Infusion pump assembly

Information

  • Patent Grant
  • 12186531
  • Patent Number
    12,186,531
  • Date Filed
    Wednesday, September 29, 2021
    3 years ago
  • Date Issued
    Tuesday, January 7, 2025
    19 days ago
Abstract
A removable power supply cover assembly for an infusion pump is disclosed. The assembly includes a housing body configured to removably attach to an infusion pump, a conductor assembly attached to the housing body, a power supply contact assembly, and a spring attached to the power supply contact assembly and the conductor assembly. An electrical coupling between a power supply to the conductor assembly is formed through the spring.
Description
TECHNICAL FIELD

This disclosure relates to pump assemblies and, more particularly, to infusion pump assemblies.


BACKGROUND

An infusion pump assembly may be used to infuse a fluid (e.g., a medication or nutrient) into a user. The fluid may be infused intravenously (i.e., into a vein), subcutaneously (i.e., into the skin), arterially (i.e., into an artery), and epidurally (i.e., into the epidural space).


Infusion pump assemblies may administer fluids in ways that would be impractically expensive/unreliable if performed manually by nursing staff. For example, an infusion pump assembly may repeatedly administer small quantities of an infusible fluid (e.g., 0.1 mL per hour), while allowing the user to request one-time larger “bolus” doses.


SUMMARY OF DISCLOSURE

In accordance with one aspect of the present invention, a removable power supply cover assembly for an infusion pump is disclosed. The assembly includes a housing body configured to removably attach to an infusion pump, a conductor assembly attached to the housing body, a power supply contact assembly, and a spring attached to the power supply contact assembly and the conductor assembly. An electrical coupling between a power supply to the conductor assembly is formed through the spring.


Some embodiments of this aspect of the invention may include one or more of the following. Wherein the removable power supply assembly comprising a battery. Wherein the housing body further includes a sealing assembly for releasable engaging at least a portion of the enclosure assembly and forming an essentially water-tight seal between the removable cover assembly and the enclosure assembly. Where the sealing assembly comprising an o-ring assembly. Wherein the housing body is configured to allow access to a power supply cavity and effectuate removable insertion of a removable power supply assembly into the power supply cavity.


In accordance with another aspect of the present invention, an infusion pump assembly is disclosed. The infusion pump assembly includes an enclosure assembly, a pump assembly positioned at least partially within the enclosure assembly and configured to effectuate the dispensing of the infusible fluid contained in a reservoir assembly, and a removable cover assembly configured to releasably engage the enclosure assembly. The removable cover assembly includes a housing body, a conductor assembly attached to the housing body, a power supply contact assembly, and a spring attached to the power supply contact assembly and the conductor assembly, wherein an electrical coupling between a power supply to the conductor assembly is formed through the spring.


Some embodiments of this aspect of the invention may include one or more of the following. Wherein the reservoir assembly positioned at least partially within the enclosure assembly and configured to contain an infusible fluid. Wherein the infusion pump further includes processing logic positioned at least partially within the enclosure assembly and configured to control the pump assembly. Wherein the removable power supply assembly comprising a battery. wherein the removable cover assembly includes a sealing assembly for releasable engaging at least a portion of the enclosure assembly and forming an essentially water-tight seal between the removable cover assembly and the enclosure assembly. Wherein the sealing assembly comprising an o-ring assembly. Wherein the removable cover assembly is configured to allow access to the power supply cavity and effectuate removable insertion of the removable power supply assembly into the power supply cavity.


In accordance with another aspect of the present invention, a medical device assembly is disclosed. The assembly includes an enclosure assembly, and a removable cover assembly configured to releasably engage the enclosure assembly. The combination of the removable cover assembly and at least a portion of the enclosure assembly define a power supply cavity configured to prevent a removable power supply assembly from being reverse-polarity electrically coupled to the processing logic.


Some embodiments of this aspect of the invention may include one or more of the following. Wherein the removable cover assembly is configured to allow access to the power supply cavity and effectuate removable insertion of the removable power supply assembly into the power supply cavity. Wherein the removable power supply assembly comprising a battery. Wherein the removable cover assembly includes a sealing assembly for releasable engaging at least a portion of the enclosure assembly and forming an essentially water-tight seal between the removable cover assembly and the enclosure assembly. Wherein the sealing assembly includes an o-ring assembly. Wherein the removable cover assembly includes a conductor assembly configured to electrically couple the removable cover assembly with an interior wall of the power supply cavity. Wherein the assembly further includes wherein the removable cover assembly includes a first twist lock assembly, and the enclosure assembly includes a second twist lock assembly configured to releasably engage the first twist lock assembly and effectuate the releasable engagement of the removable cover assembly and the enclosure assembly. Wherein the assembly further includes a reservoir assembly positioned at least partially within the enclosure assembly and configured to contain an infusible fluid, a pump assembly positioned at least partially within the enclosure assembly and configured to effectuate the dispensing of the infusible fluid contained within the reservoir assembly, and processing logic positioned at least partially within the enclosure assembly and configured to control the pump assembly.


In accordance with another aspect of the present invention, in a first implementation, an infusion pump assembly includes an enclosure assembly. A reservoir assembly is positioned at least partially within the enclosure assembly and is configured to contain an infusible fluid. A pump assembly is positioned at least partially within the enclosure assembly and is configured to effectuate the dispensing of the infusible fluid contained within the reservoir assembly. Processing logic is positioned at least partially within the enclosure assembly and is configured to control the pump assembly. A removable cover assembly is configured to releasably engage the enclosure assembly. A combination of the removable cover assembly and at least a portion of the enclosure assembly defines a power supply cavity configured to prevent a removable power supply assembly from being reverse-polarity electrically coupled to the processing logic.


One or more of the following features may be included. The removable cover assembly may be configured to allow access to the power supply cavity and effectuate removable insertion of the removable power supply assembly into the power supply cavity. The removable power supply assembly may include a battery.


The removable cover assembly may include a sealing assembly for releasably engaging at least a portion of the enclosure assembly and forming an essentially water-tight seal between the removable cover assembly and the enclosure assembly. The sealing assembly may include an o-ring assembly. The removable cover assembly may include a conductor assembly configured to electrically couple the removable cover assembly with an interior wall of the power supply cavity.


The removable cover assembly may include a first twist lock assembly. The enclosure assembly may include a second twist lock assembly configured to releasably engage the first twist lock assembly and effectuate the releasable engagement of the removable cover assembly and the enclosure assembly.


In another implementation, an infusion pump assembly includes an enclosure assembly. A reservoir assembly is positioned at least partially within the enclosure assembly and is configured to contain an infusible fluid. A pump assembly is positioned at least partially within the enclosure assembly and is configured to effectuate the dispensing of the infusible fluid contained within the reservoir assembly. Processing logic is positioned at least partially within the enclosure assembly and is configured to control the pump assembly. A removable cover assembly is configured to releasably engage the enclosure assembly. The removable cover assembly includes a sealing assembly for releasably engaging at least a portion of the enclosure assembly and forming an essentially water-tight seal between the removable cover assembly and the enclosure assembly. A combination of the removable cover assembly and at least a portion of the enclosure assembly define a power supply cavity configured to allow removable insertion of a removable power supply assembly.


One or more of the following features may be included. The removable cover assembly may be configured to allow access to the power supply cavity and effectuate removable insertion of the removable power supply assembly into the power supply cavity. The removable power supply assembly may include a battery. The sealing assembly may include an o-ring assembly.


The removable cover assembly may include a conductor assembly configured to electrically couple the removable cover assembly with an interior wall of the power supply cavity. The removable cover assembly may include a first twist lock assembly. The enclosure assembly may include a second twist lock assembly configured to releasably engage the first twist lock assembly and effectuate the releasable engagement of the removable cover assembly and the enclosure assembly.


In another implementation, an infusion pump assembly includes an enclosure assembly. A reservoir assembly is positioned at least partially within the enclosure assembly and is configured to contain an infusible fluid. A pump assembly is positioned at least partially within the enclosure assembly and is configured to effectuate the dispensing of the infusible fluid contained within the reservoir assembly. Processing logic is positioned at least partially within the enclosure assembly and is configured to control the pump assembly. A removable cover assembly, which is configured to releasably engage the enclosure assembly, includes a first twist lock assembly. A combination of the removable cover assembly and at least a portion of the enclosure assembly define a power supply cavity configured to allow removable insertion of a removable power supply assembly. The enclosure assembly includes a second twist lock assembly configured to releasably engage the first twist lock assembly and effectuate the releasable engagement of the removable cover assembly and the enclosure assembly.


One or more of the following features may be included. The removable cover assembly may be configured to allow access to the power supply cavity and effectuate removable insertion of the removable power supply assembly into the power supply cavity. The removable power supply assembly may include a battery. The removable cover assembly may include a conductor assembly configured to electrically couple the removable cover assembly with an interior wall of the power supply cavity.


In another implementation, an infusion pump assembly includes an enclosure assembly. A reservoir assembly is positioned at least partially within the enclosure assembly and is configured to contain an infusible fluid. A pump assembly is positioned at least partially within the enclosure assembly and is configured to effectuate the dispensing of the infusible fluid contained within the reservoir assembly. Processing logic is positioned at least partially within the enclosure assembly and is configured to control the pump assembly. A removable cover assembly is configured to releasably engage the enclosure assembly. A combination of the removable cover assembly and at least a portion of the enclosure assembly defines a power supply cavity configured to allow removable insertion of the removable power supply assembly. The removable cover assembly includes a conductor assembly configured to electrically couple the removable cover assembly with an interior wall of the power supply cavity.


One or more of the following features may be included. The removable cover assembly may be configured to allow access to the power supply cavity and effectuate removable insertion of the removable power supply assembly into the power supply cavity. The removable power supply assembly may include a battery.


In accordance with one aspect of the present invention, an infusion pump assembly is disclosed. The infusion pump assembly includes a locking tab, and a pump barrel inside a pump barrel housing, where the pump barrel accommodates a reservoir assembly. The reservoir assembly includes a reservoir and a plunger rod. The infusion pump assembly also includes a locking disc at a terminus of the pump barrel. The locking disc includes a clearance hole for the plunger rod. The locking disc also includes at least one locking tab notch in close proximity with the locking tab. The locking tab is in moveable engagement with the locking tab notch, and the reservoir moves the locking tab from a locked position to an unlocked position when the plunger rod is inserted through clearance hole. The locking disc rotates upon torque being applied to the reservoir assembly, the locking disc rotating from a non-loaded position to a loaded position with respect to the plunger rod and a drive screw.


Some embodiments of this aspect of the present invention may include one or more of the following features. The locking disc may further include a second locking tab notch, wherein the second locking tab notch is engaged with the locking tab when the locking disc is in the loaded position. The locking disc may further include a plunger rod support. The plunger rod support may be in close relation with the plunger rod when the plunger rod is inserted through the clearance hole. The locking disc may further include at least two reservoir tab openings for mating with at least two reservoir alignment tabs on the reservoir. The reservoir assembly may further include a locking hub. The locking hub may fluidly connected to the reservoir. The locking hub may further include at least two locking hub alignment tabs, the locking hub alignment tabs aligning with the reservoir alignment tabs when the locking hub is fluidly connected to the reservoir. The infusion pump assembly may further include a hub and battery end cap. The end cap may have an opening to the pump barrel. The pump barrel opening may be complementary to the locking hub alignment tabs wherein the loading of the reservoir assembly may provide alignment of the reservoir alignment tabs with the reservoir tab openings and the plunger rod with the clearance hole. The hub and battery end cap may further include a first alignment feature. The first alignment feature may be complementary to a second alignment feature on the reservoir. When the first and second alignment features are aligned, the locking hub alignment tabs may also be aligned with the hub and battery cap opening.


In accordance with one aspect of the present invention, a reservoir assembly is disclosed. The reservoir assembly includes a reservoir, the reservoir having an interior volume and terminating with a male feature on a first end. Also, the reservoir assembly includes a plunger rod, the plunger rod including a threaded portion and a notched portion. The assembly further includes a reservoir bottom, the reservoir bottom having a plunger rod opening, and at least two reservoir alignment tabs, wherein the plunger rod extends through the plunger rod opening.


Some embodiments of this aspect of the present invention may include one or more of the following features. The reservoir assembly may further include an alignment feature on the reservoir. The alignment feature may allow aligning the reservoir assembly with an infusion pump assembly for loading the reservoir assembly into the infusion pump assembly. A removable filling aid may be included having a threaded portion and a handle portion. The threaded portion may thread to the threaded portion of the plunger rod.


In accordance with one aspect of the present invention, a method of loading a reservoir assembly to a drive mechanism of an infusion pump assembly is disclosed. The method includes aligning locking tab alignment features of a reservoir and locking tab assembly with an alignment feature on a hub and battery end cap of the infusion pump assembly, applying pressure to the locking tab of the reservoir and locking tab assembly, and rotating the locking tab until the locking tab is flush with the infusion pump assembly. Rotating the locking tab loads the reservoir and locking hub assembly onto the drive mechanism of the infusion pump assembly.


In accordance with another aspect of the present invention, a method includes administering a sequential, multi-part, infusion event, wherein the sequential, multi-part, infusion event includes a plurality of discrete infusion events. If a one-time infusion event is available to be administered, the administration of at least a portion of the plurality of discrete infusion events included within the sequential, multi-part, infusion event is delayed. The one-time infusion event is administered.


One or more of the following features may be included. Once the administration of the one-time infusion event is completed, the at least a portion of the plurality of discrete infusion events included within the sequential, multi-part, infusion event may be administered. The sequential, multi-part, infusion event may include a basal infusion event. The sequential, multi-part, infusion event may include an extended bolus infusion event. The one-time infusion event may include a normal bolus infusion event.


At least one of the plurality of discrete infusion events may include a plurality of discrete infusion sub-events. The one-time infusion event may include a plurality of one-time infusion sub-events.


In another implementation, a computer program product resides on a computer readable medium that has a plurality of instructions stored on it. When executed by a processor, the instructions cause the processor to perform operations including administering a sequential, multi-part, infusion event, wherein the sequential, multi-part, infusion event includes a plurality of discrete infusion events. If a one-time infusion event is available to be administered, the administration of at least a portion of the plurality of discrete infusion events included within the sequential, multi-part, infusion event is delayed. The one-time infusion event is administered.


One or more of the following features may be included. Once the administration of the one-time infusion event is completed, the at least a portion of the plurality of discrete infusion events included within the sequential, multi-part, infusion event may be administered. The sequential, multi-part, infusion event may include a basal infusion event. The sequential, multi-part, infusion event may include an extended bolus infusion event. The one-time infusion event may include a normal bolus infusion event.


At least one of the plurality of discrete infusion events may include a plurality of discrete infusion sub-events. The one-time infusion event may include a plurality of one-time infusion sub-events.


In another implementation, an infusion pump assembly is configured to perform operations including administering a sequential, multi-part, infusion event, wherein the sequential, multi-part, infusion event includes a plurality of discrete infusion events. If a one-time infusion event is available to be administered, the administration of at least a portion of the plurality of discrete infusion events included within the sequential, multi-part, infusion event is delayed. The one-time infusion event is administered.


One or more of the following features may be included. Once the administration of the one-time infusion event is completed, the at least a portion of the plurality of discrete infusion events included within the sequential, multi-part, infusion event may be administered. The sequential, multi-part, infusion event may include a basal infusion event. The sequential, multi-part, infusion event may include an extended bolus infusion event. The one-time infusion event may include a normal bolus infusion event.


At least one of the plurality of discrete infusion events may include a plurality of discrete infusion sub-events. The one-time infusion event may include a plurality of one-time infusion sub-events.


In a first implementation, a method includes determining a first rate-of-change force reading that corresponds to the delivery of a first dose of an infusible fluid via an infusion pump assembly. At least a second rate-of-change force reading is determined that corresponds to the delivery of at least a second dose of the infusible fluid via the infusion pump assembly. An average rate-of-change force reading is determined based, at least in part, upon the first rate-of-change force reading and the at least a second rate-of-change force reading.


One or more of the following features may be included. The average rate-of-change force reading may be compared to a threshold rate-of-change force reading to determine if the average rate-of-change force reading exceeds the threshold rate-of-change force reading. If the average rate-of-change force reading exceeds the threshold rate-of-change force reading, an alarm sequence may be initiated on the infusion pump assembly.


Determining the first rate-of-change force reading may include determining a first initial force reading prior to dispensing the first dose of the infusible fluid. The first dose of the infusible fluid may be dispensed. A first final force reading may be determined subsequent to dispensing the first dose of the infusible fluid. The first rate-of-change force reading may be determined based, at least in part, upon the first initial force reading and the first final force reading.


One or more of the first initial force reading and the first final force reading may be compared to a threshold force reading to determine if one or more of the first initial force reading and the first final force reading exceeds the threshold force reading. If one or more of the first initial force reading and the first final force reading exceeds the threshold force reading, an alarm sequence may be initiated on the infusion pump assembly.


Determining the at least a second rate-of-change force reading may include determining at least a second initial force reading prior to dispensing the at least a second dose of the infusible fluid. The at least a second dose of the infusible fluid may be dispensed. At least a second final force reading may be determined subsequent to dispensing the at least a second dose of the infusible fluid. The at least a second rate-of-change force reading may be determined based, at least in part, upon the at least a second initial force reading and the at least a second final force reading.


The infusion pump assembly may include a battery assembly configured to power the infusion pump assembly. An actual voltage level of the battery assembly may be compared to a minimum voltage requirement to determine if the actual voltage level meets the minimum voltage requirement. If the actual voltage level does not meet the minimum voltage requirement, an alarm sequence may be initiated on the infusion pump assembly.


One or more displaceable mechanical components included within the infusion pump assembly may be monitored to determine if the one or more displaceable mechanical components were displaced an expected displacement in response to delivery of one or more of the first dose of the infusible fluid and the second dose of the infusible fluid. If the one or more displaceable mechanical components were not displaced the expected displacement in response to delivery of one or more of the first dose of the infusible fluid and the second dose of the infusible fluid, an alarm sequence may be initiated on the infusion pump assembly.


In another implementation, a computer program product resides on a computer readable medium that has a plurality of instructions stored on it. When executed by a processor, the instructions cause the processor to perform operations including determining a first rate-of-change force reading that corresponds to the delivery of a first dose of an infusible fluid via an infusion pump assembly. At least a second rate-of-change force reading is determined that corresponds to the delivery of at least a second dose of the infusible fluid via the infusion pump assembly. An average rate-of-change force reading is determined based, at least in part, upon the first rate-of-change force reading and the at least a second rate-of-change force reading.


One or more of the following features may be included. The average rate-of-change force reading may be compared to a threshold rate-of-change force reading to determine if the average rate-of-change force reading exceeds the threshold rate-of-change force reading. If the average rate-of-change force reading exceeds the threshold rate-of-change force reading, an alarm sequence may be initiated on the infusion pump assembly.


Determining the first rate-of-change force reading may include determining a first initial force reading prior to dispensing the first dose of the infusible fluid. The first dose of the infusible fluid may be dispensed. A first final force reading may be determined subsequent to dispensing the first dose of the infusible fluid. The first rate-of-change force reading may be determined based, at least in part, upon the first initial force reading and the first final force reading.


One or more of the first initial force reading and the first final force reading may be compared to a threshold force reading to determine if one or more of the first initial force reading and the first final force reading exceeds the threshold force reading. If one or more of the first initial force reading and the first final force reading exceeds the threshold force reading, an alarm sequence may be initiated on the infusion pump assembly.


Determining the at least a second rate-of-change force reading may include determining at least a second initial force reading prior to dispensing the at least a second dose of the infusible fluid. The at least a second dose of the infusible fluid may be dispensed. At least a second final force reading may be determined subsequent to dispensing the at least a second dose of the infusible fluid. The at least a second rate-of-change force reading may be determined based, at least in part, upon the at least a second initial force reading and the at least a second final force reading.


The infusion pump assembly may include a battery assembly configured to power the infusion pump assembly. An actual voltage level of the battery assembly may be compared to a minimum voltage requirement to determine if the actual voltage level meets the minimum voltage requirement. If the actual voltage level does not meet the minimum voltage requirement, an alarm sequence may be initiated on the infusion pump assembly.


One or more displaceable mechanical components included within the infusion pump assembly may be monitored to determine if the one or more displaceable mechanical components were displaced an expected displacement in response to delivery of one or more of the first dose of the infusible fluid and the second dose of the infusible fluid. If the one or more displaceable mechanical components were not displaced the expected displacement in response to delivery of one or more of the first dose of the infusible fluid and the second dose of the infusible fluid, an alarm sequence may be initiated on the infusion pump assembly.


In another implementation, an infusion pump assembly is configured to perform operations including determining a first rate-of-change force reading that corresponds to the delivery of a first dose of an infusible fluid via an infusion pump assembly. At least a second rate-of-change force reading is determined that corresponds to the delivery of at least a second dose of the infusible fluid via the infusion pump assembly. An average rate-of-change force reading is determined based, at least in part, upon the first rate-of-change force reading and the at least a second rate-of-change force reading.


One or more of the following features may be included. The average rate-of-change force reading may be compared to a threshold rate-of-change force reading to determine if the average rate-of-change force reading exceeds the threshold rate-of-change force reading. If the average rate-of-change force reading exceeds the threshold rate-of-change force reading, an alarm sequence may be initiated on the infusion pump assembly.


Determining the first rate-of-change force reading may include determining a first initial force reading prior to dispensing the first dose of the infusible fluid. The first dose of the infusible fluid may be dispensed. A first final force reading may be determined subsequent to dispensing the first dose of the infusible fluid. The first rate-of-change force reading may be determined based, at least in part, upon the first initial force reading and the first final force reading.


One or more of the first initial force reading and the first final force reading may be compared to a threshold force reading to determine if one or more of the first initial force reading and the first final force reading exceeds the threshold force reading. If one or more of the first initial force reading and the first final force reading exceeds the threshold force reading, an alarm sequence may be initiated on the infusion pump assembly.


Determining the at least a second rate-of-change force reading may include determining at least a second initial force reading prior to dispensing the at least a second dose of the infusible fluid. The at least a second dose of the infusible fluid may be dispensed. At least a second final force reading may be determined subsequent to dispensing the at least a second dose of the infusible fluid. The at least a second rate-of-change force reading may be determined based, at least in part, upon the at least a second initial force reading and the at least a second final force reading.


The infusion pump assembly may include a battery assembly configured to power the infusion pump assembly. An actual voltage level of the battery assembly may be compared to a minimum voltage requirement to determine if the actual voltage level meets the minimum voltage requirement. If the actual voltage level does not meet the minimum voltage requirement, an alarm sequence may be initiated on the infusion pump assembly.


One or more displaceable mechanical components included within the infusion pump assembly may be monitored to determine if the one or more displaceable mechanical components were displaced an expected displacement in response to delivery of one or more of the first dose of the infusible fluid and the second dose of the infusible fluid. If the one or more displaceable mechanical components were not displaced the expected displacement in response to delivery of one or more of the first dose of the infusible fluid and the second dose of the infusible fluid, an alarm sequence may be initiated on the infusion pump assembly.


In accordance with another aspect of the present invention, an infusion pump assembly includes a reservoir assembly configured to contain an infusible fluid. A motor assembly is configured to act upon the reservoir assembly and dispense at least a portion of the infusible fluid contained within the reservoir assembly. Processing logic is configured to provide one or more control signals to the motor assembly. The one or more control signals are processable by the motor assembly to effectuate the dispensing of the at least a portion of the infusible fluid contained within the reservoir assembly. The processing logic includes a primary microprocessor configured to execute one or more primary applications written in a first computer language; and a safety microprocessor configured to execute one or more safety applications written in a second computer language.


One or more of the following features may be included. A primary power supply may be configured to provide primary electrical energy to at least a portion of the processing logic. A backup power supply may be configured to provide backup electrical energy to the at least a portion of the processing logic in the event that the primary power supply fails to provide the primary electrical energy to the at least a portion of the processing logic. The primary power supply may be a first battery; and the backup power supply may be a super capacitor assembly.


The processing logic may include one or more circuit partitioning components configured to divide the processing logic into primary processing logic and backup processing logic. The primary processing logic may include the primary microprocessor. The backup processing logic may include the safety microprocessor.


The one or more circuit partitioning components may include one or more of a diode assembly and a current limiting assembly. The diode assembly may be configured to allow the primary power supply to charge the backup power supply while prohibiting the backup power supply from providing backup electrical energy to the primary processing logic in the event that the primary power supply fails to provide the primary electrical energy to the primary processing logic.


The one or more primary applications written in the first computer language may be chosen from the group consisting of an operating system, an executive loop and a software application. The one or more safety applications written in the second computer language may be chosen from the group consisting of an operating system, an executive loop and a software application.


The primary power supply may be configured to provide electrical energy to one or more subsystems included within the infusion pump assembly. The primary power supply and the backup power supply may be configured to provide electrical energy to an audio system included within the infusion pump assembly. The audio system may be configured to provide an escalating alarm sequence in the event of a loss of a beacon signal, wherein the escalating alarm sequence includes at least a low-intensity alarm and a high-intensity alarm.


The first computer language may be chosen from the group consisting of Ada, Basic, Cobol, C, C++, C#, Fortran, Visual Assembler, Visual Basic, Visual J++, Java, and Java Script. The second computer language may be chosen from the group consisting of Ada, Basic, Cobol, C, C++, C#, Fortran, Visual Assembler, Visual Basic, Visual J++, Java, and Java Script.


In another implementation, an infusion pump assembly includes a reservoir assembly configured to contain an infusible fluid. A motor assembly is configured to act upon the reservoir assembly and dispense at least a portion of the infusible fluid contained within the reservoir assembly. Processing logic is configured to provide one or more control signals to the motor assembly. The one or more control signals are processable by the motor assembly to effectuate the dispensing of the at least a portion of the infusible fluid contained within the reservoir assembly. The processing logic includes one or more circuit partitioning components configured to divide the processing logic into primary processing logic and backup processing logic. A primary microprocessor is included within the primary processing logic and configured to execute one or more primary applications written in a first computer language. A safety microprocessor is included within the backup processing logic and configured to execute one or more safety applications written in a second computer language.


One or more of the following features may be included. The one or more primary applications written in the first computer language may be chosen from the group consisting of an operating system, an executive loop and a software application. The one or more safety applications written in the second computer language may be chosen from the group consisting of an operating system, an executive loop and a software application. A primary power supply may be configured to provide primary electrical energy to at least a portion of the processing logic. A backup power supply may be configured to provide backup electrical energy to the at least a portion of the processing logic in the event that the primary power supply fails to provide the primary electrical energy to the at least a portion of the processing logic.


The first computer language may be chosen from the group consisting of Ada, Basic, Cobol, C, C++, C#, Fortran, Visual Assembler, Visual Basic, Visual J++, Java, and Java Script. The second computer language may be chosen from the group consisting of Ada, Basic, Cobol, C, C++, C#, Fortran, Visual Assembler, Visual Basic, Visual J++, Java, and Java Script.


In another implementation, a computer program product resides on a computer readable medium having a plurality of instructions stored on it. When executed by a processor, the instructions cause the processor to perform operations including receiving, on a first microprocessor executing one or more applications written in a first computer language, an initial command processable by the one or more applications written in the first computer language. The initial command is converted into a modified command processable by one or more applications written in a second computer language. The modified command is provided to a second microprocessor executing the one or more applications written in the second computer language.


One or more of the following features may be included. The one or more applications written in the first computer language may be chosen from the group consisting of an operating system, an executive loop and a software application. The one or more applications written in the second computer language may be chosen from the group consisting of an operating system, an executive loop and a software application.


The first microprocessor may be a primary microprocessor. The one or more applications written in the first computer language may be one or more primary applications. The second microprocessor may be a safety microprocessor. The one or more applications written in the second computer language may be one or more safety applications.


The first computer language may be chosen from the group consisting of Ada, Basic, Cobol, C, C++, C#, Fortran, Visual Assembler, Visual Basic, Visual J++, Java, and Java Script. The second computer language may be chosen from the group consisting of Ada, Basic, Cobol, C, C++, C#, Fortran, Visual Assembler, Visual Basic, Visual J++, Java, and Java Script.


In accordance with another aspect of the present invention, an infusion pump assembly includes a reservoir assembly configured to contain an infusible fluid. A motor assembly is configured to act upon the reservoir assembly and dispense at least a portion of the infusible fluid contained within the reservoir assembly. Processing logic is configured to control the motor assembly. A primary power supply is configured to provide primary electrical energy to at least a portion of the processing logic. A backup power supply is configured to provide backup electrical energy to the at least a portion of the processing logic in the event that the primary power supply fails to provide the primary electrical energy to the at least a portion of the processing logic.


One or more of the following features may be included. The primary power supply may include a first battery. The backup power supply may be a super capacitor assembly.


The processing logic may include one or more circuit partitioning components configured to divide the processing logic into primary processing logic and backup processing logic. The primary processing logic may include a primary microprocessor. The backup processing logic may include a safety microprocessor. The one or more circuit partitioning components may include one or more of a diode assembly and a current limiting assembly.


The diode assembly may be configured to allow the primary power supply to charge the backup power supply while prohibiting the backup power supply from providing backup electrical energy to the primary processing logic in the event that the primary power supply fails to provide the primary electrical energy to the primary processing logic. The current limiting assembly may be configured to limit the amount of the primary electrical energy available to charge the backup power supply.


The primary power supply may be configured to provide electrical energy to one or more subsystems included within the infusion pump assembly. The primary power supply and the backup power supply may be configured to provide electrical energy to an audio system included within the infusion pump assembly. The audio system may be configured to provide an escalating alarm sequence in the event of a loss of a beacon signal. The escalating alarm sequence may include at least a low-intensity alarm and a high-intensity alarm.


In another implementation, an infusion pump assembly includes a reservoir assembly configured to contain an infusible fluid. A motor assembly is configured to act upon the reservoir assembly and dispense at least a portion of the infusible fluid contained within the reservoir assembly. Processing logic is configured to control the motor assembly. A first battery is configured to provide primary electrical energy to at least a portion of the processing logic. A super capacitor assembly is configured to provide backup electrical energy to the at least a portion of the processing logic in the event that the first battery fails to provide the primary electrical energy to the at least a portion of the processing logic.


One or more of the following features may be included. The processing logic may include one or more circuit partitioning components configured to divide the processing logic into primary processing logic and backup processing logic. The primary processing logic may include a primary microprocessor. The backup processing logic may include a safety microprocessor. The one or more circuit partitioning components may include one or more of a diode assembly and a current limiting assembly.


In another implementation, an infusion pump assembly includes a reservoir assembly configured to contain an infusible fluid. A motor assembly is configured to act upon the reservoir assembly and dispense at least a portion of the infusible fluid contained within the reservoir assembly. Processing logic is configured to control the motor assembly. A primary power supply is configured to provide primary electrical energy to at least a portion of the processing logic. A backup power supply is configured to provide backup electrical energy to the at least a portion of the processing logic in the event that the primary power supply fails to provide the primary electrical energy to the at least a portion of the processing logic. The processing logic includes one or more circuit partitioning components configured to divide the processing logic into primary processing logic and backup processing logic.


One or more of the following features may be included. The primary power supply may include a first battery. The backup power supply may be a super capacitor assembly. The primary processing logic may include a primary microprocessor. The backup processing logic may include a safety microprocessor.


The one or more circuit partitioning components may include one or more of a diode assembly and a current limiting assembly. The diode assembly may be configured to allow the primary power supply to charge the backup power supply while prohibiting the backup power supply from providing backup electrical energy to the primary processing logic in the event that the primary power supply fails to provide the primary electrical energy to the primary processing logic.


In another implementation, an alarm system includes processing logic configured to generate an alarm control signal. An RS232 line driver circuit is coupled to the processing logic and configured to receive the alarm control signal and generate an alarm output signal based, at least in part, upon the alarm control signal. An audio driver assembly is coupled to the RS232 line driver circuit and configured to receive the alarm output signal and generate an audible alarm signal based, at least in part, upon the alarm output signal.


One or more of the following features may be included. The audio driver assembly may include a Piezo electric diaphragm. The alarm system may be included within an infusion pump assembly. The infusion pump assembly may include a reservoir assembly configured to contain an infusible fluid. A motor assembly may be configured to act upon the reservoir assembly and dispense at least a portion of the infusible fluid contained within the reservoir assembly. A primary power supply may be configured to provide primary electrical energy to at least a portion of the processing logic. A backup power supply may be configured to provide backup electrical energy to the at least a portion of the processing logic in the event that the primary power supply fails to provide the primary electrical energy to the at least a portion of the processing logic. The processing logic may be further configured to control the motor assembly.


In accordance with another aspect of the present invention, a medium connector includes a passage configured to allow for the flow of medium, and a multi-portion engagement surface positioned about the passage. The multi-portion engagement surface includes a first surface portion, and a second surface portion. The first surface portion is configured to provide an interference fit with a corresponding sealing surface of a mating connector. The second surface portion is configured to provide a clearance fit with the corresponding sealing surface of the mating connector. The ratio of the first surface portion and the second surface portion is selected to regulate an engagement force between the medium connector and the mating connector.


One or more of the following features may be included. The mating connector may include a Luer taper connector. The multi-portion engagement surface may include a tapered surface, in which the first surface portion may have a first taper angle, and the second surface portion may have a second taper angle that is less than the first taper angle. Further, the second surface portion may be generally cylindrical. The multi-portion engagement surface may include a tapered surface, in which the first surface portion may have a first taper angle, and the second surface portion may have a second taper angle that is greater than the first taper angle. The second surface portion may include one or more recesses. The one or more recesses may include one or more radial slots. The one or more recesses may include one or more longitudinal slots.


The medium connector may include one or more retention features. The one or more retention features may include one or more snap-fit features.


According to another implementation, a medium connector includes a passage configured to allow for the flow of medium, and a tapered multi-portion engagement surface positioned about the passage. The multi-portion engagement surface includes a first surface portion, and a second surface portion. The first surface portion has a first taper angle configured to provide an interference fit with a corresponding sealing surface of a mating connector. The second surface portion has a second taper angle configured to provide a clearance fit with the corresponding sealing surface of the mating connector. The ratio of the first surface portion and the second surface portion is selected to regulate an engagement force between the medium connector and the mating connector.


One or more of the following features may be included. The mating connector may include a Luer taper connector. The second taper angle may be less that the first taper angle. The second surface portion may be generally cylindrical. The second taper angle may be greater than the first taper angle. The medium connector may include one or more retention features. The one or more retention features may include a snap fit feature.


The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features and advantages will become apparent from the description, the drawings, and the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1B are front and back isometric views of an infusion pump assembly;



FIGS. 1C-1E are side and front views of the infusion pump assembly of FIG. 1;



FIG. 1F is a front isometric view of the infusion pump assembly of FIG. 1;



FIG. 2 is a diagrammatic view of the infusion pump assembly of FIG. 1;



FIG. 3A is a top-level view of an infusion pump according to one embodiment;



FIG. 3B is an exploded view of a drive mechanism for the infusion pump of FIG. 3A;



FIG. 3C is an isometric views of one embodiment of a reservoir and locking hub assembly according to one embodiment;



FIG. 3D is an exploded isometric view of a locking hub and a reservoir according to one embodiment;



FIG. 3E is an isometric view of one embodiment of the reservoir assembly;



FIG. 3F shows an embodiment of a pump barrel locking mechanism;



FIG. 3G shows a magnified view according to FIG. 3F;



FIGS. 3H-3I shows the relation of the drive screw to the plunger rod for the infusion pump of FIG. 3A;



FIG. 3J shows a connection from one embodiment of a reservoir to a tubing set;



FIG. 3K illustrates another method of connecting one embodiment of a reservoir to a tubing set;



FIG. 3L shows an adapter for using a small diameter reservoir with the pump assembly according to one embodiment;



FIGS. 3M-3N are on-axis views of the adapter of FIG. 3L;



FIG. 4A is an exploded view of one embodiment of the reservoir and locking hub assembly with portions of the loading and drive assembly of one embodiment of the infusion pump assembly;



FIGS. 4B-4D are partial views of the loading of the reservoir assembly onto the drive assembly;



FIGS. 4E-4F are top and bottom views of the hub and battery end cap according to one embodiment of the infusion pump apparatus;



FIGS. 4G-4I are bottom, side and top views, respectively, of one embodiment of the locking disc;



FIGS. 4J-4L are isometric views of one embodiment of the locking disc;



FIGS. 4M-4N are partial illustrative views of the loading of the reservoir assembly onto the drive assembly of one embodiment of the infusion pump apparatus;



FIG. 5A is an isometric view of one embodiment of the plunger and plunger rod apparatus;



FIG. 5B is an isometric view of one embodiments of the reservoir and locking hub assembly;



FIG. 5C is an isometric view of the plunger and plunger rod apparatus according to the reservoir and locking hub assembly shown in FIG. 5B;



FIGS. 5D-5E are isometric and cross sectional views, respectively, of the plunger seal apparatus according to one embodiment;



FIG. 5F is a cross sectional cut-off view of the assembled plunger apparatus of FIG. 5C;



FIGS. 5G-5P are various embodiments of the plunger seal apparatus;



FIGS. 6A-6B are views of one embodiment of the filling aid apparatus;



FIGS. 6C-6D are isometric views of the filling aid apparatus of FIGS. 6A-6B together with a plunger rod, both attached to the plunger rod and detached from the plunger rod, respectively;



FIGS. 6E-6F are isometric views of one embodiment of the filling aid apparatus together with a plunger rod, both attached to the plunger rod and detached from the plunger rod, respectively;



FIGS. 6G-6I are isometric views of alternate embodiments of the filling aid together with a plunger rod;



FIGS. 7A-7B are isometric views of various portions of one embodiment of the infusion pump assembly;



FIGS. 7C-7D are isometric views of the reservoir assembly together with the drive screw and the strain gauge according to one embodiment of the infusion pump apparatus;



FIG. 7E is an magnified isometric view of a plunger rod together with an optical displacement sensor according to one embodiment of the infusion pump apparatus;



FIGS. 8A-8D are various alternate embodiments of the reservoir assembly;



FIGS. 9A-9B are cross-sectional views of a medium connector assembly included within the infusion pump assembly of FIG. 1;



FIGS. 9C-9D are cross-sectional views of a medium connector assembly included within the infusion pump assembly of FIG. 1;



FIGS. 9E-9F are cross-sectional views of a medium connector assembly included within the infusion pump assembly of FIG. 1;



FIGS. 9G-H are cross-sectional views of a medium connector assembly included within the infusion pump assembly of FIG. 1;



FIGS. 9I-J are cross-sectional views of a medium connector assembly included within the infusion pump assembly of FIG. 1;



FIG. 10A is an isometric view of a removable cover assembly for use with the infusion pump assembly of FIG. 1;



FIG. 10B is an alternative isometric view of the removable cover assembly of FIG. 10A;



FIG. 10C is a cross-sectional view of the removable cover assembly of FIG. 10A;



FIG. 11 is an alternative isometric view of the removable cover assembly of FIG. 10A;



FIG. 12A-12D are isometric views of an alternative embodiment of the removable cover assembly of FIG. 4;



FIG. 12E is an isometric view of one embodiment of the removable cover assembly;



FIG. 12F is a bottom view of one embodiment of the removable cover assembly;



FIG. 12G is an isometric view of one embodiment of the removable cover assembly together with a power supply assembly;



FIG. 12H is an isometric exploded view of FIG. 12G;



FIGS. 12I-12J are isometric views of the power supply interface assembly;



FIG. 12K is an isometric view of one embodiment of the removable cover assembly;



FIG. 12L is a bottom view of one embodiment of the removable cover assembly;



FIG. 12M is an isometric view of one embodiment of the removable cover assembly together with a power supply assembly;



FIG. 12N is an isometric exploded view of FIG. 12G;



FIGS. 12O-12P are isometric views of the power supply interface assembly;



FIG. 13 is a diagrammatic view of the infusion pump assembly of FIG. 1;



FIG. 14 is a flowchart of a process executed by the infusion pump assembly of FIG. 1;



FIG. 15 is a flowchart of a process executed by the infusion pump assembly of FIG. 1;



FIG. 16 is a timeline illustrative of a plurality of discrete infusion events;



FIG. 17 is a more detailed view of two discrete infusion events included within FIG. 16.



FIG. 18 is a diagrammatic view of a storage array included within the infusion pump assembly of FIG. 1;



FIG. 19 is a flowchart of a process executed by the infusion pump assembly of FIG. 1; and



FIG. 20 is an illustrative view of one embodiment of a remote control assembly.





Like reference symbols in the various drawings indicate like elements.


DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to FIGS. 1A-1F, there is shown an infusion pump assembly 100 that may be housed within enclosure assembly 102. Infusion pump assembly 100 may include display system 104 that may be visible through enclosure assembly 102. One or more switch assemblies/input devices 106, 108, 110 may be positioned about various portions of enclosure assembly 102. Enclosure assembly 102 may include infusion port assembly 112 to which cannula assembly 114 may be releasably coupled. Removable cover assembly 116 may allow access to power supply cavity 118 (shown in phantom on FIG. 2).


Referring to FIG. 2, there is shown a diagrammatic view of infusion pump assembly 100. Infusion pump assembly 100 may be configured to deliver infusible fluid 200 to user 202. Infusible fluid 200 may be delivered intravenously (i.e., into a vein), subcutaneously (i.e., into the skin), arterially (i.e., into an artery), and epidurally (i.e., into the epidural space). Examples of infusible fluid 200 may include but are not limited to insulin, nutrients, saline solution, antibiotics, analgesics, anesthetics, hormones, vasoactive drugs, and chelation drugs, and any other therapeutic fluids


Infusion pump assembly 100 may include processing logic 204 that executes one or more processes that may be required for infusion pump assembly 100 to operate properly. Processing logic 204 may include one or more microprocessors (not shown), one or more input/output controllers (not shown), and cache memory devices (not shown). One or more data buses and/or memory buses may be used to interconnect processing logic 204 with one or more subsystems.


Examples of the subsystems interconnected with processing logic 204 may include but are not limited to input system 206, memory system 208, display system 104, vibration system 210, audio system 212, motor assembly 214, force sensor 216, and displacement detection device 218. Infusion pump assembly 100 may include primary power supply 220 (e.g. a battery) configured to be removably installable within power supply cavity 118 and to provide electrical power to at least a portion of processing logic 204 and one or more of the subsystems (e.g., input system 206, memory system 208, display system 104, vibration system 210, audio system 212, motor assembly 214, force sensor 216, and displacement detection device 218).


Infusion pump assembly 100 may include reservoir assembly 222 configured to contain infusible fluid 200. In some embodiments, reservoir assembly 222 may be a reservoir assembly similar to that described in U.S. Patent Application Publication No. US 2004-0135078-A1, published Jul. 15, 2004, which is herein incorporated by reference in its entirety. In other embodiments, the reservoir assembly may be any assembly in which fluid may be acted upon such that at least a portion of the fluid may flow out of the reservoir assembly, for example, the reservoir assembly, in various embodiments, may include but is not limited to: a barrel with a plunger, a cassette or a container at least partially constructed of a flexible membrane.


Plunger assembly 224 may be configured to displace infusible fluid 200 from reservoir assembly 222 through cannula assembly 114 (which may be coupled to infusion pump assembly 100 via infusion port assembly 112) so that infusible fluid 200 may be delivered to user 202. In this particular embodiment, plunger assembly 224 is shown to be displaceable by partial nut assembly 226, which may engage lead screw assembly 228 that may be rotatable by motor assembly 214 in response to signals received from processing logic 204. In this particular embodiment, the combination of motor assembly 214, plunger assembly 224, partial nut assembly 226, and lead screw assembly 228 may form a pump assembly that effectuates the dispensing of infusible fluid 200 contained within reservoir assembly 222. An example of partial nut assembly 226 may include but is not limited to a nut assembly that is configured to wrap around lead screw assembly 228 by e.g., 30 degrees. In some embodiments, the pump assembly may be similar to one described in U.S. Pat. No. 7,306,578, issued Dec. 11, 2007, which is herein incorporated by reference in its entirety.


During operation of infusion pump assembly 100, infusible fluid 200 may be delivered to user 202 in accordance with e.g. a defined delivery schedule. For illustrative purposes only, assume that infusion pump assembly 100 is configured to provide 0.00025 mL of infusible fluid 200 to user 202 every three minutes. Accordingly, every three minutes, processing logic 204 may provide the appropriate drive signals to motor assembly 214 to allow motor assembly 214 to rotate lead screw assembly 228 the appropriate amount so that partial nut assembly 226 (and therefore plunger assembly 224) may be displaced the appropriate amount in the direction of arrow 230 so that 0.00025 mL of infusible fluid 200 are provided to user 202 (via cannula 114). It should be understood that the volume of infusible fluid 200 that may be provided to user 202 may vary based upon, at least in part, the nature of the infusible fluid (e.g., the type of fluid, concentration, etc.), use parameters (e.g., treatment type, dosage, etc.). As such the foregoing illustrative example should not be construed as a limitation of the present disclosure.


Force sensor 216 may be configured to provide processing logic 204 with data concerning the force required to drive plunger assembly 224 into reservoir assembly 222. Force sensor 216 may include one or more strain gauges and/or pressure sensing gauges and may be positioned between motor assembly 214 and an immovable object (e.g. bracket assembly 232) included within infusion pump assembly 100.


In one embodiment, force sensor 216 includes four strain gauges (not shown), such that: two of the four strain gauges are configured to be compressed when driving plunger 224 into reservoir assembly 222; and two of the four strain gauges are configured to be stretched when driving plunger 224 into reservoir assembly 222. The four strain gauges (not shown) may be connected to a Wheatstone Bridge (not shown) that produces an analog force signal (not shown) that is a function of the pressure sensed by force sensor 216. The analog force signal (not shown) produced by force sensor 216 may be provided to an analog-to-digital converter (not shown) that may convert the analog force signal (not shown) into a digital force signal (not shown) that may be provided to processing logic 204. An amplifier assembly (not shown) may be positioned prior to the above-described analog-to-digital converter and may be configured to amplify the output of e.g., force sensor 216 to a level sufficient to be processed by the above-described analog-to-digital converter.


Motor assembly 214 may be configured as e.g., a brush-type DC electric motor. Further, motor assembly 214 may include a reduction gear assembly (not shown) that e.g. requires motor assembly 214 to rotate three-thousand revolutions for each revolution of lead screw assembly 228, thus increasing the torque and resolution of motor assembly 214 by a factor of three-thousand.



FIG. 3A is an overall view of an infusion pump according to one embodiment. A pump assembly 300 contains the components needed to cause a reservoir assembly 302 to deliver medication or any liquid to a user. The reservoir assembly 302 may contain enough liquid, e.g., medication, such as, but not limited to, insulin, for several days for a typical user. A tubing set 304, connected to the reservoir assembly 302, includes a cannula (not shown) through which the medication is delivered to the user.


Referring also to FIG. 3B, an exploded view of one embodiment of the drive mechanism of the infusion pump is shown. Reservoir assembly 302 may include reservoir 306, plunger 308 and plunger rod 310. Reservoir 306 may contain the medication for delivery to the user and is of variable interior volume. The interior volume may be the liquid capacity of reservoir 306. Plunger 308, may be inserted into the bottom of the reservoir 306, and may cause the volume of reservoir 306 to change as plunger 308 is displaced along the longitudinal axis of reservoir 306. Plunger rod 310 may be connected to plunger 308 with the plunger rod's longitudinal axis displaced from and parallel to the longitudinal axis of reservoir 306. Plunger rod 310 may be threaded for at least a portion of plunger rod's 310 length. As shown in this embodiment, cylindrical pump barrel 312 receives reservoir assembly 302. Pump barrel 312 may constrain plunger rod 310, orienting plunger rod 310 along the longitudinal axis of pump barrel 312. Pump barrel 312 may be contained in pump assembly 300 and, in some embodiments, may contain locking tab 317, which may prevent rotation of pump barrel 312 with respect to pump assembly 300. Gear box 316 in pump assembly 300 may include drive screw 314 along with motor and gears to turn drive screw 314. Drive screw 314 may be threaded and the screw's longitudinal axis may be aligned parallel to and may be displaced from the longitudinal axis of pump barrel 312. Locking hub 318 may be attached to the top of reservoir 306.


Referring now to FIGS. 3C-3D, one embodiment of reservoir assembly 302 together with locking hub 318 is shown. Reservoir 306 may be sized to accommodate any volume desired. In the exemplary embodiment, reservoir 306 may accommodate a volume of 2.5 ml, however, in various other embodiments, reservoir 306 may be sized to accommodate a smaller or larger volume. As discussed above, reservoir 306 volume may change as the plunger is displaced along the longitudinal axis of reservoir 306. In the exemplary embodiments, locking hub 318 may be connected to tubing set (not shown, an embodiment of the tubing set is shown in FIG. 3A as 304) such that the liquid in the reservoir may flow through the locking hub to the tubing. In some embodiments, such as the exemplary embodiment shown, reservoir 306 may also include reservoir alignment tabs 307 and reservoir bottom 305.


Still referring to FIGS. 3C-3D, plunger rod 310, in the exemplary embodiment, may include a threaded portion 320 and a notched portion 322. The threaded portion may thread to drive screw 314. Notched portion 322 may be used, in the exemplary embodiment, to encode information relating to reservoir assembly 302, including but not limited to the information, the methods and devices described in U.S. Patent Application Publication US 2004/0135078 A1, published on Jul. 15, 2004 and entitled Optical Displacement Sensor for Infusion Devices, which is herein incorporated by reference in its entirety.


Referring also to FIG. 3D, the exemplary embodiment of locking hub 318 and mating male portion 324 of reservoir 306 are shown. Reservoir 306 is shown without reservoir bottom 305, which is shown in FIG. 3C. The tapered luer connection is described in more detail below. As shown in FIG. 3D, locking hub 318 may include a female part 329 as well as tab 326, while reservoir 306 may include a male part 324 as well as slot 328. Male part 324 and female part 329 may mate to form a luer connection. Tab 326 and slot 328 may lock together when mated and turned, one part relative to its mating part, such that tab 326 may slide into the slot 328.


Referring now to FIG. 3E, another embodiment of reservoir assembly 330 is shown. In this embodiment, hub portion 332 and reservoir portion 334 are connected, and in one embodiment, are molded as a single part.


Referring also to FIG. 3F, a pump barrel locking mechanism for an embodiment of the device is shown. The pump barrel 312 includes a clearance hole (not shown, shown in FIG. 3H as 340) that guides the plunger rod 310 during insertion of the reservoir assembly 302 into the pump barrel 312. To ensure that the drive screw 314 does not interfere with the plunger rod 310 during insertion of the reservoir assembly 302, the pump barrel 312 maintains a fixed position relative to the pump assembly 300. The position of the pump barrel 312 relative to the pump assembly 300 may be maintained, for example, by a locking tab 317 included in the pump barrel 312 that engages a pump barrel stop 342 in the pump assembly 300. The locking hub 318 may include a flange 338 which dislodges the locking tab 317 from the pump barrel stop 342 when the locking hub 318 turns, allowing the locking hub 318 to rotate the pump barrel 312.


Referring also to FIGS. 3H-3I, these FIGS. show views along the longitudinal axis of the pump barrel 312 showing the relation of the drive screw 314 to the plunger rod in a loading position and in an engaged position, respectively. The reservoir assembly 302 is positioned for loading so that the plunger rod 310 does not contact the drive screw 314, as shown in FIG. 3H. With the pump barrel 312 positioned appropriately with respect to the pump assembly 300, the plunger rod 310 clearance from the drive screw 314 is determined by the placement of the clearance hole 340 in the pump barrel 312 base, which hole 340 receives and guides the plunger rod 310. The clearance hole 340 may be tapered to ease insertion of the plunger rod 310. The drive screw 314 fits in a clearance hole 340 in the pump barrel 312. Once the reservoir assembly 302 is inserted into the pump assembly 300, the pump barrel 312 is rotated by the locking hub 318, causing the plunger rod 310 to turn and to engage the drive screw 314, as shown in FIG. 3I. This embodiment advantageously simplifies reservoir loading.


In some embodiments, the plunger rod threads and the drive screw threads are buttress threads. These embodiments may be advantageous in that they eliminate reaction forces on the plunger rod normal to the direction of the rod's longitudinal axis. Such reaction forces may cause the rod to deflect and skip a thread on the drive screw, resulting in under delivery of medication to the user. Buttress threads eliminate the normal component of the reaction force.


Referring also to FIG. 3J, in some embodiments, the locking hub 318 may be connected to the reservoir 306 by a tapered luer connection. The reservoir 306 has a male luer taper integrally molded into the reservoir's top 344. Surrounding the male luer is an annulus with an internal female thread. Similarly, the locking hub 318 contains the mating female luer and threaded male connection.


In another embodiment, a needle connection is provided between reservoir 306 and locking hub 318. As shown in FIG. 3K, the reservoir includes a rubber septum 346 that is attached to the reservoir with a crimped metal collar. A needle 348, integral to the hub, pierces the septum and fluid can then flow from the reservoir to the tubing set.


In other embodiments, as shown in FIG. 3L, an adapter 350 is provided to permit a reservoir 352 whose diameter is substantially smaller than the diameter of a pump barrel to be used with the pump assembly 300. The adapter 350 may be a separate component or may be integrated into the locking hub 354. The locking hub 354, in some embodiments, may be one of the embodiments described herein, and sized accordingly. The adapter 350 aligns and offsets the reservoir's 352 axis parallel to the longitudinal axis of the pump barrel so that the plunger rod 356, when rotated, mates with the drive screw (not shown). FIGS. 3M-3N show an on-axis view of the small diameter reservoir 352 when placed in the adapter 350. As will be apparent, the offset provided by the adapter allows the plunger rod 356, when mated with the plunger 308 and reservoir 352, to engage the drive screw 314 in a similar fashion as for the first embodiment, described above.


Referring now to FIG. 4A, another embodiment of the drive mechanism for an infusion pump is shown. As shown in this embodiment, a cylindrical pump barrel 312, shown here inside a pump barrel housing 360, receives the reservoir assembly 302. The pump barrel 312 terminates with a locking disc 400. The pump barrel 312 constrains the plunger rod 310, orienting the plunger rod 310 along the longitudinal axis of the pump barrel 312. The pump barrel 312 is contained in the pump barrel housing 360, which is contained in the pump assembly 300. The locking disc 400, in the exemplary embodiment, contacts a locking tab (shown in FIG. 4B as 402), which is in the pump gear box 364. The locking tab 402 prevents rotation of the locking disc 400 with respect to the pump assembly 300. However, in some embodiments, the locking disc 400 may not include a locking tab 402. A gear box 364 in the pump assembly 300 includes a drive screw 314 along with motor and gears to turn the drive screw 314, and, as discussed above, in some embodiments, a locking tab 402 for locking the locking disc 400. The drive screw 314 is threaded and the screw's longitudinal axis is aligned parallel to and displaced from the longitudinal axis of the pump barrel 312. A locking hub 318 is attached to the top of the reservoir 306.


Still referring to FIG. 4A, in the embodiment shown, the plunger rod 310 is connected to the plunger 308. In the exemplary embodiment, the plunger rod 310 and plunger 308 are a single molded part. O-rings 366 fit over the plunger 308. However, in some embodiments, the O-rings may be molded into the plunger 308.


Referring back to FIGS. 3C-3D, the locking hub 318 additionally includes locking hub alignment tabs 325. As shown in FIG. 3C, once the locking hub 318 and reservoir 306 are mated, the locking hub alignment tabs 325 and the reservoir alignment tabs 307 are aligned with one another. Referring also to FIGS. 4E-4F, the pump assembly 300 includes a hub and battery end cap 404. The hub section of the hub and battery end cap 404 includes complementary opening for the locking hub 318, including the locking hub alignment tabs 325.


Thus, once the reservoir assembly 302 is mated with the locking hub 318, to load the reservoir into the pump barrel 312, the reservoir must be oriented correctly with respect to the locking hub alignment tabs 325 and the complementary opening in the hub and battery end cap 404. The reservoir alignment tabs 307 will thus also be aligned with the locking hub alignment tabs 325.


Referring now also to FIGS. 4G-4L the locking disc 400 is shown. The locking disc 400 includes a clearance hole 340, which, in the exemplary embodiment is tapered for easy insertion, but in some embodiments, is not tapered. Additionally, the reservoir tab openings 406, plunger rod support 412 and first and second locking tab notches 408, 410 are shown. As discussed above, the reservoir alignment tabs 307 are aligned with the locking hub alignment tabs 325. The orientation assured by the hub and battery end cap 404 assures that the plunger rod 310 will be in the correct orientation to fit through the clearance hole 340, the reservoir alignment tabs 307 will mate with the reservoir tab opening 406, and the reservoir bottom 305 displaces the locking tab 402.


In some embodiments, the locking disc 400 may include only a first locking tab notch 408, or, in some embodiments, may not include any locking tab notches. The locking tab notches 408, 410 maintain the orientation of the locking disc 400 for ease of loading the reservoir and locking hub assembly. Also, the second locking tab notch 408 contributes to maintaining the plunger rod 310 and drive screw 314 relationship. Additionally, although the reservoir tab openings 406 are included in the exemplary embodiment of the locking disc 400, some embodiments of the locking disc 400 do not include reservoir tab openings 406. In these embodiments, the reservoir does not include reservoir alignment tabs 307 (shown in FIGS. 3C-3D).


In the exemplary embodiment, the reservoir tab openings 406, together with the reservoir alignment tabs 307, aid in the rotation of the locking disc 400. When loading the reservoir and locking hub assembly into the pump assembly 300, the user, having aligned the reservoir and locking hub assembly with the hub and battery cap 404, drops the reservoir and locking hub assembly into the pump barrel 312 and applies a slight pressure to the locking hub 318. The user then applies torque to the locking hub 318 to complete the loading process. Where the locking disc 400 includes the reservoir tab openings 406 and the reservoir includes the reservoir alignment tabs 307, as in the exemplary embodiment, the torque applied to the locking hub is transmitted from the reservoir alignment tabs 307 to the locking disc 400 rather than from the locking hub 318 to the plunger rod 310. Thus, in the exemplary embodiment, the reservoir alignment tabs 307 together with the reservoir tab openings 406 work together to take up the torque applied to the reservoir and locking hub assembly which contributes to maintain the integrity of the plunger rod 310 while also ensuring proper engagement of the plunger rod 310 onto the drive screw 314.


Referring also to FIG. 4B, bottom view of the locking disc 400 is shown with the locking tab 402 engaged with one of the locking tab notches 408. The clearance hole 340 is shown empty of the plunger rod. Thus, the locking disc 400 is shown in the locked, non-loaded position. The drive screw 314 is shown and the plunger rod support 412 is also shown. Referring now also to FIG. 4C, the plunger rod 310 is shown having fit through the clearance hole 340. The reservoir alignment tabs 307 are shown having mated with the reservoir tab openings 406, and the locking tab 402 is deflected from the locking tab notch 408.


The plunger rod support 412 is shown along part of the plunger rod 310. The plunger rod support 412 contributes to maintaining the integrity of the relationship of the plunger rod 310 and the drive screw 314 such that the drive screw 314 of the plunger rod 310 maintain connection and the plunger rod 310 is not deflected.


Referring now also to FIG. 4D, the locking disc 400 is shown after rotation and reservoir loading is complete, i.e., in the loaded position. The plunger rod 310 is engaged to the drive screw 314. The second locking tab notch 410 is now engaged with the locking tab 402. Thus, the locking disc 400 is locked from continuing further rotation.


Referring also to FIGS. 4M-4N, a sequential illustration of the loading of the reservoir and engagement of the drive screw 314 to the plunger rod 310 is shown. As the plunger rod 310 fits through the clearance hole, the reservoir 306 disengages the locking tab 402 from the first locking tab notch 408. The reservoir alignment tab 307 (the other tab is obscured) mates with the reservoir tab opening 406. As shown in FIG. 4N, the plunger rod 310 is engaged with the drive screw 314. The locking tab 402 is being engaged with the second locking tab notch 410.


In the exemplary embodiment, loading the reservoir into the pump barrel and engaging the plunger rod to the drive screw includes two steps. First, aligning the locking hub alignment tabs with the hub and battery end cap and dropping the reservoir and locking hub assembly into the pump barrel (the plunger rod being inherently aligned with the clearance hole of the locking disc). Second, rotating the locking hub until rotation stops, i.e., the locking tab has engaged with the second locking tab notch. In the exemplary embodiment, and referring again to FIG. 4F, the hub and battery end cap 404 may include a loading alignment feature 420, and the reservoir may also include a marking or other alignment feature, aligning the marking on the reservoir with the loading alignment feature 420 assures the reservoir assembly is aligned for dropping the reservoir and locking hub assembly into the pump barrel and completion of the loading steps. In the exemplary embodiment, the loading alignment feature 420 is a notch molded into the plastic of the hub and battery end cap 404. However, in other embodiments, the loading alignment feature 420 may be a bump, raised dimple, notch of a different shape, or a painted marking, i.e., any feature that may be utilized by the user in loading the reservoir and locking hub assembly. The complementary feature on the reservoir may be any marking, for example, a painted marking with an indication of the direction of loading, e.g., “pump→”, “→”, or, in some embodiments, a simple vertical line of any length, a dot or other symbol that may be utilized by the user in loading the reservoir and locking hub assembly. In these embodiments, these alignment features further simplify the method of loading the reservoir and locking hub assembly into the pump assembly.


Referring again to FIG. 1C, the hub and battery end cap is shown populated with a locking hub 318 and a battery cap 116. In this embodiment of the pump assembly, the locking hub 318 sits flush with the pump assembly. Thus, when loading of the reservoir, once the locking hub has been rotated such that the locking hub is flush with the pump assembly body, loading is complete. Thus, reservoir loading is advantageously simplified in that the alignment features assure that the reservoir, when dropped into the pump barrel, the plunger rod and reservoir alignment tabs are aligned with the locking disc and, the rotation of the locking hub until the locking hub is flush with the pump assembly assures that reservoir loaded and the plunger rod is threaded to the drive screw.


Referring now to FIG. 5A, a view of the exemplary embodiment of the plunger rod 310 and plunger 308 is shown. The plunger 308 includes two O-rings 366. In some embodiments, the O-rings 366 and plunger 308 may be one piece and may be made from a material that provides ample sealing properties.


Referring now to FIGS. 5B-5C, another embodiment of the reservoir assembly 502, together with the locking hub 318, is shown. In this embodiment, the plunger seal 506 is designed to function as a double o-ring plunger, however, is molded as a single part. The plunger seal 506 fits over the plunger 504, which, in some embodiments, is made from plastic, and in some embodiments, is made from the same plastic as the plunger rod 310. The plunger cap 508 fits over the plunger seal 506. The reservoir 306 and reservoir bottom 305, in some embodiments, may be as described in the above described embodiments. Referring also to FIGS. 5D-5E, the plunger seal 506 is shown. As shown, the top ring-like feature of the seal is thicker than the bottom ring-like feature. However, in other embodiments, the bottom ring-like feature may be the thicker ring-like feature, and in some embodiments, both ring-like features may be the same thickness. Referring also to FIG. 5F, a cross section of the assembled plunger of the embodiments shown in FIGS. 5B-5E is shown. The plunger seal 506 fits around the plunger 504 and the plunger cap 508 snaps over the plunger seal 506. Referring now to FIGS. 5G-5P, various embodiments of the plunger seal 506 described above are shown.


As described above, the plunger rod is connected to the plunger, and is part of the reservoir assembly. The reservoir, as discussed above, functions to hold a volume of liquid for delivery by the infusion pump assembly. Filling the reservoir with a liquid, e.g. insulin, prior to leading the reservoir assembly into the pump assembly is preferred. Thus, in practice, a user loads the reservoir with insulin (or another liquid as discussed herein), attached the locking hub (in the exemplary embodiments, although, as discussed above, in some embodiments, the locking hub may be integrated with the reservoir) and loads the reservoir assembly with locking hub into the pump assembly.


In the exemplary embodiments, the plunger rod is designed, as shown herein, to engage with the drive screw and be driven by the drive screw. Thus, it may be difficult for some users to load the reservoir from a vial of insulin as the plunger rod is designed for drive screw engagement, not necessarily for human finger engagement. Thus, in some embodiments, a filling aid may be desirable.


Referring now to FIGS. 6A-6D, an exemplary embodiment of the reservoir filling aid 600 is shown. In this embodiment, the filling aid 600 is designed to engage with the threaded portion of the plunger rod 310 as described above, i.e., the filling aid includes a mating thread portion 602. The filling aid 600 slides onto the plunger rod 310, and as the mating thread portion 602 engages with the plunger rod threads 320, the filling aid 600 is securely fastened to the plunger rod 310. The handle 604, in the exemplary embodiment, is shaped to accommodate user's fingers and serves as pull. In practice, the user loads the reservoir by pulling back on the handle 604. Once the user has filled the reservoir, the filling aid 600 may be easily removed from the plunger rod by moving the filling aid 600 such that the threads disengage with the plunger rod threads. The filling aid 600, in the exemplary embodiment, is designed to have tolerances such that the plunger rod threads are not damaged during the filling process. In various embodiments, the filling aid may be different shapes, for example, larger, or the handle may be shaped differently, to accommodate those users with arthritis or other ailments that may prevent them from easily utilizing the filling aid as shown. An alternate embodiment is shown in FIGS. 6E-6F. In the exemplary embodiment, the filling aid 600 is made from plastic, however, in other embodiments, the filling aid 600 may be made from any materials, including but not limited to, stainless steel or aluminum.


Referring now to FIGS. 6G-6I, in some embodiments, the filling aid 606 may be connected to the plunger rod 301 by way of a plastic piece 608. In these embodiments, the plastic piece 608 is manufactured such that the filling aid 606 may be removed from the plunger rod 310 by bending the plastic piece, i.e., the filling aid 606 snaps off the plunger rod 310. Although the filling aid 606 in these FIGS. is shown having a particular shape, in other embodiments, the shape may be any of the other filling aid embodiments shown herein, or others that may be designed as discussed above. In some of the “snap-off” embodiments of the filling aid, the filling aid 606 and plastic piece 608 may be molded with the plunger rod 310.


Referring now to FIGS. 7A-7B, the pump assembly 100 is shown. Referring to FIGS. 1A-1B, the pump assembly 100 includes a housing, which, in the exemplary embodiment, is made from an aluminum portion, plastic portions, and rubber portions. However, in various embodiments, the materials and the portions vary, and include but are not limited to, rubber, aluminum, plastic, stainless steel, and any other suitable materials. In the exemplary embodiment, the back of the housing, shown in FIG. 1B, includes a contour.


Referring now to FIGS. 7A-7B, portions of the housing has been removed. The switch assemblies/input devices and the user interface screen have been removed. The pump barrel 312 is shown with a reservoir 306 inside. The battery compartment 706 is shown in FIG. 7A, and the pump assembly 100 is shown without the battery compartment 706 is FIG. 7B. Various features of the battery compartment 706 are described herein. The gear box 364 is shown assembled with the pump housing 360 in the pump assembly 100. The hub and battery end cap 404 is shown assembled on the pump assembly 100


Referring now to FIGS. 7C-7D, a reservoir assembly 302 is shown engaged to the drive screw 314 and in contact with the strain gauge 708. As described in more detail herein, the strain gauge 708 is in contact with the drive screw 314. The pressure measurements of the strain gauge 708 are taken by an electrical contact 710. The strain gauge 708 measures the pressure exerted by the drive screw 314. Although the methods for sensing an occlusion are described in more detail herein, where the drive screw 314 is unable to drive the plunger rod 310 further into the reservoir, the drive screw 314 will exert pressure onto the strain gauge 708.


Referring now to FIG. 7E, an embodiment of an optical sensor is shown. The optical sensor, as described above and in more detail in U.S. Patent Application Publication US 2004/0135078 A1, published on Jul. 15, 2004 and entitled Optical Displacement Sensor for Infusion Devices, as used in some embodiments of the infusion pump apparatus, is a sensor used to determine whether the plunger rod 310 has moved and/or advanced and additionally, may also determine whether the plunger rod 310 has moved and/or advanced the intended distance. Thus, in the infusion pump system and apparatus described herein, the pump apparatus, using the occlusion detection methods and devices, can determine if the drive screw is unable to advance, and also, can determine if the plunger rod has moved and the distance in which it has moved.


Referring now to FIGS. 8A-8D, alternate embodiments of the reservoir assembly are shown. Although the embodiments discussed and described above may be used in a pumping assembly, and in some embodiments, are used in the pumping assemblies shown and described herein, in other embodiments, the pumping assembly shape and size may vary from the ones shown herein. For example, the pump assembly may be round or smaller in shape. Therefore, it may be beneficial for the reservoir assembly to accommodate the smaller or rounded shape without having to sacrifice total volume. Exemplary embodiments of these alternate embodiment reservoir assemblies are shown in FIGS. 8A-8C. However, it should be understood these are by example only. Depending on the size and shape of the pump assembly, the alternate embodiment reservoir assembly may be larger, smaller, or include a larger or smaller angle.


Referring now to FIG. 8A, a curved reservoir assembly 800 is shown. In the various embodiments, the angle indicated may have a value of greater than or less than 180 degrees. In one exemplary embodiment, the reservoir assembly 800 may have an angle of 150 degrees. In some embodiments, the reservoir assembly 800 may form a helical shape. In other embodiments, the reservoir assembly 800 may be any shape desired, including having one or more portions rounded or curved, and/or one or more portions straight or approaching straight.


Referring now to FIGS. 8B-8D, another embodiment of the alternate embodiment reservoir assembly is shown. In this embodiment, the reservoir 802 and plunger 804 assembly is shown as having a round or approaching round shape. The reservoir 802, in some embodiments, and as shown in FIGS. 8B-8D, may be a channel in a housing 806. The reservoir 802 may be cylindrical, and the ends 808, 810 of the plunger 804 may be circular, however, the plunger 804 may be flat 804 as shown. In various embodiments, the plunger 804 may be advanced by applying pressure to the end 808 of the plunger 804 by a mechanical feature (not shown), which, in some embodiments, may be located in the center 812 of the housing 806, or in other embodiments, elsewhere in the pump assembly within engageable proximity to the plunger 804. In some embodiments, the reservoir 802 may be filled with liquid using inlet 814.


As discussed above, enclosure assembly 102 may include infusion port assembly 112 to which cannula assembly 114 may be releasably coupled. A portion of infusion port assembly 112 and a portion of cannula assembly 114 may form a medium connector assembly for releasably coupling infusion port assembly 112 to cannula assembly 114 and effectuating the delivery of infusible fluid 200 to user 202.


Referring to FIG. 9A, there is shown one exemplary embodiment of a medium connector assembly 900 for connecting medium carrying components (not shown) and allowing the flow of medium therebetween. Examples of medium carrying components may include, but are not limited to, a delivery catheter and an insulin delivery pump, a fluid supply (such as an intravenous fluid supply bag, a dialysate supply, etc.) and a pump supply catheter, or the like. Connector assembly 900 may include medium connector 902 associated with a first medium carrying component (not shown) and mating connector 904 associated with a second medium carrying component.


Medium connector 902 may include passage 906 to allow for the flow of medium. The medium flowing between the medium carrying components, e.g., via passage 906, may include liquids (e.g., insulin, dialysate, saline solution, or the like), gases (e.g., air, oxygen, nitrogen, or the like), suspensions, or the like. Further, medium connector 902 may include multi-portion engagement surface 908, generally, positioned about passage 906. Multi-portion engagement surface 908 may include first surface portion 910, and second surface portion 912.


As will be discussed below in greater detail, first surface portion 910 of multi-portion engagement surface 908 may be configured to provide an interference fit with corresponding sealing surface 914 of mating connector 904. Further, second surface portion 912 of multi-portion engagement surface 908 may be configured to provide a clearance fit with corresponding sealing surface 914 of mating connector 904. The ratio of first surface portion 910 and second surface portion 912 may be selected to regulate an engagement for between medium connector 902 and mating connector 904.


For example, corresponding sealing surface 914 of mating connector 904 may include a tapered surface, e.g., which may include a 6% taper (e.g., approximately 3.4 degree included taper) of a standard Luer taper connector (e.g., as defined by the ISO 594 standard). Of course, corresponding sealing surface 914 may include tapers other than a 6% Luer taper. Multi-portion engagement surface 908 may similarly include a tapered surface, in which first surface portion 910 may have a first taper angle, and second surface portion 912 may have a second taper angle that is less than the first taper angle. In one particular embodiment, the second taper angle may approach zero, such that second surface portion 912 may be generally cylindrical (e.g., may include a slight taper, such as a draft angle to facilitate manufacture). Of course, second surface portion 912 may include other, non-cylindrical, taper angles.


Continuing with the above-stated example, first surface portion 910 of multi-portion engagement surface 908 may include a first taper angle corresponding to the angle of corresponding sealing surface 914 of mating connector 904 (e.g., a 6% taper). As shown in FIG. 9B, the corresponding taper of first surface portion 910 may provide an interference fit with corresponding sealing surface 914 of mating connector 904. As also shown, the second taper angle of second surface portion 912 may provide a clearance fit with corresponding sealing surface 914 of mating connector 904, e.g., which may result in at least partial clearance 916 between second surface portion 912 and corresponding sealing surface 914.


The contact surface area of medium connector 902 and mating connector 904 may remain generally constant once first surface portion 910 has engaged corresponding sealing surface 914. For example, as first surface portion 910 may be configured to provide an interference fit with corresponding sealing surface 914, while second surface portion 912 of multi-portion engagement surface 908 may be configured to provide a clearance fit with corresponding sealing surface 914, only first surface portion 910 may engage corresponding sealing surface 914.


Once first surface portion 910 engages corresponding sealing surface 914, further insertion of medium connector 902 relative to mating connector 904 may be attributable to the elastic and/or plastic deformation force of medium connector 902 in the region of first surface portion 910 and/or of mating connector 904 in the region of contact between corresponding sealing surface 914 and first surface portion 910 (e.g., as first surface portion 910 is forced into the progressively smaller opening provided by corresponding sealing surface 914), and the frictional interaction between first surface portion 910 and corresponding sealing surface 914 of mating connector 904.


As such, the ratio of first surface portion 910 and second surface portion 912 may be selected to regulate an engagement force between medium connector 902 and mating connector 904. As discussed above, second surface portion 912 may be configured to provide a clearance fit with corresponding sealing surface 914, and as such may not contribute to the engagement force (e.g., the insertion force per increment of axial insertion) between medium connector 902 and mating connector 904. Therefore, the ratio of first surface portion 910 to second surface portion 912 may be increased to increase the engagement force between medium connector 902 and mating connector 904. Conversely, the ratio of first surface portion 910 to second surface portion 912 may be decreased to decrease the engagement force between medium connector 902 and mating connector 904.


The ability to regulate the engagement force between medium connector 902 and mating connector 904 (e.g., based upon the ratio of first surface portion 910 and second surface portion 912) may allow the use of features associated with medium connector 902 (and/or the first associated medium carrying component) and/or mating connector 904 (and/or the second associated medium carrying component) which may require a minimum insertion depth to be achieved within a selected range of insertion forces. For example, medium connector 902 may include one or more retention features, e.g., which may facilitate a positive engagement and/or relative position between medium connector 902 and mating connector 904. As shown in FIGS. 9A-9B, the one or more retention features may include one or more snap-fit features (e.g., cooperating snap-fit features 918, 920A, respectively associated with medium connector 902 and mating connector 904). As shown, one or more of cooperating snap-fit features 918, 920A may be disposed on a cantilever feature (e.g., cantilever arm 922), e.g., which may facilitate engagement/dis-engagement of cooperating snap-fit features 918, 920A. Snap-fit features 918, 920A may require a minimum insertion depth to provide engagement therebetween. As described above, the ratio of first surface portion 910 and second surface portion 912 may be selected to regulate the engagement force between medium connector 902 and mating connector 904 associated with the insertion depth necessary to provide engagement between snap-fit features 918, 920A. While regulating the engagement force between the medium connector and the mating connector has been described in connection with the use of retention features, this is not intended as a limitation of the present disclosure, as the ability to regulate the engagement force between the medium connector and the mating connector may equally be used for other purposes.


Referring also to FIGS. 9C and 9D, the medium connector assembly may include medium connector 902 associated with a first medium carrying component (not shown) and mating connector 904 associated with a second medium carrying component. As shown, one or more of the cooperating snap-fit features (e.g., cooperating snap-fit features 918, 920B) may be provided as a feature associated with one of the mating surfaces of the medium connector assembly (e.g., snap-fit feature 920B may be formed on member 924 defining corresponding sealing surface 914). Based upon, at least in part, the illustrated exemplary embodiments of FIGS. 9A-9B and 9C-9D, various additional/alternative arrangements may be readily understood, and are contemplated by the present disclosure.


In addition/as an alternative to the second surface portion including a second taper angle, the second surface portion may include one or more recesses. For example, and referring also to FIG. 9E, the second surface portion may include one or more recesses including one or more longitudinal slots (e.g., longitudinal slot 950), e.g., which may be formed in first surface portion 910. Longitudinal slot 950 may be configured to provide a clearance fit with cooperating sealing surface 114 of mating connector 904. For example, longitudinal slot 950 may provide a second surface portion which may not engage cooperating sealing surface 914 when first surface portion 910 is fully engaged with cooperating sealing surface 914 of mating connector 904. The ratio of first surface portion 910 and the longitudinal slots (e.g., longitudinal slot 950) may be selected to regulate the engagement force between medium connector 902 and mating connector 904, e.g., in as much as longitudinal slot 950 may not provide a frictional engagement force with cooperating sealing surface 914 of mating connector 904.


Referring also to FIG. 9F, additionally/alternatively the second surface portion may include one or more recesses that may include one or more radial slots (e.g., radial slot 952). Similar to the above-described longitudinal slots (e.g., longitudinal slot 950), radial slot 952 may be configured to provide a clearance fit with corresponding sealing surface 914 of mating connector 904. As such, the ratio of first surface portion 910 and the radial slots (e.g., radial slot 952) may be selected to regulate the engagement force between medium connector 902 and mating connector 904. For example, radial slot 952 may not provide a frictional engagement force with cooperating sealing surface 914 of mating connector 904.


In addition to the specifically described and depicted recesses in the form of longitudinal slots and radial slots, the one or more recesses may include various additional and/or alternative configurations (e.g., dimples, etc.), which may be configured to provide a clearance fit with the cooperating sealing surface of the mating connector. As such, the ratio of the first surface portion and the second surface portion (including one or more recesses) may be selected to regulate an engagement force between the medium connector and the mating connector. Further, it will be appreciated that the number, arrangement, and character of the one or more recesses may vary according to design criteria and preference.


While the above-described embodiments have been depicted having a multi-portion engagement surface configured as a male medium connector portion, referring also to FIGS. 9G-9H, medium connector 902 may additionally/alternatively be configured as a female connector portion. For example, medium connector 902 may include a female connector portion having a multi-portion engagement surface including first surface portion 910 and second surface portion 912. As shown in FIG. 9G, the multi-portion engagement surface may include a tapered surface, in which first surface portion 910 may have a first taper angle configured to provide an interference fit with cooperating sealing surface 914 of male mating connector 904. Further, second surface portion 912 may have a second taper angle that is greater than the first taper angle. As such, second surface portion 912 may be configured to provide a clearance fit with cooperating sealing surface 914 of male mating connector 904.


Further, the second surface portion may include one or more recesses. For example, and referring also to FIGS. 9H-9I, the one or more recesses may include one or more longitudinal slots (e.g., longitudinal slot 950A, 950B). Similar to previously described embodiments, first surface portion 910 may be configured to provide an interference fit with cooperating sealing surface 914 of male mating connector 904. Further, the second surface portion, including longitudinal slot 950A, 950B, may be configured to provide a clearance fit with cooperating sealing surface 914 of male mating connector 904. Medium connector 902 may include sealing region 954, which may not include longitudinal slots, e.g., to thereby facilitate achieving a seal between first surface portion 910 and cooperating sealing surface 914 of mating connector 904.


Referring also to FIG. 9J, the second surface portion may include one or more recesses, in which the one or more recesses may include one or more radial slots (e.g., radial slot 952). Radial slot 952 may be configured to provide a clearance fit with cooperating sealing surface 914 of male mating connector 904.


In addition to the specifically described and depicted recesses in the form of longitudinal slots and radial slots, the one or more recesses may include various additional and/or alternative configurations (e.g., dimples, etc.), which may be configured to provide a clearance fit with the cooperating sealing surface of the mating connector. As such, the ratio of the first surface portion and the second surface portion (including one or more recesses) may be selected to regulate an engagement force between the medium connector and the mating connector. Further, it will be appreciated that the number, arrangement, and character of the one or more recesses may vary according to design criteria and preference.


As discussed above, infusion pump assembly 100 may include a removable cover assembly 116 configured to allow access to power supply cavity 118 (shown in phantom on FIG. 2).


Referring also to FIGS. 10A-10C, power supply cavity 118 (which may be formed by a combination of removable cover assembly 116 and a portion of enclosure assembly 102) may be configured to releasably receive primary power supply 220. Additionally, power supply cavity 118 may be configured to prevent primary power supply 220 from being reverse-polarity electrically coupled to processing logic 204. For example, power supply cavity 118 may be configured to prevent positive terminal 1000 of primary power supply 220 from being electrically coupled to negative terminal 1002 of power supply cavity 118 and/or negative terminal 1004 of primary power supply 220 from being electrically coupled to positive terminal 1006 of power supply cavity 118).


Configuring power supply cavity 118 to prevent primary power supply 220 from being reverse-polarity electrically coupled to processing logic 204 may provide various benefits. For example, the configuration may prevent the loss of power from primary power supply 220 (e.g., discharge of the battery) where the primary power supply assembly 220 has been inserted incorrectly. In addition to functioning to not waste power, this configuration may also be a safety feature to infusion pump assembly 100. Infusion pump assembly 100 may rely on power for functionality. A user may rely on infusion pump assembly 100 to provide life-sustaining therapy, for example, by delivering insulin. Thus, preventing primary power supply 220 from being reverse-polarity electrically coupled to processing logic 204 (e.g., as a result of user 202 having mistakenly inserted primary power supply 220 incorrectly), preventing primary power supply 220 from being reverse-polarity electrically coupled to processing logic 204 may allow infusion pump assembly 100 to function for a longer time than if the incorrectly installed primary power supply 220 had been able to be reverse-polarity electrically coupled to processing logic 204.


Removable cover assembly 116 may be configured to allow access to power supply cavity 118 and effectuate the installation/replacement/removal of primary power supply 220. As discussed above, an example of primary power supply 220 may include but is not limited to a battery. In some embodiments, the battery may include, but is not limited to, an A, AA, AAA, or AAAA battery, and the battery may be a lithium battery or alkaline battery. The battery may, in some embodiments, be a rechargeable battery.


Removable cover assembly 116 may be configured to rotatably engage enclosure assembly 102 in the direction of arrow 1008. For example, removable cover assembly 116 may include first twist lock assembly 1010 (e.g., a protruding tab). Enclosure assembly 102 may include a second twist lock assembly 1012 (e.g., a slot) configured to releasably engage first twist lock assembly and effectuate the releasable engagement of the removable cover assembly and the enclosure assembly.


While removable cover assembly 116 and enclosure assembly 102 is described above as including first twist lock assembly 1010 and second twist lock assembly 1012, this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as other configurations are possible and are considered to be within the scope of this disclosure. For example, one or more thread assemblies (not shown) may be utilized to effectuate the above-described rotatable engagement.


Further, while removable cover assembly 116 is described above as being configured to rotatably engage enclosure assembly 102, this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as other configurations are possible. For example, removable cover assembly 116 may be configured to slidably engage enclosure assembly 102 (in the direction of arrow 1014) using a slide assembly (not shown). Alternatively, removable cover assembly 116 may be configured to be pressed into enclosure assembly 102 in the direction of arrow 1016.


Removable cover assembly 116 may include sealing assembly 1018 (e.g., an o-ring assembly) that is configured to releasably engage at least a portion of enclosure assembly 102 to form an essentially water-tight seal between removable cover assembly 116 and enclosure assembly 102.


In an embodiment in which sealing assembly 1018 includes an o-ring assembly included within removable cover assembly 116, the o-ring assembly may be sized to effectuate a watertight (or essentially watertight) seal with a corresponding surface of enclosure assembly 102.


Alternatively, in an embodiment in which sealing assembly 1018 includes an o-ring assembly included within enclosure assembly 102, the o-ring assembly may be sized to effectuate a watertight (or essentially watertight) seal with a corresponding surface of removable cover assembly 116.


Removable cover assembly 116 may include conductor assembly 1020 for electrically coupling positive terminal 1006 of removable cover assembly 116 with interior wall 120 (FIG. 1D) of power supply cavity 118. For example, conductor assembly 1020 may include a plurality of tabs (e.g., tabs 1022, 1024) that may be electrically coupled to positive terminal 1006 of removable cover assembly 116. Tabs 1022, 1024 may be configured so that when removable cover assembly 116 releasably engages enclosure assembly 102, tabs 1022, 1024 may make electrical contact with interior wall 120 of power supply cavity 118. Interior wall 120 of power supply cavity 118 may then be electrically coupled to the various components within infusion pump assembly 100 that require electrical power, examples of which may include but are not limited to processing logic 204,


As discussed above, the combination of removable cover assembly 116 and a portion of enclosure assembly 102 may be configured to prevent primary power supply 220 from being reverse-polarity electrically coupled to e.g., processing logic 204. Referring also to FIG. 11, one or more of negative terminal 1002 and positive terminal 1006 may be configured so that the above-described reverse polarity situation cannot occur. For example, removable cover assembly 116 may include insulator assembly 1026 that includes recess 1028 that is sized to receive positive terminal 1000 of primary power supply 220 and enable electrical contact with positive terminal 1006 of removable cover assembly 116. Insulator assembly 1026 may be constructed of an insulating material, such as PVC plastic or bakelite. Further, recess 1028 may be sized so that negative terminal 1004 of primary power supply 220 cannot make electrical contact with positive terminal 1006 (and may only make contact with insulator 1026), thus preventing primary power supply 220 from being electrically coupled to processing logic 204 in a reverse-polarity configuration.


Referring also to FIGS. 12A-12D, there is shown an alternative-embodiment removable cover assembly 116′. Removable cover assembly 116′ may include sealing assembly 1018′ (e.g., an o-ring assembly) that is configured to releasably engage at least a portion of enclosure assembly 102 to form an essentially water-tight seal between removable cover assembly 116′ and enclosure assembly 102.


Removable cover assembly 116′ may include conductor assembly 1020′ for electrically coupling positive terminal 1006′ of removable cover assembly 116′ with interior wall 120 (FIG. 1D) of power supply cavity 118 (FIG. 1D). For example, conductor assembly 1020′ may include a plurality of tabs (e.g., tabs 1022′, 1024′) that may be electrically coupled to positive terminal 1006′ of removable cover assembly 116′. Tabs 1022′, 1024′ may be configured so that when removable cover assembly 116′ releasably engages enclosure assembly 102, tabs 1022′, 1024′ may make electrical contact with interior wall 120 of power supply cavity 118. Interior wall 120 of power supply cavity 118 may then be electrically coupled to the various components within infusion pump assembly 100 that require electrical power, examples of which may include but are not limited to processing logic 204.


As discussed above, the combination of removable cover assembly 116′ and a portion of enclosure assembly 102 may be configured to prevent primary power supply 220 from being reverse-polarity electrically coupled to processing logic 204. For example, removable cover assembly 116′ may include insulator assembly 1026′ that defines recess 1028′ that is sized to receive positive terminal 1000 (FIG. 11) of primary power supply 220 (FIG. 11) and enable electrical contact with positive terminal 1006′ of removable cover assembly 116′. Insulator assembly 1026′, which may be constructed of an insulating material (e.g., PVC plastic or bakelite), may be molded into and/or a portion of removable cover assembly 116′. Further, recess 1028′ may be sized so that negative terminal 1004 (FIG. 11) of primary power supply 220 cannot make electrical contact with positive terminal 1006′ (and may only make electrical contact with insulator 1026′), thus preventing primary power supply 220 from being electrically coupled to processing logic 204 in a reverse-polarity configuration.


While power supply cavity 118 is described above as having positive terminal 1006 positioned proximate removable cover assembly 116, this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as other configurations are possible and are considered to be within the scope of this disclosure. For example, negative terminal 1002 may be positioned proximate removable cover assembly 116.


Referring now also to FIGS. 12E-12P, another embodiment of the removable cover assembly is shown. Removable cover assembly 12200 may include conductor assembly 12202 for electrically coupling positive terminal 12204 of removable cover assembly 12200 with interior wall 120 (FIG. 1D) of power supply cavity 118 (FIG. 1D). For example, conductor assembly 12202 may include a plurality of tabs (e.g., tabs 12206, 12208) that may be electrically coupled to positive terminal 12204 of removable cover assembly 12200. Tabs 12206, 12208 may be configured so that when removable cover assembly 12200 releasably engages enclosure assembly 102 (FIG. 1D), tabs 12206, 12208 may make electrical contact with interior wall 114 of power supply cavity 118. Interior wall 114 of power supply cavity 118 may then be electrically coupled to the various components within infusion pump assembly 100 that require electrical power, examples of which may include but are not limited to processing logic 204.


As discussed above, the combination of removable cover assembly 12200 and a portion of enclosure assembly 102 may be configured to prevent removable power supply assembly 220 from being reverse-polarity electrically coupled to processing logic 204. For example, removable cover assembly 12200 may include power supply interface assembly 12210 that defines an aperture 12212 that is sized to receive positive terminal 150 (FIG. 11) of removable power supply assembly 36 and enable electrical contact with positive terminal 12204 of removable cover assembly 12200 via a spring assembly 12214. In the exemplary embodiment, power supply interface assembly 12210 is made from a non-conductive material and spring assembly 12214 is made from a conductive material. Power supply interface assembly 12210, which may be constructed of an insulating material (which in some embodiments may include, but is not limited to plastic, which may include, but is not limited to, PVC plastic or bakelite. Further, aperture 12212 may be sized such that positive terminal 1000 (FIG. 11) of removable power supply assembly 220 is received and aligned by the aperture 12212 of the power supply interface assembly 210. Once positive terminal 1000 (FIG. 11) of removable power supply assembly 220 is received and aligned by the aperture 12212 of the power supply interface assembly 12210, the spring assembly 12214 provides the electrical coupling between the positive terminal 1000 of the removable power assembly 220 and the positive terminal 12204 of the removable cover assembly 12200.


In this embodiment of the removable cover assembly 12200, the electric coupling between the positive terminal 1000 of the removable power assembly 220 and the positive terminal 12204 of the removable cover assembly 12200 may be maintained via spring assembly 12214. This embodiment may be desirable to prevent the de-coupling of the positive terminal 1000 of the removable power assembly 220 and the positive terminal 12204 of the removable cover assembly 12200 during such conditions that may produce a de-coupling force.


While power supply cavity 118 is described above as having positive terminal 1006 positioned proximate removable cover assembly 12200, this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as other configurations are possible and are considered to be within the scope of this disclosure. For example, negative terminal 1002 may be positioned proximate removable cover assembly 116.


Removable cover assembly 12200 may include sealing assembly 12216 (e.g., an o-ring assembly) that is configured to releasably engage at least a portion of enclosure assembly 102 to form an essentially water-tight seal between removable cover assembly 12200 and enclosure assembly 102. However, in other embodiments, various other or additional means for sealing the power supply cavity 118 may be used.


In an embodiment in which sealing assembly 12216 includes an o-ring assembly included within removable cover assembly 12200, the o-ring assembly may be sized to effectuate a watertight (or essentially watertight) seal with a corresponding surface of enclosure assembly 102.


Alternatively, in an embodiment in which sealing assembly 12216 includes an o-ring assembly included within enclosure assembly 102, the o-ring assembly may be sized to effectuate a watertight (or essentially watertight) seal with a corresponding surface of removable cover assembly 12200.


Referring now to FIGS. 12K-12P, another embodiment of the removable cover assembly is shown. Removable cover assembly 12200′ may include conductor assembly 12202′ for electrically coupling positive terminal 12204′ of removable cover assembly 12200′ with interior wall 114 (FIG. 1D) of power supply cavity 118 (FIG. 1D). For example, conductor assembly 12202′ may include a plurality of tabs (e.g., tabs 12206′, 12208′) that may be electrically coupled to positive terminal 12204′ of removable cover assembly 12200′. Tabs 12206′, 12208′ may be configured so that when removable cover assembly 12200′ releasably engages enclosure assembly 102 (FIG. 1D), tabs 12206′, 12208′ may make electrical contact with interior wall 114 of power supply cavity 118. Interior wall 114 of power supply cavity 118 may then be electrically coupled to the various components within infusion pump assembly 100 that require electrical power, examples of which may include but are not limited to processing logic 204.


As discussed above, the combination of removable cover assembly 12200′ and a portion of enclosure assembly 102 may be configured to prevent removable power supply assembly 220 from being reverse-polarity electrically coupled to processing logic 204. For example, removable cover assembly 200′ may include power supply interface assembly 12210′ that defines an aperture 12212′ that is sized to receive positive terminal 1000 (FIG. 11) of removable power supply assembly 220 and enable electrical contact with positive terminal 12204′ of removable cover assembly 12200′ via a spring assembly 12214′. In the exemplary embodiment, power supply interface assembly 12210′ is made from a non-conductive material and spring assembly 12214′ is made from a conductive material. Power supply interface assembly 12210′, which may be constructed of an insulating material (which in some embodiments may include, but is not limited to plastic, which may include, but is not limited to, PVC plastic or Bakelite). Further, aperture 12212′ may be sized such that positive terminal 1000 (FIG. 11) of removable power supply assembly 220 is received and aligned by the aperture 12212′ of the power supply interface assembly 12210′. Once positive terminal 1000 (FIG. 11) of removable power supply assembly 220 is received and aligned by the aperture 12212′ of the power supply interface assembly 12210′, the spring assembly 12214′ provides the electrical coupling between the negative terminal 1004 of the removable power assembly 220 and the positive terminal 12204′ of the removable cover assembly 12200′.


In this embodiment of the removable cover assembly 12200′, the electric coupling between the negative terminal 1004 of the removable power assembly 220 and the positive terminal 12204′ of the removable cover assembly 12200′ may be maintained via spring assembly 12214′. This embodiment may be desirable to prevent the de-coupling of the negative terminal 1004 of the removable power assembly 220 and the positive terminal 12204′ of the removable cover assembly 12200 during such conditions that may produce a de-coupling force.


While power supply cavity 118 is described above as having positive terminal 1000 positioned proximate removable cover assembly 12200′, this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as other configurations are possible and are considered to be within the scope of this disclosure. For example, negative terminal 1004 may be positioned proximate removable cover assembly 12200′.


Removable cover assembly 12200′ may include sealing assembly 12216′ (e.g., an o-ring assembly) that is configured to releasably engage at least a portion of enclosure assembly 102 to form an essentially water-tight seal between removable cover assembly 200′ and enclosure assembly 102. However, in other embodiments, various other or additional means for sealing the power supply cavity 118 may be used.


In an embodiment in which sealing assembly 12216′ includes an o-ring assembly included within removable cover assembly 12200′, the o-ring assembly may be sized to effectuate a watertight (or essentially watertight) seal with a corresponding surface of enclosure assembly 102.


Alternatively, in an embodiment in which sealing assembly 12216′ includes an o-ring assembly included within enclosure assembly 102, the o-ring assembly may be sized to effectuate a watertight (or essentially watertight) seal with a corresponding surface of removable cover assembly 110.


With respect to FIGS. 12E-12P discussed above, the power supply interface assembly 12210, 12210′ includes geometries that may be beneficial to maintaining alignment of the power supply assembly 220. With respect to the power supply interface assembly 12210 shown in FIGS. 12E-12J, the geometries vary from those seen in power supply interface assembly 12210′ shown in FIGS. 12K-12P. The two geometry embodiments shown herein are exemplary embodiment; other geometries may be used in various other embodiments.


The above described embodiments of the removable cover assembly may be used in conjunction with any device, including but not limited to an infusion pump device, for example, including but not limited to an insulin pump. In some embodiments, the removable cover assembly may be used in any of the infusion pumps described in herein. In other embodiments, the removable cover assembly, or an assembly similar to the one described herein may be used with any portable medical device or any other infusion pump, for example. It will be understood that the sizes shown are exemplary embodiments only, and that in various embodiments, the sizes may vary. Additionally, it will be understood that the geometries shown are exemplary embodiments only, and that in various embodiments, the geometries may vary.


Referring also to FIG. 13, there is shown a more-detailed diagrammatic view of processing logic 204. Processing logic 204 may include one or more circuit partitioning components 1300, 1302 configured to divide processing logic 204 into primary processing logic 1304 and backup processing logic 1306. Examples of one or more circuit partitioning components 1300, 1302 may include but are not limited to diode assembly 1300 and current limiting assembly 1302.


Diode assembly 1300 may be configured to allow primary power supply 220 to charge backup power supply 1308 included within backup processing logic 1306, while prohibiting backup power supply 1308 from providing backup electrical energy 1310 to primary processing logic 1304 in the event that some form of failure prevents primary electrical energy 1312 from providing primary processing logic 1304. An example of backup power supply 1308 may include but is not limited to a super capacitor assembly. An example of such a super capacitor assembly may include but is not limited to an electric double-layer capacitor manufactured by Elna Co. Ltd. of Yokohama, Japan.


Current limiting assembly 1302 may be configured to limit the amount of primary electrical energy 1312 available to charge backup power supply 1308. Specifically, as primary power supply 220 may be configured to charge backup power supply 1308, the amount of current available from primary power supply 220 may be limited to e.g., avoid depriving primary processing logic 1304 of a requisite portion of primary electrical energy 1312.


Primary processing logic 1304 may include primary microprocessor 1314 and voltage booster circuit 1316. An example of primary microprocessor 1314 may include but is not limited to a H8S/2000 manufactured by Renesas Technology America Inc. of San Jose, CA Voltage booster circuit 1316 may be configured to increase the voltage potential of primary electrical energy 1312 provided by primary power supply 220 to a level sufficient to power primary microprocessor 1314. An example of voltage booster circuit 1316 may include but is not limited to a LTC3421 manufactured by Linear Technology of Milpitas, CA.


Current limiting assembly 1302 may be configured to limit the amount of current available to charge backup power supply 1308 during the power-up of primary microprocessor 1314. Specifically and for illustrative purposes, current limiting assembly 1302 may be controlled by primary microprocessor 1314 and current limiting assembly 1302 may be disabled (i.e., provide no charging current to backup power supply 1308) until after primary microprocessor 1314 is fully powered up. Upon primary microprocessor 1314 being fully powered up, primary microprocessor 1314 may now enable current limiting assembly 1302, thus providing charging current to backup power supply 1308. Alternatively and upon being initially energized, current limiting assembly 1302 may be configured to prohibit the flow of charging current to backup power supply 1308 for a time sufficient to allow for the powering up of primary microprocessor 1314.


Backup processing logic 1306 may include backup power supply 1308 and safety microprocessor 1318. An example of safety microprocessor 1318 may include but is not limited to a MSP430 manufactured by Texas Instruments of Dallas, TX.


Primary power supply 220 may be configured to provide primary electrical energy 1312 to at least a portion of processing logic 204. Specifically and during normal operation of infusion pump assembly 100, primary power supply 220 may be configured to provide primary electrical energy 1312 to all of processing logic 204 (including the various components of primary processing logic 1304 and backup processing logic 1306), as well as various subsystems included within infusion pump assembly 100.


Examples of such subsystems may include but are not limited to memory system 208, input system 206, display system 104, vibration system 210, audio system 212, motor assembly 214, force sensor 216, and displacement detection device 218.


Backup power supply 1308 may be configured to provide backup electrical energy 1310 to the at least a portion of processing logic 204 in the event that primary power supply 220 fails to provide primary electrical energy 1312 to at least a portion of processing logic 204. Specifically, in the event that primary power supply 220 fails and, therefore, can no longer provide primary electrical energy 1312 to processing logic 204, backup power supply 1308 may be configured to provide backup electrical energy 1310 to backup processing logic 1306.


For illustrative purposes only, assume that infusion pump assembly 100 is operating normally and primary power supply 220 is providing primary electrical energy 1312 to processing logic 204. As discussed above, voltage booster circuit 1316 may increase the voltage potential of primary electrical energy 1312 to a level sufficient to power primary microprocessor 1314, wherein voltage booster circuit 1316 and primary microprocessor 1314 are both included within primary processing logic 1304.


Further, diode assembly 1300 may allow a portion of primary electrical energy 1312 to enter backup processing logic 1306, thus enabling the operation of safety microprocessor 1318 and the charging of backup power supply 1308. As discussed above an example of backup power supply 1308 may include but is not limited to a super capacitor. As discussed above, current limiting assembly 1302 may limit the quantity of current provided by primary power supply 220 to backup processing logic 1306, thus preventing the diversion of too large a portion of primary electrical energy 1312 from primary processing logic 1304 to backup processing logic 1306.


Accordingly, in addition to powering safety microprocessor 1318, primary power supply 220 may charge backup power supply 1308. In a preferred embodiment, backup power supply 1308 is a 0.33 farad super capacitor.


Safety microprocessor 1318 may monitor the status of primary power supply 220 by monitoring (via conductor 1320) the voltage potential present at the input of voltage booster circuit 1316. Alternatively, safety microprocessor 1318 may monitor the status of primary power supply 220 by e.g. monitoring the voltage potential present at the output of voltage booster circuit 1316. Further still, safety microprocessor 1318 and primary microprocessor 1314 may be electrically-coupled via e.g. conductor 1322 and primary microprocessor 1314 may be configured to continuously provide a “beacon” signal to safety microprocessor 1318. Conductor 1322 may include isolation circuit 1324 (e.g., one or more diodes assemblies) to electrically isolate safety microprocessor 1318 and primary microprocessor 1314. Accordingly, provided safety microprocessor 1318 continues to receive the “beacon” signal from primary microprocessor 1314, primary microprocessor 1314 is functioning and, therefore, being properly powered by primary power supply 220. In the event that safety microprocessor 1318 fails to receive the “beacon” signal from primary microprocessor 1314, an alarm sequence may be initiated.


Further still, safety microprocessor 1318 may be configured to continuously provide a “beacon” signal to primary microprocessor 1314. Accordingly, provided primary microprocessor 1314 continues to receive the “beacon” signal from safety microprocessor 1318, safety microprocessor 1318 is functioning and, therefore, being properly powered by backup power supply 1308. In the event that primary microprocessor 1314 fails to receive the “beacon” signal from safety microprocessor 1318, an alarm sequence may be initiated.


As used in this disclosure, a “beacon” signal may be considered an event that is performed by primary microprocessor 1314 (and/or safety microprocessor 1318) solely for the purpose of making the presence of primary microprocessor 1314 (and/or safety microprocessor 1318) known. Additionally/alternatively, the “beacon” signal may be considered an event that is performed by primary microprocessor 1314 (and/or safety microprocessor 1318) for the purpose of performing a task, wherein the execution of this event is monitored by safety microprocessor 1318 (and/or primary microprocessor 1314) to confirm the presence of primary microprocessor 1314 (and/or safety microprocessor 1318).


Assume for illustrative purposes that primary power supply 220 fails. For example, assume that primary power supply 220 physically fails (as opposed to simply becoming discharged). Examples of such a failure may include but are not limited to the failing of a cell (not shown) within primary power supply 220 and the failing of a conductor (e.g., one or more of conductors 1320, 1326) that electrically-couples primary power supply 220 to processing logic 204. Accordingly, in the event of such a failure, primary power supply 220 may no longer provide primary electrical energy 1312 to processing logic 204.


However, when such a failure of primary power supply 220 occurs, the voltage potential present at the output of voltage booster circuit 1316 and the voltage potential present at the input of voltage booster circuit 1316 may be reduced to zero. Since safety microprocessor 1318 may monitor (as discussed above) one or more of these voltage potentials, safety microprocessor 1318 may be knowledgeable that primary power supply 220 has failed.


Further, when such a failure of primary power supply 220 occurs, primary microprocessor 1314 will no longer be powered and, therefore, primary microprocessor 1314 will no longer produce the above-described “beacon” signals. Since safety microprocessor 1318 monitors the above-described “beacon” signals, safety microprocessor 1318 may be knowledgeable that primary power supply 220 has failed.


As discussed above, in the event of such a failure of primary power supply 220, as diode assembly 1300 is reversed-biased, backup power supply 1308 may not provide backup electrical energy 1310 to primary processing logic 1304. Accordingly, primary processing logic 1304 will no longer function.


Upon sensing the failure of primary power supply 220, safety microprocessor 1318 may initiate an alarm sequence that may result in audio system 212 being energized. Audio system 212 may be controllable by both safety microprocessor 1318 and primary microprocessor 1314. Alternatively, a separate audio system may be used for each of safety microprocessor 1318 and primary microprocessor 1314. An example of audio system 212 may include but is not limited to a Piezo electric diaphragm, an example of which may include but is not limited to a 7BB-15-6 manufactured by Murata of Kyoto, Japan.


Audio system 212 may further include an RS232 line driver circuit 1330, such as a MAX3319/MAX3221 manufactured by Maxim Integrated Products of Sunnyvale, CA One or more or primary microprocessor 1314 and safety microprocessor 1318 may be configured to provide an alarm control signal (e.g., a square wave; not shown) to RS232 line driver circuit 1330 to generate an alarm output signal (not shown) that may be provided to and may drive the above-described Piezo electric diaphragm.


The alarm sequence initiated by safety microprocessor 1318 is intended to inform user 202 of the failure of primary power supply 220 so that user 202 may take the appropriate action (e.g. seeking an alterative means to have their therapy performed and/or having infusion pump assembly 100 repaired/replaced). Backup power supply 1308 may be sized so that safety microprocessor 1318 and audio system 212 may continue to function for up to fifteen minutes or more after the failure of primary power supply 220 (i.e., depending on design specifications).


The alarm sequence initiated by safety microprocessor 1318 and/or primary microprocessor 1314 may be an “escalating” alarm sequence. For example, at first a discrete “vibrating” alarm may be initiated (via vibration system 210). In the event that this “vibrating” alarm is not acknowledged within a defined period of time (e.g., one minute), a low volume audible alarm may be initiated. In the event that this low volume alarm is not acknowledged within a defined period of time (e.g., one minute), a medium volume audible alarm may be initiated. In the event that this medium volume alarm is not acknowledged within a defined period of time (e.g., one minute), a high volume audible alarm may be initiated. The escalating alarm sequence may provide a notification to user 202, in which the notification may be discrete or less disruptive at the onset. The initially discrete or less disruptive notification may be advantageous as user 202 may experience minimal disruption. However, in the event that user 202 does not acknowledge the alarm, the escalating nature of the alarm may provide for additional layers of safety to user 202. Additionally, in a case of audio system 212 error, or vibration system 210 error, the escalating alarm sequence, which may include both vibration and audio alarms, may insure that user 202 may be notified regardless of whether both systems 210, 212 are functioning.


Audio system 212, in some embodiments, may be configured to perform a self test upon power up. For example, upon infusion pump assembly 100 being initially powered up, audio system 212 may provide a “beep-type” signal to each sound generating device included within audio system 212. In the event that user 202 does not hear these “beep-type” signal(s), user 202 may take the appropriate action (e.g. seeking an alterative means to have their therapy performed and/or having infusion pump assembly 100 repaired/replaced). As discussed above, audio system 212 may be controllable by safety microprocessor 1318 and/or primary microprocessor 1314. Accordingly, when performing the above-described self test upon power up, safety microprocessor 1318 and/or primary microprocessor 1314 may control the above-described self test. This feature may provide for additional safety to user 202, as user 202 may be alerted to a system error earlier than may otherwise be the case. Thus, a method may be provided to notify the user early of system errors. Also, the system may otherwise not be aware of an error in audio system 212, thus, this feature provides for identification of a failure by user 202 that may otherwise go undetected.


During the failure of primary power supply 220, safety microprocessor 1318 may continue to monitor the voltage potential present at the output of voltage booster circuit 1316 and/or the voltage potential present at the input of voltage booster circuit 1316. Additionally, safety microprocessor 1318 may continue to monitor for the presence of the above-described “beacon” signals. Accordingly, in the event that the failure of primary power supply 220 was a temporary event (e.g. primary power supply 220 is an out-of-date battery and is being replaced with a new battery), safety microprocessor 1318 may be knowledgeable when primary power supply 220 is once again functioning properly.


Upon primary power supply 220 once again functioning properly, diode assembly 1300 and current limiting assembly 1302 may allow a portion of primary electrical energy 1312 produced by primary power supply 220 to recharge backup power supply 1308.


Additionally, safety microprocessor 1318 and primary microprocessor 1314 may each maintain a real-time clock, so that the various doses of infusible fluid may be dispensed at the appropriate time of day. As primary microprocessor 1314 was not functioning during the failure of primary power supply 220, the real-time clock maintained within primary microprocessor 1314 may no longer be accurate. Accordingly, the real-time clock maintained within safety microprocessor 1318 may be used to reset the real-time clock maintained within primary microprocessor 1314.


In order to further enhance the reliability and safety of infusion pump assembly 100, primary microprocessor 1314 and safety microprocessor 1318 may each execute applications written in different programming languages. For example, primary microprocessor 1314 may be configured to execute one or more primary applications written in a first computer language, while safety microprocessor 1318 may be configured to execute one or more safety applications written in a second computer language.


Examples of the first computer language in which the primary applications are written may include but are not limited to Ada, Basic, Cobol, C, C++, C#, Fortran, Visual Assembler, Visual Basic, Visual J++, Java, and Java Script languages. In a preferred embodiment, the first computer language in which the primary applications (executed on primary microprocessor 1314) are written is the C++ computer language.


Examples of the second computer language in which the safety applications are written may include but are not limited to Ada, Basic, Cobol, C, C++, C#, Fortran, Visual Assembler, Visual Basic, Visual J++, Java, and Java Script languages. In a preferred embodiment, the second computer language in which the safety applications (executed on safety microprocessor 1318) are written is the C computer language.


Further, assuming that primary microprocessor 1314 and safety microprocessor 1318 are different types of microprocessors and, therefore, use different compilers; the compiled code associated with the primary applications executed by primary microprocessor 1314 and the safety applications executed on safety microprocessor 1318 may be different (regardless of the whether the primary applications and the safety applications were written in the same computer language.


Examples of the one or more primary applications written in the first computer language and executable on primary microprocessor 1314 may include but are not limited to an operating system (e.g., Linux™, Unix™, Windows CE™), an executive loop and various software applications. Further, examples of the one or more safety applications written in the second computer language and executable on safety microprocessor 1318 may include but are not limited to an operating system (e.g., Linux™, Unix™, Windows CE™), an executive loop and various software applications.


Accordingly, primary processing logic 1304 and backup processing logic 1306 may each be configured as a separate stand-alone autonomous computing device. Therefore, primary microprocessor 1314 included within primary processing logic 1304 may execute a first operating system (e.g. Linux™) and safety microprocessor 1318 included within backup processing logic 1306 may execute an executive loop.


Additionally, primary microprocessor 1314 included within primary processing logic 1304 may execute one or more software applications (e.g. graphical user interface applications, scheduling applications, control applications, telemetry applications) executable within (in this example) a Linux™ operating system. Further, safety microprocessor 1318 included within backup processing logic 1306 may execute one or more software applications (e.g. graphical user interface applications, scheduling applications, control applications, telemetry applications) executable within (in this example) the executive loop.


By utilizing diverse computer languages and/or diverse operating systems, infusion pump assembly may be less susceptible to e.g. computer-language bugs, operating-system bugs, and/or computer viruses.


One or more of primary microprocessor 1314 (included within primary processing logic 1304 of processing logic 204) and safety microprocessor 1318 (included within backup processing logic 1306 of processing logic 204) may execute confirmation process 234 (FIG. 2). As will be discussed below in greater detail, confirmation process 234 may be configured to process a command received on a first microprocessor (e.g., primary microprocessor 1314) so that the command may be confirmed by a second microprocessor (e.g., safety microprocessor 1318).


The instruction sets and subroutines of confirmation process 234, which may be stored on a storage device (e.g., memory system 208) accessible by processing logic 204, may be executed by one or more processors (e.g., primary microprocessor 1314 and/or safety microprocessor 1318) and one or more memory architectures (e.g., memory system 208) included within infusion pump assembly 100. Examples of memory system 208 may include but are not limited to: a random access memory; a read-only memory; and a flash memory.


Referring also to FIG. 14, confirmation process 234 may receive 1400, on a first microprocessor executing one or more applications written in a first computer language, an initial command processable by the one or more applications written in the first computer language. For example and as discussed above, primary microprocessor 1314 (included within primary processing logic 1304) may be executing the Linux™ operating system. Assuming that user 202 wishes to have a 0.50 mL dose of infusible fluid 200 dispensed by infusion pump assembly 100, user 202 may select (via input system 206 and display system 104) the appropriate commands to have the 0.50 mL dose dispensed. Accordingly, primary microprocessor 1314 may receive 1400 a corresponding command (e.g., command 1332) to dispense 0.50 mL of infusible fluid 200.


As discussed above, safety microprocessor 1318 (included within backup processing logic 1306) may be executing the executive loop. Accordingly, command 1332 may not be provided to safety microprocessor 1318 in its native form, as safety microprocessor 1318 may not be capable of processing command 1332, due to safety microprocessor 1318 executing the executive loop and primary microprocessor 1314 executing the Linux™ operating system.


Accordingly, confirmation process 234 may convert 1402 initial command 1332 into a modified command (e.g., command 1334) that may be processable by e.g., safety microprocessor 1318 (included within backup processing logic 1306) that may be executing the executive loop. For example, confirmation process 234 may convert 1402 initial command 1332 into modified command 1334 that is transmittable via a communication protocol (not shown) that effectuates the communication of primary microprocessor 1314 and safety microprocessor 1318. Once command 1332 is converted 1402 into modified command 1334, modified command 1334 may be provided 1404 to e.g., safety microprocessor 1318 (included within backup processing logic 1306) that may be executing e.g., the executive loop.


Once received by e.g., safety microprocessor 1318 (included within backup processing logic 1306), safety microprocessor 1318 may process modified command 1334 and provide (via e.g., display system 104) a visual confirmation to user 202. Prior to processing modified command 1334, confirmation process 234 may convert modified command 1334 into a native command (not shown) processable by safety microprocessor 1318. For example, upon receiving modified command 1334, safety microprocessor 1318 may process received modified command 1334 to render (on display system 104) a visual confirmation.


Upon processing modified command 1334, confirmation process 234 may render on display system 104 a message that states e.g., “Dispense 0.50 U Dose?”. Upon reading this message, user 202 may either authorize the dispensing of the 0.50 mL dose or cancel the dispensing of the 0.50 mL dose. Accordingly, if user 202 authorizes the dispensing of the 0.50 mL dose of infusible fluid 200, the accuracy of initial command 1332 and modified command 1334 are both confirmed. However, in the event that e.g., the message rendered by confirmation process 234 is incorrect (e.g., “Dispense 1.50 U Dose?”), the conversion 1402 of initial command 1332 to modified command 132 has failed. Accordingly, primary microprocessor 1314 (and/or the applications being executed on primary microprocessor 1314) and/or safety microprocessor 1318 (and/or the applications being executed on safety microprocessor 1318) may be malfunctioning. Accordingly, user 202 may need to seek an alterative means to having their therapy performed and/or have infusion pump assembly 100 serviced.


As discussed above, infusion pump assembly 100 may be configured to deliver infusible fluid 200 to user 202. Infusible fluid 200 may be delivered to user 202 via one or more different infusion event types. For example, infusion pump assembly 100 may deliver infusible fluid 200 via may a sequential, multi-part, infusion event (that may include a plurality of discrete infusion events) and/or a one-time infusion event.


Examples of such a sequential, multi-part, infusion event may include but are not limited to a basal infusion event and an extended-bolus infusion event. As is known in the art, a basal infusion event refers to the constant flow of a small quantity of infusible fluid 200. However, as such an infusion methodology is impractical/undesirable for an infusion pump assembly, when administered by such an infusion pump assembly, a basal infusion event may refer to the repeated injection of small (e.g. 0.05 unit) quantities of infusible fluid 200 at a predefined interval (e.g. every three minutes) that is repeated. The quantity of infusible fluid 200 delivered during each interval may be identical or may vary from interval to interval. Further, the time interval between each delivery of infusible fluid 200 may be identical or may vary from interval to interval. Further, the basal infusion rates may be pre-programmed time-frames, e.g., a rate of 0.50 units per hour from 6 am-3 pm; a rate of 0.40 units per hour from 3 pm-10 pm; and a rate of 0.35 units per hour from 10 pm-6 am. However, similarly, the basal rate may be 0.025 units per hour, and may not change according to pre-programmed time-frames. The basal rates may be repeated regularly/daily until otherwise changed.


Further and as is known in the art, and extended-bolus infusion event may refer to the repeated injection of small (e.g. 0.025 unit) quantities of infusible fluid 200 at a predefined interval (e.g. every three minutes) that is repeated for a defined number of intervals (e.g., three intervals) or for a defined period of time (e.g., one hour). An extended-bolus infusion event may occur simultaneously with a basal infusion event.


In contrast, as in known in the art, a normal bolus infusion event refers to a one-time infusion of infusible fluid 200. The volume of the infusible fluid 200 delivered in a bolus infusion event may be requested, and infusion pump assembly 100 may deliver the requested volume of infusible fluid 200 for the bolus infusion event at a predetermined rate (e.g., as quickly as the infusion pump assembly can deliver). However, the infusion pump assembly may deliver a normal bolus at a slower rate where the normal bolus volume is greater than a pre-programmed threshold.


Referring also to FIGS. 15-16, assume for illustrative purposes only that user 202 configures infusion pump assembly 100 to administer a basal dose (e.g. 0.05 units) of infusible fluid 200 every three minutes. As discussed above, infusion pump assembly 100 may include input system 206 and display system 104. Accordingly, user 202 may utilize input system 206 to define a basal infusion event for infusible fluid 200 (e.g., 1.00 units per hour), which may be confirmed via display system 104. While, in this example, the basal infusion event is described as 1.00 units per hour, this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as either or both of the unit quantity and time period may be adjusted upward or downward. Infusion pump assembly 100 may then determine an infusion schedule based upon the basal infusion event defined; and may administer 100 infusible fluid 200. For example, infusion pump assembly 100 may deliver 0.05 units of infusible fluid 200 every three minutes, resulting in the delivery of the basal dose of infusible fluid 200 defined by the user (i.e., 1.00 units per hour).


Once defined and/or confirmed, fluid delivery process 236 may administer 1500 the sequential, multi-part, infusion event (e.g., 0.05 units of infusible fluid 200 every three minutes). Accordingly, while administering 1500 the sequential, multi-part, infusion event, infusion pump assembly 100: may infuse a first 0.05 unit dose 1600 of infusible fluid 200 at t=0:00 (i.e., a first discrete infusion event), may infuse a second 0.05 unit dose 1602 of infusible fluid 200 at t=3:00 (i.e., a second discrete infusion event); may infuse a third 0.05 unit dose 1604 of infusible fluid 200 at t=6:00 (i.e., a third discrete infusion event); may infuse a fourth 0.05 unit dose 1606 of infusible fluid 200 at t=9:00 (i.e., a fourth discrete infusion event); and may infuse a fifth 0.05 unit dose 1608 of infusible fluid 200 at t=12:00 (i.e., a fifth discrete infusion event). As discussed above, this pattern of infusing 0.05 unit doses of infusible fluid 200 every three minutes may be repeated indefinitely in this example, as this is an illustrative example of a basal infusion event.


Further, assume for illustrative purposes that infusible fluid 200 is insulin and sometime after the first 0.05 unit dose 1600 of infusible fluid 200 is administered 1500 by fluid delivery process 236 (but before the second 0.05 unit dose 1602 of infusible fluid 200 is administered 1500 by fluid delivery process 236), user 202 checks their blood glucose level and realizes that their blood glucose level is running a little higher than normal. Accordingly, user 202 may define an extended bolus infusion event via fluid delivery process 236. An extended bolus infusion event may refer to the continuous infusion of a defined quantity of infusible fluid 200 over a finite period of time. However, as such an infusion methodology is impractical/undesirable for an infusion pump assembly, when administered by such an infusion pump assembly, an extended bolus infusion event may refer to the infusion of additional small doses of infusible fluid 200 over a finite period of time.


Accordingly, user 202 may utilize input system 206 to define an extended bolus infusion event for infusible fluid 200 (e.g., 0.20 units over the next six minutes), which may be confirmed via display system 104. While, in this example, the extended bolus infusion event is described as 0.20 units over the next six minutes, this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as either or both of the unit quantity and total time interval may be adjusted upward or downward. Once defined and/or confirmed, fluid delivery process 236 may determine an infusion schedule based upon the extended bolus infusion event defined; and may administer 1500 infusible fluid 200. For example, infusion pump assembly 100 may deliver 0.10 units of infusible fluid 200 every three minutes for the next two interval cycles (or six minutes), resulting in the delivery of the extended bolus dose of infusible fluid 200 defined by the user (i.e., 0.20 units over the next six minutes).


Accordingly, while administering 1500 the second, sequential, multi-part, infusion event, infusion pump assembly 100 may infuse a first 0.10 unit dose 1610 of infusible fluid 200 at t=3:00 (e.g., after administering the second 0.05 unit dose 1602 of infusible fluid 200). Infusion pump assembly 100 may also infuse a second 0.10 unit dose 1612 of infusible fluid 200 at t=6:00 (e.g., after administering the third 0.05 unit dose 1604 of infusible fluid 200).


Assume for illustrative purposes only that after user 202 programs infusion pump assembly 100 to administer 1500 the first sequential, multi-part, infusion event (i.e., 0.05 units infused every three minute interval repeated continuously) and administer 1500 the second sequential, multi-part, infusion event (i.e., 0.10 units infused every three minute interval for two intervals), user 202 decides to eat a very large meal. Predicting that their blood glucose level might increase considerably, user 202 may program infusion pump assembly 100 (via input system 206 and/or display system 104) to administer 1502 a one-time infusion event. An example of such a one-time infusion event may include but is not limited to a normal bolus infusion event. As is known in the art, a normal bolus infusion event refers to a one-time infusion of infusible fluid 200.


For illustrative purposes only, assume that user 202 wishes to have infusion pump assembly 100 administer 1502 a bolus dose of thirty-six units of infusible fluid 200. Fluid delivery process 236 may monitor the various infusion events being administered by fluid delivery process 236 to determine 1504 whether a one-time infusion event is available to be administered. If 1504 a one-time infusion event is available for administration 1502, fluid delivery process 236 may delay 1506 the administration of at least a portion of the sequential, multi-part, infusion event.


Continuing with the above-stated example, once user 202 completes the programming of fluid delivery process 236 to deliver one-time infusion event 1614 (i.e., the thirty-six unit bolus dose of infusible fluid 200), upon fluid delivery process 236 determining 1504 that the one-time infusion event is available for administration 1502, fluid delivery process 236 may delay 1506 the administration 1500 of each sequential, multi-part infusion event and administer 1502 the available one-time infusion event.


Specifically and as discussed above, prior to user 202 programming fluid delivery process 236 to deliver one-time infusion event 1614, infusion delivery process 236 was administering 1500 a first sequential, multi-part, infusion event (i.e., 0.05 units infused every three minute interval repeated continuously) and administering 1500 a second sequential, multi-part, infusion event (i.e., 0.10 units infused every three minute interval for two intervals).


For illustrative purposes only, the first sequential, multi-part, infusion event may be represented within FIG. 16 as 0.05 unit dose 1600 @ t=0:00, 0.05 unit dose 1602 @ t=3:00, 0.05 unit dose 1604 @ t=6:00, 0.05 unit dose 1606 @ t=9:00, and 0.05 unit dose 1608 @ t=12:00. As the first sequential, multi-part, infusion event is described above is a basal infusion event, infusion pump assembly 100 (in conjunction with fluid delivery process 236) may continue to infuse 0.05 unit doses of infusible fluid 200 at three minute intervals indefinitely (i.e., until the procedure is cancelled by user 202).


Further and for illustrative purposes only, the second sequential, multi-part, infusion event may be represented within FIG. 16 as 0.10 unit dose 1610 @ t=3:00 and 0.10 unit dose 1612 @ t=6:00. As the second sequential, multi-part, infusion event is described above as an extended bolus infusion event, infusion pump assembly 100 (in conjunction with fluid delivery process 236) may continue to infuse 0.10 unit doses of infusible fluid 200 at three minute intervals for exactly two intervals (i.e., the number of intervals defined by user 202).


Continuing with the above-stated example, upon fluid delivery process 236 determining 1504 that the thirty-six unit normal bolus dose of infusible fluid 200 (i.e., one-time infusion event 1614) is available for administration 1502, fluid delivery process 236 may delay 1506 the administration 1500 of each sequential, multi-part infusion event and may start administering 1502 one-time infusion event 1614 that is available for administration.


Accordingly and for illustrative purposes only, assume that upon completion of the programming of infusion pump assembly 100 to deliver the thirty-six unit normal bolus does of infusible fluid 200 (i.e., the one-time infusion event), fluid delivery process begins administering 1502 one-time infusion event 1614. Being that one-time infusion event 1614 is comparatively large, it may take longer than three minutes (i.e., the time interval between individual infused doses of the sequential, multi-part, infusion events) to administer and, therefore, one or more of the individual infused doses of the sequential, multi-part, infusion events may need to be delayed.


Specifically, assume that it will take infusion pump assembly 100 greater than six minutes to infuse thirty-six units of infusible fluid 200. Accordingly, fluid delivery process 236 may delay 0.05 unit dose 1602 (i.e., scheduled to be infused @ t=3:00), 0.05 unit dose 1604 (i.e., scheduled to be infused @ t=6:00), and 0.05 unit dose 1606 (i.e., scheduled to be infused @ t=9:00) until after one-time infusion event 1614 (i.e., the thirty-six unit normal bolus dose of infusible fluid 200) is completely administered. Further, fluid delivery process 236 may delay 0.10 unit dose 1610 (i.e., scheduled to be infused @ t=3:00 and 0.10 unit dose 1612 (i.e., scheduled to be infused @ t=6:00) until after one-time infusion event 1614.


Once administration 1502 of one-time infusion event 1614 is completed by fluid delivery process 236, any discrete infusion events included within the sequential, multi-part, infusion event that were delayed may be administered 1500 by fluid delivery process 236.


Accordingly, once one-time infusion event 1614 (i.e., the thirty-six unit normal bolus dose of infusible fluid 200) is completely administered 1502, fluid delivery process 236 may administer 1500 0.05 unit dose 1602, 0.05 unit dose 1604, 0.05 unit dose 1606, 0.10 unit dose 1610, and 0.10 unit dose 1612.


While fluid delivery process 236 is shown to administer 1500 0.05 unit dose 1602, then 0.10 unit dose 1610, then 0.05 unit dose 1604, then 0.10 unit dose 1612, and then 0.05 unit dose 1606, this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as other configurations are possible and are considered to be within the scope of this disclosure. For example, upon fluid delivery process 236 completing the administration 1502 of one-time infusion event 1614 (i.e., the thirty-six unit normal bolus dose of infusible fluid 200), fluid delivery process 236 may administer 1500 all of the delayed discrete infusion events associated with the first sequential, multi-part infusion event (i.e., namely 0.05 unit dose 1602, 0.05 unit dose 1604, and 0.05 unit dose 1600). Fluid delivery process 236 may then administer 1500 all of the delayed discrete infusion events associated with the second sequential, multi-part infusion event (i.e., 0.10 unit dose 1610, and 0.10 unit dose 1612).


While one-time infusion event 1614 (i.e., the thirty-six unit normal bolus dose of infusible fluid 200) is shown as being infused beginning at t=3:00, this is for illustrative purposes only and is not intended to be a limitation of this disclosure. Specifically, fluid delivery process 236 may not need to begin infusing one-time infusion event 1614 at one of the three-minute intervals (e.g., t=0:00, t=3:00, t=6:00, t=9:00, or t=12:00) and may begin administering 1502 one-time infusion event 1614 at any time.


While each discrete infusion event (e.g., 0.05 unit dose 1602, 0.05 unit dose 1604, 0.05 unit dose 1606, 0.10 unit dose 1610, and 0.10 unit dose 1612) and one-time infusion event 1614 are shown as being a single event, this is for illustrative purposes only and is not intended to be a limitation of this disclosure. Specifically, at least one of the plurality of discrete infusion events e.g., 0.05 unit dose 1602, 0.05 unit dose 1604, 0.05 unit dose 1606, 0.10 unit dose 1610, and 0.10 unit dose 1612) may include a plurality of discrete infusion sub-events. Further, one-time infusion event 1614 may include a plurality of one-time infusion sub-events.


Referring also to FIG. 17 and for illustrative purposes, 0.05 unit dose 1602 is shown to include ten discrete infusion sub-events (e.g., infusion sub-events 17001-10), wherein a 0.005 unit dose of infusible fluid 200 is infused during each of the ten discrete infusion sub-events. Additionally, 0.10 unit dose 1610 is shown to include ten discrete infusion sub-events (e.g., infusion sub-events 17021-10), wherein a 0.01 unit dose of infusible fluid 200 is delivered during each of the ten discrete infusion sub-events. Further, one-time infusion event 1614 may include e.g., three-hundred-sixty one-time infusion sub-events (not shown), wherein a 0.1 unit dose of infusible fluid 200 is delivered during each of the three-hundred-sixty one-time infusion sub-events. The number of sub-events defined above and the quantity of infusible fluid 200 delivered during each sub-event is solely for illustrative purposes only and is not intended to be a limitation of this disclosure, as the number of sub-events and/or the quantity of infusible fluid 200 delivered during each sub-event may be increased or decreased depending upon e.g., the design criteria of infusion pump assembly 100 and/or the implementation of fluid delivery process 236.


Before, after, or in between the above-described infusion sub-events, infusion pump assembly 100 may confirm the proper operation of infusion pump assembly 100 through the use of e.g., force sensor 216 (i.e., which may determine the occurrence of an occlusion) and displacement detection device 218 (i.e., which may determine the occurrence of a mechanical failure).


As discussed above, during operation of infusion pump assembly 100, infusible fluid 200 may be delivered to user 202 in accordance with e.g. a defined delivery schedule. For illustrative purposes only, assume that infusion pump assembly 100 is configured to provide 0.10 mL of infusible fluid 200 to user 202 every three minutes. Accordingly, every three minutes, processing logic 204 may provide the appropriate drive signals to motor assembly 214 to allow motor assembly 214 to rotate lead screw assembly 228 the appropriate amount so that partial nut assembly 226 (and therefore plunger assembly 224) may be displaced the appropriate amount in the direction of arrow 230 so that 0.10 mL of infusible fluid 200 are provided to user 202 (via cannula 114).


Processing logic 204 may execute occlusion detection process 238, and occlusion detection process 238 may be configured to monitor one or more events that are occurring within infusion pump assembly 100 to determine whether or not an occlusion (e.g., a blockage) has occurred within e.g. cannula assembly 114.


Referring also to FIGS. 18-19, occlusion detection process 238 may determine 1900 a rate-of-change force reading (e.g., FR01) that corresponds to the delivery of first dose 240 (FIG. 2) of infusible fluid 200.


When determining 1900 the rate-of-change force reading (e.g., FR01), occlusion detection process 238 may determine 1902 an initial force reading prior to dispensing first dose 240 of infusible fluid 200. As discussed above, infusion pump assembly 100 may regularly dispense individual doses of infusible fluid 200 based upon one or more infusion schedules. For example and as discussed above, infusion pump assembly 100 may be configured to dispense 0.10 mL of infusible fluid 200 to user 202 every three minutes.


When determining 1902 the initial force reading prior to dispensing first dose 240 of infusible fluid 200, occlusion detection process 238 may obtain the initial force reading from force sensor 216. Provided that there is not an occlusion within e.g. cannula assembly 114, the initial force reading obtained by occlusion detection process 238 prior to infusion pump assembly 100 dispensing first dose 240 of infusible fluid 200 should be zero pounds. Once occlusion detection process 238 determines 1902 the initial force reading, infusion pump assembly 100 may dispense 1904 first dose 240 of infusible fluid 200 to user 202 via cannula assembly 114. While the system may be described above and/or below as having a force reading of zero pounds prior to and/or subsequent to dispensing infusible fluid 200, this is for illustrative purposes only, as frictional forces and/or backpressure may result in force readings that are slightly higher than zero pounds.


Once infusion pump assembly 100 dispenses 1904 first dose 240 of infusible fluid 200 to user 202, occlusion detection process 238 may determine 1906 a final force reading subsequent to dispensing 1904 first dose 240 of infusible fluid 200. For example, once infusion pump assembly 100 has completely dispensed 1904 first dose 240 of infusible fluid 200 to user 202, occlusion detection process 238 may obtain the final force reading from force sensor 216 in a process similar to that used to obtain the initial force reading from force sensor 216.


Occlusion detection process 238 may determine 1900 the rate-of-change force reading (e.g., FR01) based, at least in part, upon the initial force reading and the final force reading. For example, occlusion detection process 238 may subtract the initial force reading from the final force reading to determine the net force change that occurred while dispensing (in this particular example) 0.10 mL of infusible fluid 200. As discussed above, provided that there are no occlusions within e.g. cannula assembly 114, the initial force reading (obtained from force sensor 216) should be zero and the final force reading (also obtained from force sensor 216) should also be zero. Accordingly, the rate-of-change force reading (e.g., FR01) determined 1900 by occlusion detection process 238 should also be zero.


While the system is described above as determining 1906 a final force reading subsequent to dispensing 1904 first dose 240 of infusible fluid 200, this final force reading may actually be based upon the initial force reading that is taken for the next dose of infusible fluid 200. Accordingly, by allowing the initial force reading of the second dose of infusible fluid 200 to provide the data for the final force reading of the first dose of infusible fluid 200, the total number of force readings made may be reduced by 50%.


Once the rate-of-change force reading (e.g., FR01) is determined, occlusion detection process 238 may store the rate-of-change force reading (e.g., FR01) within e.g., storage cell 1800 of storage array 1802. Storage array 1802 may be configured as a FIFO (first in, first out) buffer. Storage array 1802 may be configured to allow occlusion detection process 238 to maintain a plurality of historical values for the rate-of-change force readings (e.g., FR01) discussed above. A typical embodiment of storage array 1802 may include twenty or forty individual storage cells. While storage array 1802 is illustrated in FIG. 18 as being a multi-column storage array, this is for illustrative purposes only and is not intended to be a limitation of this disclosure. For example, storage array 1802 may be a single column storage array in which only the rate-of-change force readings are stored.


Occlusion detection process 238 may process the historical values of the rate-of-change force readings to determine an average rate-of-change force reading over a desired infusible fluid volume/number of infusion cycles. For example, occlusion detection process 238 may determine an average rate-of-change force reading over each forty infusion cycles. Accordingly, occlusion detection process 238 may determine 1908 additional rate-of-change force readings, each of which corresponds to the delivery of additional doses of infusible fluid 200. For example and for illustrative purposes only, occlusion detection process 238 may determine 1908 thirty-nine additional rate-of-change force readings for the next thirty-nine infusion cycles. Each of these thirty-nine rate-of-change force readings may be stored in a unique storage cell of storage array 1802. Once storage array 1802 is completely full (i.e. contains forty rate-of-change force readings), occlusion detection process 238 may determine an average rate-of-change force reading for the set of forty rate-of-change force readings. Once this average rate-of-change force reading is determined, storage array 1802 may be cleared and the process of gathering additional rate-of-change force readings may be repeated.


When determining additional rate-of-change force readings, occlusion detection process 238 may determine 1910 an initial force reading prior to dispensing the additional dose (e.g., dose 242) of infusible fluid 200. Dose 242 of infusible fluid may then be dispensed 1912 by infusion pump assembly 100. Occlusion detection process 238 may determine 1914 a final force reading subsequent to dispensing dose 242 of infusible fluid 200.


Occlusion detection process 238 may determine 1908 the additional rate-of-change force readings (e.g., FR2) based, at least in part, upon the initial force reading and the final force reading for each additional dose of infusible fluid 200. As discussed above, provided that there are no occlusions within e.g. cannula assembly 114, the initial force reading (obtained from force sensor 216) should be zero and the final force reading (also obtained from force sensor 216) should also be zero. Accordingly, the rate-of-change force reading (e.g., FR2) determined 1908 by occlusion detection process 238 should also be zero. As discussed above, once the additional rate-of-change force readings (e.g., FR2) are determined, occlusion detection process 238 may store the rate-of-change force reading (e.g., FR2) within e.g., storage cell 1804 of storage array 1802.


Assume for illustrative purposes that occlusion detection process 238 continues to calculate the rate-of-change force readings in the manner described above and continues to store these calculated rate-of-change force readings within storage array 1802. Further, assume for illustrative purposes that infusion pump assembly 100 continues to operate properly (i.e. without any occlusions) for the first thirty-three infusion cycles. Accordingly, the first thirty-three rate-of-change force readings (FR01-FR33) are all zero, as their respective initial force reading and final force reading were all zero. However, assume for illustrative purposes that an occlusion (e.g. occlusion 244) occurs within cannula assembly 114 prior to calculating the thirty-fourth, rate-of-change force reading (e.g., FR34), which is stored within storage cell 1806. Assume for illustrative purposes that when determining the thirty-fourth rate-of-change force reading (e.g., FR34), occlusion detection process 238 determines 1910 an initial force reading of 0.00 pounds. When infusion pump assembly 100 begins to dispense 1912 the thirty-fourth dose of infusible fluid 200, as occlusion 244 is present within cannula assembly 114, the fluid displaced from reservoir assembly 200 by plunger assembly 224 will not be able to pass through cannula assembly 114. Accordingly, the pressure within reservoir assembly 200 will begin to build. Therefore, assume for illustrative purposes that occlusion detection process 238 determines 1914 a final force reading of 0.50 pounds. Accordingly, occlusion detection process 238 may determine 1908 the rate-of-change force reading (e.g., FR34) to be 0.50 pounds minus 0.00 pounds, for a rate-of-change of 0.50 pounds.


Due to the presence of occlusion 244 within cannula assembly 114, when motor assembly 214 attempts to dispense the next dose of infusible fluid 200, 0.50 pounds of pressure sensed by force sensor 216 will still be present within fluid reservoir 200. Accordingly, when determining the thirty-fifth rate-of-change force reading (e.g., FR35), the initial force reading determined 1910 by occlusion detection process 238 may be the same as the final force reading determined by occlusion detection process 238 when determining the thirty-fourth rate-of-change force reading (e.g., FR34)


Occlusion detection process 238 may determine 1916 an average rate-of-change force reading (e.g., AFR) based, at least in part, upon all or a portion of the rate-of-change force readings included within storage array 1802. Assume for illustrative purposes that occlusion detection process 238 is configured to consider all rate-of-change force readings (e.g., FR01-FR40) included within storage array 1802. Accordingly, occlusion detection process 238 may calculate the mathematical average of all rate-of-change force readings (e.g., FR01-FR40) included within storage array 1802. In this particular example, average rate-of-change force reading (e.g., AFR) has a mathematical value of 0.105 pounds. While the system is described above as being capable of considering all rate-of-change force readings (e.g., FR01-FR40) included within storage array 1802, this is for illustrative purposes only and is not intended to be a limitation of this disclosure, as other configurations are possible. For example, occlusion detection process 238 may be configured to determine 1916 an average rate-of-change force reading (e.g., AFR) once storage array 1802 is populated with e.g., the first five rate-of-change force readings. If determining 1916 an average rate-of-change force reading (e.g., AFR) prior to storage array 1802 being completely populated, any unpopulated rows within storage array 1802 may be populated with zeros.


Occlusion detection process 238 may compare 1918 the average rate-of-change force reading (e.g., AFR) to a threshold rate-of-change force reading to determine if the average rate-of-change force reading (e.g., AFR) exceeds the threshold rate-of-change force reading. If the average rate-of-change force reading does not exceed the threshold rate-of-change force reading, infusion pump assembly 100 may continue 1920 to operate normally. However, if the average rate-of-change force reading exceeds the threshold rate-of-change force reading, an alarm sequence may be initiated 1922 on infusion pump assembly 100. For example, assuming for illustrative purposes that occlusion detection process 238 is configured to have a threshold rate-of-change force reading of 0.90 pounds, only after the average rate-of-change force reading (e.g., AFR) exceeds 0.90 pounds will the alarm sequence be initiated 1920. Thus, in these embodiments, measuring the rate-of-change may ensure alarm sequences are triggered more reliably when actual occlusions have occurred. As described below, user 202, in some embodiments, defines the sensitivity of the system.


The sensitivity of occlusion detection process 238 may be based upon a user-defined sensitivity setting selected 1924 by e.g., user 202. For example, assume that occlusion detection process 238 has two sensitivity settings, namely a high sensitivity setting and a low sensitivity setting. Further, assume that each of the sensitivity settings is associated with a unique manner of determining the rate-of-change force readings included within storage array 1802. As discussed above, occlusion detection process 238 is described above as determining 1900 a rate-of-change force reading (e.g., FR01) that corresponds to the delivery of first dose 240 of infusible fluid 200. Assume that when configured in the high sensitivity setting, occlusion detection process 238 may determine 1900 a rate-of-change force reading that corresponds to the delivery of a comparatively smaller quantity of infusible fluid 200. Further, assume that when configured in the low sensitivity setting, occlusion detection process 238 may determine 1900 a rate-of-change force reading that corresponds to the delivery of a comparatively larger quantity of infusible fluid 200. For example, assume that when in the high sensitivity setting, occlusion detection process 238 determines 1900 a rate-of-change force reading that corresponds to the delivery of 0.10 mL of infusible fluid 200. Further, assume that when in the low sensitivity setting, occlusion detection process 238 determines 1900 a rate-of-change force reading that corresponds to the delivery of a 0.20 mL dose 240 of infusible fluid 200. Accordingly, when placed in the high sensitivity setting, additional measurements are taken and occlusion detection process 238 is more responsive. However, false alarms may occur more frequently. Conversely, when placed in the low sensitivity setting, fewer measurements are taken and occlusion detection process 238 is less responsive. However, false alarms may occur less frequently due to the “averaging” effect of taking fewer measurements. Accordingly, in order to avoid nuisance alarms (or to reduce the number of alarms), the user (e.g. user 202) may select 1924 the low sensitivity setting.


The alarm sequence initiated 1922 may include any combination of visual-based (via display system 104), audible-based (via a audio system 212), and vibration-based alarms (via vibration system 210). User 202 may be able to select between the high-sensitivity setting and the low-sensitivity setting via one or more of input system 206 and display system 104.


While infusion pump assembly 100 is described above as delivering a plurality of identically-sized doses of infusible fluid 200 and calculating a rate-of-change force reading (e.g., FR01) for each dose of infusible fluid 200, this is for illustrative purposes only and is not intended to be a limitation of this disclosure. Specifically, infusion pump assembly 100 may be configured to provide non-identical doses of infusible fluid 200. Further and as discussed above, infusion pump assembly 100 may be configured to allow user 202 to manually administer a “bolus” dose of infusible fluid 200 in a size determined by user 202. Accordingly, occlusion detection process 238 may be configured to monitor the volume of infusible fluid 200 dispensed in each dose and may be configured to populate storage array 1802 so that each rate-of-change force reading (e.g., FR01) included within storage array 1802 is indicative of the rate-of-change force sensed by occlusion detection process 238 when dispensing an equivalent quantity of infusible fluid 200. Accordingly, occlusion detection process 238 may be configured to “normalize” the rate-of-change force readings determined based upon the quantity of infusible fluid delivered.


For example, assume that occlusion detection process 238 is configured so that a storage cell included within storage array 1802 is populated each time 0.10 mL of infusible fluid 200 is dispensed. Assume for illustrative purposes only that user 202 decides to dispense a 0.25 mL dose of infusible fluid 200. As the 0.25 mL dose of infusible fluid 200 is greater than the 0.10 mL increments at which occlusion detection process 238 is configured to populate storage array 1802, occlusion detection process 238 may record multiple entries (and, therefore, populate multiple storage cells) within storage array 1802 for the single 0.25 mL dose of infusible fluid 200.


Specifically, assume that the initial force reading determined 1910 prior to delivering the 0.25 mL dose of infusible fluid 200 is 0.00 pounds and the final force reading determined 1914 after dispensing 1912 the 0.25 mL dose of infusible fluid 200 is 1.00 pounds. As the 0.25 mL dose of infusible fluid 200 is two-and-a-half times the 0.10 mL increments in which occlusion detection process 238 is configured to populate storage array 52, occlusion detection process 238 may “normalize” this rate-of-change force reading. Specifically, occlusion detection process 238 may divide 1.00 pounds by 0.25 mL to determine that the force changed 0.40 pounds per 0.10 mL. Accordingly, occlusion detection process 238 may calculate a rate-of-change force reading of 0.40 pounds for the first 0.10 mL dose of infusible fluid 200, 0.40 pounds for the second 0.10 mL dose of infusible fluid 200, and 0.20 pounds for the last 0.05 mL dose of infusible fluid 200.


Accordingly, occlusion detection process 238 may populate storage array 1802 so that a first storage cell (associated with the first 0.10 mL dose of infusible fluid 200) defines an initial force reading of 0.00 pounds, a final force reading of 0.40 pounds and a rate-of-change force reading of 0.40 pounds. Further, occlusion detection process 238 may populate storage array 1802 so that a second storage cell (associated with the second 0.10 mL dose of infusible fluid 200) defines an additional force reading of 0.40 pounds, a final force reading of 0.80 pounds and a rate-of-change force reading of 0.40 pounds.


Concerning the remaining 0.05 mL of the 0.25 mL dose of infusible fluid 200, as this is less than the 0.10 mL increment at which occlusion detection process 238 is configured to populate storage array 1802, the next cell within storage array 1802 will not be populated until an additional 0.05 mL dose of infusible fluid 200 is dispensed.


Continuing with the above-stated example, assume for illustrative purposes that infusion pump assembly 100 administers a 0.15 mL dose of infusible fluid 200. Occlusion detection process 238 may combine the first 0.05 mL of the 0.15 mL dose of infusible fluid 200 with the remaining 0.05 mL of the 0.25 mL dose of infusible fluid 200 to form a complete 0.10 mL increment for recording within storage array 1802.


Again, occlusion detection process 238 may “normalize” the 0.15 mL dose of infusible fluid 200. Assume for illustrative purposes that when dispensing the 0.15 mL of infusible fluid 200, occlusion detection process 238 determines an initial force reading of 1.00 pounds and a final force reading of 1.60 pounds. In the manner described above, occlusion detection process 238 may divide 0.60 pounds (i.e., 1.60 pounds minus 1.00 pounds) by 0.15 mL to determine that the force changed 0.40 pounds per 0.10 mL. Accordingly, occlusion detection process 238 may calculate a rate-of-change force reading of 0.20 pounds for the first 0.05 mL of the 0.15 mL dose of infusible fluid 200, and 0.40 pounds for the remaining 0.10 mL of the 0.15 mL dose of infusible fluid 200.


Accordingly, occlusion detection process 238 may populate storage array 1802 so that a third storage cell (associated with the combination of the first 0.05 mL of the 0.15 mL dose of infusible fluid 200 with the remaining 0.05 mL of the 0.25 mL dose of infusible fluid 200) defines an initial force reading of 0.80 pounds (i.e., which is the final force reading after the second 0.10 mL of the 0.25 mL dose of infusible fluid 200), a final force reading of 1.20 pounds (i.e., the sum of the initial force reading of 1.00 pounds plus the 0.20 pound offset for the first 0.05 mL of the 0.15 mL dose of infusible fluid 200) and a rate-of-change force reading of 0.40 pounds. Further, occlusion detection process 238 may populate storage array 1802 so that a fourth storage cell (associated with the last 0.10 mL of the 0.15 mL dose of infusible fluid 200) defines an initial force reading of 1.20 pounds, a final force reading of 1.60 pounds and a rate-of-change force reading of 0.40 pounds.


In addition to comparing 1918 the average rate-of-change force reading (e.g., AFR) to a threshold rate-of-change force reading to determine if the average rate-of-change force reading (e.g., AFR) exceeds the threshold rate-of-change force reading, occlusion detection process 238 may compare 1926 one or more of the initial force reading and the final force reading to a threshold force reading to determine if either the initial force reading or the final force reading exceeds the threshold force reading. If either of the initial force reading or the final force reading exceeds the threshold force reading, an alarm sequence may be initiated 1928 on infusion pump assembly 100.


For example, occlusion detection process 238 may define a threshold force reading, which if exceeded by either the initial force reading (which is determined prior to dispensing a dose of infusible fluid 200) or the final force reading (which is determined after dispensing a dose of infusible fluid 200), an occlusion is deemed to be occurring. Examples of such a threshold force reading is 4.00 pounds. Therefore, if after dispensing a dose of infusible fluid 200, occlusion detection process 238 determines a final force reading of 5.20 pounds, occlusion detection process 238 may initiate 1928 an alarm sequence, as 5.20 pounds exceeds the 4.00 threshold force reading. The alarm sequence initiated 1928 may include any combination of visual-based (via display system 104), audible-based (via audio system 212), and vibration-based alarms (via vibration system 210).


As discussed above, infusion pump assembly 100 may include primary power supply 220 configured to power infusion pump assembly 100. Before and/or after dispensing a dose of infusible fluid 200, occlusion detection process 238 may compare 1930 the actual voltage level of primary power supply 220 to a minimum voltage requirement to determine if the actual voltage level of primary power supply 220 meets the minimum voltage requirement. If the actual voltage level does not meet the minimum voltage requirement, occlusion detection process 238 may initiate 1932 an alarm sequence on infusion pump assembly 100. The alarm sequence initiated 1932 may include any combination of visual-based (via display system 104), audible-based (via audio system 212), and vibration-based alarms (via vibration system 210). For example, assume for illustrative purposes that primary power supply 220 is a 5.00 VDC battery. Further, assume that the minimum voltage requirement is 3.75 VDC (i.e., 75% of normal voltage). Accordingly, if occlusion detection process 238 determines 1930 that the actual voltage level of primary power supply 220 is 3.60 VDC, occlusion detection process 238 may initiate 1932 an alarm sequence on infusion pump assembly 100.


Additionally, occlusion detection process 238 may monitor one or more of the displaceable mechanical components included within infusion pump assembly 100 to determine 1934 if one or more displaceable mechanical components included within infusion pump assembly 100 were displaced an expected displacement in response to delivering a dose of infusible fluid 200. If the displaceable mechanical components monitored were not displaced the expected displacement in response to delivering a dose of infusible fluid 200, occlusion detection process 238 may initiate 1936 an alarm sequence on infusion pump assembly 100. The alarm sequence initiated 1936 may include any combination of visual-based (via display system 104), audible-based (via audio system 212), and vibration-based alarms (via vibration system 210).


For example, upon processing logic 204 energizing motor assembly 214 to dispense 0.10 mL of infusible fluid 200, occlusion detection process 238 may (via displacement detection device 218) confirm that partial nut assembly 226 did indeed move the expected displacement. Accordingly, in the event that partial nut assembly 226 does not move the expected displacement, a mechanical failure (e.g. the failure of partial nut assembly 226, the failure of lead screw assembly 228, the failure of motor assembly 214) may have occurred. In the event that the expected displacement of partial nut assembly 226 cannot be confirmed, occlusion detection process 238 may initiate 1936 the alarm sequence on infusion pump assembly 100.


When determining whether partial nut assembly 226 was displaced the expected amount, tolerances may be utilized. For example, assume that to deliver a 0.10 mL dose of infusible fluid 200, occlusion detection process 238 may expect to see partial nut assembly 226 displaced 0.050 inches. Accordingly, occlusion detection process 238 may utilize a 10% error window in which movement of partial nut assembly 226 of less than 0.045 inches (i.e., 10% less than expected) would result in occlusion detection process 238 initiating 1936 the alarm sequence on infusion pump assembly 100.


In one embodiment of displacement detection device 218, displacement detection device 218 includes one or more light sources (not shown) positioned on one side of partial nut assembly 226 and one or more light detectors (not shown) positioned on the other side of partial nut assembly 226. Partial nut assembly 226 may include one or more passages (not shown) through which the light from the one or more light sources (not shown) included within displacement detection device 218 may shine and may be detected by the one or more light detectors (not shown) included within displacement detection device 218.


Referring now to FIG. 20, in some embodiments of the infusion pump system, the infusion pump may be remotely controlled using remote control assembly 2000. Remote control assembly 2000 may include all, or a portion of, the functionality of the pump assembly itself. Thus, in some exemplary embodiments of the above-described infusion pump assembly, the infusion pump assembly (not shown, see FIGS. 1A-1F, amongst other FIGS.) may be configured via remote control assembly 2000. In these particular embodiments, the infusion pump assembly may include telemetry circuitry (not shown) that allows for communication (e.g., wired or wireless) between the infusion pump assembly and e.g., remote control assembly 2000, thus allowing remote control assembly 2000 to remotely control infusion pump assembly 100′. Remote control assembly 2000 (which may also include telemetry circuitry (not shown) and may be capable of communicating with infusion pump assembly) may include display assembly 2002 and an input assembly, which may include one or more of the following: an input control device (such as jog wheel 2006, slider assembly 2012, or another conventional mode for input into a device), and switch assemblies 2008, 2010. Thus, although remote control assembly 2000 as shown in FIG. 20 includes jog wheel 2006 and slider assembly 2012, some embodiments may include only one of either jog wheel 2006 or slider assembly 2012, or another conventional mode for input into a device. In embodiments having jog wheel 2006, jog wheel 2006 may include a wheel, ring, knob, or the like, that may be coupled to a rotary encoder, or other rotary transducer, for providing a control signal based upon, at least in part, movement of the wheel, ring, knob, or the like.


Remote control assembly 2000 may include the ability to pre-program basal rates, bolus alarms, delivery limitations, and allow the user to view history and to establish user preferences. Remote control assembly 2000 may also include glucose strip reader 2014.


During use, remote control assembly 2000 may provide instructions to the infusion pump assembly via a wireless communication channel established between remote control assembly 2000 and the infusion pump assembly. Accordingly, the user may use remote control assembly 2000 to program/configure the infusion pump assembly. Some or all of the communication between remote control assembly 2000 and the infusion pump assembly may be encrypted to provide an enhanced level of security.


A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made. Accordingly, other implementations are within the scope of the following claims.

Claims
  • 1. A removable cover assembly configured to be removably attached to an enclosure assembly, the cover assembly comprising: a removable cover body configured to cover a power supply cavity in the enclosure assembly;a conductor assembly attached to the removable cover body and having a tab for conducting electricity to the power supply cavity;a spring having a first and second end, the first end attached to the conductor assembly; anda non-conductive power supply interface assembly defining an aperture configured for receiving a positive terminal of a power supply, the non-conductive power supply interface assembly attached to the second end of the spring and disposed further from the removable cover body when the spring is in a relaxed state, wherein an electrical coupling between the power supply and the conductor assembly is established through the spring.
  • 2. The removable cover assembly of claim 1, wherein the power supply comprises a battery.
  • 3. The removable cover assembly of claim 1 wherein the removable cover assembly further comprises: a sealing assembly for releasably engaging at least a portion of the enclosure assembly of the power supply assembly and forming an essentially water-tight seal between the removable cover assembly and the enclosure assembly.
  • 4. The removable cover assembly of claim 3, wherein the sealing assembly comprises an o-ring assembly.
  • 5. The removable cover assembly of claim 1, wherein the removable cover assembly is configured to allow access to the power supply cavity and effectuate removable insertion of the power supply into the power supply cavity.
  • 6. The removable cover assembly of claim 1, wherein the removable cover body is configured to seal the power supply cavity.
  • 7. The removable cover assembly of claim 1, wherein the removable cover body is configured to maintain the power supply within the power supply cavity.
  • 8. An infusion pump assembly comprising: an enclosure assembly;a reservoir in the enclosure assembly;a pump assembly positioned at least partially in the enclosure assembly for dispensing fluid from the reservoir;a power supply cavity positioned within the enclosure assembly and defining an interior wall; anda removable cover assembly configured to releasably engage the enclosure assembly, the removable cover assembly comprising: a removable cover body configured to maintain a removable power supply within the power supply cavity;a conductor assembly attached to the removable cover body and having electrical contact with the interior wall of the power supply cavity when the removable cover assembly is engaged to the enclosure assembly;a spring having a first and second end, the first end attached to the conductor assembly; anda non-conductive power supply interface assembly defining an aperture configured for receiving a terminal of the removable power supply, the non-conductive power supply interface assembly attached to the second end of the spring and disposed further from the removable cover body when the spring is in a relaxed state, wherein an electrical coupling between the removable power supply and the conductor assembly is formed through the spring.
  • 9. The infusion pump assembly of claim 8, wherein the conductor assembly has at least one electrically conducting tab for contact with the interior wall of the power supply cavity.
  • 10. The infusion pump assembly of claim 8, further comprising a processor positioned at least partially within the enclosure assembly and configured to control the pump assembly.
  • 11. The infusion pump assembly of claim 8, wherein the power supply comprises a battery positioned in the power supply cavity.
  • 12. The infusion pump assembly of claim 8, wherein the removable cover assembly comprises: a sealing assembly for releasable engaging at least a portion of the enclosure assembly and forming an essentially water-tight seal between the removable cover assembly and the enclosure assembly.
  • 13. The infusion pump assembly of claim 12, wherein the sealing assembly comprises an o-ring assembly.
  • 14. The infusion pump assembly of claim 8, wherein the removable cover assembly is configured to allow access to the power supply cavity and effectuate removable insertion of the removable power supply into the power supply cavity.
  • 15. The infusion pump assembly of claim 8, wherein the removable cover body is configured to seal the power supply cavity.
  • 16. The infusion pump assembly of claim 8, wherein the removable cover body is configured to maintain the removable power supply within the power supply cavity.
  • 17. A power supply assembly comprising: an enclosure assembly;a power supply cavity positioned within the enclosure assembly and defining an interior wall;a removable cover body configured to cover the power supply cavity of an infusion pump;a conductor assembly attached to the removable cover body and having electrical contact with the interior wall of the power supply cavity when the removable cover assembly is engaged to the enclosure assembly;a spring having a first and second end, the first end attached to the conductor assembly; anda non-conductive power supply interface assembly defining an aperture configured for receiving a terminal of a power supply, the non-conductive power supply interface assembly attached to the second end of the spring and disposed further from the removable cover body when the spring is in a relaxed state, wherein an electrical coupling between the power supply and the conductor assembly is formed through the spring.
  • 18. The power supply assembly of claim 17, wherein the power supply comprises a battery positioned in the power supply cavity.
  • 19. The power supply assembly of claim 17, wherein the removable cover body further comprises: a sealing assembly for releasable engaging at least a portion of the enclosure assembly of the infusion pump and forming an essentially water-tight seal between the removable cover assembly and the enclosure assembly.
  • 20. The power supply assembly of claim 19, wherein the sealing assembly comprises an o-ring assembly.
  • 21. The power supply assembly of claim 17, wherein the removable cover body is configured to allow access to the power supply cavity and effectuate removable insertion of the power supply into the power supply cavity.
  • 22. The power supply assembly of claim 17, wherein the removable cover body is a cover for the power supply cavity in the infusion pump.
  • 23. The power supply assembly of claim 17, wherein the removable cover body is configured to seal the power supply cavity.
  • 24. The power supply assembly of claim 17, wherein the removable cover body is configured to maintain the power supply within the power supply cavity.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation Application of U.S. patent application Ser. No. 15/830,722, filed Dec. 4, 2017 and entitled Infusion Pump Assembly, now U.S. Pat. No. 11,135,357, issued Oct. 5, 2021, which is a Continuation Application of U.S. patent application Ser. No. 13/121,822, filed Mar. 30, 2011 and entitled Infusion Pump Assembly, now U.S. Pat. No. 9,833,569, issued Dec. 5, 2017, which is a 371 National Stage Application of International Patent Application No. PCT/US09/60158, filed Oct. 9, 2009 and entitled Infusion Pump Assembly, which claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application No. 61/176,508, filed May 8, 2009 and entitled Removable Cover Assembly, each of which is hereby incorporated by reference in its entirety. International Patent Application No. PCT/US09/60158 is also a continuation-in-part of the following applications: U.S. patent application Ser. No. 12/249,540, filed Oct. 10, 2008 and entitled Infusion Pump Assembly with a Backup Power Supply, now U.S. Pat. No. 8,066,672, issued Nov. 29, 2011; U.S. patent application Ser. No. 12/249,600, filed Oct. 10, 2008 and entitled Multi-Language/Multi-Processor Infusion Pump Assembly, now U.S. Pat. No. 8,267,892, issued Sep. 18, 2012; U.S. patent application Ser. No. 12/249,636, filed Oct. 10, 2008 and entitled System and Method for Administering an Infusible Fluid, now U.S. Pat. No. 9,180,245, issued Nov. 10, 2015; U.S. patent application Ser. No. 12/249,882, filed Oct. 10, 2008 and entitled Infusion Pump Assembly, now U.S. Pat. No. 8,262,616, issued Sep. 11, 2012; U.S. patent application Ser. No. 12/249,891, filed Oct. 10, 2008 and entitled Infusion Pump Assembly, now U.S. Pat. No. 8,034,026, issued Oct. 11, 2011; U.S. patent application Ser. No. 12/249,496, filed Oct. 10, 2008 and entitled Pump Assembly with a Removable Cover Assembly, now U.S. Pat. No. 8,016,789, issued Sep. 13, 2011; U.S. patent application Ser. No. 12/249,340, filed Oct. 10, 2008 and entitled Medium Connector, now U.S. Pat. No. 8,708,376, issued Apr. 29, 2014; and U.S. patent application Ser. No. 12/249,621, filed Oct. 10, 2008 and entitled Occlusion Detection System and Method, now U.S. Pat. No. 8,223,028, issued Jul. 17, 2012. Each of these applications is hereby incorporated herein by reference in its entirety for all purposes.

US Referenced Citations (749)
Number Name Date Kind
3631847 Hobbs, II Jan 1972 A
3692027 Ellinwood, Jr. Sep 1972 A
3752510 Windischman et al. Aug 1973 A
3811121 Heim et al. May 1974 A
3811122 Raber et al. May 1974 A
3837339 Aisenberg et al. Sep 1974 A
3887393 La Rue, Jr. Jun 1975 A
3951147 Tucker et al. Apr 1976 A
4083011 Ferrell et al. Apr 1978 A
D248873 Raitto Aug 1978 S
4123631 Lewis Oct 1978 A
4146029 Ellinwood, Jr. Mar 1979 A
4150672 Whitney et al. Apr 1979 A
D254446 Raitto Mar 1980 S
4206274 Peels Jun 1980 A
4213078 Ferrell et al. Jul 1980 A
4215701 Raitto Aug 1980 A
4267836 Whitney et al. May 1981 A
4269908 Stemme May 1981 A
4270532 Franetzki et al. Jun 1981 A
4273121 Jassawalla Jun 1981 A
4282872 Franetzki et al. Aug 1981 A
4296949 Muetterties et al. Oct 1981 A
4331262 Snyder et al. May 1982 A
4371594 Ohara et al. Feb 1983 A
4373527 Fischell Feb 1983 A
4391883 Williamson et al. Jun 1983 A
4392847 Whitney et al. Jul 1983 A
4392849 Petre et al. Jul 1983 A
4395259 Prestele et al. Jul 1983 A
4437859 Whitehouse et al. Mar 1984 A
4443218 Decant, Jr. et al. Apr 1984 A
4452532 Grollimund et al. Jun 1984 A
4464170 Clemens et al. Aug 1984 A
4469481 Kobayashi Sep 1984 A
4475901 Kraegen et al. Oct 1984 A
4493704 Beard et al. Jan 1985 A
4494950 Fischell Jan 1985 A
4498843 Schneider et al. Feb 1985 A
4533346 Cosgrove, Jr. et al. Aug 1985 A
4542532 McQuilkin Sep 1985 A
4543093 Christinger Sep 1985 A
4550731 Batina et al. Nov 1985 A
4559037 Franetzki et al. Dec 1985 A
4559038 Berg et al. Dec 1985 A
4561856 Cochran Dec 1985 A
4562751 Nason et al. Jan 1986 A
4596575 Rosenberg et al. Jun 1986 A
4624661 Arimond Nov 1986 A
4633878 Bombardieri Jan 1987 A
4648872 Kamen Mar 1987 A
4673396 Urbaniak Jun 1987 A
4678408 Nason et al. Jul 1987 A
4685903 Cable et al. Aug 1987 A
4690878 Nakamura Sep 1987 A
4693684 Blatherwick et al. Sep 1987 A
4696671 Epstein et al. Sep 1987 A
4714463 Archibald et al. Dec 1987 A
4731051 Fischell Mar 1988 A
4731726 Allen, III Mar 1988 A
4735441 Stephens Apr 1988 A
4741731 Starck et al. May 1988 A
4743895 Alexander May 1988 A
4747828 Tseo May 1988 A
4790028 Ramage Dec 1988 A
4803625 Fu et al. Feb 1989 A
4804368 Skakoon et al. Feb 1989 A
4809697 Causey, III et al. Mar 1989 A
4826810 Aoki May 1989 A
4834712 Quinn et al. May 1989 A
4849852 Mullins Jul 1989 A
4856340 Garrison Aug 1989 A
4871351 Feingold Oct 1989 A
4880712 Gordecki Nov 1989 A
4881063 Fawcett Nov 1989 A
4898578 Rubalcaba, Jr. Feb 1990 A
4919650 Feingold et al. Apr 1990 A
4954000 Gueret Sep 1990 A
4959640 Hall Sep 1990 A
4972508 King Nov 1990 A
4988337 Ito Jan 1991 A
4997423 Okuda et al. Mar 1991 A
5009646 Sudo et al. Apr 1991 A
5019974 Beckers May 1991 A
5034004 Crankshaw Jul 1991 A
5049141 Olive Sep 1991 A
5050612 Matsumura Sep 1991 A
5055830 Cousins et al. Oct 1991 A
5063291 Buehring Nov 1991 A
5078683 Sancoff et al. Jan 1992 A
5080653 Voss et al. Jan 1992 A
5088981 Howson et al. Feb 1992 A
5101814 Palti Apr 1992 A
5102388 Richmond Apr 1992 A
5103216 Sisselman Apr 1992 A
5104374 Bishko et al. Apr 1992 A
5122938 Pastusek Jun 1992 A
5150314 Garratt et al. Sep 1992 A
5153827 Coutre et al. Oct 1992 A
5165407 Wilson et al. Nov 1992 A
5174716 Hora et al. Dec 1992 A
5176502 Sanderson et al. Jan 1993 A
5176644 Srisathapat et al. Jan 1993 A
5176662 Bartholomew et al. Jan 1993 A
5181910 Scanlon Jan 1993 A
5187746 Narisawa Feb 1993 A
5191855 Conforti Mar 1993 A
5197322 Indravudh Mar 1993 A
5197895 Stupecky Mar 1993 A
5205819 Ross et al. Apr 1993 A
5216597 Beckers Jun 1993 A
5217442 Davis Jun 1993 A
5248569 Pine et al. Sep 1993 A
5254093 Bartlett et al. Oct 1993 A
5254096 Rondelet et al. Oct 1993 A
5257971 Lord et al. Nov 1993 A
5257980 Van Antwerp et al. Nov 1993 A
5270702 Krolak Dec 1993 A
5290639 Mallory Mar 1994 A
5304152 Sams Apr 1994 A
5307263 Brown Apr 1994 A
5314416 Lewis et al. May 1994 A
5317506 Coutre et al. May 1994 A
5337215 Sunderland et al. Aug 1994 A
5338157 Blomquist Aug 1994 A
5339821 Fujimoto Aug 1994 A
5341291 Roizen et al. Aug 1994 A
5342324 Tucker Aug 1994 A
5349852 Kamen et al. Sep 1994 A
5350411 Ryan et al. Sep 1994 A
5357427 Langen et al. Oct 1994 A
5364242 Olsen Nov 1994 A
5364346 Schrezenmeir Nov 1994 A
5368562 Blomquist et al. Nov 1994 A
5370622 Livingston et al. Dec 1994 A
5372133 Hogen Esch Dec 1994 A
5376070 Purvis et al. Dec 1994 A
5383865 Michel Jan 1995 A
5384207 Ohtani Jan 1995 A
5389078 Zalesky et al. Feb 1995 A
5390671 Lord et al. Feb 1995 A
5391157 Harris et al. Feb 1995 A
5399823 Mccusker Mar 1995 A
5403648 Chan et al. Apr 1995 A
5405614 D Angelo et al. Apr 1995 A
5417667 Tennican et al. May 1995 A
5426602 Hauser Jul 1995 A
5429602 Hauser Jul 1995 A
5433710 VanAntwerp et al. Jul 1995 A
5450003 Cheon Sep 1995 A
5456940 Funderburk Oct 1995 A
5460618 Harreld Oct 1995 A
5462525 Srisathapat et al. Oct 1995 A
5464392 Epstein et al. Nov 1995 A
5466218 Srisathapat et al. Nov 1995 A
5472317 Field et al. Dec 1995 A
5476460 Montalvo Dec 1995 A
5478211 Dominiak et al. Dec 1995 A
5482446 Williamson et al. Jan 1996 A
5497772 Schulman et al. Mar 1996 A
5505709 Funderburk et al. Apr 1996 A
5507727 Crainich Apr 1996 A
5508690 Shur et al. Apr 1996 A
5514097 Knauer May 1996 A
5514103 Srisathapat et al. May 1996 A
5522803 Teissen-Simony Jun 1996 A
5526844 Kamen et al. Jun 1996 A
5527307 Srisathapat et al. Jun 1996 A
5528359 Taguchi Jun 1996 A
5531697 Olsen et al. Jul 1996 A
5531698 Olsen Jul 1996 A
5533389 Kamen et al. Jul 1996 A
5533996 Murphey et al. Jul 1996 A
5538399 Johnson Jul 1996 A
5540564 Klopfer Jul 1996 A
5543588 Bisset et al. Aug 1996 A
5545140 Conero et al. Aug 1996 A
5545142 Stephens et al. Aug 1996 A
5545143 Fischell Aug 1996 A
5545152 Funderburk et al. Aug 1996 A
5558640 Pfeiler et al. Sep 1996 A
5558641 Glantz et al. Sep 1996 A
5562618 Cai et al. Oct 1996 A
5564915 Johnson Oct 1996 A
5567119 Johnson Oct 1996 A
5567136 Johnson Oct 1996 A
5569026 Novak Oct 1996 A
5569186 Lord et al. Oct 1996 A
5569187 Kaiser Oct 1996 A
5573506 Vasko Nov 1996 A
5575310 Kamen et al. Nov 1996 A
5582593 Hultman Dec 1996 A
5582893 Hultman Dec 1996 A
5584813 Livingston et al. Dec 1996 A
5593390 Castellano et al. Jan 1997 A
5594638 Iliff Jan 1997 A
5609060 Dent Mar 1997 A
5609575 Larson et al. Mar 1997 A
5613945 Cai et al. Mar 1997 A
5620312 Hyman et al. Apr 1997 A
5626144 Tacklind et al. May 1997 A
5630710 Tune et al. May 1997 A
5632315 Rose May 1997 A
5632729 Cai et al. May 1997 A
5637095 Nason et al. Jun 1997 A
5637420 Jones, Jr. et al. Jun 1997 A
5641892 Larkins et al. Jun 1997 A
5643212 Coutre et al. Jul 1997 A
5647853 Feldmann et al. Jul 1997 A
5647854 Olsen et al. Jul 1997 A
5651775 Walker et al. Jul 1997 A
5658133 Anderson et al. Aug 1997 A
5658250 Blomquist et al. Aug 1997 A
5658252 Johnson Aug 1997 A
5660176 Iliff Aug 1997 A
5665065 Colman et al. Sep 1997 A
5669877 Blomquist Sep 1997 A
5669887 Cooper Sep 1997 A
5678568 Uchikubo et al. Oct 1997 A
5681285 Ford et al. Oct 1997 A
5685844 Marttila Nov 1997 A
5687734 Dempsey et al. Nov 1997 A
5695473 Olsen Dec 1997 A
5704366 Tacklind et al. Jan 1998 A
5713856 Eggers et al. Feb 1998 A
5713857 Grimard et al. Feb 1998 A
5716725 Riveron et al. Feb 1998 A
5718562 Lawless et al. Feb 1998 A
5720729 Kriesel Feb 1998 A
5727241 Yamana et al. Mar 1998 A
5733673 Kunert Mar 1998 A
5743873 Cai et al. Apr 1998 A
5752940 Grimard May 1998 A
5755744 Shaw et al. May 1998 A
5762632 Whisson Jun 1998 A
5764159 Neftel Jun 1998 A
5772409 Johnson Jun 1998 A
5772635 Dastur et al. Jun 1998 A
5776116 Lopez et al. Jul 1998 A
5779665 Mastrototaro et al. Jul 1998 A
5785681 Indravudh Jul 1998 A
5788669 Peterson Aug 1998 A
5788671 Johnson Aug 1998 A
5788673 Young et al. Aug 1998 A
5788678 Van Antwerp Aug 1998 A
5795337 Grimard Aug 1998 A
5800387 Duffy et al. Sep 1998 A
5800420 Gross et al. Sep 1998 A
5801600 Butland et al. Sep 1998 A
5807336 Russo et al. Sep 1998 A
5810001 Genga et al. Sep 1998 A
5810771 Blomquist Sep 1998 A
5814015 Gargano et al. Sep 1998 A
5822715 Worthington et al. Oct 1998 A
5823746 Johnson Oct 1998 A
5832448 Brown Nov 1998 A
5840020 Heinonen et al. Nov 1998 A
5840026 Uber, III et al. Nov 1998 A
5843146 Cross, Jr. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5851692 Potts Dec 1998 A
5861018 Feierbach Jan 1999 A
5868669 Iliff Feb 1999 A
5871465 Vasko Feb 1999 A
5876370 Blomquist Mar 1999 A
5879143 Cote et al. Mar 1999 A
5879144 Johnson Mar 1999 A
5879163 Brown et al. Mar 1999 A
5882256 Shropshire Mar 1999 A
5885245 Lynch et al. Mar 1999 A
5897493 Brown Apr 1999 A
5899855 Brown May 1999 A
5913310 Brown Jun 1999 A
5918603 Brown Jul 1999 A
5925021 Castellano et al. Jul 1999 A
5928196 Johnson et al. Jul 1999 A
5928202 Linnebjerg Jul 1999 A
5931791 Saltzstein et al. Aug 1999 A
5933136 Brown Aug 1999 A
5935099 Peterson et al. Aug 1999 A
5935105 Manning et al. Aug 1999 A
5935106 Olsen Aug 1999 A
5940801 Brown Aug 1999 A
5951521 Mastrototaro et al. Sep 1999 A
5954485 Johnson et al. Sep 1999 A
5954697 Srisathapat et al. Sep 1999 A
5954700 Kovelman Sep 1999 A
5956501 Brown Sep 1999 A
5957890 Mann et al. Sep 1999 A
5960403 Brown Sep 1999 A
5961356 Fekete Oct 1999 A
5968011 Larsen et al. Oct 1999 A
5971963 Choi Oct 1999 A
5973623 Gupta et al. Oct 1999 A
5974437 Johannsen Oct 1999 A
5980506 Mathiasen Nov 1999 A
5989216 Johnson et al. Nov 1999 A
5989227 Vetter et al. Nov 1999 A
5997476 Brown Dec 1999 A
6007941 Hermann et al. Dec 1999 A
6009339 Bentsen et al. Dec 1999 A
6014587 Shaw et al. Jan 2000 A
6017326 Pasqualucci et al. Jan 2000 A
6017328 Fischell et al. Jan 2000 A
6024539 Blomquist Feb 2000 A
6032119 Brown et al. Feb 2000 A
6037078 Siu-Man Mar 2000 A
6042565 Hirschman et al. Mar 2000 A
6056522 Johnson May 2000 A
6056718 Funderburk et al. May 2000 A
6059753 Faust et al. May 2000 A
6063059 Kriesel May 2000 A
6073036 Heikkinen et al. Jun 2000 A
6077055 Vilks Jun 2000 A
6086575 Mejslov Jul 2000 A
6090071 Kriesel Jul 2000 A
6090081 Sudo et al. Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6096011 Trombley, III et al. Aug 2000 A
6099507 Heinzerling Aug 2000 A
6101478 Brown Aug 2000 A
6110152 Kovelman Aug 2000 A
6112111 Glantz Aug 2000 A
6123686 Olsen et al. Sep 2000 A
6123690 Mejslov Sep 2000 A
6135949 Russo et al. Oct 2000 A
6142150 O'Mahoney Nov 2000 A
6165154 Gray et al. Dec 2000 A
6171287 Lynn et al. Jan 2001 B1
6202708 Bynum Mar 2001 B1
6206856 Mahurkar Mar 2001 B1
6211856 Choi et al. Apr 2001 B1
6216795 Buchl Apr 2001 B1
6217550 Capes Apr 2001 B1
6225711 Gupta et al. May 2001 B1
6241704 Peterson et al. Jun 2001 B1
6246992 Brown Jun 2001 B1
6248093 Moberg Jun 2001 B1
6253804 Safabash Jul 2001 B1
6254586 Mann et al. Jul 2001 B1
6259587 Sheldon et al. Jul 2001 B1
6267564 Rapheal Jul 2001 B1
6269340 Ford et al. Jul 2001 B1
6270455 Brown Aug 2001 B1
6280416 Van Antwerp et al. Aug 2001 B1
6283943 Dy et al. Sep 2001 B1
6293159 Kriesel et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6305908 Hermann et al. Oct 2001 B1
6309375 Glines et al. Oct 2001 B1
6311868 Krietemeier et al. Nov 2001 B1
6321158 Delorme et al. Nov 2001 B1
6362591 Moberg Mar 2002 B1
6364859 St. Romain et al. Apr 2002 B1
6364865 Lavi et al. Apr 2002 B1
6374876 Bynum Apr 2002 B2
6375638 Nason et al. Apr 2002 B2
6416293 Bouchard et al. Jul 2002 B1
6422057 Anderson Jul 2002 B1
6423035 Das et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6428509 Fielder Aug 2002 B1
6447481 Duchon et al. Sep 2002 B1
6453956 Safabash Sep 2002 B2
6458102 Mann et al. Oct 2002 B1
6459424 Resman Oct 2002 B1
6461329 Van Antwerp et al. Oct 2002 B1
6461331 Van Antwerp Oct 2002 B1
6466203 Van Ee Oct 2002 B2
6475180 Peterson et al. Nov 2002 B2
6475196 Vachon Nov 2002 B1
6485461 Mason et al. Nov 2002 B1
6485465 Moberg et al. Nov 2002 B2
6520938 Funderburk et al. Feb 2003 B1
6537268 Gibson et al. Mar 2003 B1
6549423 Brodnick Apr 2003 B1
6551276 Mann et al. Apr 2003 B1
6551277 Ford Apr 2003 B1
6554798 Mann et al. Apr 2003 B1
6554800 Nezhadian et al. Apr 2003 B1
6555986 Moberg Apr 2003 B2
6558320 Causey, III et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6562023 Marrs et al. May 2003 B1
6564105 Starkweather et al. May 2003 B2
6571128 Lebel et al. May 2003 B2
6572542 Houben et al. Jun 2003 B1
6572586 Wojcik Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
RE38189 Walker et al. Jul 2003 E
6585644 Lebel et al. Jul 2003 B2
6585695 Adair et al. Jul 2003 B1
6591876 Safabash Jul 2003 B2
6592551 Cobb Jul 2003 B1
6595756 Gray et al. Jul 2003 B2
6607509 Bobroff et al. Aug 2003 B2
6613015 Sandstrom et al. Sep 2003 B2
D480477 Bush et al. Oct 2003 S
6641533 Causey, III et al. Nov 2003 B2
6642936 Engholm et al. Nov 2003 B1
6645177 Shearn Nov 2003 B1
6648821 Lebel et al. Nov 2003 B2
6652493 Das Nov 2003 B1
6652510 Lord et al. Nov 2003 B2
6656148 Das et al. Dec 2003 B2
6656158 Mahoney et al. Dec 2003 B2
6656159 Flaherty Dec 2003 B2
6659948 Lebel et al. Dec 2003 B2
6665909 Collins et al. Dec 2003 B2
6666839 Utterberg et al. Dec 2003 B2
6669669 Flaherty et al. Dec 2003 B2
6684058 Karacaoglu et al. Jan 2004 B1
6685678 Evans et al. Feb 2004 B2
6687546 Lebel Feb 2004 B2
6689091 Bui et al. Feb 2004 B2
6691043 Ribeiro, Jr. Feb 2004 B2
6692457 Flaherty Feb 2004 B2
6694191 Starkweather et al. Feb 2004 B2
6699218 Flaherty et al. Mar 2004 B2
6704034 Rodriguez et al. Mar 2004 B1
6716195 Nolan, Jr. et al. Apr 2004 B2
6723072 Flaherty et al. Apr 2004 B2
6733446 Lebel et al. May 2004 B2
6740059 Flaherty May 2004 B2
6740072 Starkweather et al. May 2004 B2
6740075 Lebel et al. May 2004 B2
6743205 Nolan, Jr. et al. Jun 2004 B2
6744350 Blomquist Jun 2004 B2
6749586 Vasko Jun 2004 B2
6749587 Flaherty Jun 2004 B2
6752299 Shetler et al. Jun 2004 B2
6752785 Van Antwerp et al. Jun 2004 B2
6752787 Causey, III et al. Jun 2004 B1
6758810 Lebel et al. Jul 2004 B2
6768425 Flaherty et al. Jul 2004 B2
6770067 Lorenzen et al. Aug 2004 B2
6772650 Ohyama et al. Aug 2004 B2
6800071 McConnell et al. Oct 2004 B1
6801420 Talbot et al. Oct 2004 B2
6805693 Gray et al. Oct 2004 B2
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6817990 Yap et al. Nov 2004 B2
6827702 Lebel et al. Dec 2004 B2
6830558 Flaherty et al. Dec 2004 B2
6835190 Nguyen Dec 2004 B2
6845465 Hashemi Jan 2005 B2
6852104 Blomquist Feb 2005 B2
6854620 Ramey Feb 2005 B2
6872200 Mann et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6879930 Sinclair et al. Apr 2005 B2
6892998 Newton May 2005 B2
6902207 Lickliter Jun 2005 B2
6916010 Beck et al. Jul 2005 B2
6930602 Villaseca et al. Aug 2005 B2
6932584 Gray et al. Aug 2005 B2
6936029 Mann et al. Aug 2005 B2
6945760 Gray et al. Sep 2005 B2
6950708 Bowman IV et al. Sep 2005 B2
6951551 Hudon Oct 2005 B2
6958705 Lebel et al. Oct 2005 B2
6960192 Flaherty et al. Nov 2005 B1
6960195 Heinz et al. Nov 2005 B2
6964643 Hovland et al. Nov 2005 B2
6974437 Lebel et al. Dec 2005 B2
6978517 Collins et al. Dec 2005 B2
6979326 Mann et al. Dec 2005 B2
6994619 Scholten Feb 2006 B2
6997905 Gillespie, Jr. et al. Feb 2006 B2
6997907 Safabash et al. Feb 2006 B2
6997910 Howlett et al. Feb 2006 B2
6997920 Mann et al. Feb 2006 B2
6997921 Gray et al. Feb 2006 B2
6999854 Roth Feb 2006 B2
1018360 Flaherty et al. Mar 2006 A1
7011608 Spencer Mar 2006 B2
7018360 Flaherty et al. Mar 2006 B2
7021560 Gray et al. Apr 2006 B2
7024245 Lebel et al. Apr 2006 B2
7025226 Ramey Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7029455 Flaherty Apr 2006 B2
7029456 Ware et al. Apr 2006 B2
7033338 Vilks et al. Apr 2006 B2
7033339 Lynn Apr 2006 B1
7041082 Blomquist et al. May 2006 B2
7044937 Kirwan et al. May 2006 B1
7045361 Heiss et al. May 2006 B2
7046230 Zadesky et al. May 2006 B2
7050927 Sinclair et al. May 2006 B2
7052251 Nason et al. May 2006 B2
7052483 Wojcik May 2006 B2
7061140 Zhang et al. Jun 2006 B2
7063684 Moberg Jun 2006 B2
7066029 Beavis et al. Jun 2006 B2
7074209 Evans et al. Jul 2006 B2
7075512 Fabre et al. Jul 2006 B1
7098803 Mann et al. Aug 2006 B2
7101509 Chang et al. Sep 2006 B2
7109878 Mann et al. Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7115113 Evans et al. Oct 2006 B2
7131967 Gray et al. Nov 2006 B2
7137964 Flaherty Nov 2006 B2
7144384 Gorman et al. Dec 2006 B2
7146977 Beavis et al. Dec 2006 B2
7201613 Sasaki Apr 2007 B2
7278753 Uke Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7303549 Flaherty et al. Dec 2007 B2
7305984 Altobelli et al. Dec 2007 B2
7306578 Gray et al. Dec 2007 B2
7342660 Altobelli et al. Mar 2008 B2
7390314 Stutz, Jr. et al. Jun 2008 B2
7498563 Mandro et al. Mar 2009 B2
7534231 Kuracina et al. May 2009 B2
7559530 Korogi et al. Jul 2009 B2
7682338 Griffin Mar 2010 B2
7717881 Caizza et al. May 2010 B2
7785296 Muskatello et al. Aug 2010 B2
7806868 De Polo et al. Oct 2010 B2
7914502 Newton et al. Mar 2011 B2
7926856 Smutney et al. Apr 2011 B2
7927314 Kuracina et al. Apr 2011 B2
8016789 Grant et al. Sep 2011 B2
8034026 Grant et al. Oct 2011 B2
8108040 Bernard et al. Jan 2012 B2
8262616 Grant et al. Sep 2012 B2
9833569 Gray Dec 2017 B2
11135357 Gray Oct 2021 B2
20010031944 Peterson et al. Oct 2001 A1
20010034502 Moberg et al. Oct 2001 A1
20010041869 Causey, III et al. Nov 2001 A1
20010056258 Evans Dec 2001 A1
20020002326 Causey, III et al. Jan 2002 A1
20020013613 Haller et al. Jan 2002 A1
20020022807 Duchon et al. Feb 2002 A1
20020038392 De La Huerga Mar 2002 A1
20020043951 Moberg Apr 2002 A1
20020052539 Haller et al. May 2002 A1
20020052574 Hochman et al. May 2002 A1
20020056114 Fillebrown et al. May 2002 A1
20020077598 Yap et al. Jun 2002 A1
20020077852 Ford et al. Jun 2002 A1
20020082665 Haller et al. Jun 2002 A1
20020091454 Vasko Jul 2002 A1
20020107481 Reilly et al. Aug 2002 A1
20020123672 Christophersom et al. Sep 2002 A1
20020126036 Flaherty et al. Sep 2002 A1
20020143290 Bui et al. Oct 2002 A1
20020158838 Smith et al. Oct 2002 A1
20020169439 Flaherty Nov 2002 A1
20020173748 McConnell et al. Nov 2002 A1
20020193679 Malave et al. Dec 2002 A1
20020193846 Pool et al. Dec 2002 A1
20030009133 Ramey Jan 2003 A1
20030014013 Choi Jan 2003 A1
20030028079 Lebel et al. Feb 2003 A1
20030028346 Sinclair et al. Feb 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030069543 Carpenter et al. Apr 2003 A1
20030076306 Zadesky et al. Apr 2003 A1
20030088238 Poulsen et al. May 2003 A1
20030114836 Estes et al. Jun 2003 A1
20030125672 Adair et al. Jul 2003 A1
20030130618 Gray et al. Jul 2003 A1
20030132922 Philipp Jul 2003 A1
20030141981 Bui et al. Jul 2003 A1
20030161744 Vilks et al. Aug 2003 A1
20030163089 Bynum Aug 2003 A1
20030163090 Blomquist et al. Aug 2003 A1
20030187525 Mann et al. Oct 2003 A1
20030191431 Mann et al. Oct 2003 A1
20030195462 Mann et al. Oct 2003 A1
20030212364 Mann et al. Nov 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030229311 G. Morris et al. Dec 2003 A1
20030233069 Gillespie, Jr. et al. Dec 2003 A1
20040003493 Adair et al. Jan 2004 A1
20040054326 Hammann et al. Mar 2004 A1
20040059315 Erickson et al. Mar 2004 A1
20040064088 Gorman et al. Apr 2004 A1
20040068230 Estes et al. Apr 2004 A1
20040073095 Causey, III et al. Apr 2004 A1
20040073161 Tachibana Apr 2004 A1
20040082908 Whitehurst et al. Apr 2004 A1
20040082918 Evans et al. Apr 2004 A1
20040085215 Moberg et al. May 2004 A1
20040092873 Moberg May 2004 A1
20040092878 Flaherty May 2004 A1
20040116893 Spohn et al. Jun 2004 A1
20040121767 Simpson et al. Jun 2004 A1
20040127958 Mazar et al. Jul 2004 A1
20040133166 Moberg et al. Jul 2004 A1
20040135078 Mandro et al. Jul 2004 A1
20040140304 Leyendecker Jul 2004 A1
20040158193 Bui et al. Aug 2004 A1
20040162528 Horvath et al. Aug 2004 A1
20040167464 Ireland et al. Aug 2004 A1
20040172301 Mihai et al. Sep 2004 A1
20040176667 Mihai et al. Sep 2004 A1
20040176725 Stutz, Jr. et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040207404 Zhang et al. Oct 2004 A1
20040235446 Flaherty et al. Nov 2004 A1
20040243065 McConnell et al. Dec 2004 A1
20050015056 Duchon et al. Jan 2005 A1
20050021000 Adair et al. Jan 2005 A1
20050022274 Campbell et al. Jan 2005 A1
20050027254 Vasko Feb 2005 A1
20050035956 Sinclair et al. Feb 2005 A1
20050048900 Scholten Mar 2005 A1
20050052429 Philipp Mar 2005 A1
20050055242 Bello et al. Mar 2005 A1
20050055244 Mullan et al. Mar 2005 A1
20050062732 Sinclair et al. Mar 2005 A1
20050063857 Alheidt et al. Mar 2005 A1
20050065464 Talbot et al. Mar 2005 A1
20050065817 Mihai et al. Mar 2005 A1
20050069425 Gray et al. Mar 2005 A1
20050085760 Ware et al. Apr 2005 A1
20050096593 Pope et al. May 2005 A1
20050137530 Campbell et al. Jun 2005 A1
20050137573 Mclaughlin Jun 2005 A1
20050148938 Blomquist Jul 2005 A1
20050171512 Flaherty Aug 2005 A1
20050171513 Mann et al. Aug 2005 A1
20050177111 Ozeri et al. Aug 2005 A1
20050182366 Vogt et al. Aug 2005 A1
20050182389 LaPorte et al. Aug 2005 A1
20050187515 Varrichio et al. Aug 2005 A1
20050187593 Housworth et al. Aug 2005 A1
20050192494 Ginsberg Sep 2005 A1
20050203461 Flaherty et al. Sep 2005 A1
20050215982 Malave et al. Sep 2005 A1
20050224705 Tobiason et al. Oct 2005 A1
20050234404 Vilks et al. Oct 2005 A1
20050238503 Rush et al. Oct 2005 A1
20050238507 Dilanni et al. Oct 2005 A1
20050245904 Estes et al. Nov 2005 A1
20050250368 Singer et al. Nov 2005 A1
20050261660 Choi Nov 2005 A1
20050263615 Kriesel et al. Dec 2005 A1
20050267363 Duchon et al. Dec 2005 A1
20050267550 Hess et al. Dec 2005 A1
20050267928 Anderson et al. Dec 2005 A1
20050273059 Mernoe et al. Dec 2005 A1
20050285880 Lai et al. Dec 2005 A1
20060016800 Paradiso et al. Jan 2006 A1
20060025663 Talbot et al. Feb 2006 A1
20060026535 Hotelling et al. Feb 2006 A1
20060026536 Hotelling et al. Feb 2006 A1
20060038791 Mackey Feb 2006 A1
20060041229 Garibotto et al. Feb 2006 A1
20060065772 Grant et al. Mar 2006 A1
20060066581 Lyon et al. Mar 2006 A1
20060097991 Hotelling et al. May 2006 A1
20060100591 Alheidt et al. May 2006 A1
20060106346 Sullivan et al. May 2006 A1
20060123884 Selker et al. Jun 2006 A1
20060129112 Lynn Jun 2006 A1
20060144942 Evans et al. Jul 2006 A1
20060160670 Spencer Jul 2006 A1
20060161870 Hotelling et al. Jul 2006 A1
20060161871 Hotelling et al. Jul 2006 A1
20060173406 Hayes et al. Aug 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060178633 Garibotto et al. Aug 2006 A1
20060178836 Bai et al. Aug 2006 A1
20060184084 Ware et al. Aug 2006 A1
20060184123 Gillespie, Jr. et al. Aug 2006 A1
20060184154 Moberg et al. Aug 2006 A1
20060200257 Kirste et al. Sep 2006 A1
20060227117 Proctor Oct 2006 A1
20060229557 Fathallah et al. Oct 2006 A1
20060232554 Wong et al. Oct 2006 A1
20060236262 Bathiche et al. Oct 2006 A1
20060236263 Bathiche et al. Oct 2006 A1
20060253085 Geismar et al. Nov 2006 A1
20060264894 Moberg et al. Nov 2006 A1
20060282290 Flaherty et al. Dec 2006 A1
20070049870 Gray et al. Mar 2007 A1
20070060872 Hall et al. Mar 2007 A1
20070062250 Krulevitch et al. Mar 2007 A1
20070066940 Karunaratne et al. Mar 2007 A1
20070066956 Finkel Mar 2007 A1
20070072146 Pierson Mar 2007 A1
20070093750 Jan et al. Apr 2007 A1
20070100283 Causey, III et al. May 2007 A1
20070112298 Mueller, Jr. et al. May 2007 A1
20070118405 Campbell et al. May 2007 A1
20070161955 Bynum et al. Jul 2007 A1
20070167905 Estes et al. Jul 2007 A1
20070176322 Etter Aug 2007 A1
20070178776 Etter et al. Aug 2007 A1
20070185450 De Polo et al. Aug 2007 A1
20070191770 Moberg et al. Aug 2007 A1
20070203439 Boyd et al. Aug 2007 A1
20070219480 Kamen et al. Sep 2007 A1
20070219496 Kamen et al. Sep 2007 A1
20070219597 Kamen et al. Sep 2007 A1
20070228071 Kamen et al. Oct 2007 A1
20070255250 Moberg et al. Nov 2007 A1
20070258395 Jollota et al. Nov 2007 A1
20080009824 Moberg et al. Jan 2008 A1
20080051709 Mounce et al. Feb 2008 A1
20080051710 Moberg et al. Feb 2008 A1
20080051711 Mounce et al. Feb 2008 A1
20080097321 Mounce et al. Apr 2008 A1
20080097327 Bente et al. Apr 2008 A1
20080097328 Moberg et al. Apr 2008 A1
20080097381 Moberg et al. Apr 2008 A1
20080125700 Moberg et al. May 2008 A1
20080125701 Moberg et al. May 2008 A1
20080160492 Campbell et al. Jul 2008 A1
20080161754 Marano-Ford Jul 2008 A1
20080177900 Grant et al. Jul 2008 A1
20080243079 Wooley et al. Oct 2008 A1
20080255502 Jacobson et al. Oct 2008 A1
20080294108 Briones et al. Nov 2008 A1
20090036870 Mounce et al. Feb 2009 A1
20090062767 Van Antwerp et al. Mar 2009 A1
20090062778 Bengtsson et al. Mar 2009 A1
20090069749 Miller et al. Mar 2009 A1
20090076461 Susi et al. Mar 2009 A1
20090099523 Grant et al. Apr 2009 A1
20090124994 Roe May 2009 A1
20090139517 Wachtel et al. Jun 2009 A1
20090143735 De Polo et al. Jun 2009 A1
20090160654 Yang Jun 2009 A1
20090163855 Shin et al. Jun 2009 A1
20090164251 Hayter Jun 2009 A1
20090171291 Bente, IV et al. Jul 2009 A1
20090172425 Cetin et al. Jul 2009 A1
20090198183 Krumme et al. Aug 2009 A1
20090234213 Hayes et al. Sep 2009 A1
20090254025 Simmons Oct 2009 A1
20090259217 Hyde et al. Oct 2009 A1
20090270811 Mounce et al. Oct 2009 A1
20100022963 Edwards et al. Jan 2010 A1
20100063445 Sternberg et al. Mar 2010 A1
20100094215 Grant et al. Apr 2010 A1
20100186739 Kronestedt et al. Jul 2010 A1
20100305512 Guillermo et al. Dec 2010 A1
20110208123 Gray et al. Aug 2011 A1
Foreign Referenced Citations (91)
Number Date Country
398394 Nov 1990 EP
0917882 May 1999 EP
0917882 May 2003 EP
9408647 Apr 1994 WO
9524229 Sep 1995 WO
9528878 Nov 1995 WO
9531233 Nov 1995 WO
199528878 Nov 1995 WO
9608281 Mar 1996 WO
9614100 May 1996 WO
9620745 Jul 1996 WO
9636389 Nov 1996 WO
9721456 Jun 1997 WO
9740482 Oct 1997 WO
9814234 Apr 1998 WO
9817336 Apr 1998 WO
199817336 Apr 1998 WO
9820439 May 1998 WO
9824358 Jun 1998 WO
9842407 Oct 1998 WO
9849659 Nov 1998 WO
9858693 Dec 1998 WO
9859487 Dec 1998 WO
9908183 Feb 1999 WO
9910801 Mar 1999 WO
9918532 Apr 1999 WO
9922236 May 1999 WO
9944655 Sep 1999 WO
9959663 Nov 1999 WO
0010628 Mar 2000 WO
0028217 Mar 2000 WO
200010628 Mar 2000 WO
0069493 Nov 2000 WO
0100261 Jan 2001 WO
0161616 Aug 2001 WO
0170304 Sep 2001 WO
0204047 Jan 2002 WO
02004047 Jan 2002 WO
0224257 Mar 2002 WO
2002024257 Mar 2002 WO
0249509 Jun 2002 WO
02053220 Jul 2002 WO
02056945 Jul 2002 WO
02070049 Sep 2002 WO
02083209 Oct 2002 WO
2002083209 Oct 2002 WO
03059420 Jul 2003 WO
03053498 Jul 2003 WO
03059422 Jul 2003 WO
03063932 Aug 2003 WO
03071930 Sep 2003 WO
03090838 Nov 2003 WO
03094075 Nov 2003 WO
04006981 Jan 2004 WO
04007133 Jan 2004 WO
2004006981 Jan 2004 WO
2004007133 Jan 2004 WO
2004008956 Jan 2004 WO
2004009160 Jan 2004 WO
2004-028596 Apr 2004 WO
04028596 Apr 2004 WO
04058327 Jul 2004 WO
04069095 Aug 2004 WO
04070548 Aug 2004 WO
04070557 Aug 2004 WO
04070994 Aug 2004 WO
04070995 Aug 2004 WO
04098390 Nov 2004 WO
05000378 Jan 2005 WO
05010796 Feb 2005 WO
05016411 Feb 2005 WO
05019766 Mar 2005 WO
05019987 Mar 2005 WO
05039671 May 2005 WO
05101279 Oct 2005 WO
2005094920 Oct 2005 WO
2005102416 Nov 2005 WO
05102416 Nov 2005 WO
05112899 Dec 2005 WO
05121938 Dec 2005 WO
06001929 Jan 2006 WO
06023147 Mar 2006 WO
06032652 Mar 2006 WO
2006081975 Aug 2006 WO
06081975 Aug 2006 WO
06083831 Aug 2006 WO
06097453 Sep 2006 WO
06108809 Oct 2006 WO
2007016145 Feb 2007 WO
2007094833 Aug 2007 WO
2009083600 Jul 2009 WO
Non-Patent Literature Citations (20)
Entry
Conical fittings with a 6% (Luer) taper for syringes, needles and certain other medical equipment, Part 1. General requirements, British Standard, BS EN 20594-1 : 1994 ISO 594-1 : 1986 (17 pages).
Extended European Search Report From European Application No. 09075460.7, dated Mar. 5, 2010 (14 pages).
International Preliminary Report on Patentability From International Application No. PCT/US2007/003567, dated Aug. 21, 2008 (11 pages).
International Search Report and Written Opinion From International Application No. PCT/US2007/003490, dated Nov. 28, 2007 (20 pages).
International Search Report and Written Opinion From International Application No. PCT/US2007/003567, dated Oct. 17, 2007 (18 pages).
International Search Report and Written Opinion From International Application No. PCT/US2007/003587, Nov. 12, 2007 (18 pages).
International Search Report and Written Opinion From International Application No. PCT/US2009/093169, dated Mar. 31, 2010 (23 pages).
International Search Report From International Application No. PCT/US2009/060158, dated Mar. 23, 2010 (7 pages).
Office Action from Japanese Appln. No. 2002-591067 dated Jun. 10, 2008 (4 pages).
Search Report from EP Appln. No. 10075446.4 dated Aug. 25, 2011 (10 pages).
Office Action from U.S. Appl. No. 12/249,891, dated Nov. 18, 2009 (15 pages).
Preliminary Report on Patentability from corresponding International Appln. No. PCT/US2011/022051 dated Jul. 24, 2012 (13 pages).
International Search Report and Written Opinion From Application No. PCT/US2007/003634, Oct. 2, 2007 (18 pages).
Conical fittings with a 6% (Luer) taper for syringes, needles and certain other medical equipment—Lock fittings, British Standard, BS EN 1707: 1997 (20 pages).
International Search Report with Written Opinion, dated Oct. 2, 2007, received in international patent application No. PCT/US07/003634, 17 pgs.
International Search Report with Written Opinion, dated Nov. 12, 2007, received in international patent application No. PCT/US07/003587, 18 pgs.
International Search Report with Written Opinion, dated Oct. 17, 2007, received in international patent application No. PCT/US07/003567, 18 pgs.
International Preliminary Report on Patentability & Written Opinion, PCT Application No. PCT/US2011/030553 dated Oct. 11, 2012, 9 pgs.
International Search Report & Written Opinion, PCT Application No. PCT/US2011/030553 dated Dec. 23, 2011, 12 pgs.
Partial International Search Report, PCT Application No. PCT/US2011/030553 dated Oct. 18, 2011, 6 pgs.
Related Publications (1)
Number Date Country
20220080112 A1 Mar 2022 US
Provisional Applications (1)
Number Date Country
61176508 May 2009 US
Continuations (2)
Number Date Country
Parent 15830722 Dec 2017 US
Child 17489056 US
Parent 13121822 US
Child 15830722 US
Continuation in Parts (8)
Number Date Country
Parent 12249621 Oct 2008 US
Child 13121822 US
Parent 12249891 Oct 2008 US
Child 13121822 US
Parent 12249496 Oct 2008 US
Child 13121822 US
Parent 12249340 Oct 2008 US
Child 13121822 US
Parent 12249882 Oct 2008 US
Child 13121822 US
Parent 12249540 Oct 2008 US
Child 13121822 US
Parent 12249636 Oct 2008 US
Child 13121822 US
Parent 12249600 Oct 2008 US
Child 13121822 US