1
20040225338 Lebel et al. Nov 2004 A1
20040236200 Say et al. Nov 2004 A1
20040248204 Moerman Dec 2004 A1
20040249250 McGee et al. Dec 2004 A1
20040249253 Racchini et al. Dec 2004 A1
20040249254 Racchini et al. Dec 2004 A1
20040249999 Connolly et al. Dec 2004 A1
20040253736 Stout et al. Dec 2004 A1
20040254429 Yang Dec 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20040254884 Haber et al. Dec 2004 A1
20040255152 Kanamori Dec 2004 A1
20040263354 Mann et al. Dec 2004 A1
20040264396 Ginzburg et al. Dec 2004 A1
20050003470 Nelson et al. Jan 2005 A1
20050009126 Andrews et al. Jan 2005 A1
20050010269 Lebel et al. Jan 2005 A1
20050016276 Guan et al. Jan 2005 A1
20050027179 Bemer et al. Feb 2005 A1
20050027180 Goode, Jr. et al. Feb 2005 A1
20050027181 Goode, Jr. et al. Feb 2005 A1
20050027462 Goode, Jr. et al. Feb 2005 A1
20050027463 Goode, Jr. et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050033132 Shults et al. Feb 2005 A1
20050033223 Herrera Feb 2005 A1
20050038332 Saidara et al. Feb 2005 A1
20050038674 Braig et al. Feb 2005 A1
20050038680 McMahon Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050043894 Fernandez Feb 2005 A1
20050045476 Neel et al. Mar 2005 A1
20050049473 Desai et al. Mar 2005 A1
20050051580 Ramey Mar 2005 A1
20050053365 Adams et al. Mar 2005 A1
20050054909 Petisce et al. Mar 2005 A1
20050059926 Sage, Jr. et al. Mar 2005 A1
20050065464 Talbot et al. Mar 2005 A1
20050086008 DiGianfilippo Apr 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050090808 Malave et al. Apr 2005 A1
20050106713 Phan May 2005 A1
20050112169 Brauker et al. May 2005 A1
20050113653 Fox et al. May 2005 A1
20050113657 Alarcon et al. May 2005 A1
20050113658 Jacobson et al. May 2005 A1
20050118726 Scultz et al. Jun 2005 A1
20050121322 Say et al. Jun 2005 A1
20050124873 Shults et al. Jun 2005 A1
20050137471 Haar et al. Jun 2005 A1
20050143635 Karnath et al. Jun 2005 A1
20050143636 Zhang et al. Jun 2005 A1
20050144449 Voice Jun 2005 A1
20050144450 Voice Jun 2005 A1
20050148003 Keith et al. Jul 2005 A1
20050148890 Hastings Jul 2005 A1
20050154271 Rasdal et al. Jul 2005 A1
20050161346 Simpson et al. Jul 2005 A1
20050171503 Van Den Berghe et al. Aug 2005 A1
20050171512 Flaherty Aug 2005 A1
20050171513 Mann et al. Aug 2005 A1
20050173245 Feldman et al. Aug 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050177036 Shults et al. Aug 2005 A1
20050181012 Saint et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050182358 Veit Aug 2005 A1
20050182366 Vogt et al. Aug 2005 A1
20050182451 Griffin et al. Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050199494 Sav et al. Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050203461 Flaherty et al. Sep 2005 A1
20050203582 Healy Sep 2005 A1
20050214892 Kovatchev et al. Sep 2005 A1
20050215871 Feldman et al. Sep 2005 A1
20050215872 Bemer et al. Sep 2005 A1
20050218880 Ioffe Oct 2005 A1
20050221276 Rozakis Oct 2005 A1
20050226918 MacDonald Oct 2005 A1
20050235732 Rush Oct 2005 A1
20050236361 Ufer et al. Oct 2005 A1
20050238503 Rush et al. Oct 2005 A1
20050238507 Dilanni et al. Oct 2005 A1
20050239154 Feldman et al. Oct 2005 A1
20050239518 D'Agostino et al. Oct 2005 A1
20050245795 Goode, Jr. et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050249506 Fuse Nov 2005 A1
20050249606 Rush Nov 2005 A1
20050251083 Carr-Brendel et al. Nov 2005 A1
20050261660 Choi Nov 2005 A1
20050267550 Hess et al. Dec 2005 A1
20050267780 Rav et al. Dec 2005 A1
20050271546 Gerber et al. Dec 2005 A1
20050271547 Gerber et al. Dec 2005 A1
20050272640 Doyle, III et al. Dec 2005 A1
20050272985 Kotulla et al. Dec 2005 A1
20050277844 Strother et al. Dec 2005 A1
20050287620 Heller et al. Dec 2005 A1
20060001538 Kraft Jan 2006 A1
20060001550 Mann et al. Jan 2006 A1
20060001551 Kraft Jan 2006 A1
20060003398 Heller et al. Jan 2006 A1
20060004271 Peyser et al. Jan 2006 A1
20060004603 Peterka et al. Jan 2006 A1
20060007017 Mann et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060017923 Ruchti et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020188 Karnath et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020190 Karnath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060025663 Talbot et al. Feb 2006 A1
20060031094 Cohen Feb 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Karnath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060036187 Vos et al. Feb 2006 A1
20060040402 Brauker et al. Feb 2006 A1
20060041229 Garibotto et al. Feb 2006 A1
20060052679 Kotulla et al. Mar 2006 A1
20060058602 Kwiatkowski et al. Mar 2006 A1
20060058627 Flaherty et al. Mar 2006 A1
20060063218 Bartowiak et al. Mar 2006 A1
20060074564 Bartkowiak et al. Apr 2006 A1
20060094986 Neel et al. May 2006 A1
20060154642 Scannell Jul 2006 A1
20060155338 Mongeon Jul 2006 A1
20060161078 Schraga Jul 2006 A1
20060166629 Reggiardo Jul 2006 A1
20060173259 Flaherty et al. Aug 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060173498 Banville Aug 2006 A1
20060173712 Joubert Aug 2006 A1
20060178633 Garibotto et al. Aug 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060224141 Rush Oct 2006 A1
20060240403 List et al. Oct 2006 A1
20060247508 Fennell Nov 2006 A1
20060253085 Geismar et al. Nov 2006 A1
20060253086 Moberg et al. Nov 2006 A1
20060273759 Reggiardo Dec 2006 A1
20060282290 Flaherty et al. Dec 2006 A1
20060293577 Morrison et al. Dec 2006 A1
20070006322 Karimzadeh Jan 2007 A1
20070007133 Mang et al. Jan 2007 A1
20070016381 Karnath et al. Jan 2007 A1
20070032717 Brister et al. Feb 2007 A1
20070073129 Shah et al. Mar 2007 A1
20070078323 Reggiardo et al. Apr 2007 A1
20070078818 Zvitz et al. Apr 2007 A1
20070100222 Mastrototaro et al. May 2007 A1
20070106135 Sloan May 2007 A1
20070109117 Heitzmann et al. May 2007 A1
20070112298 Mueller, Jr. May 2007 A1
20070118405 Campbell et al. May 2007 A1
20070135697 Reggiardo Jun 2007 A1
20070153705 Rosar et al. Jul 2007 A1
20070156094 Safabash et al. Jul 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070173711 Shah et al. Jul 2007 A1
20070176867 Reggiardo et al. Aug 2007 A1
20070179347 Tarassenko Aug 2007 A1
20070179434 Weinert Aug 2007 A1
20070180259 Bulot Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070207750 Brown et al. Sep 2007 A1
20070214497 Montgomery Sep 2007 A1
20070219480 Kamen et al. Sep 2007 A1
20070219597 Kamen et al. Sep 2007 A1
20070231846 Cosentino et al. Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070251835 Mehta et al. Nov 2007 A1
20070255379 Williams Nov 2007 A1
20080021666 Goode, Jr. et al. Jan 2008 A1
20080033254 Karnath et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080057484 Miyata et al. Mar 2008 A1
20080058626 Miyata et al. Mar 2008 A1
20080058678 Miyata et al. Mar 2008 A1
20080058773 John Mar 2008 A1
20080059228 Bossi Mar 2008 A1
20080061961 John Mar 2008 A1
20080064941 Funderburk et al. Mar 2008 A1
20080071156 Brister et al. Mar 2008 A1
20080081977 Hayter et al. Apr 2008 A1
20080082536 Schwabe Apr 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080083618 Neel Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086044 Brister et al. Apr 2008 A1
20080086273 Shults et al. Apr 2008 A1
20080092638 Brenneman et al. Apr 2008 A1
20080097412 Shuros Apr 2008 A1
20080097918 Spector et al. Apr 2008 A1
20080103447 Reggiardo et al. May 2008 A1
20080106431 Blomquist May 2008 A1
20080108942 Brister et al. May 2008 A1
20080119703 Brister et al. May 2008 A1
20080139907 Rao Jun 2008 A1
20080154099 Aspel et al. Jun 2008 A1
20080169904 Schulman et al. Jul 2008 A1
20080171967 Blomquist Jul 2008 A1
20080172026 Blomquist Jul 2008 A1
20080172027 Blomquist Jul 2008 A1
20080172028 Blomquist Jul 2008 A1
20080172029 Blomquist Jul 2008 A1
20080172030 Blomquist Jul 2008 A1
20080172031 Blomquist Jul 2008 A1
20080183061 Goode et al. Jul 2008 A1
20080183399 Goode et al. Jul 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080189051 Goode et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode et al. Aug 2008 A1
20080194937 Goode et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080195049 Thalmann et al. Aug 2008 A1
20080195232 Carr-Brendel et al. Aug 2008 A1
20080195967 Goode et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080200838 Goldberger et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080214900 Fennell et al. Sep 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080228055 Sher Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080263370 Hammoutene Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080306368 Goode et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306435 Karnath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20090012379 Goode et al. Jan 2009 A1
20090018424 Karnath et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090044259 Bookman Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090054747 Fennell Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090063196 Frederickson Mar 2009 A1
20090063402 Hayter Mar 2009 A1
20090068954 Reggiardo et al. Mar 2009 A1
20090069750 Schraga Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076358 Reggiardo et al. Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Karnath et al. Mar 2009 A1
20090083003 Reggiardo et al. Mar 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090105570 Sloan et al. Apr 2009 A1
20090105571 Fennell et al. Apr 2009 A1
20090124877 Goode et al. May 2009 A1
20090124878 Goode et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090131768 Simpson et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090156919 Brister et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Karnath et al. Jul 2009 A1
20090192751 Karnath et al. Jul 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090216553 Cellura Aug 2009 A1
20090237216 Twitchell, Jr. Sep 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Karnath et al. Oct 2009 A1
20090242425 Karnath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090247931 Damgaard-Sorensen Oct 2009 A1
20090248112 Mumbru Oct 2009 A1
20090287073 Boock et al. Nov 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100010324 Brauker et al. Jan 2010 A1
20100010331 Brauker et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100016687 Brauker et al. Jan 2010 A1
20100016698 Rasdal et al. Jan 2010 A1
20100022855 Brauker et al. Jan 2010 A1
20100030038 Brauker et al. Feb 2010 A1
20100030053 Goode, Jr. et al. Feb 2010 A1
20100030484 Brauker et al. Feb 2010 A1
20100030485 Brauker et al. Feb 2010 A1
20100036215 Goode, Jr. et al. Feb 2010 A1
20100036216 Goode, Jr. et al. Feb 2010 A1
20100036222 Goode, Jr. et al. Feb 2010 A1
20100036223 Goode, Jr. et al. Feb 2010 A1
20100036225 Goode, Jr. et al. Feb 2010 A1
20100041971 Goode, Jr. et al. Feb 2010 A1
20100045465 Brauker et al. Feb 2010 A1
20100049024 Saint et al. Feb 2010 A1
20100052895 Rubey Mar 2010 A1
20100063373 Karnath et al. Mar 2010 A1
20100063438 Bengtsson Mar 2010 A1
20100076283 Simpson et al. Mar 2010 A1
20100081908 Dobbles et al. Apr 2010 A1
20100081910 Brister et al. Apr 2010 A1
20100087724 Brauker et al. Apr 2010 A1
20100096259 Zhang et al. Apr 2010 A1
20100099970 Shults et al. Apr 2010 A1
20100099971 Shults et al. Apr 2010 A1
20100119693 Tapsak et al. May 2010 A1
20100121169 Petisce et al. May 2010 A1
20100152811 Flaherty Jun 2010 A1
20100241447 Siniaguine et al. Sep 2010 A1
20110076981 Singh Mar 2011 A1
20110077493 Shadforth et al. Mar 2011 A1
20110137571 Power Jun 2011 A1
20110161111 Dicks Jun 2011 A1
20110178717 Goodnow et al. Jul 2011 A1
20110196306 De La Huerga Aug 2011 A1
20120029588 Kramer Feb 2012 A1
20120190955 Rao Jul 2012 A1
20150100602 Lopera Apr 2015 A1
20150244687 Perez Aug 2015 A1
20150350190 Li Dec 2015 A1
20160335409 Mensinger Nov 2016 A1
20180121650 Brown May 2018 A1
20180197169 Ogle Jul 2018 A1
20180276085 Mitkar Sep 2018 A1
20190236272 Piatt Aug 2019 A1
20190280866 Zhuang Sep 2019 A1
20190354675 Gan Nov 2019 A1
20190392146 Gezalov Dec 2019 A1
20190392147 Gezalov Dec 2019 A1
20200013054 Upadhye Jan 2020 A1
20200120081 Sutrala Apr 2020 A1
20200143367 LeBeau May 2020 A1
20210075797 Gan Mar 2021 A1
20210218565 Flatow Jul 2021 A1
20210357914 Silvestri Nov 2021 A1
20210398134 Dumas Dec 2021 A1
20210398663 Reggiardo et al. Dec 2021 A1
20210409213 Lu Dec 2021 A1
20220327192 Lu Oct 2022 A1
Foreign Referenced Citations (58)
Number Date Country
0455455 Nov 1991 EP
0465708 Jan 1992 EP
0518524 Dec 1992 EP
0709573 May 1996 EP
0878707 Nov 1998 EP
0543916 Jul 2001 EP
1130638 Sep 2001 EP
0980688 Dec 2002 EP
1077634 Jul 2003 EP
1755443 Nov 2005 EP
1783536 May 2007 EP
1681992 Apr 2010 EP
1448489 Aug 2010 EP
2201969 Mar 2011 EP
2718492 Oct 1995 FR
1-080775 Mar 1989 JP
2001-177423 Jun 2001 JP
2001-056673 Nov 2001 JP
WO-1996014026 May 1996 WO
WO-199603463 7 Nov 1996 WO
WO-1998004902 Feb 1998 WO
WO-1999022236 May 1999 WO
WO-1999056613 Nov 1999 WO
WO-2000074753 Dec 2000 WO
WO-2001041849 Jun 2001 WO
WO-2001052727 Jul 2001 WO
WO-2001054753 Aug 2001 WO
WO-2001071186 Sep 2001 WO
WO-2002039086 May 2002 WO
WO-2002057627 Jul 2002 WO
WO 02071305 Sep 2002 WO
WO-2002084860 Oct 2002 WO
WO-2002100263 Dec 2002 WO
WO-2002100469 Dec 2002 WO
WO-2003006091 Jan 2003 WO
WO-2003090509 Apr 2003 WO
WO-2003053503 Jul 2003 WO
WO-2003071930 Sep 2003 WO
WO-2003103763 Dec 2003 WO
WO-2004028337 Apr 2004 WO
WO-2004032994 Apr 2004 WO
WO-2004061420 Jul 2004 WO
WO-2005089103 Sep 2005 WO
WO-2005101994 Nov 2005 WO
WO-2006003919 Jan 2006 WO
WO-2006079114 Jul 2006 WO
WO-2006086701 Aug 2006 WO
WO-2006102412 Sep 2006 WO
WO-2006110913 Oct 2006 WO
WO-2006113408 Oct 2006 WO
WO-2006113521 Oct 2006 WO
WO-2006118947 Nov 2006 WO
WO-2006132884 Dec 2006 WO
WO-2007041072 Apr 2007 WO
WO-2007090037 Aug 2007 WO
WO-200805503 7 May 2008 WO
WO-2008086541 Jul 2008 WO
WO-2008110267 Sep 2008 WO
Non-Patent Literature Citations (36)
Entry
Barbosa, R. M., et al., “Electrochemical Studies of Zinc in Zinc-Insulin Solution”, Journal of the Roval Society ofChemistry. Analvst vol. 121 No. 12, 1996, pp. 1789-1793.
Bard, A. J., et al., “Methods Involving Forced Convection—Hydrodynamic Methods”, Electrochemical Methods—Fundamentals and Applications, 2001, DD. 331-367.
Kissinger, P. T., “Introduction to Analog Instrumentation”, Laboratory Techniques in Electroanalvtical Chemistrv Second Edition Revised and Exnanded, 1996, pp. 165-194.
Ursino, M, et al., “A Mathematical Model of Cerebral Blood Flow Chemical Regulation—Part I: Diffusion Processes”, IEEE Transactions on Biomedical Engineering, vol. 36, No. 2, 1989, pp. 183-191.
Australian Patent Application No. 2007313880, Examiner's Report dated May 8, 2012.
Chinese Patent Application No. 200780040713.9, English Translation of Office Action dated Feb. 23, 2011.
Chinese Patent Application No. 200780040713.9, Original Language & English Translation of Office Action dated Mar. 12, 2012.
European Patent Application No. 07854392.3, Extended European Search Report dated Jan. 27, 2010.
Japanese Patent Application No. 2009-535399, English Translation & Original Language of Office Action dated Feb. 1, 2011.
PCT Application No. PCT/US2007/082413, International Preliminary Report on Patentability and Written Opinion of the International Searching Authority dated May 2, 2008.
PCT Application No. PCT/US2007/082413, International Search Report and Written Opinion of the International Searching Authority dated May 2, 2008.
Russian Patent Application No. 2009120566, English Translation & Original Language of Office Action dated Mar. 15, 2011.
Russian Patent Application No. 2009120566, Original Language & English Translation of Office Action dated Nov. 18, 2011.
U.S. Appl. No. 11/555,187, Advisory Action dated Feb. 23, 2010.
U.S. Appl. No. 11/555,187, Office Action dated Mar. 23, 2009.
U.S. Appl. No. 11/555,187, Office Action dated Mar. 23, 2012.
U.S. Appl. No. 11/555,187, Office Action dated Nov. 7, 2012.
U.S. Appl. No. 11/555,187, Office Action dated Oct. 13, 2009.
U.S. Appl. No. 11/555,192, Advisory Action dated Feb. 25, 2010.
U.S. Appl. No. 11/555,192, Office Action dated Apr. 14, 2009.
U.S. Appl. No. 11/555,192, Office Action dated Aug. 1, 2013.
U.S. Appl. No. 11/555,192, Office Action dated Dec. 3, 2013.
U.S. Appl. No. 11/555,192, Office Action dated Mar. 19, 2013.
U.S. Appl. No. 11/555,192, Office Action dated Oct. 13, 2009.
U.S. Appl. No. 11/555,207, Advisory Action dated Feb. 27, 2013.
U.S. Appl. No. 11/555,207, Advisory Action dated Aug. 6, 2009.
U.S. Appl. No. 11/555,207, Advisory Action dated Jun. 30, 2010.
U.S. Appl. No. 11/555,207, Notice of Allowance dated Jul. 9, 2013.
U.S. Appl. No. 11/555,207, Office Action dated Apr. 8, 2010.
U.S. Appl. No. 11/555,207, Office Action dated Aug. 17, 2012.
U.S. Appl. No. 11/555,207, Office Action dated Dec. 11, 2008.
U.S. Appl. No. 11/555,207, Office Action dated Jul. 11, 2011.
U.S. Appl. No. 11/555,207, Office Action dated Jun. 23, 2009.
U.S. Appl. No. 11/555,207, Office Action dated Mar. 7, 2012.
U.S. Appl. No. 11/555,207, Office Action dated Oct. 16, 2009.
U.S. Appl. No. 11/555,207, Office Action dated Oct. 19, 2010.
Related Publications (1)
Number Date Country
20230064839 A1 Mar 2023 US
Continuations (6)
Number Date Country
Parent 17464304 Sep 2021 US
Child 17984524 US
Parent 17354343 Jun 2021 US
Child 17464304 US
Parent 16017480 Jun 2018 US
Child 17354343 US
Parent 14730047 Jun 2015 US
Child 16017480 US
Parent 14042629 Sep 2013 US
Child 14730047 US
Parent 11555207 Oct 2006 US
Child 14042629 US