Embodiments of the subject matter described herein relate generally to medical devices, and more particularly, embodiments of the subject matter relate to fluid infusion devices with distributed motor control.
Infusion pump devices and systems are relatively well known in the medical arts, for use in delivering or dispensing an agent, such as insulin or another prescribed medication, to a patient. A typical infusion pump includes a pump drive system which typically includes a small motor and drive train components that convert rotational motor motion to a translational displacement of a plunger (or stopper) in a reservoir that delivers medication from the reservoir to the body of a user via a fluid path created between the reservoir and the body of a user. Use of infusion pump therapy has been increasing, especially for delivering insulin for diabetics.
Continuous insulin infusion provides greater control of a diabetic's condition, and hence, control schemes have been developed that allow insulin infusion pumps to monitor and regulate a user's blood glucose level in a substantially continuous and autonomous manner. For example, an insulin infusion pump may operate in a closed-loop operating mode overnight while a user is sleeping to regulate the user's glucose level to a target glucose level. However, care must be taken to avoid potentially compromising a user's condition and ensure compliance with applicable regulatory requirements in the event of software errors, hardware errors, or other unpredictable or anomalous operating conditions.
Infusion devices, systems and related methods of operation are provided. One exemplary infusion device includes a motor operable to deliver fluid to a body of a user, a first control module, and a second control module coupled to the first control module and the motor. The first control module enables input power for the motor in accordance with a handshaking sequence of communications between the first control module and the second control module and provides a dosage command to the second control module. The second control module operates the motor using the input power based at least in part on the dosage command in accordance with the handshaking sequence of communications.
In another embodiment, an infusion device includes a motor operable to deliver fluid to a body of a user, a driver module coupled to the motor, a first control module, and a second control module coupled to the driver module and the first control module. The first control module provides a delivery request, enables input power to the driver module in response to an acknowledgment of the delivery request, and provides a delivery message after enabling the input power. The second control module provides the acknowledgment to the first control module in response to the delivery request and operates the driver module to provide the input power to the motor based on the delivery message.
In yet another embodiment, a method of operating a motor of an infusion device. The method involves enabling, by a first control module of the infusion device, input power from an energy source to a driver module coupled between the energy source and the motor in accordance with a first sequence of communications between the first control module and a second control module of the infusion device. After enabling the input power, the second control module enables output power from the driver module to the motor in accordance with a second sequence of communications between the first control module and the second control module. After enabling the output power from the driver module, the driver module is operated to provide the input power to the motor in accordance with a third sequence of communications between the first control module and the second control module.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
A more complete understanding of the subject matter may be derived by referring to the detailed description and claims when considered in conjunction with the following figures, wherein like reference numbers refer to similar elements throughout the figures, which may be illustrated for simplicity and clarity and are not necessarily drawn to scale.
The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
While the subject matter described herein can be implemented in any electronic device that includes a motor, exemplary embodiments described below are implemented in the form of medical devices, such as portable electronic medical devices. Although many different applications are possible, the following description focuses on a fluid infusion device (or infusion pump) as part of an infusion system deployment. For the sake of brevity, conventional techniques related to infusion system operation, insulin pump and/or infusion set operation, and other functional aspects of the systems (and the individual operating components of the systems) may not be described in detail here. Examples of infusion pumps may be of the type described in, but not limited to, U.S. Pat. Nos. 4,562,751; 4,685,903; 5,080,653; 5,505,709; 5,097,122; 6,485,465; 6,554,798; 6,558,320; 6,558,351; 6,641,533; 6,659,980; 6,752,787; 6,817,990; 6,932,584; and 7,621,893; each of which are herein incorporated by reference.
Embodiments of the subject matter described herein generally relate to fluid infusion devices including a motor that is operable to displace a plunger (or stopper) of a reservoir provided within the fluid infusion device to deliver a dosage of fluid, such as insulin, to the body of a user. The control of the motor is distributed across multiple control modules of the infusion device using handshaking communications sequences in a manner that reduces the likelihood of overdelivery or undetected underdelivery in the event of an error or anomalous condition with respect to one of the control modules. In this regard, either control module is capable of unilaterally disconnecting or otherwise disabling input power to the motor based on a failure to receive a communication from the other control module that is prescribed by the handshaking communications sequence within an applicable time limit, thereby mitigating the impact on fluid delivery that could otherwise result from an anomalous condition of the other control module. Additionally, either control module is capable of generating user notifications or alerts based on a failure to receive a communication from the other control module in accordance with the handshaking communications sequence, thereby immediately notifying a user of a potential anomalous condition with respect to the infusion device.
In one or more exemplary embodiments, a first control module of the infusion device enables input power from an energy source to a motor driver module coupled between the energy source and the motor in accordance with an initial setup sequence of communications between the first control module and a second control module of the infusion device. After the motor driver input power is enabled, the second control module enables the output power from the motor driver module to be input to the motor in accordance with a second setup sequence of communications between the first control module and the second control module. After the output power from the motor driver module has been enabled, the second control module operates the motor driver module in accordance with a dosage command received from the first control module. In this regard, the second control module operates the motor driver module to provide a predetermined portion of the input power corresponding to the dosage command from the energy source to the motor in accordance with a delivery sequence of communications between the first control module and the second control module. At any time during the delivery process, when either the first control module or the second control module fails to receive a communication from the other control module dictated by the applicable handshaking sequence, the respective control module may unilaterally disable electrical power from the energy source from being provided to the motor. In this manner, an anomalous condition does not result in overdelivery of fluid. Additionally, the respective control module may generate or otherwise provide an alert, so that a user may be immediately apprised of the potential anomalous condition. Thus, if the infusion device being operated in an autonomous delivery mode (e.g., a closed-loop operating mode), the user is notified when the autonomous delivery is interrupted so that the user may revert to manual monitoring and regulation of the user's physiological condition in a manner that prevents underdelivery of fluid that could otherwise result from terminating the autonomous operation of the infusion device.
In the illustrated embodiment of
The sensing arrangement 104 generally represents the components of the infusion system 100 configured to sense, detect, measure or otherwise quantify a condition of the user, and may include a sensor, a monitor, or the like, for providing data indicative of the condition that is sensed, detected, measured or otherwise monitored by the sensing arrangement. In this regard, the sensing arrangement 104 may include electronics and enzymes reactive to a physiological condition in the body of the user, such as a blood glucose level, or the like, of the user, and provide data indicative of the blood glucose level to the infusion device 102, the CCD 106 and/or the computer 108. For example, the infusion device 102, the CCD 106 and/or the computer 108 may include a display for presenting information or data to the user based on the sensor data received from the sensing arrangement 104, such as, for example, a current glucose level of the user, a graph or chart of the user's glucose level versus time, device status indicators, alert messages, or the like. In other embodiments, the infusion device 102, the CCD 106 and/or the computer 108 may include electronics and software that are configured to analyze sensor data and operate the infusion device 102 to deliver fluid to the body of the user based on the sensor data and/or preprogrammed delivery routines. Thus, in exemplary embodiments, one or more of the infusion device 102, the sensing arrangement 104, the CCD 106, and/or the computer 108 includes a transmitter, a receiver, and/or other transceiver electronics that allow for communication with other components of the infusion system 100, so that the sensing arrangement 104 may transmit sensor data or monitor data to one or more of the infusion device 102, the CCD 106 and/or the computer 108.
Still referring to
As described above, in some embodiments, the CCD 106 and/or the computer 108 may include electronics and other components configured to perform processing, delivery routine storage, and to control the infusion device 102 in a manner that is influenced by sensor data measured by and/or received from the sensing arrangement 104. By including control functions in the CCD 106 and/or the computer 108, the infusion device 102 may be made with more simplified electronics. However, in other embodiments, the infusion device 102 may include all control functions, and may operate without the CCD 106 and/or the computer 108. In various embodiments, the CCD 106 may be a portable electronic device. In addition, in various embodiments, the infusion device 102 and/or the sensing arrangement 104 may be configured to transmit data to the CCD 106 and/or the computer 108 for display or processing of the data by the CCD 106 and/or the computer 108.
In some embodiments, the CCD 106 and/or the computer 108 may provide information to the user that facilitates the user's subsequent use of the infusion device 102. For example, the CCD 106 may provide information to the user to allow the user to determine the rate or dose of medication to be administered into the patient's body. In other embodiments, the CCD 106 may provide information to the infusion device 102 to autonomously control the rate or dose of medication administered into the body of the user. In some embodiments, the sensing arrangement 104 may be integrated into the CCD 106. Such embodiments may allow the user to monitor a condition by providing, for example, a sample of his or her blood to the sensing arrangement 104 to assess his or her condition. In some embodiments, the sensing arrangement 104 and the CCD 106 may be used for determining glucose levels in the blood and/or body fluids of the user without the use of, or necessity of, a wire or cable connection between the infusion device 102 and the sensing arrangement 104 and/or the CCD 106.
In some embodiments, the sensing arrangement 104 and/or the infusion device 102 are cooperatively configured to utilize a closed-loop system for delivering fluid to the user. Examples of sensing devices and/or infusion pumps utilizing closed-loop systems may be found at, but are not limited to, the following U.S. Pat. Nos. 6,088,608, 6,119,028, 6,589,229, 6,740,072, 6,827,702, 7,323,142, and 7,402, 153, all of which are incorporated herein by reference in their entirety. In such embodiments, the sensing arrangement 104 is configured to sense or measure a condition of the user, such as, blood glucose level or the like. The infusion device 102 is configured to deliver fluid in response to the condition sensed by the sensing arrangement 104. In turn, the sensing arrangement 104 continues to sense or otherwise quantify a current condition of the user, thereby allowing the infusion device 102 to deliver fluid substantially continuously in response to the condition currently (or most recently) sensed by the sensing arrangement 104 indefinitely. In some embodiments, the sensing arrangement 104 and/or the infusion device 102 may be configured to utilize the closed-loop system only for a portion of the day, for example, only when the user is asleep or awake.
As best illustrated in
The housing 202 is formed from a substantially rigid material having a hollow interior 214 adapted to allow an electronics assembly 204, a sliding member (or slide) 206, a drive system 208, a sensor assembly 210, and a drive system capping member 212 to be disposed therein in addition to the reservoir 205, with the contents of the housing 202 being enclosed by a housing capping member 216. The opening 220, the slide 206, and the drive system 208 are coaxially aligned in an axial direction (indicated by arrow 218), whereby the drive system 208 facilitates linear displacement of the slide 206 in the axial direction 218 to dispense fluid from the reservoir 205 (after the reservoir 205 has been inserted into opening 220), with the sensor assembly 210 being configured to measure axial forces (e.g., forces aligned with the axial direction 218) exerted on the sensor assembly 210 responsive to operating the drive system 208 to displace the slide 206. In various embodiments, the sensor assembly 210 may be utilized to detect one or more of the following: an occlusion in a fluid path that slows, prevents, or otherwise degrades fluid delivery from the reservoir 205 to a patient's body; when the reservoir 205 is empty; when the slide 206 is properly seated with the reservoir 205; when a fluid dose has been delivered; when the infusion pump 200 is subjected to shock or vibration; when the infusion pump 200 requires maintenance.
Depending on the embodiment, the fluid-containing reservoir 205 may be realized as a syringe, a vial, a cartridge, a bag, or the like. In certain embodiments, the infused fluid is insulin, although many other fluids may be administered through infusion such as, but not limited to, HIV drugs, drugs to treat pulmonary hypertension, iron chelation drugs, pain medications, anti-cancer treatments, medications, vitamins, hormones, or the like. As best illustrated in
In the illustrated embodiment of
As best shown in
As illustrated in
The motor assembly 207 includes one or more electrical leads 236 adapted to be electrically coupled to the electronics assembly 204 to establish communication between the control electronics 224 and the motor assembly 207. In response to command signals from the control electronics 224 that operate a motor driver (e.g., a power converter) to regulate the amount of power supplied to the motor from a power supply, the motor actuates the drive train components of the drive system 208 to displace the slide 206 in the axial direction 218 to force fluid from the reservoir 205 along a fluid path (including tubing 221 and an infusion set), thereby administering doses of the fluid contained in the reservoir 205 into the patient's body. Preferably, the power supply is realized one or more batteries contained within the housing 202. Alternatively, the power supply may be a solar panel, capacitor, AC or DC power supplied through a power cord, or the like. In some embodiments, the control electronics 224 may operate the motor of the motor assembly 207 and/or drive system 208 in a stepwise manner, typically on an intermittent basis; to administer discrete precise doses of the fluid to the user according to programmed delivery profiles.
Referring to
Referring to
In exemplary embodiments, the sensing arrangement 504 includes one or more interstitial glucose sensing elements that generate or otherwise output electrical signals having a signal characteristic that is correlative to, influenced by, or otherwise indicative of the relative interstitial fluid glucose level in the body 501 of the user. The output electrical signals are filtered or otherwise processed to obtain a measurement value indicative of the user's interstitial fluid glucose level. A blood glucose meter, such as a finger stick device, may be utilized to directly sense, detect, measure or otherwise quantify the blood glucose in the body 501 of the user and output or otherwise provide a measured blood glucose value that may be utilized as a reference measurement for calibrating the sensing arrangement 504, and thereby converting a measurement value indicative of the user's interstitial fluid glucose level into a corresponding calibrated blood glucose measurement value. For purposes of explanation, sensor glucose value, sensed glucose value, glucose measurement value, or variants thereof should be understood to encompass any glucose value indicative of a current measured glucose level in the body of the user that is based on the electrical signals output by the sensing element(s) of the sensing arrangement 504.
The pump control module 520 generally represents the electronics and other components of the infusion device 502 that control operation of the fluid infusion device 502 according to a desired infusion delivery program in a manner that may be influenced by the sensed glucose value indicative of a current glucose level in the body 501 of the user. The particular operating mode being implemented by the pump control module 520 influences the generated dosage commands for operating the motor 507 to displace the plunger 517 within a fluid reservoir 524 and deliver insulin to the body 501 of the user. For example, in a closed-loop (CL) operating mode, the pump control module 520 generates or otherwise determines dosage commands for operating the motor 507 based on the difference between a sensed glucose value and the target (or commanded) glucose value to regulate the sensed glucose value to the target. In other operating modes, the pump control module 520 may generate or otherwise determine dosage commands configured to maintain the sensed glucose value below an upper glucose limit, above a lower glucose limit, or otherwise within a desired range of glucose values. In practice, the infusion device 502 may store or otherwise maintain the target glucose value and/or other glucose control value(s) in a data storage element accessible to the pump control module 520.
The target glucose value and other threshold values may be received from an external component (e.g., CCD 106 and/or computing device 108) or be input by a user via a user interface element 540 associated with the infusion device 502. In practice, the one or more user interface element(s) 540 associated with the infusion device 502 typically include at least one input user interface element, such as, for example, a button, a keypad, a keyboard, a knob, a joystick, a mouse, a touch panel, a touchscreen, a microphone or another audio input device, and/or the like. Additionally, the one or more user interface element(s) 540 include at least one output user interface element, such as, for example, a display element (e.g., a light-emitting diode or the like), a display device (e.g., a liquid crystal display or the like), a speaker or another audio output device, a haptic feedback device, or the like, for providing notifications or other information to the user. It should be noted that although
Depending on the embodiment, the pump control module 520 may be implemented or realized with a general purpose processor, a microprocessor, a controller, a microcontroller, a state machine, a content addressable memory, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein. Furthermore, the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by the pump control module 520, or in any practical combination thereof. In this regard, the pump control module 520 may include or otherwise access a data storage element or memory, including any sort of random access memory (RAM), read only memory (ROM), flash memory, registers, hard disks, removable disks, magnetic or optical mass storage, or any other short or long term storage media or other non-transitory computer-readable medium, which is capable of storing programming instructions for execution by the pump control module 520. The computer-executable programming instructions, when read and executed by the pump control module 520, cause the pump control module 520 to determine dosage commands in accordance with a particular operating mode and perform various additional tasks, operations, functions, and processes described herein.
Still referring to
In exemplary embodiments, the energy source 503 is realized as a battery housed within the infusion device 502 (e.g., within housing 202) that provides direct current (DC) power. In this regard, the motor driver module 514 generally represents the combination of circuitry, hardware and/or other electrical components configured to convert or otherwise transfer DC power provided by the energy source 503 into alternating electrical signals applied to respective phases of the stator windings of the motor 507 that result in current flowing through the stator windings that generates a stator magnetic field and causes the rotor of the motor 507 to rotate.
The motor control module 512 is configured to receive or otherwise obtain a commanded dosage from the pump control module 520, convert the commanded dosage to a commanded translational displacement of the plunger 517, and command, signal, or otherwise operate the motor driver module 514 to cause the rotor of the motor 507 to rotate by an amount that produces the commanded translational displacement of the plunger 517. For example, the motor control module 512 may determine an amount of rotation of the rotor required to produce translational displacement of the plunger 517 that achieves the commanded dosage received from the pump control module 520. Based on the current rotational position (or orientation) of the rotor with respect to the stator that is indicated by the output of the rotor sensing arrangement 516, the motor control module 512 determines the appropriate sequence of alternating electrical signals to be applied to the respective phases of the stator windings that should rotate the rotor by the determined amount of rotation from its current position (or orientation). In embodiments where the motor 507 is realized as a BLDC motor, the alternating electrical signals commutate the respective phases of the stator windings at the appropriate orientation of the rotor magnetic poles with respect to the stator and in the appropriate order to provide a rotating stator magnetic field that rotates the rotor in the desired direction. Thereafter, the motor control module 512 operates the motor driver module 514 to apply the determined alternating electrical signals (e.g., the command signals) to the stator windings of the motor 507 to achieve the desired delivery of fluid to the user.
In exemplary embodiments described herein, electrical power output from the energy source 503 is selectively provided to the input of the motor driver module 514 under control of the pump control module 520. For example, a switching arrangement 513 may be provided effectively electrically in series between the output of the energy source 503 (or a bus connected to the energy source 503) and the input to the motor driver module 514. In exemplary embodiments, the pump control module 520 operates the switching arrangement 513 to electrically disconnect the motor driver module 514 from the electrical power output by the energy source 503 (e.g., by opening or deactivating one or more switches) when the motor 507 is not being utilized to deliver fluid to the body 501 of the user. As described in greater detail below in the context of
Still referring to
It should be appreciated that
The distributed motor control process 600 provides handshaking sequences of communications between control modules of an infusion device that are to be performed whenever a motor of an infusion device is to be operated to deliver fluid to the body of a patient (e.g., the user associated with the infusion device). The control of the motor is distributed across different control modules of the infusion device in a manner that facilitates relatively early intervention to ensure an anomalous condition with respect to any one of the control modules does not result in erroneous delivery of fluid to the patient. In this regard, any one of the control modules can unilaterally initiate one or more remedial actions to stop or otherwise prevent further delivery of fluid in response to a deviation from the current handshaking sequence. In exemplary embodiments, the control module that detects an unacceptable deviation from the handshaking sequence prevents subsequent application of electrical power to the motor to thereby prevent further delivery of fluid. Additionally, the control module preventing operation of the motor can also generate or otherwise provide one or more notifications or alerts via an output user interface element associated with the infusion device, thereby notifying the patient or other user of the potential anomalous condition of the infusion device.
The illustrated process 600 begins by performing a first setup handshaking sequence between control modules of the infusion device to enable input power to the motor driver from the infusion device energy source. In response to identifying or otherwise determining that the infusion device should be operated to deliver fluid to the body of a patient, a first control module of the infusion device automatically initiates the initial setup handshaking sequence with another control module of the infusion device prior to enabling the input of electrical power from the energy source to the motor driver module in response to a valid response in accordance with the initial setup handshaking sequence (tasks 602, 604, 606). In this regard, when a valid acknowledgement or response prescribed by the handshaking sequence is not received, one or more remedial actions are automatically initiated to prevent operation of the motor and/or notify the user of a potential anomalous condition (task 608).
Referring to
In one or more exemplary embodiments, prior to providing an affirmative acknowledgment to the pump control module 520, the motor control module 512 may perform one or more diagnostics tests or checks (e.g., self-diagnostics or with respect to one or more of the motor 507, the motor driver module 514, and/or the rotor sensing arrangement 516) to verify or otherwise confirm that the motor control module 512 is capable of operating the motor 507 to achieve a desired amount of delivery of fluid to the user. In such embodiments, based on the outcome of the diagnostic(s) that are performed, the motor control module 512 may provide an indication (or negative acknowledgment) to initiate one or more remedial actions when the motor control module 512 is not capable of operating the motor 507 to achieve a desired amount of delivery of fluid to the user. It should be noted that in situations where the motor control module 512 is malfunctioning, nonresponsive, or inoperable, or when communications between the motor control module 512 and the pump control module 520 are interrupted, the pump control module 520 will not receive an affirmative acknowledgment of the delivery request from the motor control module 512.
Referring again to
In another embodiment, the second setup handshaking sequence is automatically initiated by the motor control module 512 in response to the initial delivery request received from the pump control module 520. For example, the affirmative acknowledgment provided by the motor control module 512 in response to the initial delivery request may also function as an authorization request for enabling the output power from the motor driver module 514. In such embodiments, if the pump control module 520 is malfunctioning, inoperable, nonresponsive, or the like, the motor control module 512 will not receive the authorization from the pump control module 520, and therefore, will not enable the output power from the motor driver module 514. In this regard, if a timeout period associated with the second setup handshaking sequence elapses, the motor control module 512 may automatically initiate one or more remedial actions (e.g., task 608), such as, for example, maintaining the switching arrangement 515 configured to prevent output power from the motor driver module 514 and generating a user notification via a user interface element 540.
Still referring to
In exemplary embodiments, delivery handshaking sequence is initiated by pump control module 520 in response to receiving an acknowledgment that output power from the motor driver module 514 to the motor 507 has been enabled by the motor control module 512. As described in greater detail below in the context of
After implementing the motor commands corresponding to the commanded dosage, the motor control module 512 automatically transmits or otherwise communicates an active delivery completion message to the pump control module 520 that acknowledges or otherwise indicates, to the pump control module 520, that the delivery command message was received and implemented by the motor control module 512. Additionally, after implementing the delivery motor commands, the motor control module 512 may operate the switching arrangement 515 to disable output power from the motor driver module 514.
The pump control module 520 monitors the duration of time between transmitting the delivery command message and receiving the active delivery completion message, and automatically initiates one or more remedial actions when the elapsed time exceeds an active delivery threshold timeout period associated with the delivery command message. The active delivery threshold timeout period represents an expected maximum amount of time required for the motor control module 512 to receive the delivery command message and implement the commanded delivery. In this regard, the duration of the first threshold timeout period may correlate to the commanded dosage, so that delivery command messages for larger dosages are associated with longer active delivery timeout periods, and conversely, delivery command messages for smaller dosages are associated with shorter active delivery timeout periods. In exemplary embodiments, the pump control module 520 operates the switching arrangement 513 to disable input power to the motor driver module 514 either in response to receiving the active delivery completion message or automatically in response to failing to receive the active delivery completion message within the active delivery threshold timeout period. In this manner, the pump control module 520 redundantly ensures that the motor 507 is electrically disconnected from the energy source 503 to prevent overdelivery in the event that the functionality or communications capability of the motor control module 512 becomes compromised after it has received the delivery command.
In exemplary embodiments, the delivery handshaking sequence also prescribes a total delivery completion message that indicates that the motor 507 has stopped moving. In this regard, in practice, the momentum of the rotor of the motor 507 may cause the rotor to continue to coast in the actuation direction after the motor control module 512 ceases operating the motor driver module 514 to implement the motor commands. Thus, after operating the motor driver module 514 to implement the motor commands and providing the active delivery completion message, the motor control module 512 monitors the displacement of the motor 507 via the rotor sensing arrangement 516 and detects or otherwise identifies when the motor 507 has stopped moving. For example, the motor control module 512 may periodically sample or otherwise obtain the output of the rotor sensing arrangement 516 and detect or otherwise identify that the motor 507 has stopped moving when the output of the rotor sensing arrangement 516 does not change between successive samples. In response to identifying the motor 507 has stopped moving in the actuation direction, the motor control module 512 transmits or otherwise provides a total delivery completion message to the pump control module 520. In a similar manner as described above, the pump control module 520 monitors the duration of time between transmitting the delivery command message and receiving the total delivery completion message, and automatically initiates one or more remedial actions when the elapsed time exceeds a total delivery threshold timeout period associated with the delivery command message. The total delivery threshold timeout period represents an expected maximum total amount of time required for the motor 507 to completely implement the commanded delivery and stop actuating the plunger 517, and, in a similar manner as described above, the duration of the total delivery threshold timeout period may correlate to the commanded dosage amount.
Additionally, in one or more embodiments, the pump control module 520 also monitors the duration of time between receiving the active delivery completion message and receiving the total delivery completion message, and automatically initiates one or more remedial actions when the elapsed time exceeds a coasting threshold timeout period. The coasting threshold timeout period represents an expected maximum amount of time required for the rotor of the motor 507 to stop rotating when input electrical power is no longer being applied. In exemplary embodiments, the pump control module 520 automatically initiates one or more remedial actions either in response to failing to receive the total delivery completion message within the total delivery threshold timeout period after the delivery command message or in response to failing to receive the total delivery completion message within the coasting threshold timeout period after the active delivery completion message. For example, the pump control module 520 may generate or otherwise provide an alert via a user interface element 540 that indicates the motor 507 (or its associated drive system) may require maintenance because the rotor of the motor 507 does not stop rotating within a tolerable amount of time after input power is removed.
It should be noted that in some embodiments, the delivery handshaking sequence is initiated by the communication sent by the motor control module 512 in response to the enabling the output power from the motor driver module 514. For example, the acknowledgment provided by the motor control module 512 in response to the authorization message may also function as a request for a delivery command for operating the motor driver module 514 and/or motor 507. In such embodiments, the motor control module 512 may instantiate a timer or otherwise monitor a duration of time between transmitting the response to the authorization message and receiving a delivery command message from the pump control module 520. If a prescribed timeout period associated with receiving the delivery command message elapses, the motor control module 512 may automatically operate the switching arrangement 515 to disable or otherwise disconnect the motor driver module 514 from the motor 507 and/or operate a user interface element 540 to generate or otherwise provide a user notification indicating a potential anomalous condition with respect to the pump control module 520. Thus, if the pump control module 520 begins malfunctioning, becomes nonresponsive, or the like after the motor 507 has been electrically connected to the energy source 503, the motor control module 512 may automatically initiate remedial actions to intervene and prevent unintended operation of the motor 507.
Referring to
The motor drive information stored or otherwise maintained by the motor control module 512 may also be transmitted or otherwise communicated to the pump control module 520 in conjunction with the total delivery completion message. In this regard, the pump control module 520 may utilize the motor drive information to adjust or otherwise modify subsequent dosage commands based on the relationship between the delivered dosage of fluid and the commanded dosage. For example, when the total amount of displacement of the motor 507 indicates that the amount of fluid delivered exceeds the commanded dosage, the pump control module 520 may reduce a subsequent dosage command by the difference to compensate for the difference between the preceding commanded dosage and the actual dosage.
In response to receiving the acknowledgment 704 of the delivery request message 702, the pump control module 520 operates 706 the switching arrangement 513 to enable electrical power output by energy source 503 being provided 708 to the input(s) of the motor driver module 514. After successfully enabling input power to the motor driver module 514, the pump control module 520 may automatically initiate a second setup handshaking sequence by transmitting or otherwise providing an authorization message 710 to the motor control module 512 that indicates the output power from the motor driver module 514 may be enabled. In response, the motor control module 512 automatically operates 712 the switching arrangement 515 to enable the output power from the motor driver module 514 being provided to the input(s) of the motor 507. After successfully operating the switching arrangement 515 to enable output power from the motor driver module 514, the motor control module 512 transmits or otherwise communicates an acknowledgment 714 in response to the authorization message 710 that indicates the motor driver output power has been enabled. Again, if the driver output power acknowledgment 714 is not received by the pump control module 520 within a timeout period associated with the authorization message 710 and/or the second setup handshaking sequence, the pump control module 520 may automatically generate or otherwise provide a user notification indicative of a potential anomalous condition with respect to the motor control module 512.
After successfully performing the initial setup handshaking sequences to enable or otherwise provide a path for output power from the energy source 503 to the motor 507, the pump control module 520 automatically initiates a delivery handshaking sequence by transmitting or otherwise providing a delivery command message 716 to the motor control module 512 that indicates a commanded dosage to be administered. For example, based on a difference between a glucose measurement value obtained via the sensing arrangement 504 and a target glucose value for the patient, the pump control module 520 may determine an amount of insulin to be delivered to the patient and provide a delivery command message to the motor control module 512 that indicates that determined amount of insulin. The motor control module 512 converts the commanded dosage into corresponding motor commands, and thereafter operates 718 the motor driver module 514 to implement the motor commands and provide 720 at least a portion of the electrical power from the energy source 503 to the motor 507 via the switching arrangements 513, 515 and the motor driver module 514. During operation of the motor 507, the rotor sensing arrangement 516 measures, senses, or otherwise obtains 722 the position or displacement of the rotor of the motor 507, which, in turn, is sampled or otherwise obtained 724 by the motor control module 512. In this regard, the motor control module 512 may provide closed-loop control of the position or displacement of the rotor of the motor 507 based on the measured rotor position to achieve a displacement of the motor 507 that corresponds to the commanded dosage. After operating the motor driver module 514 to implement the motor commands, the motor control module 512 transmits or otherwise provides a message 726 to the pump control module 520 that indicates that active delivery is complete, and additionally, operates 728 the switching arrangement 515 to disable or otherwise disconnect output power from the motor driver module 514 at the motor input.
In response to the active delivery completion message 726, the pump control module 520 automatically operates 730 the switching arrangement 513 to electrically disconnect the motor driver module 514 (and thereby, the motor 507) from the energy source 503. As described above, the pump control module 520 also monitors the duration of time between transmitting the delivery command message 716 and receiving the active delivery completion message 726, and the pump control module 520 automatically operates 730 the switching arrangement 513 to electrically disconnect the energy source 503 if the elapsed time exceeds an active delivery threshold timeout period. Thus, the pump control module 520 redundantly ensures that the motor 507 is electrically disconnected from the energy source 503 to prevent overdelivery in the event that the functionality or communications capability of the motor control module 512 becomes compromised.
As described above, after the motor control module 512 ceases operating the motor driver module 514 to implement the motor commands, the momentum of the rotor of the motor 507 may cause continued displacement of the rotor, which, in turn, is measured or sensed 732 by the rotor sensing arrangement 516. The motor control module 512 continues sampling or otherwise obtaining 734 the output of the rotor sensing arrangement 516 and detects or otherwise identifies when the rotor of the motor 507 has stopped moving. In response to detecting the rotor of the motor 507 has stopped moving in the actuation direction, the motor control module 512 transmits or otherwise provides a total delivery completion message 736 to the pump control module 520. In exemplary embodiments, the total delivery completion message 736 includes motor drive information, which, in turn, may be utilized by the pump control module 520 to adjust or otherwise modify subsequent dosage commands to compensate for differences between the actual amount of fluid that was delivered to the body 501 of the patient relative to the commanded dosage amount.
In exemplary embodiments, the pump control module 520 monitors the duration of time between transmitting the delivery command message 716 and receiving the total delivery completion message 736 and automatically initiates one or more remedial actions when the elapsed time exceeds a total delivery threshold timeout period. Additionally, in one or more embodiments, the pump control module 520 also monitors the duration of time between receiving the active delivery completion message 726 and receiving the total delivery completion message 736, and automatically initiates one or more remedial actions when the elapsed time exceeds a coasting threshold timeout period. In this manner, the pump control module 520 detects or otherwise identifies any potential deterioration or other mechanical anomaly with respect to the motor 507 and/or drive system 208 that allows the rotor of the motor 507 to coast excessively, or alternatively, detects or identifies when the functionality of the motor control module 512 or the communications with the motor control module 512 have become impaired in advance of a subsequent iteration of the distributed motor control process 600. Thus, rather than waiting until a subsequent instance of the communications sequence 700 is initiated, the patient may be notified more immediately that a potential anomalous condition exists with respect to the infusion device 502, which, in turn, allows the patient to undertake remedial actions before the patient requires another dose of fluid.
To briefly summarize, the subject matter describes herein distributes control across control modules (or processors) of the infusion device in a manner that enhances safety by allowing any of the control modules to unilaterally and/or redundantly detect anomalous conditions, stop delivery, and notify the user of potential issues. Each control module may independently implement safety algorithms, diagnostics, or self-checks (e.g., insulin accounting, motor health, software status, or the like), and automatically interrupt delivery and generate alerts whenever it detects an issue. In exemplary embodiments, no control module can enable electrical power to the motor without consent or oversight from another control module in accordance with a handshaking sequence, while any control module can unilaterally disable or remove electrical power from the motor without consent from another control module. Not only can both control modules redundantly remove power from the motor, but the control modules may redundantly generate alerts, which, in turn, reduces the likelihood of an anomalous condition going unaddressed for an extended period of time. Thus, fluid may be safely and accurately delivered while allowing unexpected events or anomalous conditions to be detected and remediated relatively immediately.
For the sake of brevity, conventional techniques related to glucose sensing and/or monitoring, closed-loop glucose control, closed-loop motor control, sensor calibration and/or compensation, and other functional aspects of the subject matter may not be described in detail herein. In addition, certain terminology may also be used in the herein for the purpose of reference only, and thus is not intended to be limiting. For example, terms such as “first”, “second”, and other such numerical terms referring to structures do not imply a sequence or order unless clearly indicated by the context. The foregoing description may also refer to elements or nodes or features being “connected” or “coupled” together. As used herein, unless expressly stated otherwise, “coupled” means that one element/node/feature is directly or indirectly joined to (or directly or indirectly communicates with) another element/node/feature, and not necessarily mechanically.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or embodiments described herein are not intended to limit the scope, applicability, or configuration of the claimed subject matter in any way. For example, the subject matter described herein is not limited to the infusion devices and related systems described herein. Moreover, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing the described embodiment or embodiments. It should be understood that various changes can be made in the function and arrangement of elements without departing from the scope defined by the claims, which includes known equivalents and foreseeable equivalents at the time of filing this patent application. Accordingly, details of the exemplary embodiments or other limitations described above should not be read into the claims absent a clear intention to the contrary.
Number | Name | Date | Kind |
---|---|---|---|
3631847 | Hobbs, II | Jan 1972 | A |
4212738 | Henne | Jul 1980 | A |
4270532 | Franetzki et al. | Jun 1981 | A |
4282872 | Franetzki et al. | Aug 1981 | A |
4373527 | Fischell | Feb 1983 | A |
4395259 | Prestele et al. | Jul 1983 | A |
4433072 | Pusineri et al. | Feb 1984 | A |
4443218 | Decant, Jr. et al. | Apr 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4542532 | McQuilkin | Sep 1985 | A |
4550731 | Batina et al. | Nov 1985 | A |
4559037 | Franetzki et al. | Dec 1985 | A |
4562751 | Nason et al. | Jan 1986 | A |
4671288 | Gough | Jun 1987 | A |
4678408 | Nason et al. | Jul 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4731051 | Fischell | Mar 1988 | A |
4731726 | Allen, III | Mar 1988 | A |
4781798 | Gough | Nov 1988 | A |
4803625 | Fu et al. | Feb 1989 | A |
4809697 | Causey, III et al. | Mar 1989 | A |
4826810 | Aoki | May 1989 | A |
4871351 | Feingold | Oct 1989 | A |
4898578 | Rubalcaba, Jr. | Feb 1990 | A |
5003298 | Havel | Mar 1991 | A |
5011468 | Lundquist et al. | Apr 1991 | A |
5019974 | Beckers | May 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5078683 | Sancoff et al. | Jan 1992 | A |
5080653 | Voss et al. | Jan 1992 | A |
5097122 | Colman et al. | Mar 1992 | A |
5100380 | Epstein et al. | Mar 1992 | A |
5101814 | Palti | Apr 1992 | A |
5108819 | Heller et al. | Apr 1992 | A |
5153827 | Coutre et al. | Oct 1992 | A |
5165407 | Wilson et al. | Nov 1992 | A |
5247434 | Peterson et al. | Sep 1993 | A |
5262035 | Gregg et al. | Nov 1993 | A |
5262305 | Heller et al. | Nov 1993 | A |
5264104 | Gregg et al. | Nov 1993 | A |
5264105 | Gregg et al. | Nov 1993 | A |
5284140 | Allen et al. | Feb 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5307263 | Brown | Apr 1994 | A |
5317506 | Coutre et al. | May 1994 | A |
5320725 | Gregg et al. | Jun 1994 | A |
5322063 | Allen et al. | Jun 1994 | A |
5338157 | Blomquist | Aug 1994 | A |
5339821 | Fujimoto | Aug 1994 | A |
5341291 | Roizen et al. | Aug 1994 | A |
5350411 | Ryan et al. | Sep 1994 | A |
5356786 | Heller et al. | Oct 1994 | A |
5357427 | Langen et al. | Oct 1994 | A |
5368562 | Blomquist et al. | Nov 1994 | A |
5370622 | Livingston et al. | Dec 1994 | A |
5371687 | Holmes, II et al. | Dec 1994 | A |
5376070 | Purvis | Dec 1994 | A |
5390671 | Lord et al. | Feb 1995 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5403700 | Heller et al. | Apr 1995 | A |
5411647 | Johnson et al. | May 1995 | A |
5482473 | Lord | Jan 1996 | A |
5485408 | Blomquist | Jan 1996 | A |
5505709 | Funderburk et al. | Apr 1996 | A |
5497772 | Schulman et al. | May 1996 | A |
5543326 | Heller et al. | Aug 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5569187 | Kaiser | Oct 1996 | A |
5573506 | Vasko | Nov 1996 | A |
5582593 | Hultman | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5593390 | Castellano et al. | Jan 1997 | A |
5593852 | Heller et al. | Jan 1997 | A |
5594638 | Illiff | Jan 1997 | A |
5609060 | Dent | Mar 1997 | A |
5626144 | Tacklind et al. | May 1997 | A |
5630710 | Tune et al. | May 1997 | A |
5643212 | Coutre et al. | Jul 1997 | A |
5660163 | Schulman et al. | Aug 1997 | A |
5660176 | Iliff | Aug 1997 | A |
5665065 | Colman et al. | Sep 1997 | A |
5665222 | Heller et al. | Sep 1997 | A |
5685844 | Marttila | Nov 1997 | A |
5687734 | Dempsey et al. | Nov 1997 | A |
5704366 | Tacklind et al. | Jan 1998 | A |
5750926 | Schulman et al. | May 1998 | A |
5754111 | Garcia | May 1998 | A |
5764159 | Neftel | Jun 1998 | A |
5772635 | Dastur et al. | Jun 1998 | A |
5779665 | Mastrototaro et al. | Jul 1998 | A |
5788669 | Peterson | Aug 1998 | A |
5791344 | Schulman et al. | Aug 1998 | A |
5800420 | Gross et al. | Sep 1998 | A |
5807336 | Russo et al. | Sep 1998 | A |
5814015 | Gargano et al. | Sep 1998 | A |
5822715 | Worthington et al. | Oct 1998 | A |
5832448 | Brown | Nov 1998 | A |
5840020 | Heinonen et al. | Nov 1998 | A |
5861018 | Feierbach et al. | Jan 1999 | A |
5868669 | Iliff | Feb 1999 | A |
5871465 | Vasko | Feb 1999 | A |
5879163 | Brown et al. | Mar 1999 | A |
5885245 | Lynch et al. | Mar 1999 | A |
5897493 | Brown | Apr 1999 | A |
5899855 | Brown | May 1999 | A |
5904708 | Goedeke | May 1999 | A |
5913310 | Brown | Jun 1999 | A |
5917346 | Gord | Jun 1999 | A |
5918603 | Brown | Jul 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5933136 | Brown | Aug 1999 | A |
5935099 | Peterson et al. | Aug 1999 | A |
5940801 | Brown | Aug 1999 | A |
5956501 | Brown | Sep 1999 | A |
5960403 | Brown | Sep 1999 | A |
5965380 | Heller et al. | Oct 1999 | A |
5972199 | Heller et al. | Oct 1999 | A |
5978236 | Faberman et al. | Nov 1999 | A |
5997476 | Brown | Dec 1999 | A |
5999848 | Gord et al. | Dec 1999 | A |
5999849 | Gord et al. | Dec 1999 | A |
6009339 | Bentsen et al. | Dec 1999 | A |
6032119 | Brown et al. | Feb 2000 | A |
6043437 | Schulman et al. | Mar 2000 | A |
6081736 | Colvin et al. | Jun 2000 | A |
6083710 | Heller et al. | Jul 2000 | A |
6088608 | Schulman et al. | Jul 2000 | A |
6101478 | Brown | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6119028 | Schulman et al. | Sep 2000 | A |
6120676 | Heller et al. | Sep 2000 | A |
6121009 | Heller et al. | Sep 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6162611 | Heller et al. | Dec 2000 | A |
6175752 | Say et al. | Jan 2001 | B1 |
6183412 | Benkowski | Feb 2001 | B1 |
6246992 | Brown | Jun 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6259937 | Schulman et al. | Jul 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6408330 | DeLaHuerga | Jun 2002 | B1 |
6424847 | Mastrototaro et al. | Jul 2002 | B1 |
6472122 | Schulman et al. | Oct 2002 | B1 |
6484045 | Holker et al. | Nov 2002 | B1 |
6484046 | Say et al. | Nov 2002 | B1 |
6485465 | Moberg et al. | Nov 2002 | B2 |
6503381 | Gotoh et al. | Jan 2003 | B1 |
6514718 | Heller et al. | Feb 2003 | B2 |
6544173 | West et al. | Apr 2003 | B2 |
6553263 | Meadows et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558320 | Causey, III et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6560741 | Gerety et al. | May 2003 | B1 |
6565509 | Say et al. | May 2003 | B1 |
6579690 | Bonnecaze et al. | Jun 2003 | B1 |
6589229 | Connelly et al. | Jul 2003 | B1 |
6591125 | Buse et al. | Jul 2003 | B1 |
6592745 | Feldman et al. | Jul 2003 | B1 |
6605200 | Mao et al. | Aug 2003 | B1 |
6605201 | Mao et al. | Aug 2003 | B1 |
6607658 | Heller et al. | Aug 2003 | B1 |
6616819 | Liamos et al. | Sep 2003 | B1 |
6618934 | Feldman et al. | Sep 2003 | B1 |
6623501 | Heller et al. | Sep 2003 | B2 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6654625 | Say et al. | Nov 2003 | B1 |
6659980 | Moberg et al. | Dec 2003 | B2 |
6671554 | Gibson et al. | Dec 2003 | B2 |
6676816 | Mao et al. | Jan 2004 | B2 |
6689265 | Heller et al. | Feb 2004 | B2 |
6728576 | Thompson et al. | Apr 2004 | B2 |
6733471 | Ericson et al. | May 2004 | B1 |
6740072 | Starkweather et al. | May 2004 | B2 |
6746582 | Heller et al. | Jun 2004 | B2 |
6747556 | Medema et al. | Jun 2004 | B2 |
6749740 | Liamos et al. | Jun 2004 | B2 |
6752787 | Causey, III et al. | Jun 2004 | B1 |
6809653 | Mann et al. | Oct 2004 | B1 |
6817990 | Yap et al. | Nov 2004 | B2 |
6827702 | Lebel et al. | Dec 2004 | B2 |
6881551 | Heller et al. | Apr 2005 | B2 |
6892085 | McIvor et al. | May 2005 | B2 |
6893545 | Gotoh et al. | May 2005 | B2 |
6895263 | Shin et al. | May 2005 | B2 |
6916159 | Rush et al. | Jul 2005 | B2 |
6932584 | Gray et al. | Aug 2005 | B2 |
6932894 | Mao et al. | Aug 2005 | B2 |
6942518 | Liamos et al. | Sep 2005 | B2 |
7153263 | Carter et al. | Dec 2006 | B2 |
7153289 | Vasko | Dec 2006 | B2 |
7323142 | Pendo et al. | Jan 2008 | B2 |
7396330 | Banet et al. | Jul 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7621893 | Moberg et al. | Nov 2009 | B2 |
8474332 | Bente, IV | Jul 2013 | B2 |
8523803 | Favreau | Sep 2013 | B1 |
8603026 | Favreau | Dec 2013 | B2 |
8603027 | Favreau | Dec 2013 | B2 |
8674288 | Hanson et al. | Mar 2014 | B2 |
20010044731 | Coffman et al. | Nov 2001 | A1 |
20020013518 | West | Jan 2002 | A1 |
20020055857 | Mault et al. | May 2002 | A1 |
20020082665 | Haller et al. | Jun 2002 | A1 |
20020137997 | Mastrototaro et al. | Sep 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20030060765 | Campbell et al. | Mar 2003 | A1 |
20030078560 | Miller et al. | Apr 2003 | A1 |
20030088166 | Say et al. | May 2003 | A1 |
20030144581 | Conn et al. | Jul 2003 | A1 |
20030152823 | Heller | Aug 2003 | A1 |
20030176183 | Drucker et al. | Sep 2003 | A1 |
20030188427 | Say et al. | Oct 2003 | A1 |
20030199744 | Buse et al. | Oct 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030220552 | Reghabi et al. | Nov 2003 | A1 |
20040061232 | Shah et al. | Apr 2004 | A1 |
20040061234 | Shah et al. | Apr 2004 | A1 |
20040064133 | Miller et al. | Apr 2004 | A1 |
20040064156 | Shah et al. | Apr 2004 | A1 |
20040073095 | Causey, III et al. | Apr 2004 | A1 |
20040074785 | Holker et al. | Apr 2004 | A1 |
20040093167 | Braig et al. | May 2004 | A1 |
20040097796 | Berman et al. | May 2004 | A1 |
20040102683 | Khanuja et al. | May 2004 | A1 |
20040111017 | Say et al. | Jun 2004 | A1 |
20040122353 | Shahmirian et al. | Jun 2004 | A1 |
20040167465 | Mihai et al. | Aug 2004 | A1 |
20040263354 | Mann et al. | Dec 2004 | A1 |
20050038331 | Silaski et al. | Feb 2005 | A1 |
20050038680 | McMahon et al. | Feb 2005 | A1 |
20050154271 | Rasdal et al. | Jul 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20060173444 | Choy et al. | Aug 2006 | A1 |
20060184154 | Moberg et al. | Aug 2006 | A1 |
20060229694 | Schulman et al. | Oct 2006 | A1 |
20060238333 | Welch et al. | Oct 2006 | A1 |
20060293571 | Bao et al. | Dec 2006 | A1 |
20070088521 | Shmueli et al. | Apr 2007 | A1 |
20070135866 | Baker et al. | Jun 2007 | A1 |
20080154503 | Wittenber et al. | Jun 2008 | A1 |
20090081951 | Erdmann et al. | Mar 2009 | A1 |
20090082635 | Baldus et al. | Mar 2009 | A1 |
20130253420 | Favreau | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
4329229 | Mar 1995 | DE |
0319268 | Nov 1988 | EP |
0806738 | Nov 1997 | EP |
0880936 | Dec 1998 | EP |
1338295 | Aug 2003 | EP |
1631036 | Mar 2006 | EP |
2218831 | Nov 1989 | GB |
WO 9620745 | Jul 1996 | WO |
WO 9636389 | Nov 1996 | WO |
WO 9637246 | Nov 1996 | WO |
WO 9721456 | Jun 1997 | WO |
WO 9820439 | May 1998 | WO |
WO 9824358 | Jun 1998 | WO |
WO 9842407 | Oct 1998 | WO |
WO 9849659 | Nov 1998 | WO |
WO 9859487 | Dec 1998 | WO |
WO 9908183 | Feb 1999 | WO |
WO 9910801 | Mar 1999 | WO |
WO 9918532 | Apr 1999 | WO |
WO 9922236 | May 1999 | WO |
WO 0010628 | Mar 2000 | WO |
WO 0019887 | Apr 2000 | WO |
WO 0048112 | Aug 2000 | WO |
WO 02058537 | Aug 2002 | WO |
WO 03001329 | Jan 2003 | WO |
WO 03094090 | Nov 2003 | WO |
WO 2005065538 | Jul 2005 | WO |
Entry |
---|
PCT Search Report (PCT/US02/03299), dated Oct. 31, 2002, Medtronic Minimed, Inc. |
(Animas Corporation, 1999). Animas . . . bringing new life to insulin therapy. |
Bode B W, et al. (1996). Reduction in Severe Hypoglycemia with Long-Term Continuous Subcutaneous Insulin Infusion in Type I Diabetes. Diabetes Care, vol. 19, No. 4, 324-327. |
Boland E (1998). Teens Pumping it Up! Insulin Pump Therapy Guide for Adolescents. 2nd Edition. |
Brackenridge B P (1992). Carbohydrate Gram Counting A Key to Accurate Mealtime Boluses in Intensive Diabetes Therapy. Practical Diabetology, vol. 11, No. 2, pp. 22-28. |
Brackenridge, B P et al. (1995). Counting Carbohydrates How to Zero in on Good Control. MiniMed Technologies Inc. |
Farkas-Hirsch R et al. (1994). Continuous Subcutaneous Insulin Infusion: A Review of the Past and Its Implementation for the Future. Diabetes Spectrum From Research to Practice, vol. 7, No. 2, pp. 80-84, 136-138. |
Hirsch I B et al. (1990). Intensive Insulin Therapy for Treatment of Type I Diabetes. Diabetes Care, vol. 13, No. 12, pp. 1265-1283. |
Kulkarni K et al. (1999). Carbohydrate Counting A Primer for Insulin Pump Users to Zero in on Good Control. MiniMed Inc. |
Marcus A O et al. (1996). Insulin Pump Therapy Acceptable Alternative to Injection Therapy. Postgraduate Medicine, vol. 99, No. 3, pp. 125-142. |
Reed J et al. (1996). Voice of the Diabetic, vol. 11, No. 3, pp. 1-38. |
Skyler J S (1989). Continuous Subcutaneous Insulin Infusion [CSII] With External Devices: Current Status. Update in Drug Delivery Systems, Chapter 13, pp. 163-183. Futura Publishing Company. |
Skyler J S et al. (1995). The Insulin Pump Therapy Book Insights from the Experts. MiniMed⋅Technologies. |
Strowig S M (1993). Initiation and Management of Insulin Pump Therapy. The Diabetes Educator, vol. 19, No. 1, pp. 50-60. |
Walsh J, et al. (1989). Pumping Insulin: The Art of Using an Insulin Pump. Published by MiniMed⋅Technologies. |
(Intensive Diabetes Management, 1995). Insulin Infusion Pump Therapy. pp. 66-78. |
Disetronic My Choice™ D-TRON™ Insulin Pump Reference Manual. (no date). |
Disetronic H-TRON® plus Quick Start Manual. (no date). |
Disetronic My Choice H-TRONplus Insulin Pump Reference Manual. (no date). |
Disetronic H-TRON® plus Reference Manual. (no date). |
(MiniMed, 1996). The MiniMed 506. 7 pages. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19961111054527/www.minimed.com/files/506_pic.htm. |
(MiniMed, 1997). MiniMed 507 Specifications. 2 pages. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19970124234841/www.minimed.com/files/mmn075.htm. |
(MiniMed, 1996). FAQ: The Practical Things . . . pp. 1-4. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19961111054546/www.minimed.com/files/faq_pract.htm. |
(MiniMed, 1997). Wanted: a Few Good Belt Clips! 1 page. Retrieved on Sep. 16, 2003 from the World Wide Web: http://web.archive.org/web/19970124234559/www.minimed.com/files/mmn002.htm. |
(MiniMed Technologies, 1994). MiniMed 506 Insulin Pump User's Guide. |
(MiniMed Technologies, 1994). MiniMed™ Dosage Calculator Initial Meal Bolus Guidelines / MiniMed™ Dosage Calculator Initial Basal Rate Guidelines Percentage Method. 4 pages. |
(MiniMed, 1996). MiniMed™ 507 Insulin Pump User's Guide. |
(MiniMed, 1997). MiniMed™ 507 Insulin Pump User's Guide. |
(MiniMed, 1998). MiniMed 507C Insulin Pump User's Guide. |
(MiniMed International, 1998). MiniMed 507C Insulin Pump for those who appreciate the difference. |
(MiniMed Inc., 1999). MiniMed 508 Flipchart Guide to Insulin Pump Therapy. |
(MiniMed Inc., 1999). Insulin Pump Comparison / Pump Therapy Will Change Your Life. |
(MiniMed, 2000). MiniMed® 508 User's Guide. |
(MiniMed Inc., 2000). MiniMed® Now [I] Can Meal Bolus Calculator / MiniMed® Now [I] Can Correction Bolus Calculator. |
(MiniMed Inc., 2000). Now [I] Can MiniMed Pump Therapy. |
(MiniMed Inc., 2000). Now [I] Can MiniMed Diabetes Management. |
(Medtronic MiniMed, 2002). The 508 Insulin Pump A Tradition of Excellence. |
(Medtronic MiniMed, 2002). Medtronic MiniMed Meal Bolus Calculator and Correction Bolus Calculator. International Version. |
Abel, P., et al., “Experience with an implantable glucose sensor as a prerequiste of an artificial beta cell,” Biomed. Biochim. Acta 43 (1984) 5, pp. 577-584. |
Bindra, Dilbir S., et al., “Design and in Vitro Studies of a Needle-Type Glucose Sensor for a Subcutaneous Monitoring,” American Chemistry Society, 1991, 63, pp. 1692-1696. |
Boguslavsky, Leonid, et al., “Applications of redox polymers in biosensors,” Sold State Ionics 60, 1993, pp. 189-197. |
Geise, Robert J., et al., “Electropolymerized 1,3-diaminobenzene for the construction of a 1,1′-dimethylferrocene mediated glucose biosensor,” Analytica Chimica Acta, 281, 1993, pp. 467-473. |
Gernet, S., et al., “A Planar Glucose Enzyme Electrode,” Sensors and Actuators, 17, 1989, pp. 537-540. |
Gernet, S., et al., “Fabrication and Characterization of a Planar Electromechanical Cell and its Application as a Glucose Sensor,” Sensors and Actuators, 18, 1989, pp. 59-70. |
Gorton, L., et al., “Amperometric Biosensors Based on an Apparent Direct Electron Transfer Between Electrodes and Immobilized Peroxiases,” Analyst, Aug. 1991, vol. 117, pp. 1235-1241. |
Gorton, L., et al., “Amperometric Glucose Sensors Based on Immobilized Glucose-Oxidizing Enymes and Chemically Modified Electrodes,” Analytica Chimica Acta, 249, 1991, pp. 43-54. |
Gough, D. A., et al., “Two-Dimensional Enzyme Electrode Sensor for Glucose,” Analytical Chemistry, vol. 57, No. 5, 1985, pp. 2351-2357. |
Gregg, Brian A., et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications,” Analytical Chemistry, 62, pp. 258-263. |
Gregg, Brian A., et al., “Redox Polymer Films Containing Enzymes. 1. A Redox-Conducting Epoxy Cement: Synthesis, Characterization, and Electrocatalytic Oxidation of Hydroquinone,” The Journal of Physical Chemistry, vol. 95, No. 15, 1991, pp. 5970-5975. |
Hashiguchi, Yasuhiro, MD, et al., “Development of a Miniaturized Glucose Monitoring System by Combining a Needle-Type Glucose Sensor With Microdialysis Sampling Method,” Diabetes Care, vol. 17, No. 5, May 1994, pp. 387-389. |
Heller, Adam, “Electrical Wiring of Redox Enzymes,” Acc. Chem. Res., vol. 23, No. 5, May 1990, pp. 128-134. |
Jobst, Gerhard, et al., “Thin-Film Microbiosensors for Glucose-Lactate Monitoring,” Analytical Chemistry, vol. 68, No. 18, Sep. 15, 1996, pp. 3173-3179. |
Johnson, K.W., et al., “In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue,” Biosensors & Bioelectronics, 7, 1992, pp. 709-714. |
Jönsson, G., et al., “An Electromechanical Sensor for Hydrogen Peroxide Based on Peroxidase Adsorbed on a Spectrographic Graphite Electrode,” Electroanalysis, 1989, pp. 465-468. |
Kanapieniene, J. J., et al., “Miniature Glucose Biosensor with Extended Linearity,” Sensors and Actuators, B. 10, 1992, pp. 37-40. |
Kawamori, Ryuzo, et al., “Perfect Normalization of Excessive Glucagon Responses to Intraveneous Arginine in Human Diabetes Mellitus With the Artificial Beta-Cell,” Diabetes vol. 29, Sep. 1980, pp. 762-765. |
Kimura, J., et al., “An Immobilized Enzyme Membrane Fabrication Method,” Biosensors 4, 1988, pp. 41-52. |
Koudelka, M., et al., “In-vivo Behaviour of Hypodermically Implanted Microfabricated Glucose Sensors,” Biosensors & Bioelectronics 6, 1991, pp. 31-36. |
Koudelka, M., et al., “Planar Amperometric Enzyme-Based Glucose Microelectrode,” Sensors & Actuators, 18, 1989, pp. 157-165. |
Mastrototaro, John J., et al., “An electroenzymatic glucose sensor fabricated on a flexible substrate,” Sensors & Actuators, B. 5, 1991, pp. 139-144. |
Mastrototaro, John J., et al., “An Electroenzymatic Sensor Capable of 72 Hour Continuous Monitoring of Subcutaneous Glucose,” 14th Annual International Diabetes Federation Congress, Washington D.C., Jun. 23-28, 1991. |
McKean, Brian D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors,” IEEE Transactions on Biomedical Engineering, Vo. 35, No. 7, Jul. 1988, pp. 526-532. |
Monroe, D., “Novel Implantable Glucose Sensors,” ACL, Dec. 1989, pp. 8-16. |
Morff, Robert J., et al., “Microfabrication of Reproducible, Economical, Electroenzymatic Glucose Sensors,” Annuaal International Conference of teh IEEE Engineering in Medicine and Biology Society, Vo. 12, No. 2, 1990, pp. 483-484. |
Moussy, Francis, et al., “Performance of Subcutaneously Implanted Needle-Type Glucose Sensors Employing a Novel Trilayer Coating,” Analytical Chemistry, vol. 65, No. 15, Aug. 1, 1993, pp. 2072-2077. |
Nakamoto, S., et al., “A Lift-Off Method for Patterning Enzyme-Immobilized Membranes in Multi-Biosensors,” Sensors and Actuators 13, 1988, pp. 165-172. |
Nishida, Kenro, et al., “Clinical applications of teh wearable artifical endocrine pancreas with the newly designed needle-type glucose sensor,” Elsevier Sciences B.V., 1994, pp. 353-358. |
Nishida, Kenro, et al., “Development of a ferrocene-mediated needle-type glucose sensor covereed with newly designd biocompatible membrane, 2-methacryloyloxyethylphosphorylcholine-co-n-butyl nethacrylate,” Medical Progress Through Technology, vol. 21, 1995, pp. 91-103. |
Poitout, V., et al., “A glucose monitoring system for on line estimation oin man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue adn a wearable control unit,” Diabetologia, vol. 36, 1991, pp. 658-663. |
Reach, G., “A Method for Evaluating in vivo the Functional Characteristics of Glucose Sensors,” Biosensors 2, 1986, pp. 211-220. |
Shaw, G. W., et al., “In vitro testing of a simply constructed, highly stable glucose sensor suitable for implantation in diabetic patients,” Biosensors & Bioelectronics 6, 1991, pp. 401-406. |
Shichiri, M., “A Needle-Type Glucose Sensor—A Valuable Tool Not Only for a Self-Blood Glucose Monitoring but for a Wearable Artifiical Pancreas,” Life Support Systems Proceedings, XI Annual Meeting ESAO, Alpbach-Innsbruck, Austria, Sep. 1984, pp. 7-9. |
Shichiri, Motoaki, et al., “An artificial endocrine pancreas—problems awaiting solution for long-term clinical applications of a glucose sensor,” Frontiers Med. Biol. Engng., 1991, vol. 3, No. 4, pp. 283-292. |
Shichiri, Motoaki, et al., “Closed-Loop Glycemic Control with a Wearable Artificial Endocrine Pancreas—Variations in Daily Insulin Requirements to Glycemic Response,” Diabetes, vol. 33, Dec. 1984, pp. 1200-1202. |
Shichiri, Motoaki, et al., “Glycaemic Control in a Pacreatectomized Dogs with a Wearable Artificial Endocrine Pancreas,” Diabetologia, vol. 24, 1983, pp. 179-184. |
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers,” Hormone and Metabolic Research, Supplement Series vol. No. 20, 1988, pp. 17-20. |
Shichiri, M., et al., “Membrane design for extending the long-life of an implantable glucose sensor,” Diab. Nutr. Metab., vol. 2, No. 4, 1989, pp. 309-313. |
Shichiri, Motoaki, et al., “Normalization of the Paradoxic Secretion of Glucagon in Diabetes Who Were Controlled by the Artificial Beta Cell,” Diabetes, vol. 28, Apr. 1979, pp. 272-275. |
Shichiri, Motoaki, et al., “Telemetry Glucose Monitoring Device with Needle-Type Glucose Sensor: A useful Tool for Blood Glucose Monitoring in Diabetic Individuals,” Diabetes Care, vol. 9, No. 3, May-Jun. 1986, pp. 298-301. |
Shichiri, Motoaki, et al., “Wearable Artificial Endocrine Pancreas with Needle-Type Glucose Sensor,” The Lancet, Nov. 20, 1982, pp. 1129-1131. |
Shichiri, Motoaki, et al., “The Wearable Artificial Endocrine Pancreas with a Needle-Type Glucose Sensor: Perfect Glycemic Control in Ambulatory Diabetes,” Acta Paediatr Jpn 1984, vol. 26, pp. 359-370. |
Shinkai, Seiji, “Molecular Recognitiion of Mono- and Di-saccharides by Phenylboronic Acids in Solvent Extraction and as a Monolayer,” J. Chem. Soc., Chem. Commun., 1991, pp. 1039-1041. |
Shults, Mark C., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors,” IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, Oct. 1994, pp. 937-942. |
Sternberg, Robert, et al., “Study and Development of Multilayer Needle-type Enzyme-based Glucose Microsensors,” Biosensors, vol. 4, 1988, pp. 27-40. |
Tamiya, E., et al., “Micro Glucose Sensors using Electron Mediators Immobilized on a Polypyrrole-Modified Electrode,” Sensors and Actuators, vol. 18, 1989, pp. 297-307. |
Tsukagoshi, Kazuhiko, et al., “Specific Complexation with Mono- and Disaccharides that can be Detected by Circular Dichroism,” J. Org. Chem., vol. 56, 1991, pp. 4089-4091. |
Urban, G., et al., “Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applciations,” Biosensors & Bioelectronics, vol. 7, 1992, pp. 733-739. |
Ubran, G. et al., “Miniaturized thin-film biosensors using covalently immobilized glucose oxidase,” Biosensors & Bioelectronics, vol. 6, 1991, pp. 555-562. |
Velho, G., et al., “In vivo calibration of a subcutaneous glucose sensor for determination of subcutaneous glucose kinetics,” Diab. Nutr. Metab., vol. 3, 1988, pp. 227-233. |
Wang, Joseph, et al., “Needle-Type Dual Microsensor for the Simultaneous Monitoring of Glucose and Insulin,” Analytical Chemistry, vol. 73, 2001, pp. 844-847. |
Yamasaki, Yoshimitsu, et al., “Direct Measurement of Whole Blood Glucose by a Needle-Type Sensor,” Clinics Chimica Acta, vol. 93, 1989, pp. 93-98. |
Yokoyama, K., “Integrated Biosensor for Glucose and Galactose,” Analytica Chimica Acta, vol. 218, 1989, pp. 137-142. |
Number | Date | Country | |
---|---|---|---|
20160346458 A1 | Dec 2016 | US |