Infusion pump systems and methods

Information

  • Patent Grant
  • 11865299
  • Patent Number
    11,865,299
  • Date Filed
    Monday, August 10, 2020
    4 years ago
  • Date Issued
    Tuesday, January 9, 2024
    11 months ago
Abstract
Some embodiments of an infusion pump system can be used to determine a user's total insulin load (TIL) that provides an accurate indication of the insulin previously delivered to the user's body which has not yet acted. In particular embodiments, the TIL can account for both the bolus deliveries and the basal deliveries that have occurred over a period of time. Such information may be useful, for example, when the infusion pump is operated in conjunction with a continuous glucose monitoring device.
Description
TECHNICAL FIELD

This disclosure relates to portable infusion pump systems to deliver fluids, such as insulin infusion pump systems or the like.


BACKGROUND

Pump devices are commonly used to deliver one or more fluids to a targeted individual. For example, a medical infusion pump device may be used to deliver a medicine to a patient as part of a medical treatment. The medicine that is delivered by the infusion pump device can depend on the condition of the patient and the desired treatment plan. For example, infusion pump devices have been used to deliver insulin to the vasculature of diabetes patients so as to regulate blood-glucose levels. In some circumstances, the dosage of medicine delivered by the infusion pump acts within the patient's body over a long period of time. Such conditions, for example, may cause a patient to have an amount of non-activated insulin in his or her system even though the infusion pump is programmed to deliver the next dosage in a series of insulin dosages.


SUMMARY

Some embodiments an infusion pump system can be used to determine a user's total insulin load (TIL) that provides an accurate indication of the insulin already delivered to the user's body which has not yet acted. In particular embodiments, the TIL can account for both the bolus deliveries and the basal deliveries that have occurred over a period of time. Such information can be valuable to a user when the infusion pump is operated in conjunction with a glucose monitoring device worn by the user. Moreover, the TIL information can be readily displayed to the user as a quick reference of his or her status. For example, the infusion pump system can include a user interface that contemporaneously displays the user's blood glucose value and the total insulin load, thereby enabling the user to make informed decisions regarding the current and future status of his or her blood glucose level.


In particular embodiments, a medical infusion pump system may include a portable pump housing that receives insulin for dispensation to a user. The pump housing may at least partially contain a pump drive system to dispense the insulin through a flow path to the user. The pump system also may include a controller that activates the pump drive system to dispense the insulin from the portable pump housing. The pump system may further include a monitoring device that communicates glucose information to the controller. The glucose information may be indicative of a blood glucose level of the user. The pump system also may include a user interface coupled to the controller including a display device that contemporaneously displays a glucose value indicative of the blood glucose level of the user and a total insulin load indicative of bolus and basal insulin dosages that have dispensed but not yet acted in the user.


Some embodiments of a method of operating an insulin infusion pump system may include determining a total insulin load for a particular time that accounts for a bolus insulin load, a basal insulin load, and a previous food component. The bolus insulin load may be indicative of one or more bolus insulin dosages that have been dispensed into a user from a portable infusion pump system but not yet acted in the user. The basal insulin load may be indicative of one or more basal insulin dosages that have been dispensed into the user from the portable infusion pump system but not yet acted in the user. The previous food component may be based upon previous food intake that has not yet metabolized in the user. The method also may include storing a calculated value for the total insulin load and a time value for the particular time in a computer-readable memory device of the portable infusion pump system. The method may further include displaying the calculated value for the total insulin load on a display device of the portable infusion pump system.


In certain embodiments, a method of operating an insulin infusion pump system may include receiving user input indicative of a request to suggest a bolus dosage. The method may also include receiving user input indicative of a proposed food intake to be consumed by a user of a portable infusion pump system. The method may further include receiving glucose information indicative of a glucose level of the user. Also, the method may include determining a bolus suggestion value according to a function that includes a total insulin load of the user. The total insulin load may account for (i) a bolus insulin load indicative of one or more bolus insulin dosages that have been dispensed into the user but not yet acted in the user, (ii) a basal insulin load indicative of one or more basal insulin dosages that have been dispensed into the user from the portable infusion pump system but not yet acted in the user; and (iii) a previous food component based upon previous food intake that has not yet metabolized in the user. The method may also include displaying the bolus suggestion value on a display device of the portable infusion pump system.


These and other embodiments described herein may provide one or more of the following advantages. First, the infusion pump system can be used to provide a TIL value that accurately estimates the amount of previously delivered insulin that has not yet acted in the user's body. For example, the TIL can be determined in a manner that accounts for both the bolus deliveries and the basal deliveries (not merely previous bolus deliveries). As such, the TIL values may accurately reflect basal rate changes and the impact of stopping insulin delivery or changing basal delivery for a short period of time (e.g., a temporary basal rate change). Also, in particular embodiments, the TIL can account for the user's previously consumed food in addition to the bolus deliveries and the basal deliveries. In these circumstances, the TIL values may accurately reflect both the previously dispensed insulin that has not yet acted and the previously consumed food that has not yet been metabolized. Second, the TIL information provided by the infusion pump system can provide the user with opportunities for informed decision-making when the infusion pump is operated in conjunction with a continuous glucose monitoring device. For example, the infusion pump system can include a user interface that contemporaneously displays the user's blood glucose value and the total insulin load, thereby enabling the user to make informed decisions regarding the current and future status of his or her blood glucose level. Third, the infusion pump system can include a bolus suggestion feature that accounts for the user's TIL when suggesting a new bolus of insulin prior to a meal of other food intake. For example, in response to a user's request, the infusion pump system may communicate a suggested bolus dosage of insulin that is calculated to account for the meal of other food to be consumed (e.g., a food bolus), the current difference between the user's actual blood glucose level and the targeted blood glucose level (e.g., a correction bolus), and the amount of previous basal and bolus insulin that has not yet acted in the user's body (e.g., a TIL factor).


The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF DRAWINGS


FIG. 1 is a perspective view of an infusion pump system in accordance with some embodiments.



FIG. 2 is a perspective exploded view of an infusion pump assembly of the system of FIG. 1.



FIG. 3 is a perspective view of the infusion pump system of FIG. 1 in which the pump assembly is worn on clothing of a user, in accordance with particular embodiments.



FIG. 4 is a perspective view of an infusion pump system of FIG. 1 in which the pump assembly is worn on skin of a user, in accordance with other embodiments.



FIGS. 5 and 6 are perspective views of a pump device being detached from a controller device of the system of FIG. 1, in accordance with some embodiments.



FIGS. 7 and 8 are perspective views of the pump device of FIGS. 5 and 6 being discarded and the controller device of FIGS. 5 and 6 being reused with a new pump device.



FIG. 9 is an exploded perspective view of a controller device for an infusion pump system, in accordance with some embodiments.



FIG. 10 is a perspective view of a portion of a pump device for an infusion pump system, in accordance with particular embodiments.



FIG. 11 is a flow diagram depicting an exemplary process used to determine a user's total insulin load (TIL), in accordance with some embodiments.



FIG. 12 is a diagram depicting an example of an insulin decay curve, which may be employed in the determination of the user's TIL in accordance with some embodiments.



FIG. 13 is a diagram depicting an example of an insulin delivery pattern (constant basal delivery rate only) and a user's corresponding TIL and TIL % values, in accordance with some embodiments.



FIG. 14 is a diagram depicting an example of an insulin delivery pattern (constant basal delivery rate plus selected bolus deliveries) and a user's corresponding TIL and TIL % values, in accordance with some embodiments.



FIG. 15 is a diagram depicting an example of an insulin delivery pattern (intermittent basal delivery plus selected bolus deliveries) and corresponding TIL and TIL %, in accordance with some embodiments.



FIG. 16A is a diagram depicting an example of an insulin delivery pattern (intermittent basal delivery plus selected bolus deliveries) and a user's corresponding TIL and TIL % values, in accordance with some embodiments.



FIG. 16B is a diagram depicting an example of insulin delivery pattern (intermittent basal delivery plus selected bolus deliveries) and a user's corresponding TIL and TIL % values that account for a previously consumed food component, in accordance with some embodiments.



FIG. 17 is a flow diagram depicting an exemplary process used to determine a bolus suggestion, in accordance with some embodiments.



FIG. 18 is a perspective view of an infusion pump assembly connected to an external computer for displaying a plot of TIL data received from the infusion pump assembly, in accordance with some embodiments.



FIG. 19 is a perspective view of an infusion pump assembly displaying a plot of TIL data on a display device, in accordance with some embodiments.





Like reference symbols in the various drawings indicate like elements.


DETAILED DESCRIPTION

Referring to FIG. 1, an infusion pump system 10 can include a pump assembly 60 used to supply insulin or other medication to a user via, for example, an infusion set 70. In some embodiments, a glucose monitoring device 50 can be in communication with the infusion pump assembly 60 for the purpose of supplying data indicative of a user's blood glucose level to a controller device 200 included in the pump assembly 60. The infusion pump system 10 can be configured to supply a substantially continuous basal rate of insulin (or other medication) with user-selected bolus dosages. The basal rate can be selected to maintain a user's blood glucose level in a target range during normal activity when the user is not eating or otherwise consuming food items, and the selected bolus deliveries may provide substantially larger amounts of insulin to limit the blood glucose level during certain circumstances, such as the consumption of carbohydrates and other food items. The basal and bolus insulin dispensed into the user's system may act over a period of time to control the user's blood glucose level. As such, the user's body may include some amount of insulin that has not yet acted even while the infusion pump assembly 60 is activated to deliver additional dosages (basal, bolus, or both). In these circumstances, the infusion pump assembly 60 can be used to determine a user's total insulin load (TIL) that provides an accurate indication of the insulin which has not yet acted in the user's body. For example, as shown in FIG. 1, the controller device 200 of the infusion pump assembly 60 can include a user interface 220 configured to calculate and display the TIL value along with the user's blood glucose value, thereby enabling the user to make informed decisions regarding the current and future status of his or her blood glucose level.


The TIL information provided by the controller device 200 can be determined in a manner that accounts for both the bolus deliveries and the basal deliveries (not merely bolus deliveries alone). As described in more detail below, this process for determining the TIL value can accurately reflect basal rate changes and the effects from stopping insulin delivery or changing basal delivery for a short period of time (e.g., a temporary basal rate change). Also, in further embodiments, the TIL information provided by the controller device 200 can be determined in a manner that accounts for the user's previously consumed food (along with the previous basal and bolus deliveries). As described in more detail below, such a process for determining the TIL value can reveal the effects from both the previously dispensed insulin that has not yet acted and the previously consumed food that has not yet been metabolized. In some embodiments, data related to the TIL, such as total insulin load values and the times at which they were calculated, can be stored in a memory device (described below) of the controller device 200. This data can be used, for example, by the controller device 200 in a process to suggest a new bolus dosage based in response a user's request. For example, the bolus suggestion value can be based, at least in part, on a user's current blood glucose level, food information supplied by the user (e.g., proposed food intake), and a recently calculated TIL value for the user. Moreover, the TIL data stored in the memory device of the controller device 200 can be exported to an external computer system for analysis by a physician, the user, or both. For example, as described in more detail below, the TIL data can be presented in a plot format to assist the user and physician in making adjustments to the user's insulin delivery patterns or food intake to improve management the user's blood glucose level.


Still referring to FIG. 1, the glucose monitoring device 50 can include a housing 52, a wireless communication device 54, and a sensor shaft 56. The wireless communication device 54 can be contained within the housing 52 and the sensor shaft 56 can extend outward from the housing 52. In use, the sensor shaft 56 can penetrate the skin 20 of a user to make measurements indicative of characteristics of the user's blood (e.g., the user's blood glucose level or the like). In response to the measurements made by the sensor shaft 56, the glucose monitoring device 50 can employ the wireless communication device 54 to transmit data to the controller device 200 of the pump assembly 60.


In some embodiments, the monitoring device 50 may include a circuit that permits sensor signals (e.g., data from the sensor shaft 56) to be communicated to the communication device 54. The communication device 54 can transfer the collected data to the infusion pump assembly 60 (e.g., by wireless communication to a communication device 247 arranged in the pump assembly 60). In some embodiments, the monitoring device 50 can employ other methods of obtaining information indicative of a user's blood characteristics and transferring that information to the infusion pump assembly 60. For example, an alternative monitoring device may employ a micropore system in which a laser porator creates tiny holes in the uppermost layer of a user's skin, through which interstitial glucose is measured using a patch. Alternatively, the monitoring device can use iontophoretic methods to non-invasively extract interstitial glucose for measurement. In other examples, the monitoring device can include non-invasive detection systems that employ near IR, ultrasound or spectroscopy, and particular embodiments of glucose-sensing contact lenses. Invasive methods involving optical means of measuring glucose could also be added. In yet another example, the monitoring device can include an optical detection instrument that is inserted through the skin for measuring the user's glucose level.


Furthermore, it should be understood that in some embodiments, the monitoring device 50 can be in communication with the pump assembly 60 via a wired connection. In other embodiments of the pump system 10, test strips (e.g., blood test strips) containing a sample of the user's blood can be inserted into a strip reader portion of the pump assembly 60 to be tested for characteristics of the user's blood. Alternatively, the test strips (e.g., glucose test strips) containing a sample of the user's blood can be inserted into a glucose meter device (not shown in FIG. 1), which then analyzes the characteristics of the user's blood and communicates the information (via a wired or wireless connection) to the pump assembly 60. In still other embodiments, characteristics of the user's blood glucose information can be entered directly into the infusion pump system 10 via a user interface on the controller device 200.


Referring now to FIGS. 1 and 2, the infusion pump assembly 60 can include a pump device 100 and the controller device 200 that communicates with the pump device 100. The pump device 100 includes a pump housing structure 110 that defines a cavity 116 in which a fluid cartridge 120 can be received. The pump device 100 also includes a cap device 130 to retain the fluid cartridge 120 in the cavity 116 of the pump housing structure 110. The pump device 100 includes a drive system (described in more detail below in connection with FIG. 10) that advances a plunger 125 in the fluid cartridge 120 so as to dispense fluid therefrom. In some embodiments, the dispensed fluid exits the fluid cartridge 120, passes through a flexible tube 72 of the infusion set 70 to a cannula housing 74. The dispensed fluid can enter through the skin via a cannula 76 attached to the underside of the cannula housing 74.


In some embodiments, the controller device 200 communicates with the pump device 100 to control the operation of the pump drive system. When the controller device 200, the pump device 100 (including the cap device 130 in this embodiment), and the fluid cartridge 120 are assembled together, the user may conveniently wear the infusion pump assembly 60 on the user's skin under clothing or in the user's pocket while receiving the fluid dispensed from the pump device 100 (refer, for example, to FIGS. 3 and 4). Thus, in some embodiments, the pump assembly can operate as a portable unit that provides reliable delivery of insulin or another medication in a discrete manner.


As described in more detail below, the controller device 200 may be configured as a reusable component that provides electronics and a user interface to control the operation of the pump device 100. In such circumstances, the pump device 100 can be a disposable component that is disposed of after a single use. For example, the pump device 100 can be a “one time use” component that is thrown away after the fluid cartridge 120 therein is exhausted. Thereafter, the user can removably attach a new pump device 100 to the reusable controller device 200 for the dispensation of fluid from a new fluid cartridge 120. Accordingly, the user is permitted to reuse the controller device 200 (which may include complex or valuable electronics) while disposing of the relatively low-cost pump device 100 after each use. Such a pump assembly 60 can provide enhanced user safety as a new pump device 100 (and drive system therein) is employed with each new fluid cartridge 120.


Briefly, in use, the pump device 100 can be configured to removably attach to the controller device 200 in a manner that provides a secure fitting, an overall compact size, and a reliable electrical connection. The compact size permits the infusion pump assembly 60 to be discrete and portable. As described in more detail below, the controller device 200 of the infusion pump system can be used to provide TIL information that accurately estimates the amount of previously delivered insulin that has not yet acted in the user's body. In these embodiments, the TIL information can provide the user with opportunities for informed decision-making when the pump assembly 60 is operated in conjunction with the monitoring device 50. In addition, the controller device 200 can provide a bolus suggestion feature that accounts for the user's TIL when suggesting a new bolus of insulin prior to a meal of other food intake. Because the bolus suggestion feature accounts for the amount of previous basal and bolus insulin that has not yet acted in the user's body, the controller device 200 can provide a suitable bolus suggestion amount that generally avoids excessive stacking of insulin doses.


It should be understood that, in alternative embodiments, the pump device 100 and the controller device 200 can be configured as a single unit in which the control components and the pump drive system are arranged in a single housing. In these alternative embodiments, the pump assembly (including the controller device and the pump device) may have a different size and shape and may operate as a reusable unit that can communicate with a number of monitoring devices 50 over a period of time.


Referring again to FIGS. 1 and 2, in some embodiments, the infusion pump system 10 is a medical infusion pump system that is configured to controllably dispense a medicine from the cartridge 120. As such, the fluid cartridge 120 may contain a medicine 126 to be infused into the tissue or vasculature of a targeted individual, such as a human or animal patient. For example, the pump device 100 can be adapted to receive a medicine cartridge 120 in the form of a carpule that is preloaded with insulin or another medicine for use in the treatment of Diabetes (e.g., BYETTA®, SYMLIN®, or others). Such a cartridge 120 may be supplied, for example, by Eli Lilly and Co. of Indianapolis, IN. Other examples of medicines contained in the fluid cartridge 120 include: pain relief drugs, hormone therapy, blood pressure treatments, anti-emetics, osteoporosis treatments, or other injectable medicines. The medicine dispensed from the cartridge 120 into the user's system may act over a period of time in the user's body. As such, the user's body may include some amount of medicine that has not yet acted even while the infusion pump assembly 60 is activated to deliver additional dosages of the medicine (basal, bolus, or both). The infusion pump assembly 60 can be used to determine a user's total medicine load that provides an accurate indication of the medicine which has not yet acted in the user's body. The total medicine load can be determine by the controller device 200 in a manner that accounts for both the bolus deliveries and the basal deliveries of the medicine (similar to the process for determining the total insulin load as described below). It should be understood from the description herein that the fluid cartridge 120 may have a configuration other than that depicted in FIG. 2. For example, the fluid cartridge may have a different outer shape or a different reservoir volume. In another example, the fluid cartridge may comprise a reservoir that is integral with the pump housing structure 110 (e.g., the fluid cartridge can be defined by one or more walls of the pump housing structure 110 that surround a plunger to define a reservoir in which the medicine is injected or otherwise received).


In some embodiments, the pump device 100 may include one or more structures that interfere with the removal of the medicine cartridge 120 after the medicine cartridge 120 is inserted into the cavity 116. For example, as shown in FIG. 2, the pump housing structure 110 may include one or more retainer wings 119 that at least partially extend into the cavity 116 to engage a portion of the medicine cartridge 120 when the medicine cartridge 120 is installed therein. In this embodiment, the pump housing structure 110 includes a pair of opposing retainer wings 119 (only one is shown in the view in FIG. 2) that flex toward the inner surface of the cavity 116 during insertion of the medicine cartridge 120. After the medicine cartridge is inserted to a particular depth, the retainer wings 119 are biased to flex outward (toward the center of the cavity 116) so that the retainer wings 119 engage a neck portion 129 of the medicine cartridge 120. This engagement with the retainer wings 119 and the neck portion 129 hinder any attempts to remove the medicine cartridge 120 away from the pump device 100. Alternative embodiments can include other features and/or configurations to hinder the removal of the medicine cartridge 120.


Embodiments of the pump device 100 that hinder the removal of the medicine cartridge 120 may facilitate the “one-time-use” feature of the pump device 100. Because the retainer wings 119 can interfere with attempts to remove the medicine cartridge 120 from the pump device 100, the pump device 100 will be discarded along with the medicine cartridge 120 after the medicine cartridge 120 is emptied, expired, or otherwise exhausted. The retainer wings 119 may serve to hinder attempts to remove the exhausted medicine cartridge 120 and to insert a new medicine cartridge 120 into the previously used pump device 100. Accordingly, the pump device 100 may operate in a tamper-resistant and safe manner because the pump device 100 can be designed with predetermined life expectancy (e.g., the “one-time-use” feature in which the pump device is discarded after the medicine cartridge 120 is emptied, expired, or otherwise exhausted).


Still referring to FIGS. 1 and 2, the cap device 130 can be joined with the pump device 100 after the medicine cartridge is inserted in the cavity 116. It should be understood that the cap device 130 may supplement or replace the previously described retainer wings 119 by locking into position after joining with the pump housing 110, thereby hindering removal of the fluid cartridge 120 in the pump housing 110. As shown in FIGS. 1 and 2, the cap device 130 may include an output port 139 that connects with the tubing 72 for dispensation of the medicine to the user. In some embodiments, the output port 139 may have an angled orientation such that a portion of the tubing extends transversely to the central axis of the cartridge 120 and cap device 130. The output port 139 can be configured to mate with tubing 72 of the infusion set 70 (FIG. 1).


In some embodiments, the controller device 200 may be removably attached to the pump device 100 so that the two components are mechanically mounted to one another in a fixed relationship. Such a mechanical mounting can form an electrical connection between the removable controller device 200 and the pump device 100. For example, the controller device 200 may be in electrical communication with a portion of a drive system (described in connection with FIG. 10) of the pump device 100. As described in more detail below, the pump device 100 includes a drive system that causes controlled dispensation of the medicine or other fluid from the cartridge 120. In some embodiments, the drive system incrementally advances a piston rod longitudinally into the cartridge 120 so that the fluid is forced out of an output end 122. The septum 121 at the output end 122 of the fluid cartridge 120 can be pierced to permit fluid outflow when the cap device 130 is connected to the pump housing structure 110. Thus, when the pump device 100 and the controller device 200 are attached and thereby electrically connected, the controller device 200 communicates electronic control signals via a hardwire-connection (e.g., electrical contacts or the like) to the drive system or other components of the pump device 100. In response to the electrical control signals from the controller device 200, the drive system of the pump device 100 causes medicine to incrementally dispense from the medicine cartridge 120.


The controller device 200 may be configured to removably attach to the pump device 100, for example, in a side-by-side arrangement. The compact size permits the infusion pump assembly 60 to be discrete and portable when the pump device 100 is attached with the controller device 200 (as shown in FIG. 1). In this embodiment, the controller device 200 includes a controller housing structure 210 having a number of features 112/212 that are configured to mate with complementary features of the pump housing structure 110 so as to form a releasable mechanical connection (described below in more detail in connection with FIGS. 5-7). Such mating features 112/212 of the pump housing structure 110 and the controller housing structure 210 can provide a secure connection when the controller device 200 is attached to the pump device 100.


As shown in FIG. 2, the pump device 100 may include an electrical connector 118 (e.g., having conductive pads, pins, or the like) that are exposed to the controller device 200 and that mate with a complementary electrical connector (refer to connector 218 in FIG. 6) on the adjacent face of the controller device 200. The electrical connectors 118 and 218 provide the electrical communication between the control circuitry (refer, for example, to FIG. 9) housed in the controller device 200 and at least a portion of the drive system or other components of the pump device 100. In some exemplary embodiments, the electrical connectors 118 and 218 permit the transmission of electrical control signals to the pump device 100 and the reception of feedback signals (e.g., sensor signals) from particular components within the pump device 100. Furthermore, as described in more detail below, the infusion pump assembly 60 may include a gasket 140 that provides a seal which is resistant to migration of external contaminants when the pump device 100 is attached to the controller device 200. Thus, in some embodiments, the pump device 100 and the controller device 200 can be assembled into a water resistant configuration that protects the electrical interconnection from water migration (e.g., if the user encounters water while carrying the pump assembly 60).


Referring again to FIGS. 1 and 2, the controller device 200 includes the user interface 220 that permits a user to monitor the operation of the pump device 100. In some embodiments, the user interface 220 includes a display 222 and one or more user-selectable buttons (e.g., four buttons 224a, 224b, 224c, and 224d in this embodiment). The display 222 may include an active area in which numerals, text, symbols, images, or a combination thereof can be displayed (refer, for example, to FIG. 2). For example, the display 222 may be used to communicate a number of status indicators, alarms, settings, and/or menu options for the infusion pump system 10. In some embodiments, the display 222 can indicate the user's blood glucose level, an indication that the user's blood glucose level is rising or falling, and the TIL information. In the example depicted in FIG. 1, the TIL information shown in the display 222 is “2.2 U,” which indicates that approximately 2.2 units of dispensed insulin (including previous basal and bolus dosages) has yet to act on the user's blood glucose level (in particular embodiments, after accounting for any previously consumed food that has not yet been metabolized). In this embodiment, the display 222 also indicates that the user's blood glucose level is currently at 180 mg/dl and is falling.


In some embodiments, the user may press one or more of the buttons 224a, 224b, 224c, and 224d to shuffle through a number of menus or program screens that show particular status indicators, settings, and/or data (e.g., review data that shows the medicine dispensing rate, the total amount of medicine dispensed in a given time period, the amount of medicine scheduled to be dispensed at a particular time or date, the approximate amount of medicine remaining in the cartridge 120, or the like). In some embodiments, the user can adjust the settings or otherwise program the controller device 200 by pressing one or more buttons 224a, 224b, 224c, and 224d of the user interface 220. For example, in embodiments of the infusion pump system 10 configured to dispense insulin, the user may press one or more of the buttons 224a, 224b, 224c, and 224d to change the dispensation rate of insulin or to request that a bolus of insulin be dispensed immediately or at a scheduled, later time.


The display 222 of the user interface 220 may be configured to display quick reference information when no buttons 224a, 224b, 224c, and 224d have been pressed. For example, as shown in FIG. 2, the active area of the display 222 can display the time (10:30 AM in this example), blood glucose level (118 mg/dl in this example), an indication of whether the user's blood glucose level is rising or falling (the upward arrow indicates a rising glucose level in this example), and the user's current TIL information (a 10% load in this example, which represents a normalized value of the TIL calculation as described below in connection with FIGS. 13-16B). This information can be displayed for a period of time after no button 224a, 224b, 224c, and 224d has been actuated (e.g., five seconds, 10 seconds, 30 seconds, 1 minute, 5 minutes, or the like). Thereafter, the display 222 may enter sleep mode in which the active area is blank, thereby conserving battery power. In addition or in the alternative, the active area can display particular device settings, such as the current dispensation rate or the total medicine dispensed, for a period of time after no button 224a, 224b, 224c, or 224d has been actuated (e.g., five seconds, 10 seconds, 30 seconds, 1 minute, 5 minutes, or the like). Again, thereafter the display 222 may enter sleep mode to conserve battery power. In certain embodiments, the display 222 can dim after a first period of time in which no button 224a, 224b, 224c, or 224d has been actuated (e.g., after 15 seconds or the like), and then the display 222 can enter sleep mode and become blank after a second period of time in which no button 224a, 224b, 224c, or 224d has been actuated (e.g., after 30 seconds or the like). Thus, the dimming of the display device 222 can alert a user viewing the display device 222 when the active area 223 of the display device will soon become blank.


Accordingly, when the controller device 200 is connected to the pump device 100, the user is provided with the opportunity to readily monitor infusion pump operation by simply viewing the display 222 of the controller device 200. Such monitoring capabilities may provide comfort to a user who may have urgent questions about the current operation of the pump device 100 (e.g., the user may be unable to receive immediate answers if wearing an infusion pump device having no user interface attached thereto). Moreover, the TIL information can be displayed contemporaneously with the detected blood glucose value, so the user is provided with the opportunity to make informed decisions regarding the current and future status of his or her blood glucose level.


Also, in these embodiments, there may be no need for the user to carry and operate a separate module to monitor the operation of the infusion pump device 100, thereby simplifying the monitoring process and reducing the number of devices that must be carried by the user. If a need arises in which the user desires to monitor the operation of the pump device 100 or to adjust settings of the infusion pump system 10 (e.g., to request a bolus amount of medicine), the user can readily operate the user interface 220 of the controller device 200 without the requirement of locating and operating a separate monitoring module.


In other embodiments, the user interface controller device 200 is not limited to the display and buttons depicted in FIGS. 1 and 2. For example, in some embodiments, the user interface 220 may include only one button or may include a greater numbers of buttons, such as two buttons three buttons, four buttons, five buttons, or more. In another example, the user interface 220 of the controller device 200 may include a touch screen so that a user may select buttons defined by the active area of the touch screen display. Alternatively, the user interface 220 may comprise audio inputs or outputs so that a user can monitor the operation of the pump device 100.


Referring to FIGS. 3 and 4, the infusion pump system 10 may be configured to be portable and can be wearable and concealable. For example, a user can conveniently wear the infusion pump assembly 60 on the user's skin (e.g., skin adhesive) underneath the user's clothing or carry the pump assembly 60 in the user's pocket (or other portable location) while receiving the medicine dispensed from the pump device 100. The pump device 100 may be arranged in a compact manner so that the pump device 100 has a reduced length. For example, in the circumstances in which the medicine cartridge 120 has a length of about 7 cm or less, about 6 cm to about 7 cm, and about 6.4 cm in one embodiment, the overall length of the pump housing structure 110 (which contains medicine cartridge and the drive system) can be about 10 cm or less, about 7 cm to about 9 cm, and about 8.3 cm in one embodiment. In such circumstances, the controller device 200 can be figured to mate with the pump housing 110 so that, when removably attached to one another, the components define a portable infusion pump system that stores a relatively large quantity of medicine compared to the overall size of the unit. For example, in this embodiment, the infusion pump assembly 60 (including the removable controller device 200 attached to the pump device 100 having the cap device 130) may have an overall length of about 11 cm or less, about 7 cm to about 10 cm, and about 9.6 cm in one embodiment; an overall height of about 6 cm or less, about 2 cm to about 5 cm, and about 4.3 cm in one embodiment; and an overall thickness of about 20 mm or less, about 8 mm to about 20 mm, and about 18.3 mm in one embodiment.


The infusion pump system 10 is shown in FIGS. 3 and 4 is compact so that the user can wear the portable infusion pump system 10 (e.g., in the user's pocket, connected to a belt clip, adhered to the user's skin, or the like) without the need for carrying and operating a separate module. In such embodiments, the cap device 130 of the pump device 100 may be configured to mate with the infusion set 70. In general, the infusion set 70 is tubing system that connects the infusion pump system 10 to the tissue or vasculature of the user (e.g., to deliver medicine into the user's subcutaneous tissue or vasculature). The infusion set 70 may include the flexible tube 72 that extends from the pump device 100 to the subcutaneous cannula 76 retained by a skin adhesive patch 78 that secures the subcutaneous cannula 76 to the infusion site. The skin adhesive patch 78 can retain the infusion cannula 76 in fluid communication with the tissue or vasculature of the patient so that the medicine dispensed through the tube 72 passes through the cannula 76 and into the user's body. The cap device 130 may provide fluid communication between the output end 122 (FIG. 2) of the medicine cartridge 120 and the tube 72 of the infusion set 70. For example, the tube 72 may be directly connected to the output port 139 (FIG. 2) of the cap device 130. In another example, the infusion set 70 may include a connector (e.g., a Luer connector or the like) attached to the tube 72, and the connector can then mate with the cap device 130 to provide the fluid communication to the tube 72. In these examples, the user can carry the portable infusion pump assembly 60 (e.g., in the user's pocket, connected to a belt clip, adhered to the user's skin, or the like) while the tube 72 extends to the location in which the skin is penetrated for infusion. If the user desires to monitor the operation of the pump device 100 or to adjust the settings of the infusion pump system 10, the user can readily access the user interface 220 of the controller device 200 without the need for carrying and operating a separate module.


Referring to FIG. 3, in some embodiments, the infusion pump assembly 60 is pocket-sized so that the pump device 100 and controller device 200 can be worn in the user's pocket 6 or in another portion of the user's clothing. For example, the pump device 100 and the controller device 200 can be attached together and form the pump assembly 60 that comfortably fits into a user's pocket 6. The user can carry the portable infusion pump assembly 60 and use the tube 72 of the infusion set 70 to direct the dispensed medicine to the desired infusion site. In some circumstances, the user may desire to wear the pump assembly 60 in a more discrete manner. Accordingly, the user may pass the tube 72 from the user's pocket 6, under the user's clothing, and to the infusion site where the adhesive patch 78 is positioned. As such, the infusion pump system 10 can be used to deliver medicine to the tissues or vasculature of the user in a portable, concealable, and discrete manner. Furthermore, the monitoring device 50 can be worn on the user's skin while the pump assembly 60 is carried by the user (e.g., in a pocket). As such, the monitoring device 50 can communicate information indicative of the user's blood glucose level to the pump assembly 60 while the pump assembly 60 is used to deliver medicine through the infusion set 70. In this embodiment, the monitoring device 50 may be arranged on the user's skin at a location that is spaced apart from the infusion set 70.


Referring to FIG. 4, in other embodiments, the infusion pump assembly 60 may be configured to adhere to the user's skin 7 directly at the location in which the skin is penetrated for medicine infusion. For example, a rear surface of the pump device 100 may include a skin adhesive patch so that the pump device 100 is physically adhered to the skin of the user at a particular location. In these embodiments, the cap device 130 may have a configuration in which medicine passes directly from the cap device 130 into an infusion cannula 76 that is penetrated into the user's skin. In one example, the fluid output port 139 through the cap device 130 can include a curve or a 90° corner so that the medicine flow path extends longitudinally out of the medicine cartridge and thereafter laterally toward the user's skin 7. Again, if the user desires to monitor the operation of the pump device 100 or to adjust the settings of the infusion pump system 10, the user can readily access the user interface 220 of the controller device 200 without the need for carrying and operating a second, separate device. For example, the user may look toward the pump device 100 to view the user interface 220 of the controller device 200 that is removably attached thereto. In another example, the user can temporarily detach the controller device 200 (while the pump device 100 remains adhered to the user's skin 7) so as to view and interact with the user interface 220. Furthermore, the monitoring device 50 can be worn on the user's skin while the pump assembly 60 is worn on the user's skin in a different location from that where the monitoring device is worn. As such, the monitoring device 50 can communicate information indicative of the user's blood glucose level to the pump assembly 60 while the pump assembly 60 is used to deliver medicine through the infusion set 70. In this embodiment, the monitoring device 50 may be arranged on the user's skin at a location that is spaced apart from the infusion set 70.


In the embodiments depicted in FIGS. 3 and 4, the monitoring device 50 adheres to the user's skin 7 at the location in which the skin is penetrated by the sensor shaft 56 (to detect blood glucose levels). The sensor shaft 56 (refer to FIG. 1) penetrates the skin surface for the purpose of exposing the tip portion of the sensor shaft 56 to the tissue or the vasculature of the user. The sensor shaft 56 can detect information indicative of the user's blood glucose level and transfer this information to a circuit that is connected to the communications device 54 located within the monitoring device 50. The communication device 54 can be in wireless communication with the communication device 247 (described in connection with FIG. 9) included in the controller device 200 of the pump assembly 60.


Referring now to FIGS. 5-8, in some embodiments, the infusion pump assembly 60 can be operated such that the pump device 100 is a disposable, non-reusable component while the controller device 200 is a reusable component. In these circumstances, the pump device 100 may be configured as a “one-time-use” device that is discarded after the medicine cartridge is emptied, expired, or otherwise exhausted. Thus, in some embodiments, the pump device 100 may be designed to have an expected operational life of about 1 day to about 30 days, about 1 day to about 20 days, about 1 to about 14 days, or about 1 day to about 7 days depending on the volume of medicine in the cartridge 120, the dispensation patterns that are selected for the individual user, and other factors. For example, in some embodiments, the medicine cartridge 120 containing insulin may have an expected usage life about 7 days after the cartridge is removed from a refrigerated state and the septum 121 (FIG. 2) is punctured. In some circumstances, the dispensation pattern selected by the user can cause the insulin to be emptied from the medicine cartridge 120 before the 7-day period. If the insulin is not emptied from the medicine cartridge 120 after the 7-day period, the remaining insulin may become expired sometime thereafter. In either case, the pump device 100 and the medicine cartridge 120 therein can be discarded after exhaustion of the medicine cartridge 120 (e.g., after being emptied, expired, or otherwise not available for use).


The controller device 200, however, may be reused with subsequent new pump devices 100′ and new medicine cartridges 120′. As such, the control circuitry, the user interface components, and other components that may have relatively higher manufacturing costs can be reused over a longer period of time. For example, in some embodiments, the controller device 200 may be designed to have an expected operational life of about 1 year to about 7 years, about 2 years to about 6 years, or about 3 years to about 5 years—depending on a number of factors including the usage conditions for the individual user. Accordingly, the user is permitted to reuse the controller device 200 (which may include complex or valuable electronics) while disposing of the relatively low-cost pump device 100 after each use. Such an infusion pump system 10 can provide enhanced user safety as a new pump device 100′ (and drive system therein) is employed with each new fluid cartridge 120.


Referring to FIGS. 5 and 6, the pump device 100 can be readily removed from the controller device 200 when the medicine cartridge 120 is exhausted. As previously described, the medicine cartridge 120 is arranged in the cavity 116 (FIG. 2) of the pump housing 110 where it is retained by the cap device 130. In some embodiments, a portion of the pump housing 110 can comprise a transparent or translucent material so that at least a portion of the medicine cartridge 120 is viewable therethrough. For example, the user may want to visually inspect the medicine cartridge when the plunger 125 is approaching the output end 122 of the medicine cartridge, thereby providing a visual indication that the medicine cartridge may be emptied in the near future. In this embodiment, the barrel 111 of the pump housing 110 comprises a generally transparent polymer material so that the user can view the medicine cartridge 120 to determine if the plunger 125 is nearing the end of its travel length.


As shown in FIG. 5, the pump device 100 has been used to a point at which the medicine cartridge 120 is exhausted. The plunger 125 has been advanced, toward the left in FIG. 5, over a period of time so that all or most of the medicine has been dispensed from the cartridge 120. In some embodiments, the controller device 200 may provide a visual or audible alert when this occurs so as to remind the user that a new medicine cartridge is needed. In addition or in the alternative, the user may visually inspect the medicine cartridge 120 through the barrel 111 of the pump housing 110 to determine if the medicine cartridge 120 is almost empty. When the user determines that a new medicine cartridge 120 should be employed, the pump device 100 can be readily separated from the controller device 200 by actuating a release member 215. In this embodiment, the release member 215 is a latch on the controller device 200 that is biased toward a locking position to engage the pump device 100. The latch may be arranged to engage one or more features on a lateral side of the pump housing 110. As such, the user may actuate the release member 215 by moving the release member 215 in a lateral direction 216 (FIG. 5) away from the pump device 100 (e.g., by applying a force with the user's finger).


As shown in FIG. 6, when the release member 215 is actuated and moved to a position away from the pump device 100, a segmented guide rail 114a, 114b, 114c is free to slide longitudinally in a guide channel 214a, 214b without interference from the release member 215. Accordingly, the user can move the pump device 100 in a longitudinal direction 217 away from the controller device 200. For example, the segmented guide rail 114a, 114b, 114c may slide along the guide channel 214a, 214b, the extension 113 (FIG. 2) may be withdrawn from the mating depression 213 (FIG. 6), and the electrical connector 118 can be separated from the mating connector 218. In these circumstances, the pump device 100 is physically and electrically disconnected from the controller device 200 while the pump device retains the exhausted medicine cartridge 120. It should be understood that, in other embodiments, other features or connector devices can be used to facilitate the side-by-side mounting arrangement. These other features or connector devices may include, for example, magnetic attachment devices, mating tongues and grooves, or the like.


In some embodiments, the gasket 140 compressed between the pump device 100 and the controller device 200 may comprise a resilient material. In such circumstances, the gasket 140 can provide a spring-action that urges the pump device 100 to shift a small amount away from the controller device 200 when the release member 215 is moved to the unlocked position (e.g., moved in the lateral direction 216 in the embodiment shown in FIG. 5). Accordingly, in some embodiments, the pump device 100 can automatically and sharply move a small distance (e.g., about 0.5 mm to about 5 mm) away from the controller device 200 when the release member 215 is moved to the unlocked position. Such an automatic separation provides a convenient start for the user to detach the pump device 100 away from the controller device 200. Furthermore, this automatic separation caused by the spring-action of the gasket 140 can provide a swift disconnect between the electrical connectors 118 and 218 when the pump device 100 is being replaced.


Referring to FIGS. 7 and 8, the same controller device 200 can be reused with a new pump device 100′ having a new medicine cartridge 120′ retained therein, and the previously used pump device 100 can be discarded with the exhausted medicine cartridge 120. The new pump device 100′ (FIG. 7) can have a similar appearance, form factor, and operation as the previously used pump device 100 (FIGS. 5 and 6), and thus the new pump device 100′ can be readily attached to the controller device 200 for controlled dispensation of medicine from the new medicine cartridge 120′. In some embodiments, the user may prepare the new pump device 100′ for use with the controller device 200. For example, the user may insert the new medicine cartridge 120′ in the cavity 116 of the new pump device 100′ and then join the cap device 130 to the pump housing to retain the new medicine cartridge 120′ therein (refer, for example, to FIG. 2). Although the tubing 72 of the infusion set 70 is not shown in FIG. 7, it should be understood that the tubing 72 may be attached to the cap device 130 prior to the cap device 130 being joined with the pump housing 110. For example, a new infusion set 70 can be connected to the cap device 130 so that the tubing 72 can be primed (e.g., a selected function of the pump device 100 controlled by the controller device 200) before attaching the infusion set patch to the user's skin. As shown in FIG. 7, the new medicine cartridge 120′ may be filled with medicine such that the plunger 125 is not viewable through the barrel 111. In some embodiments, the user can removably attach the pump device 100 to the controller device 200 by moving the pump device 100 in a longitudinal direction 219 toward the controller device 200 such that the segmented guide rail 114a, 114b engages and slides within the guide channel 214a, 214b. When the electrical connectors 118 and 218 mate with one another, the release member 215 can engage the segmented guide rails 114a, 114b to retain the pump device 100 with the controller device 200.


As shown in FIG. 8, the previously used pump device 100 that was separated from the controller device (as described in connection with FIGS. 5 and 6) may be discarded after a single use. In these circumstances, the pump device 100 may be configured as a disposable “one-time-use” device that is discarded by the user after the medicine cartridge 120 is emptied, is expired, has ended its useful life, or is otherwise exhausted. For example, the pump device 100 may be discarded into a bin 30, which may include a trash bin or a bin specifically designated for discarded medical products. Thus, the user is permitted to dispose of the relatively low-cost pump device 100 after each use while reusing the controller device 200 (which may include complex or valuable electronics) with subsequent new pump devices 100′. Also, in some circumstances, the infusion set 70 (not shown in FIG. 8, refer to FIG. 1) that was used with the pump device 100 may be removed from the user and discarded into the bin 30 along with the pump device 100. Alternatively, the infusion set 70 can be disconnected from the previous pump device 100 and attached to the new pump device 100′. In these circumstances, the user may detach the infusion set cannula 76 and patch 78 from the skin so as to “re-prime” the tubing with medicine from the new pump device 100′ to remove air pockets from the tubing. Thereafter, the infusion set cannula 76 and patch 78 can be again secured to the user's skin.


Referring now to FIG. 9, the controller device 200 (shown in an exploded view) houses a number of components that can be reused with a series of successive pump devices 100. In particular, the controller device 200 includes control circuitry 240 arranged in the controller housing 210 that is configured to communicate control signals to the drive system of the pump device 100. In this embodiment, the control circuitry 240 includes a main processor board 242 that is in communication with a power supply board 244. The control circuitry 240 includes at least one processor 243 that coordinates the electrical communication to and from the controller device 200 (e.g., communication between the controller device 200 and the pump device 100). The processor 243 can be arranged on the main processor board 242 along with a number of other electrical components such as memory devices (e.g., memory chip 248). It should be understood that, although the main processor board 242 is depicted as a printed circuit board, the main processor board can have other forms, including multiple boards, a flexible circuit substrate, and other configurations that permit the processor 243 to operate. The control circuitry 240 can be programmable in that the user may provide one or more instructions to adjust a number of settings for the operation of the infusion pump system 10. Such settings may be stored in the one or more memory devices, such as the memory chip 248 on the processor board 242. The control circuitry 240 may include other components, such as sensors (e.g., occlusion sensors), that are electrically connected to the main processor board 242. Furthermore, the control circuitry 240 may include one or more dedicated memory devices that store executable software instructions for the processor 243. The one or more memory devices (e.g., the memory chip 248) can also store information related to a user's blood glucose level and total insulin load (described in more detail in association with FIGS. 11-19) over a period of time.


As previously described, the controller device 200 can be electrically connected with the pump device 100 via mating connectors 118 and 218 so that the control circuitry 240 can communicate control signals to the pump device 100 and receive feedback signals from components housed in the pump device 100. In this embodiment, the electrical connector 118 (FIG. 2) on the pump device 100 is a z-axis connector, and the connector 218 (FIG. 6) on the controller device 200 is adapted to mate therewith. The electrical connector 218 on the controller device 200 is in communication with the control circuitry 240. As such, the processor 243 can operate according to software instructions stored in the memory device so as to send control signals to the pump device 100 via the connector 218.


Still referring to FIG. 9, the user interface 220 of the controller device 200 can include input components, output components, or both that are electrically connected to the control circuitry 240. For example, in this embodiment, the user interface 220 includes a display device 222 having an active area that outputs information to a user and four buttons 224a-d that receive input from the user. Here, the display 222 may be used to communicate a number of status indicators, settings, and/or menu options for the infusion pump system 10. In some embodiments, the control circuitry 240 may receive the input commands from the user's button selections and thereby cause the display device 222 to output a number of status indicators (e.g., if the infusion pump system 10 is delivering insulin and/or if the user's blood glucose level is rising or falling), menus, and/or program screens that show particular settings and data (e.g., review data that shows the medicine dispensing rate, the total amount of medicine dispensed in a given time period, the amount of medicine scheduled to be dispensed at a particular time or date, the approximate amount of medicine remaining the cartridge 120, the user's total insulin load, or the like). As previously described, the controller circuitry 240 can be programmable in that the input commands from the button selections can cause the controller circuitry 240 to change any one of a number of settings for the infusion pump device 100.


Some embodiments of the control circuitry 240 may include a cable connector (e.g., a USB connection port, another data cable port, or a data cable connection via the electrical connector 218) that is accessible on an external portion of the controller housing 210. As such, a cable may be connected to the control circuitry 240 to upload data or program settings to the controller circuit or to download data from the control circuitry 240. For example, historical data of blood glucose level, medicine delivery, and/or TIL information can be downloaded from the control circuitry 240 (via the cable connector) to a computer system of a physician or a user for purposes of analysis and program adjustments (refer, for example, to FIG. 18). Optionally, the data cable may also provide recharging power.


Referring to FIGS. 9 and 10, the control circuitry 240 of the controller device 200 may include a second power source 245 (FIG. 9) that can receive electrical energy from a first power source 345 (FIG. 10) housed in the pump device 100. In this embodiment, the second power source 245 is coupled to the power supply board 244 of the control circuitry 240. The hard-wired transmission of the electrical energy can occur through the previously described connectors 118 and 218. In such circumstances, the first power source 345 may include a high density battery that is capable of providing a relatively large amount of electrical energy for its package size, while the second power source 245 may include a high current-output battery that is capable discharging a brief current burst to power the drive system 300 of the pump device 100. Accordingly, the first battery 345 disposed in the pump device 100 can be used to deliver electrical energy over time (e.g., “trickle charge”) to the second battery 245 when the controller device 200 is removably attached to the pump device 100. For example, the first battery 345 may comprise a zinc-air cell battery. The zinc-air cell battery 345 may have a large volumetric energy density compared to some other battery types. Also, the zinc-air cell battery may have a long storage life, especially in those embodiments in which the battery is sealed (e.g., by a removable seal tab or the like) during storage and before activation.


The second battery 245 may include a high current-output device that is housed inside the controller housing 210. The second battery 245 can be charged over a period of time by the first battery 345 and then intermittently deliver bursts of high-current output to the drive system 300 over a brief moment of time. For example, the second battery 245 may comprise a lithium-polymer battery. The lithium-polymer battery 245 disposed in the controller device 200 may have an initial current output that is greater than the zinc-air cell battery 345 disposed in the pump device 100, but zinc-air cell battery 345 may have an energy density that is greater than the lithium-polymer battery 245. In addition, the lithium-polymer battery 245 is readily rechargeable, which permits the zinc-air battery 345 disposed in the pump device 100 to provide electrical energy to the lithium-polymer battery 245 for purposes of recharging. In alternative embodiments, it should be understood that the second power source 245 may comprise a capacitor device capable of being recharged over time and intermittently discharging a current burst to activate the drive system 300.


Accordingly, the infusion pump system 10 having two power sources 345 and 245 one arranged in the pump device 100 and another arranged in the reusable controller device 200 permits a user to continually operate the controller device 200 without having to recharge a battery via an outlet plug-in or other power cable. Because the controller device 200 can be reusable with a number of pump devices 100 (e.g., attach the new pump device 100′ after the previous pump device 100 is expended and disposed), the second power source 245 in the controller device can be recharged over a period of time each time a new pump device 100 is connected thereto. Such a configuration can be advantageous in those embodiments in which the pump device 100 is configured to be a disposable, one-time-use device that attaches to a reusable controller device 200. For example, in those embodiments, the “disposable” pump devices 100 recharge the second power source 245 in the “reusable” controller device 200, thereby reducing or possibly eliminating the need for separate recharging of the controller device 200 via a power cord plugged into a wall outlet.


Referring now to FIG. 10, the pump device 100 in this embodiment includes the drive system 300 that is controlled by the removable controller device 200 (see FIG. 2). Accordingly, the drive system 300 can accurately and incrementally dispense fluid from the pump device 100 in a controlled manner. The drive system 300 may include a flexible piston rod 370 that is incrementally advanced toward the medicine cartridge 120 so as to dispense the medicine from the pump device 100. At least a portion of the drive system 300 is mounted, in this embodiment, to the pump housing 110. Some embodiments of the drive system 300 may include a battery powered actuator (e.g., reversible motor 320 or the like) that actuates a gear system 330 to reset a ratchet mechanism (e.g., including a ratchet wheel and pawl), a spring device (not shown) that provides the driving force to incrementally advance the ratchet mechanism, and a drive wheel 360 that is rotated by the ratchet mechanism to advance the flexible piston rod 370 toward the medicine cartridge 120. Connected to piston rod 370 is a plunger engagement device 375 for moving the plunger 125 of the medicine cartridge 120.


Some embodiments of the drive system 300 can include a pressure sensor 380 disposed between the plunger engagement device 375 and the plunger 125 for determining the pressure within the fluid path (e.g., inside the medicine cartridge 120, the infusion set 70, and the like). For example, the fluid pressure in the medicine cartridge 120 can act upon the plunger 125, which in turn can act upon the pressure sensor 380 arranged on the dry side of the plunger 125. The pressure sensor 380 may comprise a pressure transducer that is electrically connected (via one or more wires) to a gateway circuit 318 so that the sensor signals can be communicated to the controller device 200 (e.g., via the electrical connectors 118 and 218). As such, data from the pressure sensor 380 can be received by the controller device 200 for use with, for example, an occlusion detection module to determine if an occlusion exists in the medicine flow path. Alternatively, the controller device 200 may include an optical sensor system (not shown in FIGS. 9 and 10) to detect occlusions in the fluid path. For example, a light emitter and light sensor may each be arranged on a sensor circuit in the controller device 200 (but aligned with the pump device 100) so that the light sensor can detect the amount of light emitted by the light emitter and subsequently reflected from a component adjacent the fluid path. The reflected light level detected may be used to determine the pressure within the fluid path.


Referring now to FIG. 11, the infusion pump system 10 can be used to determine a user's TIL at a particular point in time. For example, a process 400 for determining TIL information can be implemented by the controller device 200. As previously described, the pump assembly 60 can operate to deliver insulin to the user by basal dosages, selected bolus dosages, or a combination thereof. A basal rate of insulin can be delivered in an incremental manner (e.g., dispense 0.25 U every fifteen minutes for a rate of 1.0 U per hour) to help maintain the user's blood glucose level within a targeted range during normal activity when the user is not eating or otherwise consuming food items. The user may select one or more bolus deliveries, for example, to offset the blood glucose effects caused by the intake of food or to correct for an undesirably high blood glucose level. In some circumstances, the basal rate pattern may be programmed by a health care professional during a clinical visit (or, optionally, by the user) and may remain at a substantially constant rate for a long period of time (e.g., a first basal dispensation rate for a period of hours in the morning, and a second basal dispensation rate for a period of hours in the afternoon and evening). In contrast, the bolus dosages can be dispensed in user-selected amounts based on calculations made by the controller device 200. For example, the controller device 200 can be informed of a high glucose level (e.g., by user input, data received from the glucose monitoring device 50, or the like) and can make a suggestion to the user to administer a bolus of insulin to correct for the high blood glucose reading. In another example, the user can request that the controller device 200 calculate and suggest a bolus dosage based, at least in part, on a proposed meal that the user plans to consume.


The basal and bolus insulin dispensed into the user's system may act over a period of time to control the user's blood glucose level. As such, the user's body may include some amount of insulin that has not yet acted even while the infusion pump assembly 60 is activated to deliver additional dosages (basal, bolus, or both). In these circumstances, the controller device 200 may implement a process 400 (FIG. 11) to determine the user's total insulin load (TIL), which can provide an accurate indication of the previously dispensed insulin (both basal and bolus dosages) which has not yet acted in the user's body. The TIL information can be determined in a manner that accounts for the substantial delay between the time that insulin is delivered to the tissue of the subcutaneous region and the time that this insulin reaches the blood supply. For example, the delay between a subcutaneous delivery of a bolus dosage of insulin and the peak plasma insulin level achieved from this bolus can be one hour or more. Additionally, the bolus dosage may not enter the blood stream all at once. As such, the effect of the bolus can peak at about one to two hours and then decay in a predictable manner over as much as eight hours or more (described in more detail in connection with FIG. 12). Due to the time decay effects of insulin activity, the user could be susceptible to request a subsequent bolus dosage while some insulin from a previously delivered bolus dosage has not yet acted upon the user (a scenario sometimes referred to as “bolus stacking”). To reduce the likelihood of undesirable bolus stacking, the TIL information can be determined by the controller device 200 on a periodic basis so that the user can be aware of the previously dispensed insulin which has not yet acted in the user's body. As described in more detail below, the TIL information can also be used in a bolus suggestion feature of the controller device 200 so that the suggested bolus amount accounts for the previously dispensed insulin (both basal and bolus dosages) which has not yet acted in the user's body.


For diabetics, their long term health may depend greatly on the ability to accurately control their blood glucose levels under a wide variety of conditions and to quickly and accurately respond to changes in blood glucose level from, for example, changes in activity level, carbohydrate ingestion, or the like. As such, it can be beneficial for a user to employ the infusion pump system 10 that enables the user to make well-informed decisions about future insulin boluses and basal rates. For example, the controller device 200 can readily indicate to the user his or her current TIL information, which is generally more accurate than other insulin estimation tools that are based on bolus dosages alone. Also, the controller device 200 can be used to suggest future bolus amounts based upon (1) actual and target blood glucose levels, (2) proposed food items to be consumed, and (3) the TIL information determined in a manner that accounts for both the previous bolus deliveries and the previous basal deliveries and (optionally) the user's previously consumed carbohydrates that have not yet been metabolized.


Referring in more detail to the illustrative process 400 shown in FIG. 11, the process 400 for the determining of the TIL of a user can include a number of operations performed by the controller device 200. In operation 405, the controller device 200 can initiate a TIL calculation for a particular time tn based on, for example, a request by the user (e.g., on-demand calculation) or a controller routine that determines the TIL information on a periodic basis (e.g., every 1 minute, every 2 minutes, every 5 minutes, every 10 minutes, every 30 minutes, or the like). In some embodiments, the TIL value can be calculated based on two or (optionally) three components: a bolus insulin load component, a basal insulin load component, and (optionally) a previous food component.


In operation 410, the controller device 200 can determine the bolus insulin load at time tn based on bolus dosages that have been delivered to the patient in the recent past. In some embodiments, for each bolus dosage dispensed within a predetermined period of time before tn (e.g., 6 hours, 7 hours, 7.5 hours, 8 hours, 10 hours, or the like), the controller device 200 can estimate the amount of bolus insulin that has not yet acted in the blood stream from time-decay models generated from pharmacodynamic data of the insulin. For example, a graph of an exemplary curve depicting the percent of insulin remaining versus time can be seen in FIG. 12. In particular, FIG. 12 illustrates an example of the insulin action curve generated from pharmacodynamic data for the insulin stored in the cartridge 120. Thus, in this embodiment, the bolus insulin load component of the TIL calculation represents the sum of all recent bolus insulin dosages wherein each bolus insulin dosage is discounted by the active insulin function (which may be modeled on pharmacodynamic data as shown, for example, in FIG. 12).


Still referring to FIG. 11, in operation 415, the controller device 200 can determine the basal insulin load at time tn based on, for example, the previous basal rate during a predetermined period of time (e.g., 6 hours, 7 hours, 7.5 hours, 8 hours, 10 hours, or the like). For each basal insulin dispensation (e.g., 0.25 U dispensed every fifteen minutes, 0.5 U dispensed every fifteen minutes, 0.4 U dispensed every ten minutes, of the like), the controller device 200 can estimate the amount of basal insulin that has not yet acted in the blood stream from time-decay models generated from pharmacodynamic data of the insulin. As previously described, FIG. 12 illustrates an example of the insulin action curve generated from pharmacodynamic data for the insulin stored in the cartridge 120. Thus, in this embodiment, the basal insulin load component of the TIL calculation represents the sum of all recent basal insulin dosages wherein each basal insulin dosage is discounted by the active insulin function (which may be modeled on pharmacodynamic data as shown, for example, in FIG. 12). As described below in connection with FIG. 13, the basal insulin load at time tn may approach a constant value if the basal dosage rate remains constant over an extended period of time.


Optionally, the process 400 may include operation 420 in which the previous food component is employed in the TIL calculation. The controller device 200 can determine the previous food component based on, for example, the total carbohydrates previously entered into the controller device 200 as being consumed by the user during a predetermined period of time before tn (e.g., 6 hours, 7 hours, 7.5 hours, 8 hours, 10 hours, or the like). The previous food component can be determined, for example, by estimating the amount of carbohydrates that have been consumed but not yet metabolized by the user's body so as to effect the blood glucose level. For each of the previous food items reported by the user, the controller device 200 can estimate the previously consumed food that has not yet been metabolized from a time-based model generated from a standard glycemic index. Alternatively, when the user enters information regarding food intake, the user can be prompted to identify the metabolization “speed” of the food item based on the glycemic index for that food. In these circumstances, the user may be prompted to input the amount of food (e.g., grams of Carbohydrate or another representative value) and then identify the glycemic index (via a numerical scale or from a list of two or more choices (e.g., “fast” metabolization and “slow” metabolization)) to provide a more accurate time-based function for specific meals. When this yet-to-be-metabolized carbohydrate value is estimated, it can be treated as a “negative” insulin component in the TIL calculation by multiplying the yet-to-be-metabolized carbohydrate value by a carbohydrate ratio (e.g., 1 unit of insulin per 15 grams of carbohydrates). In some embodiments, the calculated value for the previous food component can be displayed separately to the user (e.g., to provide the user with information regarding the effects of the previously consumed carbohydrates).


Still referring to FIG. 11, in operation 425, the TIL at time tn can be calculated by summing the bolus insulin load, the basal insulin load, and (in some embodiments) the previously consumed food component, where the previous food component is treated as a negative insulin unit value. In these circumstances, the TIL values may accurately reflect both the previously dispensed insulin that has not yet acted (to reduce or otherwise effect the blood glucose level) and the previously consumed food that has not yet been metabolized (to increase or otherwise effect the blood glucose level). It should be understood from the description herein that, in alternative embodiments, the process for determining the TIL information may not include the previous food component (as described in connection with operation 420). In such embodiments, the TIL at time tn can be calculated by summing both the bolus insulin load and the basal insulin load. Because this TIL determination is not based merely on previous bolus deliveries, the TIL information may accurately reflect basal rate changes and the impact of stopping insulin delivery or changing insulin delivery (e.g., a temporary basal rate adjustment).


In operation 430, the TIL value can be stored in the memory of the controller device 200 (e.g., in the memory chip 248 or in another memory device coupled to the control circuitry 240). For example, the calculated TIL value at time tn can be stored in a database along with the time tn. The database may also store the current blood glucose level at time tn, which may be generated from the sensor signal received from the monitoring device 50 (FIG. 1). As described in more detail below, the database can maintain a historical record of the TIL information, the time information, and (optionally) the detected blood glucose information that is accessible by the controller device 200 or by an external computer. In addition or in the alternative, the controller device 200 can be configured to perform an on-demand calculation of the TIL value as a function of recent history by storing each input data point (e.g., basal insulin dosages, bolus insulin dosages, food intake data, etc.) and then summing each component (e.g., the basal insulin load, the bolus insulin load, and the previously consumed food component) as a function of time.


In operation 435, the TIL information can be displayed on the user interface 220 of the pump controller device 200. The TIL information can be retrieved from the memory device that stores the recently calculated TIL value. In particular embodiments, the display 222 of the user interface 220 may be configured to display a default reference information screen when the user is not activating any menu screens (e.g., a reference screen that is displayed after no buttons are pressed for a period of time). For example, as shown in FIG. 1, the display 222 can indicate the time (10:30 AM in this example), the date (January 1 in this example), the user's current blood glucose level (180 mg/dl in this example), an indication of whether the user's blood glucose level is rising or falling (the downward arrow indicates a decreasing glucose level in this example), and the recently determined TIL information (2.2 U insulin load in this example). In another example, as shown in FIG. 2, the display 222 of the user interface 220 provides a default screen that provides the time (10:30 AM in this example), the blood glucose level (118 mg/dl in this example), the indication of whether the user's blood glucose level is rising or falling (the upward arrow indicates a rising glucose level in this example), and the recently calculated TIL information (a 10% load in this example, which represents a normalized value of the TIL calculation as described below in connection with FIG. 13).


In operation 440, the process 400 can return to initiate a new TIL calculation after a period of time. For example, the operation 440 can cause the controller device 200 to calculate the TIL for time tn+1 by returning to operation 405. As previously described, the controller device 200 can initiate the subsequent TIL calculation for the subsequent time tn+1 based on a request from the user or based on a program that causes calculation of the TIL information on a periodic basis (e.g., every 1 minute, every 2 minutes, every 5 minutes, every 10 minutes, every 30 minutes, or the like). The subsequent TIL value for time tn+1 can be stored in the memory of the controller device 200 (e.g., in the previously described database) and can be displayed on the user interface 220 of the controller device 200.


Referring now to FIG. 12, in some embodiments, the controller device 200 can calculate the TIL information using, at least in part, time-based models derived from pharmacodynamic data. As previously described, the TIL value of a user can include a bolus insulin load component and a basal insulin load component, each of which may be determined using a time-decay model generated from pharmacodynamic data associated with the insulin stored in the cartridge 120. As shown by way of example in FIG. 12, the controller device 200 can utilize a time-decay curve (represented by curve 450), which is generated from pharmacodynamic data, to estimate the percentage of insulin remaining in a user's body after a particular period of time.


Referring now to FIG. 13, graph 500 is an exemplary depiction of how a constant basal delivery can affect a user's TIL information. In this example, the basal insulin deliveries are represented as a series of basal infusion points 506 (e.g., dosages of 0.25 U every fifteen minutes to provide a basal rate of 1.0 U per hour). It should be understood from the description herein that, while the basal rate is sometimes described as a generally continuous administration, it can be implemented as a series of small injections given at regular intervals. Because the basal rate is constant over a period of seven hours with no bolus dosages, the insulin delivery pattern 505 is represented as a horizontal, straight line that depicts a constant basal rate of 1.0 units/hour. For the purposes of this example, it is presumed that there were no basal or bolus insulin deliveries prior to time=0 (hours), there were no previously consumed carbohydrates acting on the user's total insulin load, and that the user's TIL (represented by TIL curve 510) was also 0.0 prior to time=0. This may occur, for example, after the user wakes in the morning and then activates the pump assembly 60 to deliver the basal insulin. As such, the user's TIL value has only a single component (basal insulin load) and is equal to zero before time=0. The other components of the TIL calculation, such as the bolus insulin load and the previous food component, are zero in this example. At time=0 the first basal infusion (represented by point 507) of 0.25 units is made. Since substantially none of the insulin delivered in the first infusion (point 507) has acted on the user at time=0, the entire contents of the infusion (0.25 units) are now part of the TIL, which is reflected in the TIL curve 510. With the subsequent boluses 508 and 509, the TIL increases, while some small portion of the previously dispensed insulin acts in the blood stream. This is estimated from a time-decay curve (refer, for example, to FIG. 12), which is generated from pharmacodynamic data. As time increases, however, the amount of insulin leaving the insulin load and entering the blood stream increases until point 512 where the amount of insulin leaving the insulin load to act in the blood stream is substantially equal to the amount of insulin entering the insulin load due to the constant basal infusion. If the basal rate remains constant, than the TIL will continue to remain at the equilibrium value shown on the graph 500. In this example, the TIL reaches equilibrium at a value of about 2.25 U (as shown on the left-side axis in graph 500). FIG. 13 depicts a dashed line 514 that represents a TIL value of about 2.25 U. FIG. 13 depicts a dashed line 515 that represents a TIL value of about 2.5 U.


Referring now to FIG. 15, as previously described, the TIL information can be determined in a manner that accounts for both the bolus deliveries and the basal deliveries (not merely previous bolus deliveries). As such, the TIL values may accurately reflect basal rate changes and the impact of stopping insulin delivery (e.g., during periods in which insulin delivery is stopped or basal delivery is altered, during activities such as swimming or another exercise, etc.). The insulin delivery pattern in FIG. 15 is similar to the previously described scenario shown in FIG. 14, except that the basal delivery is stopped between time=5 hours and time=7 hours (refer to the basal delivery curve 710 in graph 700). For example, the graph 700 includes a region 740, in which the basal infusion rate remains constant and no boluses are infused, so the TIL curve 720 approaches a constant value while the TIL % curve 730 remains at 0% (similar to the previously described scenario shown in FIG. 14). At about time=5 hours, basal delivery is suspended for a period of approximately two hours (refer to region 750). As a result, the TIL curve 720 decays or otherwise reduces in that period of time because the previously dispensed insulin transitions to act in the user's blood stream (e.g., to lower or otherwise affect the user's blood glucose level) and no further insulin is being dispensed during that time period. Also, in the example depicted in FIG. 15, the TIL % curve 730 transitions into negative values (e.g., −25%, −50%, etc.) because the insulin dosages were ceased between time=5 hours and time=7 hours. During such periods of ceased insulin delivery, the actual TIL value may become less than theoretical TILbasal (e.g., the TIL that would have been generated based on the user's basal insulin dosages), which causes the TIL % values to transition into negative values. In one example, the user may readily recognize that his or her insulin load (e.g., TIL %=−25%) is approximately ¼th less than what it normally would have been if he or she had maintained the scheduled basal insulin delivery rate. Accordingly, the TIL values and the TIL % values can accurately reflect basal rate changes and the impact of stopping insulin delivery.


As shown in FIG. 15, the basal insulin rate restarts at about time=7 hours, which causes the TIL value to increase and the TIL % value to return toward 0%. In this example, a bolus delivery 714 of about 5 units is delivered to the user at about time=8 hours, thereby raising the user's TIL value about 5 units to slightly higher than 6 units. Such a bolus delivery 714 also causes the TIL % value to increase to slightly less than 200% in this example. This normalized value indicates to the user that the TIL is slightly less than two times what it would ordinarily be if the user had maintained just the constant basal rate (from region 740) without any bolus delivery 714. In region 760, the user's TIL value and the TIL % value decays or otherwise decreases as the previously dispensed insulin transitions to act in the user's blood stream (e.g., to lower or otherwise affect the user's blood glucose level). With subsequent bolus deliveries 716 and 718 at about time=10 and time=12 hours respectively, the user's TIL value and the TIL % value increases with each bolus, and thereafter decays. FIG. 15 depicts line 710, which represents basal infusions. FIG. 15 depicts basal infusions 712.


Referring now to FIG. 16A, the TIL value may return to a constant value (and the TIL % value may return to 0%) after an extended period of time with no bolus activity. For example, the graph 800 in FIG. 16A is similar to the previously described graph in FIG. 15, except that it shows the insulin delivery pattern over a greater duration of time. In some embodiments, a user may continue to receive insulin deliveries from the pump assembly 60 during his or her period of sleep. The user can receive only his or her ordinary basal dosages during this period of sleep so as to maintain his or her blood glucose level within a safe range. In the example depicted in FIG. 16A, the user receives a bolus delivery 819 before a dinner meal at about time=18 hours. Thereafter, no further bolus dosages are provided for the remainder of the day, and the user receives only the ordinary basal rate delivery (refer to region 870 in FIG. 16A). During this extended period of receiving only the basal deliveries as shown in region 870, the TIL values (refer to TIL curve 820) decay or otherwise decrease from a value greater than 10 units of insulin to a constant value of slightly greater than 2 units. Also, during this extended period in region 870, the TIL % values (refer to TIL % curve 830) decay or otherwise decrease from a normalized value of almost 400% to the constant value of 0%. Accordingly, over a period of a day or more, the TIL value and the TIL % value can “reset” or otherwise return to a constant value during periods of sleep (when the user receives nighttime basal dosages) or during other extended periods during which no bolus activity occurs. FIG. 16A depicts line 810 that represents basal infusions. FIG. 16A depicts basal infusions 812. FIG. 16A depicts regions 850 and 860. FIG. 16A depicts bolus delivery 814. FIG. 16A depicts dashed line 820, which represents a TIL % curve. FIG. 16A depicts solid line 830, which represents a TIL curve.


In the previous examples, described in connection with FIGS. 14-16A, the controller device 200 calculated the TIL at any given time by summing the insulin load due to basal delivery and the insulin load due to one or more bolus deliveries (if any). These examples depict embodiments of the controller device 200 that provide the advantage of using more accurate insulin action curves to estimate the amount of insulin that has been delivered to a user (but not yet acted in that user's blood stream), and the advantage of including a basal insulin load component to the TIL calculation (thus incorporating all delivered insulin in the TIL calculation). As described previously, a calculated TIL value can be used to, for example, predict future blood glucose levels and/or can be used in the calculation of suggested bolus amounts. As such, the controller device 200 can employ the TIL information to provide accurate information to the user and to avoid “bolus stacking” and unsafe swings in blood glucose level.


In much the same way that insulin does not immediately enter the blood stream and act upon a user after subcutaneous delivery, ingested carbohydrates can also take time to fully act upon the user's blood glucose level. In some embodiments, the controller device 200 can also include a component in the TIL calculation that takes into account food which has been previously consumed but not yet acted in the user.


Referring now to FIG. 16B, as previously described, the TIL information can account for the user's previously consumed food in addition to the bolus deliveries and the basal deliveries. In these circumstances, the TIL values may accurately reflect both the previously dispensed insulin that has not yet acted and the previously consumed food that has not yet been metabolized. The insulin delivery pattern in FIG. 16B is similar to the previously described scenario shown in FIG. 16A, except that the user in FIG. 16B skips a bolus delivery at time=12 hours (note that FIG. 16A shows a bolus delivery 816 at time=12 hours). Also, in the example depicted in FIG. 16, the TIL calculation process also accounts for previously consumed food (e.g., the previous food component). For example, the graph 900 in FIG. 16B includes a basal delivery curve 910 made up of individual basal infusions 912, a TIL curve 920, and a TIL % curve 930. At about time=12 hours, the user enters meal data into the controller device 200, but no bolus delivery is dispensed (e.g., due to user error or another reason), leading to an immediate drop in the TIL curve 920 and the TIL % curve 930. This substantial decrease in the TIL value and the TIL % value is due to the fact that the process for calculating the TIL information accounts for the user's previously consumed food intake (in addition to the bolus deliveries and the basal deliveries). Thus, the controller device 200 receives information at time=12 hours that the user has consumed food but no bolus delivery was provided (e.g., a “missed bolus” situation). As such, the previous food component of the TIL calculation becomes much more significant than the bolus load component and the basal load component (thereby driving the TIL value and the TIL % value into the negative value range). In some embodiments, this drop of the TIL curve 920 into the negative region could result in the controller device 200 alerting the user to a potentially unsafe condition (e.g., a significant rise in blood glucose level) long before the user's blood glucose level begins to rise outside of a targeted range. Such a safety feature can provide enhanced protection for the user, who would have the opportunity to select a correction bolus before the blood glucose level increased to unsafe conditions.


Still referring to FIG. 16B, at about time=18 hours, a bolus delivery 915 is provided to the user, but no meal data is entered into the controller device 200. Unlike the previous situation at time=12 hours in which the user missed a bolus dosage, this may represent a “missed meal” situation at time=18 hours. This situation may occur, for example, where the user intends to eat a meal and schedules a bolus dosage, but then forgets or fails to consume the proposed meal. Such conditions can lead to a sharp increase in the TIL curve 920 and the TIL % curve 930. As such, the bolus load component of the TIL calculation becomes much more significant than the previous food component (thereby driving the TIL value and the TIL % value upward into the higher value range). In some embodiments, this sharp increase of the TIL curve 920 could result in the controller device 200 alerting the user to a potentially unsafe condition (e.g., a significant drop in blood glucose level) long before the user's blood glucose level begins to fall outside of a targeted range. Such a safety feature can provide enhanced protection for the user, who would have the opportunity to consume food items and enter the food data in the controller device 300 before the glucose level decreased to unsafe conditions. If the user did consume food at about time=18 hours but merely forgot to enter the information into the controller device 200, the user would have the opportunity to enter the meal information, thus causing the next TIL calculation to be corrected. For example, in response to the alert from the controller device 200, the controller device may prompt the user to enter the previous food information (if he or she forgot to enter the meal information) or to start the consumption of food items.


Similar to embodiments previously described in connection with FIG. 16A, the TIL value may return to a constant value (and the TIL % value may return to 0%) after an extended period of time with no bolus activity and no food consumption activity. In this example shown in FIG. 16B, during the period between time=18 hours and time=24 hours, the user may cease bolus activity and food consumption (e.g., as he or she prepares for sleep and begins to sleep overnight). During this extended period of receiving only the basal deliveries as shown in region 970, the TIL values (refer to TIL curve 920) decay or otherwise decrease to a constant value of slightly greater than 2 units. Also, during this extended period in region 970, the TIL % value (refer to TIL % curve 930) decay or otherwise decrease to a constant value of 0%. FIG. 16B depicts bolus deliveries 914 and 919. FIG. 16B depicts region 960.


Referring now to FIG. 17, some embodiments of a process 1000 for the calculation of a suggested bolus amount can include a number of operations performed by the controller device 200 in response to user input. For example, when the user intends to consume a meal, the user can select a bolus insulin delivery to offset the blood glucose effects caused by the carbohydrates consumed with the meal. In another example, a user's blood glucose may be significantly higher than a targeted level, so the controller device 200 can suggest a correction bolus amount that will lower the blood glucose level into an acceptable range. As described in connection with FIG. 17, the controller device 200 can also take into account the user's TIL information when calculating the suggested bolus amount to the user.


In operation 1005, the controller device 200 can receive a request to suggest a bolus dosage. An exemplary request can come from the user that interacts with the user interface 220 of the controller device 200. For example, the user may request a suggested insulin bolus amount during preparation for a proposed meal. As described below, the suggested bolus value can be calculated from at least three components: a food bolus value (to offset the blood glucose effects caused by the proposed meal), a correction bolus value (to reduce the current blood glucose level into an acceptable range), and the TIL value (as previously described in connection with FIG. 11).


In operation 1010, the controller device 200 can receive input from the user indicating the amount of food to consumed. For example, the user can enter the amount and type of food that is to be consumed and the controller device 200 can determine the amount of carbohydrates contained in the food to be consumed. In another example, the user can determine the amount of carbohydrates in a proposed meal and enter this value into the controller device 200 (e.g., grams of carbohydrates or the like). In operation 1015, the controller device 200 can calculate the amount of bolus insulin to offset the proposed food intake as entered in operation 1010 (e.g., the food bolus value). For example, the number of carbohydrates determined in operation 1010 can be divided by a carbohydrate ratio (e.g., 15 grams of carbohydrates per 1 unit of insulin) to determine the dosage of bolus insulin to offset the potential blood glucose effects caused by the proposed meal.


In operation 1020, the controller device 200 can receive information indicative of the user's current blood glucose level. For example, the controller device 200 can receive information indicative of the user's blood glucose level from the glucose monitoring device 50. In another example, the user can utilize a separate blood glucose meter (e.g., a blood strip reader) and enter the results into the controller device 200. Alternatively, the glucose meter device can wirelessly communicate the blood glucose information to the controller device 200 (via communication with wireless communication device 247).


In operation 1025, the controller device 200 can calculate the amount of insulin (if any) to correct the current blood glucose level based on the information obtained during operation 1020. For example, the controller device 200 can subtract the user's target blood glucose level from the current level obtained during operation 1020, and then multiply this difference by an insulin sensitivity factor. Such a calculation can provide a correction bolus value that is indicative of the amount of insulin that is appropriate to reduce the current blood glucose level into an acceptable range. A positive correction bolus value indicates that the current blood glucose level is high, thereby requiring additional insulin to correct. Conversely, a negative correction bolus value indicates that the current blood glucose value is low, which will cause the suggested total bolus to be decreased.


In operation 1030, the controller device 200 can retrieve a TIL value stored in memory (previously described in connection with FIG. 11). To reduce the likelihood of undesirable bolus stacking, the TIL information can be determined by the controller device 200 on a periodic basis so that the user can be aware of the previously dispensed insulin which has not yet acted in the user's body. This TIL information can be used in a bolus suggestion feature of the controller device 200 so that the suggested bolus amount accounts for the previously dispensed insulin (both basal and bolus dosages) which has not yet acted in the user's body and (optionally) the previous food intake of the user. The TIL value can be stored in a memory device 248 (FIG. 9) of the controller device 200. As an alternative to retrieving the TIL value from the memory device, the controller device 200 can calculate a current TIL value using a process, for example, as previously described in connection with FIG. 11.


In operation 1035, the controller device 200 can calculate a suggested bolus dosage based, at least in part, on the information provided by the user. In one example, the suggest bolus dosage can be determined according to the following equation:

Suggested Bolus Dosage=Food Bolus+Correction Bolus−TIL Value


As such, the controller device 200 can provide a bolus suggestion feature that accounts for the user's TIL when suggesting a new bolus of insulin prior to a meal or other food intake. By so including the TIL information in the suggested bolus calculation, which accounts for the amount of previous basal and bolus insulin that has not yet acted in the user's body, the controller device 200 can reduce the likelihood of the user performing an unsafe level of bolus stacking. Moreover, in some embodiments, the TIL information can reflect the user's previously consumed food in addition to the bolus deliveries and the basal deliveries. Accordingly, the suggested bolus calculation, which includes the TIL information, can account for both the previously dispensed insulin that has not yet acted and the previously consumed food that has not yet been metabolized.


In operation 1040, the controller device 200 can inform the user (e.g., through controller device 200, through an audio output, or through another component of the user interface) of the bolus suggestion. In one example, the display device 222 can communicate the suggested bolus amount to the user so that the user can manually input the suggested bolus value into a bolus scheduling module of controller device 200 (e.g., a separate menu option). Alternatively, as indicated in operation 1045, the controller device 200 can prompt the user to begin bolus delivery according to the suggested bolus dosage. For example, the controller device 200 can display the suggested bolus value along with a prompt that asks the user to confirm the start of the suggested bolus dosage. If the user responds in the affirmative, the controller device 200 can automatically begin the infusion. If the user responds in the negative, the user can have the opportunity manually input the suggested bolus value into a bolus scheduling module of controller device 200 (e.g., a separate menu option).


Referring now to FIGS. 18 and 19, in some circumstances, the TIL information that is collected over a period of time can be accessed by the user or a health care provider for purposes of analysis and program adjustments. As previously described, the TIL information at time tn and the time data tn can be stored in the memory of the controller device 200. The memory of the controller device 200 may also store the detected blood glucose level at time tn, which may be generated from the sensor signal received from the monitoring device 50 (FIG. 1). As such, the data stored in the controller device 200 can provide a historical record of the TIL information, the time information, and (optionally) the detected blood glucose information that is accessible by the controller device 200 or by an external computer system (e.g., a desktop computer, a laptop computer, a PDA, or the like).


For example, as shown in FIG. 18, the controller device 200 can store the TIL information and other data related to a user's blood glucose level in the memory device 248 (FIG. 9) and subsequently transfer this data to an external computer system 80 of the user or the user's health care provider. In some embodiments, the external computer system 80 can display a plot of the historical data and (optionally) execute a software program to analyze the historical data for the purposes of helping the user to better manage his or her diabetes treatment. This analysis can be used, for example, to educate the user about the benefits of entering meal information in an accurate and timely manner, to properly adjust the user's basal rate schedule, to modify user-specific parameters programmed in the controller device 200 (e.g., the carbohydrate ratio, insulin sensitivity, and the like), and to perform other management tasks.


In this illustrative example depicted in FIG. 18, the controller device 200 may communicate data to an external computer system 80 via a data connection 85. As previously described, the controller device 200 may include a cable connector (e.g., a USB connection port, another data cable port, or a data cable connection via the electrical connector 218) that is accessible on an external portion of the controller housing 210. As such, a data cable may be connected to the control circuitry 240 to export the data to the external computer system 80. Alternatively, the data connection 85 can be a wireless connection via the controller's wireless communication device 247. In such circumstances, the wireless communication device 247 can be configured to wirelessly communicate with the monitoring device 50 (FIG. 1) and with the external computer system 80 (FIG. 18). When the controller device 200 is connected to the computer system 80 via the data connection 85, the controller device 200 can execute a data exporting module in which the TIL information, the time information, the detected blood glucose information, and other treatment information is exported in a suitable format to the external computer system 80. In some circumstances, the controller device 200 may be detached from the pump device during the process of exporting data, so the controller device 200 can suspend dispensation operations (e.g., suspends basal infusion, bolus infusion, accessibility to certain menus via the user interface 220, and the like). While controller device executes the data exporting module, the controller device 200 may indicate on the display device 222 that the controller device 200 is in this mode by displaying a message such as “Exporting Data . . . ” or the like. Still referring to FIG. 18, after the data has been transferred to the computer system 80, the computer system 80 can display the TIL information and other treatment data is a usable format. For example, the display device of the computer system 80 can provide a time-based plot 82 that indicates the user's insulin delivery pattern 84 and the user's TIL information 86 with respect to time. The TIL information in the plot 82 can be display as the actual TIL value (in units of insulin), the TIL % value (normalized to be a percentage), or both. The computer system 80 may provide a time-based plot that indicates the user's detected blood glucose levels with respect to time. Optionally, this blood glucose information can be display on the same plot 82 as the TIL information 86. Thus, the external computer system 80 can display the plot 82 of the user's historical treatment data and may optionally execute a software program to analyze the historical treatment data for the purposes of helping the user to better manage his or her diabetes treatment. By presenting the TIL information and other treatment data to the user in an understandable, graphical format (such as the time-based plot 82), the health care provider is readily equipped to educate the user about the benefits of entering meal information in an accurate and timely manner, to properly adjust the user's basal rate schedule, to modify user-specific parameters programmed in the controller device 200 (e.g., the carbohydrate ratio, insulin sensitivity, and the like), and to perform other management tasks.


In another illustrative example depicted in FIG. 19, some embodiments of the controller device 200 can be configured to display the TIL information and other treatment data is a graphical format data on the local display device 222. For example, as shown in FIG. 19, the controller device 200 can access the historical treatment data stored in the memory device 248 so as to generate a graphical bar graph representation 226 of the TIL information over a period of time. In this embodiment, the TIL information is displayed on the display device in the form of a bar graph 226 that indicates the user's TIL information over a period of hours. The display 22 can be configured to display a y-axis that is representative of the scale for the TIL value of the TIL % value. Also, the display device 222 can shows a set of time increments along an x-axis of the bar graph 226. As such, the controller device 200 can provide prompt access to the TIL information by a user or health care provider, and can readily present such information in an understandable, graphical format (such as the time-based plot bar graph 226). In doing so, the user can assess his or her insulin treatment performance over a recent period of time and make proper adjustments to his or her basal rate, bolus dosages, eating schedule, or the like. In the event that the user seeks to review the TIL information over a longer period of time, the controller device 200 can display the TIL values for this extended period (e.g., a 24-hour period) on the display device 222 by averaging the TIL values during each one hour period into a single value. In such circumstances, the hour-averaged values (e.g., 24 averaged values for a 24 hour period) can then be displayed in a graphical format, such as bar graph, that indicates the trends of the user's TIL information.


A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.

Claims
  • 1. A system, comprising: a pump housing that receives insulin for dispensation to a user, the pump housing at least partially containing a pump drive system to dispense insulin through a flow path to the user;a controller that instructs the pump drive system to dispense the insulin from the pump housing, wherein the controller is configured to receive glucose information being indicative of a glucose level of the user; andan external computer including a display in wireless communication with the controller,wherein the system determines a total insulin load according to a function that accounts for a bolus insulin load and a basal insulin load, and calculates future glucose level of the user, andwherein the total insulin load is a normalized total insulin load (TIL) percentage value and the system utilizes the normalized TIL percentage value to calculate the future glucose level of the user.
  • 2. The system of claim 1, wherein the function further accounts for a previous food component based upon previous food intake that has not yet metabolized in the user.
  • 3. The system of claim 1, wherein the system displays to a user a glucose value indicative of the glucose level of the user and the total insulin load.
  • 4. The system of claim 3, wherein the glucose value and the total insulin load are contemporaneously displayed to the user.
  • 5. The system of claim 1, wherein the total insulin load is determined by the controller.
  • 6. The system of claim 1, further comprising a computer-readable memory device coupled to the controller that stores one or more calculated values for the total insulin load and one or more corresponding time values.
  • 7. The system of claim 1, wherein the controller comprises a controller housing that removably attaches to the pump housing, the controller being electrically connected to the pump drive system when the controller housing is removably attached to the pump housing.
  • 8. The system of claim 1, wherein the controller is a reusable device, and wherein the pump housing and pump drive system are components of a disposable and nonreusable pump device having one or more structures that hinder reuse of the pump device after a supply of the insulin is exhausted.
  • 9. The system of claim 1, wherein the pump housing receives a prefilled cartridge through an opening of the pump housing that is coverable with a cap device.
  • 10. The system of claim 9, wherein the flow path of the insulin comprises an infusion set tube that extends from the cap device to the user.
  • 11. The system of claim 1, wherein the total insulin load is determined based on a user input request.
  • 12. The system of claim 1, wherein the total insulin load is automatically determined at predetermined intervals.
  • 13. The system of claim 1, wherein the normalized total insulin load (TIL) percentage value is determined according to the function: total insulin load percentage=[(Actual TIL)−(theoretical TILbasal)]/(theoretical TILbasal)×100where theoretical TILbasal represents the TIL that would have been generated based only on the user's basal insulin dosages.
  • 14. The system of claim 1, wherein the system alerts the user when the total insulin load is a negative value.
  • 15. The system of claim 1, wherein the system alerts the user when the total insulin load increases at a rate above a predetermined rate indicative of a potentially unsafe condition.
  • 16. The system of claim 1, wherein the total insulin load is a numerical value that is displayed to the user.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 15/948,356, filed Apr. 9, 2018, now U.S. Pat. No. 10,737,015, issued on Aug. 11, 2020, which is a continuation of U.S. application Ser. No. 14/797,400, filed Jul. 13, 2015, now U.S. Pat. No. 9,968,729, issued on May 15, 2018, which is a continuation of U.S. application Ser. No. 13/524,200 filed on Jun. 15, 2012, now U.S. Pat. No. 9,078,963, issued on Jul. 14, 2015, which is a continuation of U.S. application Ser. No. 13/071,061 filed on Mar. 24, 2011, now U.S. Pat. No. 8,221,385, issued on Jul. 17, 2012, which is a divisional of U.S. application Ser. No. 12/195,034 filed on Aug. 20, 2008, now U.S. Pat. No. 7,959,598, issued on Jun. 14, 2011, the entire contents of these previous applications are expressly incorporated herein by reference.

US Referenced Citations (1780)
Number Name Date Kind
303013 Horton Aug 1884 A
445545 Crane Feb 1891 A
588583 Lade Aug 1897 A
1441508 Marius et al. Jan 1923 A
2283925 Harvey May 1942 A
2605765 Kollsman Aug 1952 A
2797149 Skeggs Jun 1957 A
2886529 Guillaud May 1959 A
3413573 Nathanson et al. Nov 1968 A
3574114 Monforte Apr 1971 A
3614554 Shield et al. Oct 1971 A
3631847 Hobbs Jan 1972 A
3634039 Brondy Jan 1972 A
3688764 Reed Sep 1972 A
3812843 Wootten et al. May 1974 A
3841328 Jensen Oct 1974 A
3885662 Schaefer May 1975 A
3886938 Szabo et al. Jun 1975 A
3963380 Thomas et al. Jun 1976 A
3983077 Fuller et al. Sep 1976 A
4055175 Clemens et al. Oct 1977 A
4077405 Haerten et al. Mar 1978 A
4108177 Pistor Aug 1978 A
4146029 Ellinwood, Jr. Mar 1979 A
4151845 Clemens May 1979 A
4231368 Becker Nov 1980 A
4235234 Martin et al. Nov 1980 A
4245634 Albisser et al. Jan 1981 A
4265241 Portner et al. May 1981 A
4268150 Chen May 1981 A
4295176 Wittwer Oct 1981 A
4300554 Hessberg et al. Nov 1981 A
4313439 Babb et al. Feb 1982 A
4368980 Aldred et al. Jan 1983 A
4373527 Fischell Feb 1983 A
4398908 Siposs Aug 1983 A
4400683 Eda et al. Aug 1983 A
4403984 Ash et al. Sep 1983 A
4424720 Bucchianeri Jan 1984 A
4435173 Siposs et al. Mar 1984 A
4443218 DeCant et al. Apr 1984 A
4464170 Clemens et al. Aug 1984 A
4469481 Kobayashi Sep 1984 A
4475901 Kraegen et al. Oct 1984 A
4493704 Beard et al. Jan 1985 A
4498843 Schneider et al. Feb 1985 A
4507115 Kambara et al. Mar 1985 A
4523170 Huth, III Jun 1985 A
4526568 Clemens et al. Jul 1985 A
4526569 Bernardi Jul 1985 A
4529401 Leslie et al. Jul 1985 A
4551134 Slavik et al. Nov 1985 A
4552561 Eckenhoff et al. Nov 1985 A
4559033 Stephen et al. Dec 1985 A
4559037 Franetzki et al. Dec 1985 A
4562751 Nason et al. Jan 1986 A
4564054 Gustavsson Jan 1986 A
4573968 Parker Mar 1986 A
4585439 Michel Apr 1986 A
4601707 Albisser et al. Jul 1986 A
4624661 Arimond Nov 1986 A
4633878 Bombardieri Jan 1987 A
4634427 Hannula et al. Jan 1987 A
4646038 Wanat Feb 1987 A
4652260 Fenton et al. Mar 1987 A
4657529 Prince et al. Apr 1987 A
4668220 Hawrylenko May 1987 A
4678408 Nason et al. Jul 1987 A
4681569 Coble et al. Jul 1987 A
4684368 Kenyon Aug 1987 A
4685903 Cable et al. Aug 1987 A
4731726 Allen, III Mar 1988 A
4734092 Millerd Mar 1988 A
4743243 Vaillancourt May 1988 A
4749109 Kamen Jun 1988 A
4755169 Sarnoff et al. Jul 1988 A
4755173 Konopka et al. Jul 1988 A
4759120 Bernstein Jul 1988 A
4768506 Parker et al. Sep 1988 A
4781688 Thoma et al. Nov 1988 A
4781693 Martinez et al. Nov 1988 A
4808161 Kamen Feb 1989 A
4838857 Strowe et al. Jun 1989 A
4850817 Nason et al. Jul 1989 A
4854170 Brimhall et al. Aug 1989 A
4859492 Rogers et al. Aug 1989 A
4880770 Mir et al. Nov 1989 A
4886499 Cirelli et al. Dec 1989 A
4898578 Rubalcaba, Jr. Feb 1990 A
4898579 Groshong et al. Feb 1990 A
4900292 Berry et al. Feb 1990 A
4902278 Maget et al. Feb 1990 A
4919596 Slate et al. Apr 1990 A
4925444 Orkin et al. May 1990 A
4940527 Kazlauskas et al. Jul 1990 A
4944659 Labbe et al. Jul 1990 A
4967201 Rich, III Oct 1990 A
4969874 Michel et al. Nov 1990 A
4975581 Robinson et al. Dec 1990 A
4976720 Machold et al. Dec 1990 A
4981140 Wyatt Jan 1991 A
4994047 Walker et al. Feb 1991 A
5007286 Malcolm et al. Apr 1991 A
5007458 Marcus et al. Apr 1991 A
5029591 Teves Jul 1991 A
5045064 Idriss Sep 1991 A
5061424 Karimi et al. Oct 1991 A
5062841 Siegel Nov 1991 A
5084749 Losee et al. Jan 1992 A
5088981 Howson et al. Feb 1992 A
5088990 Hivale et al. Feb 1992 A
5097834 Skrabal Mar 1992 A
5102406 Arnold Apr 1992 A
5109850 Blanco et al. May 1992 A
5125415 Bell Jun 1992 A
5130675 Sugawara Jul 1992 A
5134079 Cusack et al. Jul 1992 A
5139999 Gordon et al. Aug 1992 A
5153827 Coutre et al. Oct 1992 A
5154973 Imagawa et al. Oct 1992 A
5165406 Wong Nov 1992 A
5176632 Bernardi Jan 1993 A
5176662 Bartholomew et al. Jan 1993 A
5178609 Ishikawa Jan 1993 A
5189609 Tivig et al. Feb 1993 A
5190522 Wojcicki et al. Mar 1993 A
5198824 Poradish Mar 1993 A
5205819 Ross et al. Apr 1993 A
5207642 Orkin et al. May 1993 A
5209230 Swedlow et al. May 1993 A
5213483 Flaherty et al. May 1993 A
5217754 Santiago-Aviles et al. Jun 1993 A
5219377 Poradish Jun 1993 A
5225763 Krohn et al. Jul 1993 A
5232439 Campbell et al. Aug 1993 A
5237993 Skrabal Aug 1993 A
5244463 Cordner et al. Sep 1993 A
5250027 Lewis et al. Oct 1993 A
5254096 Rondelet et al. Oct 1993 A
5257980 Van et al. Nov 1993 A
5261882 Sealfon Nov 1993 A
5263198 Geddes et al. Nov 1993 A
5272485 Mason et al. Dec 1993 A
5273517 Barone et al. Dec 1993 A
5281202 Weber et al. Jan 1994 A
5281808 Kunkel Jan 1994 A
5299571 Mastrototaro Apr 1994 A
5308982 Ivaldi et al. May 1994 A
5314412 Rex May 1994 A
5335994 Weynant Nee Girones Aug 1994 A
5338157 Blomquist Aug 1994 A
5342180 Daoud Aug 1994 A
5342298 Michaels et al. Aug 1994 A
5346476 Elson Sep 1994 A
5349575 Park Sep 1994 A
5364342 Beuchat et al. Nov 1994 A
5377674 Kuestner Jan 1995 A
5380665 Cusack et al. Jan 1995 A
5385539 Maynard Jan 1995 A
5389078 Zalesky et al. Feb 1995 A
5395340 Lee Mar 1995 A
5403797 Ohtani et al. Apr 1995 A
5411487 Castagna May 1995 A
5411889 Hoots et al. May 1995 A
5421812 Langley et al. Jun 1995 A
5427988 Sengupta et al. Jun 1995 A
5433710 VanAntwerp et al. Jul 1995 A
5456945 McMillan et al. Oct 1995 A
5468727 Phillips et al. Nov 1995 A
5478610 Desu et al. Dec 1995 A
5505709 Funderburk et al. Apr 1996 A
5505828 Wong et al. Apr 1996 A
5507288 Boecker et al. Apr 1996 A
5513382 Agahi-Kesheh et al. Apr 1996 A
5527288 Gross et al. Jun 1996 A
5533389 Kamen et al. Jul 1996 A
5535445 Gunton Jul 1996 A
5540772 McMillan et al. Jul 1996 A
5543773 Evans et al. Aug 1996 A
5545143 Fischell et al. Aug 1996 A
5551850 Williamson et al. Sep 1996 A
5554123 Herskowitz Sep 1996 A
5558640 Pfeiler et al. Sep 1996 A
5569186 Lord et al. Oct 1996 A
5582593 Hultman Dec 1996 A
5584053 Kommrusch et al. Dec 1996 A
5584813 Livingston et al. Dec 1996 A
5590387 Schmidt et al. Dec 1996 A
5609572 Lang Mar 1997 A
5614252 McMillan et al. Mar 1997 A
5625365 Tom et al. Apr 1997 A
5626566 Petersen et al. May 1997 A
5635433 Sengupta Jun 1997 A
5637095 Nason et al. Jun 1997 A
5656032 Kriesel et al. Aug 1997 A
5665065 Colman et al. Sep 1997 A
5665070 McPhee Sep 1997 A
5672167 Athayde et al. Sep 1997 A
5678539 Schubert et al. Oct 1997 A
5685844 Marttila Nov 1997 A
5685859 Kornerup Nov 1997 A
5693018 Kriesel et al. Dec 1997 A
5697899 Hillman et al. Dec 1997 A
5700695 Yassinzadeh et al. Dec 1997 A
5703364 Rosenthal Dec 1997 A
5707459 Itoyama et al. Jan 1998 A
5707715 Derochemont et al. Jan 1998 A
5713875 Tanner, II Feb 1998 A
5714123 Sohrab Feb 1998 A
5716343 Kriesel et al. Feb 1998 A
5718562 Lawless et al. Feb 1998 A
5722397 Eppstein Mar 1998 A
5741216 Hemmingsen et al. Apr 1998 A
5741228 Lambrecht et al. Apr 1998 A
5746217 Erickson et al. May 1998 A
5747350 Sattler May 1998 A
5747870 Pedder May 1998 A
5748827 Holl et al. May 1998 A
5755682 Knudson et al. May 1998 A
5758643 Wong et al. Jun 1998 A
5759923 McMillan et al. Jun 1998 A
5764189 Lohninger Jun 1998 A
5766155 Hyman et al. Jun 1998 A
5771567 Pierce et al. Jun 1998 A
5772635 Dastur et al. Jun 1998 A
5776103 Kriesel et al. Jul 1998 A
5779676 Kriesel et al. Jul 1998 A
5785688 Joshi et al. Jul 1998 A
5797881 Gadot Aug 1998 A
5800397 Wilson et al. Sep 1998 A
5800405 McPhee Sep 1998 A
5800420 Gross et al. Sep 1998 A
5801057 Smart et al. Sep 1998 A
5804048 Wong et al. Sep 1998 A
5807075 Jacobsen et al. Sep 1998 A
5816306 Giacomel Oct 1998 A
5817007 Fodgaard et al. Oct 1998 A
5820622 Gross et al. Oct 1998 A
5822715 Worthington Oct 1998 A
5823951 Messerschmidt Oct 1998 A
5839467 Saaski et al. Nov 1998 A
5840020 Heinonen et al. Nov 1998 A
D403313 Peppel Dec 1998 S
5848991 Gross et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5852803 Ashby et al. Dec 1998 A
5854608 Leisten Dec 1998 A
5858001 Tsals et al. Jan 1999 A
5858005 Kriesel Jan 1999 A
5858239 Kenley et al. Jan 1999 A
5859621 Leisten Jan 1999 A
5865806 Howell Feb 1999 A
5871470 McWha Feb 1999 A
5873731 Prendergast Feb 1999 A
5879310 Sopp et al. Mar 1999 A
5889459 Hattori et al. Mar 1999 A
5891097 Saito et al. Apr 1999 A
5892489 Kanba et al. Apr 1999 A
5893838 Daoud et al. Apr 1999 A
5897530 Jackson Apr 1999 A
5902253 Pfeiffer et al. May 1999 A
5903421 Furutani et al. May 1999 A
5906597 McPhee May 1999 A
5911716 Rake et al. Jun 1999 A
5914941 Janky Jun 1999 A
5919167 Mulhauser et al. Jul 1999 A
5925018 Ungerstedt Jul 1999 A
5928201 Poulsen et al. Jul 1999 A
5931814 Alex et al. Aug 1999 A
5932175 Knute et al. Aug 1999 A
5933121 Rainhart et al. Aug 1999 A
5935099 Peterson et al. Aug 1999 A
5945963 Leisten Aug 1999 A
5947911 Wong et al. Sep 1999 A
5947934 Hansen et al. Sep 1999 A
5951530 Steengaard et al. Sep 1999 A
5957889 Poulsen et al. Sep 1999 A
5957890 Mann et al. Sep 1999 A
5961492 Kriesel et al. Oct 1999 A
5965848 Altschul et al. Oct 1999 A
5971941 Simons et al. Oct 1999 A
5984894 Poulsen et al. Nov 1999 A
5984897 Petersen et al. Nov 1999 A
5993423 Choi Nov 1999 A
5997475 Bortz Dec 1999 A
5997501 Gross et al. Dec 1999 A
6003736 Ljunggren Dec 1999 A
6005151 Herrmann et al. Dec 1999 A
6010485 Buch-Rasmussen et al. Jan 2000 A
6017318 Gauthier et al. Jan 2000 A
6019747 McPhee Feb 2000 A
6023251 Koo et al. Feb 2000 A
6024539 Blomquist Feb 2000 A
6027826 Derochemont et al. Feb 2000 A
6028568 Asakura et al. Feb 2000 A
6031445 Marty et al. Feb 2000 A
6032059 Henning et al. Feb 2000 A
6033377 Rasmussen et al. Mar 2000 A
6036924 Simons et al. Mar 2000 A
6040578 Malin et al. Mar 2000 A
6040805 Huynh et al. Mar 2000 A
6045537 Klitmose Apr 2000 A
6046707 Gaughan et al. Apr 2000 A
6049727 Crothall Apr 2000 A
6050978 Orr et al. Apr 2000 A
6052040 Hino Apr 2000 A
6056728 Von Schuckmann May 2000 A
6058934 Sullivan May 2000 A
6066103 Duchon et al. May 2000 A
6071292 Makower et al. Jun 2000 A
6072180 Kramer et al. Jun 2000 A
6074372 Hansen Jun 2000 A
6077055 Vilks Jun 2000 A
6090092 Fowles et al. Jul 2000 A
6101406 Hacker et al. Aug 2000 A
6102872 Doneen et al. Aug 2000 A
6106498 Friedli et al. Aug 2000 A
6110149 Klitgaard et al. Aug 2000 A
6111544 Dakeya et al. Aug 2000 A
6115673 Malin et al. Sep 2000 A
6123827 Wong et al. Sep 2000 A
6124134 Stark Sep 2000 A
6126595 Amano et al. Oct 2000 A
6126637 Kriesel et al. Oct 2000 A
6127061 Shun et al. Oct 2000 A
6128519 Say Oct 2000 A
6142939 Eppstein et al. Nov 2000 A
6143164 Heller et al. Nov 2000 A
6143432 De et al. Nov 2000 A
6154176 Fathy et al. Nov 2000 A
6156014 Petersen et al. Dec 2000 A
6157041 Thomas et al. Dec 2000 A
6161028 Braig et al. Dec 2000 A
6162639 Douglas Dec 2000 A
6171276 Lippe et al. Jan 2001 B1
6174300 Kriesel et al. Jan 2001 B1
6176004 Rainhart et al. Jan 2001 B1
6181297 Leisten Jan 2001 B1
6188368 Koriyama et al. Feb 2001 B1
6190359 Heruth Feb 2001 B1
6195049 Kim et al. Feb 2001 B1
6196046 Braig et al. Mar 2001 B1
6200287 Keller et al. Mar 2001 B1
6200293 Kriesel et al. Mar 2001 B1
6200338 Solomon et al. Mar 2001 B1
6204203 Narwankar et al. Mar 2001 B1
6208843 Huang et al. Mar 2001 B1
6214629 Freitag et al. Apr 2001 B1
6222489 Tsuru et al. Apr 2001 B1
6226082 Roe May 2001 B1
6231540 Smedegaard May 2001 B1
6233471 Berner et al. May 2001 B1
6244776 Wiley Jun 2001 B1
6248067 Causey et al. Jun 2001 B1
6248090 Jensen et al. Jun 2001 B1
6248093 Moberg Jun 2001 B1
6251113 Appelbaum et al. Jun 2001 B1
6261065 Nayak et al. Jul 2001 B1
6262798 Shepherd et al. Jul 2001 B1
6266020 Chang Jul 2001 B1
6269340 Ford et al. Jul 2001 B1
6270455 Brown Aug 2001 B1
6271045 Douglas et al. Aug 2001 B1
6277098 Klitmose et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285448 Kuenstner Sep 2001 B1
6292440 Lee Sep 2001 B1
6300894 Lynch et al. Oct 2001 B1
6302855 Lav et al. Oct 2001 B1
6302869 Klitgaard Oct 2001 B1
6309370 Haim et al. Oct 2001 B1
6312888 Wong et al. Nov 2001 B1
6320547 Fathy et al. Nov 2001 B1
6323549 Derochemont et al. Nov 2001 B1
6334851 Hayes et al. Jan 2002 B1
6363609 Pickren Apr 2002 B1
6368314 Kipfer et al. Apr 2002 B1
6375627 Mauze et al. Apr 2002 B1
6375638 Nason et al. Apr 2002 B2
6379301 Worthington et al. Apr 2002 B1
6379339 Klitgaard et al. Apr 2002 B1
6381496 Meadows et al. Apr 2002 B1
6397098 Uber et al. May 2002 B1
6402689 Scarantino et al. Jun 2002 B1
6404098 Kayama et al. Jun 2002 B1
6413244 Bestetti et al. Jul 2002 B1
6427088 Bowman et al. Jul 2002 B1
D461241 Moberg et al. Aug 2002 S
D461891 Moberg Aug 2002 S
6434528 Sanders Aug 2002 B1
6436072 Kullas et al. Aug 2002 B1
6461329 Van et al. Oct 2002 B1
6461331 Van Antwerp Oct 2002 B1
6470279 Samsoondar Oct 2002 B1
6474219 Klitmose et al. Nov 2002 B2
6475196 Vachon Nov 2002 B1
6477065 Parks Nov 2002 B2
6477901 Tadigadapa et al. Nov 2002 B1
6484044 Lilienfeld-Toal Nov 2002 B1
6485461 Mason et al. Nov 2002 B1
6485462 Kriesel Nov 2002 B1
6491656 Morris Dec 2002 B1
6491684 Joshi et al. Dec 2002 B1
6492949 Breglia et al. Dec 2002 B1
6496149 Birnbaum et al. Dec 2002 B1
6501415 Viana et al. Dec 2002 B1
6508788 Preuthun Jan 2003 B2
6512937 Blank et al. Jan 2003 B2
6520936 Mann Feb 2003 B1
6524280 Hansen et al. Feb 2003 B2
6525509 Petersson et al. Feb 2003 B1
6527744 Kriesel et al. Mar 2003 B1
6528809 Thomas et al. Mar 2003 B1
6533183 Aasmul et al. Mar 2003 B2
6537249 Kriesell et al. Mar 2003 B2
6537251 Klitmose Mar 2003 B2
6537268 Gibson et al. Mar 2003 B1
6540260 Tan Apr 2003 B1
6540672 Simonsen et al. Apr 2003 B1
6541820 Bol Apr 2003 B1
6544212 Galley et al. Apr 2003 B2
6544229 Danby et al. Apr 2003 B1
6546268 Ishikawa et al. Apr 2003 B1
6546269 Kurnik Apr 2003 B1
6547764 Larsen et al. Apr 2003 B2
6551276 Mann et al. Apr 2003 B1
6552693 Leisten Apr 2003 B1
6553841 Blouch Apr 2003 B1
6554798 Mann et al. Apr 2003 B1
6554800 Nezhadian et al. Apr 2003 B1
6556850 Braig et al. Apr 2003 B1
D474778 Barnes May 2003 S
6558320 Causey et al. May 2003 B1
6558345 Houben et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6559735 Hoang et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6562011 Buch-Rasmussen et al. May 2003 B1
6562014 Lin et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6569115 Barker et al. May 2003 B1
6569125 Jepson et al. May 2003 B2
6569126 Poulsen et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6572542 Houben et al. Jun 2003 B1
6572545 Knobbe et al. Jun 2003 B2
6574490 Abbink et al. Jun 2003 B2
6575905 Knobbe et al. Jun 2003 B2
6577899 Lebel et al. Jun 2003 B2
6580934 Braig et al. Jun 2003 B1
6582404 Klitgaard et al. Jun 2003 B1
6583699 Yokoyama Jun 2003 B2
6585644 Lebel et al. Jul 2003 B2
6585699 Ljunggreen et al. Jul 2003 B2
6587199 Luu Jul 2003 B1
6589229 Connelly et al. Jul 2003 B1
6595956 Gross et al. Jul 2003 B1
6599281 Struys et al. Jul 2003 B1
6605067 Larsen Aug 2003 B1
6605072 Struys et al. Aug 2003 B2
6611419 Chakravorty Aug 2003 B1
6613019 Munk Sep 2003 B2
6618603 Varalli et al. Sep 2003 B2
6620750 Kim et al. Sep 2003 B2
6633772 Ford et al. Oct 2003 B2
6635958 Bates et al. Oct 2003 B2
6639556 Baba Oct 2003 B2
6641533 Causey et al. Nov 2003 B2
6642908 Pleva et al. Nov 2003 B2
6645142 Braig et al. Nov 2003 B2
6648821 Lebel et al. Nov 2003 B2
6650303 Kim et al. Nov 2003 B2
6650951 Jones et al. Nov 2003 B1
6653091 Dunn et al. Nov 2003 B1
6656158 Mahoney et al. Dec 2003 B2
6656159 Flaherty Dec 2003 B2
6659948 Lebel et al. Dec 2003 B2
6659978 Kasuga et al. Dec 2003 B1
6659980 Moberg et al. Dec 2003 B2
6662030 Khalil et al. Dec 2003 B2
6663602 Moeller Dec 2003 B2
6668196 Villegas et al. Dec 2003 B1
6669663 Thompson Dec 2003 B1
6669668 Kleeman et al. Dec 2003 B1
6669669 Flaherty et al. Dec 2003 B2
6670497 Tashino et al. Dec 2003 B2
6678542 Braig et al. Jan 2004 B2
6680700 Hilgers Jan 2004 B2
6683576 Hilgers Jan 2004 B2
6685674 Douglas et al. Feb 2004 B2
6686406 Tomomatsu et al. Feb 2004 B2
6687546 Lebel et al. Feb 2004 B2
6689100 Connelly et al. Feb 2004 B2
6690192 Wing Feb 2004 B1
6690336 Leisten et al. Feb 2004 B1
6691043 Ribeiro, Jr. Feb 2004 B2
6692457 Flaherty Feb 2004 B2
6692472 Hansen et al. Feb 2004 B2
6694191 Starkweather et al. Feb 2004 B2
6697605 Atokawa et al. Feb 2004 B1
6699218 Flaherty et al. Mar 2004 B2
6699221 Vaillancourt Mar 2004 B2
6702779 Connelly et al. Mar 2004 B2
6715516 Ohms et al. Apr 2004 B2
6716198 Larsen Apr 2004 B2
6718189 Rohrscheib et al. Apr 2004 B2
6720926 Killen et al. Apr 2004 B2
6721582 Trepagnier et al. Apr 2004 B2
6723072 Flaherty et al. Apr 2004 B2
6723077 Pickup et al. Apr 2004 B2
6727785 Killen et al. Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6731244 Killen et al. May 2004 B2
6731248 Killen et al. May 2004 B2
6733446 Lebel et al. May 2004 B2
6733890 Imanaka et al. May 2004 B2
6736796 Shekalim May 2004 B2
6740059 Flaherty May 2004 B2
6740072 Starkweather et al. May 2004 B2
6740075 Lebel et al. May 2004 B2
6741148 Killen et al. May 2004 B2
6742249 DeRochemont et al. Jun 2004 B2
6743744 Kim et al. Jun 2004 B1
6744350 Blomquist Jun 2004 B2
6749587 Flaherty Jun 2004 B2
6750740 Killen et al. Jun 2004 B2
6750820 Killen et al. Jun 2004 B2
6751490 Esenaliev et al. Jun 2004 B2
6752785 Van et al. Jun 2004 B2
6752787 Causey et al. Jun 2004 B1
6753745 Killen et al. Jun 2004 B2
6753814 Killen et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6758835 Close et al. Jul 2004 B2
6761286 Py et al. Jul 2004 B2
6762237 Glatkowski et al. Jul 2004 B2
6768425 Flaherty et al. Jul 2004 B2
6780156 Haueter et al. Aug 2004 B2
6786246 Ohms et al. Sep 2004 B2
6786890 Preuthun et al. Sep 2004 B2
6787181 Uchiyama et al. Sep 2004 B2
6791496 Killen et al. Sep 2004 B1
6796957 Carpenter et al. Sep 2004 B2
6796970 Klitmose et al. Sep 2004 B1
6799149 Hartlaub Sep 2004 B2
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6826031 Nagai et al. Nov 2004 B2
6827702 Lebel et al. Dec 2004 B2
6830558 Flaherty et al. Dec 2004 B2
6830623 Hayashi et al. Dec 2004 B2
6837858 Cunningham et al. Jan 2005 B2
6837988 Leong et al. Jan 2005 B2
6846288 Nagar et al. Jan 2005 B2
6852104 Blomquist Feb 2005 B2
6853288 Ahn et al. Feb 2005 B2
6854620 Ramey Feb 2005 B2
6854653 Eilersen Feb 2005 B2
6855129 Jensen et al. Feb 2005 B2
6858892 Yamagata Feb 2005 B2
6862534 Sterling et al. Mar 2005 B2
6864848 Sievenpiper Mar 2005 B2
6865408 Abbink et al. Mar 2005 B1
6871396 Sugaya et al. Mar 2005 B2
6872200 Mann et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6878132 Kipfer Apr 2005 B2
6878871 Scher et al. Apr 2005 B2
6883778 Newton et al. Apr 2005 B1
6890291 Robinson et al. May 2005 B2
6893415 Madsen et al. May 2005 B2
6899695 Herrera May 2005 B2
6899699 Enggaard May 2005 B2
6905989 Ellis et al. Jun 2005 B2
6906674 McKinzie et al. Jun 2005 B2
6914566 Beard Jul 2005 B2
6919119 Kalkan et al. Jul 2005 B2
6922590 Whitehurst Jul 2005 B1
6923763 Kovatchev et al. Aug 2005 B1
6925393 Kalatz et al. Aug 2005 B1
6928298 Furutani et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6936029 Mann et al. Aug 2005 B2
6943430 Kwon Sep 2005 B2
6943731 Killen et al. Sep 2005 B2
6945961 Miller et al. Sep 2005 B2
6949081 Chance Sep 2005 B1
6950708 Bowman et al. Sep 2005 B2
6958809 Sterling et al. Oct 2005 B2
6960192 Flaherty et al. Nov 2005 B1
6963259 Killen et al. Nov 2005 B2
6979326 Mann et al. Dec 2005 B2
6989891 Braig et al. Jan 2006 B2
6990366 Say et al. Jan 2006 B2
6997911 Klitmose Feb 2006 B2
6997920 Mann et al. Feb 2006 B2
7002436 Ma et al. Feb 2006 B2
7005078 Van et al. Feb 2006 B2
7008399 Larsen et al. Mar 2006 B2
7008404 Nakajima Mar 2006 B2
7009180 Sterling et al. Mar 2006 B2
7014625 Bengtsson Mar 2006 B2
7016713 Gardner et al. Mar 2006 B2
7018360 Flaherty et al. Mar 2006 B2
7025743 Mann et al. Apr 2006 B2
7025744 Utterberg et al. Apr 2006 B2
7027848 Robinson et al. Apr 2006 B2
7029455 Flaherty Apr 2006 B2
7043288 Davis et al. May 2006 B2
7047637 DeRochemont et al. May 2006 B2
7054836 Christensen et al. May 2006 B2
7060059 Keith et al. Jun 2006 B2
7060350 Takaya et al. Jun 2006 B2
7061593 Braig et al. Jun 2006 B2
7066910 Bauhahn et al. Jun 2006 B2
7070580 Nielsen Jul 2006 B2
7096124 Sterling et al. Aug 2006 B2
7098803 Mann et al. Aug 2006 B2
7104972 Moller et al. Sep 2006 B2
7109878 Mann et al. Sep 2006 B2
7115205 Robinson et al. Oct 2006 B2
7116949 Irie et al. Oct 2006 B2
7123964 Betzold et al. Oct 2006 B2
7133329 Skyggebjerg et al. Nov 2006 B2
7137694 Ferran et al. Nov 2006 B2
7139593 Kavak et al. Nov 2006 B2
7139598 Hull et al. Nov 2006 B2
7144384 Gorman et al. Dec 2006 B2
7160272 Eyal et al. Jan 2007 B1
7171252 Scarantino et al. Jan 2007 B1
7172572 Diamond et al. Feb 2007 B2
7179226 Crothall et al. Feb 2007 B2
7190988 Say et al. Mar 2007 B2
7204823 Estes et al. Apr 2007 B2
7220240 Struys et al. May 2007 B2
7230316 Yamazaki et al. Jun 2007 B2
7232423 Mernoee Jun 2007 B2
7248912 Gough et al. Jul 2007 B2
7267665 Steil et al. Sep 2007 B2
7271912 Sterling et al. Sep 2007 B2
7278983 Ireland et al. Oct 2007 B2
7291107 Hellwig et al. Nov 2007 B2
7291497 Holmes et al. Nov 2007 B2
7291782 Sager et al. Nov 2007 B2
7303549 Flaherty et al. Dec 2007 B2
7303622 Loch et al. Dec 2007 B2
7303922 Jeng et al. Dec 2007 B2
7354420 Steil et al. Apr 2008 B2
7388202 Sterling et al. Jun 2008 B2
7402153 Steil et al. Jul 2008 B2
7404796 Ginsberg Jul 2008 B2
7405698 De Rochemont Jul 2008 B2
7429255 Thompson Sep 2008 B2
7460130 Salganicoff Dec 2008 B2
7481787 Gable et al. Jan 2009 B2
7491187 Van et al. Feb 2009 B2
7494481 Moberg et al. Feb 2009 B2
7500949 Gottlieb et al. Mar 2009 B2
7509156 Flanders Mar 2009 B2
D590415 Ball et al. Apr 2009 S
7522124 Smith et al. Apr 2009 B2
7547281 Hayes et al. Jun 2009 B2
7553281 Hellwig et al. Jun 2009 B2
7553512 Kodas et al. Jun 2009 B2
7564887 Wang et al. Jul 2009 B2
7569030 Lebel et al. Aug 2009 B2
7569050 Moberg et al. Aug 2009 B2
7570980 Ginsberg Aug 2009 B2
7591801 Brauker et al. Sep 2009 B2
7595623 Bennett Sep 2009 B2
7597682 Moberg Oct 2009 B2
7608042 Goldberger et al. Oct 2009 B2
7641649 Moberg et al. Jan 2010 B2
7651845 Doyle et al. Jan 2010 B2
7652901 Kirchmeier et al. Jan 2010 B2
7654982 Carlisle et al. Feb 2010 B2
7670288 Sher Mar 2010 B2
7680529 Kroll Mar 2010 B2
D614634 Nilsen Apr 2010 S
7708717 Estes et al. May 2010 B2
7714794 Tavassoli Hozouri May 2010 B2
7734323 Blomquist et al. Jun 2010 B2
7763917 De Rochemont Jul 2010 B2
7766829 Sloan et al. Aug 2010 B2
7771391 Carter Aug 2010 B2
7785258 Braig et al. Aug 2010 B2
7785313 Mastrototaro Aug 2010 B2
7789859 Estes et al. Sep 2010 B2
7794426 Briones et al. Sep 2010 B2
7806853 Wittmann et al. Oct 2010 B2
7806854 Damiano et al. Oct 2010 B2
7812774 Friman et al. Oct 2010 B2
7815602 Mann et al. Oct 2010 B2
7819843 Mann et al. Oct 2010 B2
7828528 Estes et al. Nov 2010 B2
7850641 Lebel et al. Dec 2010 B2
7904061 Zaffino et al. Mar 2011 B1
7918825 O'Connor et al. Apr 2011 B2
7938797 Estes May 2011 B2
7938801 Hawkins et al. May 2011 B2
7946985 Mastrototaro et al. May 2011 B2
D640269 Chen Jun 2011 S
7959598 Estes Jun 2011 B2
7967812 Jasperson et al. Jun 2011 B2
7972296 Braig et al. Jul 2011 B2
7976492 Brauker et al. Jul 2011 B2
8029459 Rush et al. Oct 2011 B2
8062249 Wilinska et al. Nov 2011 B2
8066805 Zuercher et al. Nov 2011 B2
8069690 Desantolo et al. Dec 2011 B2
8105268 Lebel et al. Jan 2012 B2
8114023 Ward et al. Feb 2012 B2
8114489 Nemat-Nasser et al. Feb 2012 B2
8152789 Starkweather et al. Apr 2012 B2
8178457 De Rochemont May 2012 B2
8193873 Kato et al. Jun 2012 B2
8206296 Jennewine Jun 2012 B2
8206350 Mann et al. Jun 2012 B2
8208984 Blomquist et al. Jun 2012 B2
8221345 Blomquist Jul 2012 B2
8221385 Estes Jul 2012 B2
8226556 Hayes et al. Jul 2012 B2
8246540 Ginsberg Aug 2012 B2
8251907 Sterling et al. Aug 2012 B2
8262616 Grant et al. Sep 2012 B2
8267893 Moberg et al. Sep 2012 B2
8267921 Yodfat et al. Sep 2012 B2
8273052 Damiano et al. Sep 2012 B2
D669165 Sims et al. Oct 2012 S
8282626 Wenger et al. Oct 2012 B2
8287487 Estes Oct 2012 B2
8318154 Frost et al. Nov 2012 B2
8348844 Kunjan et al. Jan 2013 B2
8348886 Kanderian et al. Jan 2013 B2
8348923 Kanderian et al. Jan 2013 B2
8350657 DeRochemont Jan 2013 B2
8352011 Van et al. Jan 2013 B2
8354294 De et al. Jan 2013 B2
8372039 Mernoe et al. Feb 2013 B2
D677685 Simmons et al. Mar 2013 S
8417311 Rule Apr 2013 B2
8430847 Mernoe et al. Apr 2013 B2
8439834 Schmelzeisen-Redeker et al. May 2013 B2
8439897 Yodfat et al. May 2013 B2
8449524 Braig et al. May 2013 B2
8452359 Rebec et al. May 2013 B2
8454576 Mastrototaro et al. Jun 2013 B2
8460231 Brauker et al. Jun 2013 B2
8467972 Rush Jun 2013 B2
8467980 Campbell et al. Jun 2013 B2
8475409 Tsoukalis Jul 2013 B2
8478557 Hayter et al. Jul 2013 B2
8480655 Jasperson et al. Jul 2013 B2
D688686 Rhee et al. Aug 2013 S
8547239 Peatfield et al. Oct 2013 B2
8548544 Kircher et al. Oct 2013 B2
8548552 Tsoukalis Oct 2013 B2
8551045 Sie et al. Oct 2013 B2
8560082 Wei Oct 2013 B2
8560131 Haueter et al. Oct 2013 B2
8562558 Kamath et al. Oct 2013 B2
8562587 Kovatchev et al. Oct 2013 B2
8568713 Frost et al. Oct 2013 B2
D693837 Bouchier Nov 2013 S
8579854 Budiman et al. Nov 2013 B2
8579879 Palerm et al. Nov 2013 B2
8585591 Sloan et al. Nov 2013 B2
8585593 Kovatchev et al. Nov 2013 B2
8585637 Wilinska et al. Nov 2013 B2
8585638 Blomquist Nov 2013 B2
8593819 De Rochemont Nov 2013 B2
D695757 Ray et al. Dec 2013 S
8597274 Sloan et al. Dec 2013 B2
8615366 Galley et al. Dec 2013 B2
8622988 Hayter Jan 2014 B2
8679016 Mastrototaro et al. Mar 2014 B2
8679060 Mernoe et al. Mar 2014 B2
8690820 Cinar et al. Apr 2014 B2
8694115 Goetz et al. Apr 2014 B2
8706691 McDaniel et al. Apr 2014 B2
8715839 De Rochemont May 2014 B2
8718949 Blomquist et al. May 2014 B2
8721585 Brauker et al. May 2014 B2
8727982 Jennewine May 2014 B2
8734422 Hayter May 2014 B2
8734428 Blomquist May 2014 B2
8747315 Brauker et al. Jun 2014 B2
8762070 Doyle et al. Jun 2014 B2
8771222 Kanderian et al. Jul 2014 B2
8777896 Starkweather et al. Jul 2014 B2
8777924 Kanderian et al. Jul 2014 B2
8784364 Kamen et al. Jul 2014 B2
8784369 Starkweather et al. Jul 2014 B2
8784370 Lebel et al. Jul 2014 B2
8790294 Estes Jul 2014 B2
D710879 Elston et al. Aug 2014 S
8795224 Starkweather et al. Aug 2014 B2
8795252 Hayter Aug 2014 B2
8808230 Rotstein Aug 2014 B2
8810394 Kalpin Aug 2014 B2
D714822 Capua et al. Oct 2014 S
D715315 Wood Oct 2014 S
D715815 Bortman et al. Oct 2014 S
8852141 Mhatre et al. Oct 2014 B2
8876755 Taub et al. Nov 2014 B2
8882741 Brauker et al. Nov 2014 B2
D718779 Hang et al. Dec 2014 S
D720366 Hiltunen et al. Dec 2014 S
8903501 Perryman Dec 2014 B2
8919180 Gottlieb et al. Dec 2014 B2
8920401 Brauker et al. Dec 2014 B2
D720765 Xie et al. Jan 2015 S
8926585 Brauker et al. Jan 2015 B2
8939935 O'Connor et al. Jan 2015 B2
8945094 Nordh Feb 2015 B2
8956291 Valk et al. Feb 2015 B2
8956321 Dejournett Feb 2015 B2
8977504 Hovorka Mar 2015 B2
8992475 Mann et al. Mar 2015 B2
D726760 Yokota et al. Apr 2015 S
D727928 Allison et al. Apr 2015 S
D730378 Xiong et al. May 2015 S
9034323 Frost et al. May 2015 B2
D733175 Bae Jun 2015 S
9050413 Brauker et al. Jun 2015 B2
9056165 Steil et al. Jun 2015 B2
9056168 Kircher et al. Jun 2015 B2
9061097 Holt et al. Jun 2015 B2
D734356 Xiong et al. Jul 2015 S
9078963 Estes Jul 2015 B2
9089305 Hovorka Jul 2015 B2
D736811 Teichner et al. Aug 2015 S
D737305 Scazafavo et al. Aug 2015 S
D737831 Lee Sep 2015 S
D737832 Lim et al. Sep 2015 S
D738901 Amin Sep 2015 S
D740301 Soegiono et al. Oct 2015 S
D740308 Kim et al. Oct 2015 S
D740311 Drozd et al. Oct 2015 S
D741354 Lee et al. Oct 2015 S
D741359 Ji-Hye et al. Oct 2015 S
9149233 Kamath et al. Oct 2015 B2
9155843 Brauker et al. Oct 2015 B2
9171343 Fischell et al. Oct 2015 B1
D743431 Pal et al. Nov 2015 S
D743991 Pal et al. Nov 2015 S
9180224 Moseley et al. Nov 2015 B2
9180244 Anderson et al. Nov 2015 B2
9192716 Jugl et al. Nov 2015 B2
D744514 Shin et al. Dec 2015 S
D744517 Pal et al. Dec 2015 S
D745032 Pal et al. Dec 2015 S
D745034 Pal et al. Dec 2015 S
D745035 Pal et al. Dec 2015 S
D746827 Jung et al. Jan 2016 S
D746828 Arai et al. Jan 2016 S
D747352 Lee et al. Jan 2016 S
9233204 Booth et al. Jan 2016 B2
D749097 Zou et al. Feb 2016 S
D749118 Wang Feb 2016 S
9247901 Kamath et al. Feb 2016 B2
D751100 Lindn et al. Mar 2016 S
D752604 Zhang Mar 2016 S
D753134 Vazquez Apr 2016 S
D754718 Zhou Apr 2016 S
9314566 Wenger et al. Apr 2016 B2
9320471 Hayes et al. Apr 2016 B2
D755193 Sun et al. May 2016 S
D755799 Finnis et al. May 2016 S
D755820 Wang May 2016 S
D756387 Chang et al. May 2016 S
D757032 Sabia et al. May 2016 S
D757035 Raskin et al. May 2016 S
9333298 Kim et al. May 2016 B2
D758391 Suarez Jun 2016 S
D758422 Zhao Jun 2016 S
D759032 Amin et al. Jun 2016 S
D759078 Iwamoto Jun 2016 S
D759678 Jung et al. Jun 2016 S
D759687 Chang et al. Jun 2016 S
D761812 Motamedi Jul 2016 S
D763308 Wang et al. Aug 2016 S
D763868 Lee et al. Aug 2016 S
D765110 Liang Aug 2016 S
D765124 Minks-Brown et al. Aug 2016 S
9402950 Dilanni et al. Aug 2016 B2
9415157 Mann et al. Aug 2016 B2
D765707 Gomez Sep 2016 S
D766286 Lee et al. Sep 2016 S
D767586 Kwon et al. Sep 2016 S
D768154 Kim et al. Oct 2016 S
D768188 Ll et al. Oct 2016 S
D768660 Wielgosz Oct 2016 S
D768685 Lee et al. Oct 2016 S
D769315 Scotti Oct 2016 S
9474855 McCann et al. Oct 2016 B2
D770507 Umezawa et al. Nov 2016 S
D770515 Cho et al. Nov 2016 S
D771073 Choi et al. Nov 2016 S
D771076 Butcher et al. Nov 2016 S
D771690 Yin et al. Nov 2016 S
D772911 Lee et al. Nov 2016 S
9480796 Starkweather et al. Nov 2016 B2
9486172 Cobelli et al. Nov 2016 B2
9486571 Rosinko Nov 2016 B2
9486578 Finan et al. Nov 2016 B2
D773531 Toth et al. Dec 2016 S
D775184 Song et al. Dec 2016 S
D775196 Huang et al. Dec 2016 S
9520649 De Rochemont Dec 2016 B2
D775658 Luo et al. Jan 2017 S
D776126 Lai et al. Jan 2017 S
D776687 Wick et al. Jan 2017 S
D777191 Polimeni Jan 2017 S
D777758 Kisselev et al. Jan 2017 S
9561324 Estes Feb 2017 B2
9579456 Budiman et al. Feb 2017 B2
D781323 Green et al. Mar 2017 S
D781781 Schimmoeller, Jr. Mar 2017 S
D781877 Ko et al. Mar 2017 S
D781878 Butcher et al. Mar 2017 S
D781879 Butcher et al. Mar 2017 S
D781903 Reichle et al. Mar 2017 S
D781905 Nakaguchi et al. Mar 2017 S
D782506 Kim et al. Mar 2017 S
D783672 Rajasankar et al. Apr 2017 S
D785010 Bachman et al. Apr 2017 S
D785656 Bramer et al. May 2017 S
D786278 Motamedi May 2017 S
D786898 Hall May 2017 S
D788126 Evnin et al. May 2017 S
9656017 Greene May 2017 B2
D788621 Shallice et al. Jun 2017 S
D788652 Mutsuro et al. Jun 2017 S
D789402 Dye et al. Jun 2017 S
D789967 Kaplan et al. Jun 2017 S
D789982 Christiana et al. Jun 2017 S
D790560 Inose et al. Jun 2017 S
D791781 Donarski et al. Jul 2017 S
D791805 Segars Jul 2017 S
D791812 Bistoni et al. Jul 2017 S
D793412 Chaudhri et al. Aug 2017 S
D795886 Ng et al. Aug 2017 S
D795891 Kohan et al. Aug 2017 S
D795900 Bischoff et al. Aug 2017 S
D795906 Butrick Aug 2017 S
D795927 Bischoff et al. Aug 2017 S
9743224 San et al. Aug 2017 B2
D796530 McMillan et al. Sep 2017 S
D796540 McLean et al. Sep 2017 S
D797116 Chapman et al. Sep 2017 S
D797763 Kim et al. Sep 2017 S
D797774 Park et al. Sep 2017 S
D797797 Gandhi et al. Sep 2017 S
D798310 Golden et al. Sep 2017 S
D798311 Golden et al. Sep 2017 S
D799536 Eder Oct 2017 S
D800765 Stoksik Oct 2017 S
D800769 Hennessy et al. Oct 2017 S
D801383 Park et al. Oct 2017 S
D802011 Friedman et al. Nov 2017 S
D802088 Bos et al. Nov 2017 S
D803232 Leigh et al. Nov 2017 S
D803242 Mizono et al. Nov 2017 S
D804502 Amini et al. Dec 2017 S
D805525 Dascola et al. Dec 2017 S
D806716 Pahwa et al. Jan 2018 S
D807376 Mizono et al. Jan 2018 S
D807400 Lagreca Jan 2018 S
D807910 Graham et al. Jan 2018 S
D807918 Cohen et al. Jan 2018 S
D807919 Cohen et al. Jan 2018 S
D808423 Jiang et al. Jan 2018 S
D808974 Chiappone et al. Jan 2018 S
D808983 Narinedhat et al. Jan 2018 S
9857090 Golden et al. Jan 2018 B2
9878097 Estes Jan 2018 B2
D810116 McLean et al. Feb 2018 S
D810771 Gandhi et al. Feb 2018 S
9907515 Doyle et al. Mar 2018 B2
D815131 Thompson et al. Apr 2018 S
D816090 Stonecipher et al. Apr 2018 S
D817339 Nanjappan et al. May 2018 S
D818491 Timmer et al. May 2018 S
D819057 Huang May 2018 S
D819059 O'Toole May 2018 S
9968729 Estes May 2018 B2
9980140 Spencer et al. May 2018 B1
9984773 Gondhalekar et al. May 2018 B2
D820311 Cabrera et al. Jun 2018 S
D820862 Alfonzo et al. Jun 2018 S
D822034 Clymer et al. Jul 2018 S
D822677 Weaver et al. Jul 2018 S
D822684 Clausen-Stuck et al. Jul 2018 S
D822692 Loychik et al. Jul 2018 S
D823862 Chung et al. Jul 2018 S
D824400 Chang et al. Jul 2018 S
D824951 Kolbrener et al. Aug 2018 S
D826956 Pillalamarri et al. Aug 2018 S
D826957 Pillalamarri et al. Aug 2018 S
D828381 Lee et al. Sep 2018 S
D829732 Jeffrey et al. Oct 2018 S
D830374 Leonard et al. Oct 2018 S
D830384 Lepine et al. Oct 2018 S
D830385 Lepine et al. Oct 2018 S
D830407 Kisielius et al. Oct 2018 S
D831033 Leonard et al. Oct 2018 S
D833469 Coleman et al. Nov 2018 S
D834601 Felt Nov 2018 S
D835132 Ito et al. Dec 2018 S
D835145 Cashner et al. Dec 2018 S
D835147 Kisielius et al. Dec 2018 S
D835651 Bao Dec 2018 S
D835666 Saleh et al. Dec 2018 S
D836123 Pillalamarri et al. Dec 2018 S
D837807 Baber et al. Jan 2019 S
D838731 Pillalamarri et al. Jan 2019 S
D840418 Saad et al. Feb 2019 S
D840419 Saad et al. Feb 2019 S
D844022 Amin Mar 2019 S
D845317 Wellmeier et al. Apr 2019 S
10248839 Levy et al. Apr 2019 B2
D848459 Li May 2019 S
D851099 Uppala et al. Jun 2019 S
D851658 Pillalamarri et al. Jun 2019 S
10335464 Michelich et al. Jul 2019 B1
10449294 Estes Oct 2019 B1
D865795 Koo Nov 2019 S
D872746 Laborde Jan 2020 S
D874471 Pillalamarri et al. Feb 2020 S
D875114 Clediere Feb 2020 S
10569015 Estes Feb 2020 B2
10583250 Mazlish et al. Mar 2020 B2
D880498 Shahidi et al. Apr 2020 S
D888070 Yusupov et al. Jun 2020 S
10737015 Estes Aug 2020 B2
10737024 Schmid Aug 2020 B2
D904426 Debashish Dec 2020 S
D911353 Sanchez et al. Feb 2021 S
D914031 Ding et al. Mar 2021 S
D916729 Gabriel et al. Apr 2021 S
D916870 Hemsley Apr 2021 S
D916878 Kim et al. Apr 2021 S
10987468 Mazlish et al. Apr 2021 B2
D918261 Ramamurthy et al. May 2021 S
D920351 Zhang May 2021 S
D923033 Smith et al. Jun 2021 S
D927533 Clymer Aug 2021 S
D938447 Holland Dec 2021 S
11197964 Sjolund et al. Dec 2021 B2
11260169 Estes Mar 2022 B2
D954078 Rahate et al. Jun 2022 S
20010003542 Kita Jun 2001 A1
20010021803 Blank et al. Sep 2001 A1
20010034023 Stanton et al. Oct 2001 A1
20010034502 Moberg et al. Oct 2001 A1
20010041869 Causey et al. Nov 2001 A1
20010048969 Constantino et al. Dec 2001 A1
20010051377 Hammer et al. Dec 2001 A1
20010053895 Vaillancourt Dec 2001 A1
20010056258 Evans Dec 2001 A1
20010056262 Cabiri et al. Dec 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020010423 Gross et al. Jan 2002 A1
20020013784 Swanson Jan 2002 A1
20020016534 Trepagnier et al. Feb 2002 A1
20020016568 Lebel et al. Feb 2002 A1
20020032402 Daoud et al. Mar 2002 A1
20020040208 Flaherty et al. Apr 2002 A1
20020046315 Miller et al. Apr 2002 A1
20020047768 Duffy Apr 2002 A1
20020055845 Ueda et al. May 2002 A1
20020070983 Kozub et al. Jun 2002 A1
20020072720 Hague et al. Jun 2002 A1
20020107476 Mann et al. Aug 2002 A1
20020123740 Flaherty et al. Sep 2002 A1
20020128543 Leonhardt Sep 2002 A1
20020147423 Burbank et al. Oct 2002 A1
20020155425 Han et al. Oct 2002 A1
20020156462 Stultz Oct 2002 A1
20020161288 Shin et al. Oct 2002 A1
20020164973 Janik et al. Nov 2002 A1
20020173769 Gray et al. Nov 2002 A1
20020190818 Endou et al. Dec 2002 A1
20030023148 Lorenz et al. Jan 2003 A1
20030023152 Abbink et al. Jan 2003 A1
20030034124 Sugaya et al. Feb 2003 A1
20030040715 D'Antonio et al. Feb 2003 A1
20030050621 Lebel et al. Mar 2003 A1
20030055380 Flaherty Mar 2003 A1
20030060692 Ruchti et al. Mar 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030086073 Braig et al. May 2003 A1
20030086074 Braig et al. May 2003 A1
20030086075 Braig et al. May 2003 A1
20030088238 Poulsen et al. May 2003 A1
20030090649 Sterling et al. May 2003 A1
20030100040 Bonnecaze et al. May 2003 A1
20030104982 Wittmann et al. Jun 2003 A1
20030121055 Kaminski et al. Jun 2003 A1
20030122647 Ou Jul 2003 A1
20030125672 Adair et al. Jul 2003 A1
20030135388 Martucci et al. Jul 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030148024 Kodas et al. Aug 2003 A1
20030161744 Vilks et al. Aug 2003 A1
20030163097 Fleury et al. Aug 2003 A1
20030170436 Sumi et al. Sep 2003 A1
20030175806 Rule et al. Sep 2003 A1
20030195404 Knobbe et al. Oct 2003 A1
20030198558 Nason et al. Oct 2003 A1
20030208113 Mault Nov 2003 A1
20030208154 Close et al. Nov 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030216627 Lorenz et al. Nov 2003 A1
20030216683 Shekalim Nov 2003 A1
20030216686 Lynch et al. Nov 2003 A1
20030220605 Bowman et al. Nov 2003 A1
20030221621 Pokharna et al. Dec 2003 A1
20030236498 Gross et al. Dec 2003 A1
20040001027 Killen et al. Jan 2004 A1
20040006316 Patton Jan 2004 A1
20040010207 Flaherty et al. Jan 2004 A1
20040019325 Shekalim Jan 2004 A1
20040034295 Salganicoff Feb 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040051368 Caputo et al. Mar 2004 A1
20040064088 Gorman et al. Apr 2004 A1
20040064096 Flaherty et al. Apr 2004 A1
20040064259 Haaland et al. Apr 2004 A1
20040068224 Couvillon et al. Apr 2004 A1
20040068230 Estes et al. Apr 2004 A1
20040069004 Gist et al. Apr 2004 A1
20040069044 Lavi et al. Apr 2004 A1
20040078028 Flaherty et al. Apr 2004 A1
20040087894 Flaherty May 2004 A1
20040087904 Langley et al. May 2004 A1
20040092865 Flaherty et al. May 2004 A1
20040092878 Flaherty May 2004 A1
20040097796 Berman et al. May 2004 A1
20040115068 Hansen et al. Jun 2004 A1
20040116847 Wall Jun 2004 A1
20040116866 Gorman et al. Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040127844 Flaherty Jul 2004 A1
20040133166 Moberg et al. Jul 2004 A1
20040147034 Gore et al. Jul 2004 A1
20040153032 Garribotto et al. Aug 2004 A1
20040158207 Hunn et al. Aug 2004 A1
20040171983 Sparks et al. Sep 2004 A1
20040176720 Kipfer Sep 2004 A1
20040176727 Shekalim Sep 2004 A1
20040187952 Jones Sep 2004 A1
20040203357 Nassimi Oct 2004 A1
20040204673 Flaherty Oct 2004 A1
20040204744 Penner et al. Oct 2004 A1
20040204868 Maynard et al. Oct 2004 A1
20040215492 Choi Oct 2004 A1
20040220551 Flaherty et al. Nov 2004 A1
20040235446 Flaherty et al. Nov 2004 A1
20040241736 Hendee et al. Dec 2004 A1
20040249308 Forssell Dec 2004 A1
20040260233 Garibotto et al. Dec 2004 A1
20050003470 Nelson et al. Jan 2005 A1
20050010165 Hickle Jan 2005 A1
20050020980 Inoue et al. Jan 2005 A1
20050021005 Flaherty et al. Jan 2005 A1
20050021104 DiLorenzo Jan 2005 A1
20050022274 Campbell et al. Jan 2005 A1
20050033148 Haueter et al. Feb 2005 A1
20050038332 Saidara et al. Feb 2005 A1
20050049179 Davidson et al. Mar 2005 A1
20050065464 Talbot et al. Mar 2005 A1
20050065760 Murtfeldt et al. Mar 2005 A1
20050075624 Miesel Apr 2005 A1
20050090808 Malave et al. Apr 2005 A1
20050090851 Devlin Apr 2005 A1
20050095063 Fathallah et al. May 2005 A1
20050101933 Marrs et al. May 2005 A1
20050105095 Pesach et al. May 2005 A1
20050107743 Fangrow, Jr. May 2005 A1
20050113745 Stultz May 2005 A1
20050124866 Elaz et al. Jun 2005 A1
20050134609 Yu Jun 2005 A1
20050137530 Campbell et al. Jun 2005 A1
20050137573 McLaughlin Jun 2005 A1
20050160858 Mernoe Jul 2005 A1
20050171503 Van et al. Aug 2005 A1
20050171512 Flaherty Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050182366 Vogt et al. Aug 2005 A1
20050192494 Ginsberg Sep 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050197621 Poulsen et al. Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050203461 Flaherty et al. Sep 2005 A1
20050215982 Malave et al. Sep 2005 A1
20050222645 Malave et al. Oct 2005 A1
20050234404 Vilks et al. Oct 2005 A1
20050238507 Diianni et al. Oct 2005 A1
20050240544 Kil et al. Oct 2005 A1
20050245878 Mernoe et al. Nov 2005 A1
20050251097 Mernoe Nov 2005 A1
20050261660 Choi Nov 2005 A1
20050262451 Remignanti et al. Nov 2005 A1
20050267402 Stewart et al. Dec 2005 A1
20050272640 Doyle et al. Dec 2005 A1
20050273059 Mernoe et al. Dec 2005 A1
20050277890 Stewart et al. Dec 2005 A1
20050277912 John Dec 2005 A1
20060009727 O'Mahony et al. Jan 2006 A1
20060036214 Mogensen et al. Feb 2006 A1
20060041229 Garibotto et al. Feb 2006 A1
20060042633 Bishop et al. Mar 2006 A1
20060064053 Bollish et al. Mar 2006 A1
20060069351 Safabash et al. Mar 2006 A9
20060069382 Pedersen Mar 2006 A1
20060074381 Malave et al. Apr 2006 A1
20060075269 Liong et al. Apr 2006 A1
20060079765 Neer et al. Apr 2006 A1
20060079809 Goldberger et al. Apr 2006 A1
20060086994 Viefers et al. Apr 2006 A1
20060095014 Ethelfeld May 2006 A1
20060100494 Kroll May 2006 A1
20060125654 Liao et al. Jun 2006 A1
20060134323 O'Brien Jun 2006 A1
20060134491 Hilchenko et al. Jun 2006 A1
20060135913 Ethelfeld Jun 2006 A1
20060142698 Ethelfeld Jun 2006 A1
20060151545 Imhof et al. Jul 2006 A1
20060167350 Monfre et al. Jul 2006 A1
20060173410 Moberg et al. Aug 2006 A1
20060178633 Garibotto et al. Aug 2006 A1
20060184104 Cheney et al. Aug 2006 A1
20060184119 Remde et al. Aug 2006 A1
20060189925 Gable et al. Aug 2006 A1
20060189926 Hall et al. Aug 2006 A1
20060197015 Sterling et al. Sep 2006 A1
20060200070 Callicoat et al. Sep 2006 A1
20060200073 Radmer et al. Sep 2006 A1
20060204535 Johnson Sep 2006 A1
20060206054 Shekalim Sep 2006 A1
20060214511 Dayan Sep 2006 A1
20060229531 Goldberger et al. Oct 2006 A1
20060247574 Maule et al. Nov 2006 A1
20060247581 Pedersen et al. Nov 2006 A1
20060253085 Geismar et al. Nov 2006 A1
20060253086 Moberg et al. Nov 2006 A1
20060258973 Volt Nov 2006 A1
20060258976 Shturman et al. Nov 2006 A1
20060264835 Nielsen et al. Nov 2006 A1
20060264890 Moberg et al. Nov 2006 A1
20060264894 Moberg et al. Nov 2006 A1
20060264895 Flanders Nov 2006 A1
20060270983 Lord et al. Nov 2006 A1
20060276771 Galley et al. Dec 2006 A1
20060282290 Flaherty et al. Dec 2006 A1
20070016127 Staib et al. Jan 2007 A1
20070060796 Kim Mar 2007 A1
20070060869 Tolle et al. Mar 2007 A1
20070060870 Tolle et al. Mar 2007 A1
20070060872 Hall et al. Mar 2007 A1
20070073228 Mernoe et al. Mar 2007 A1
20070073235 Estes et al. Mar 2007 A1
20070073236 Mernoe et al. Mar 2007 A1
20070078818 Zivitz et al. Apr 2007 A1
20070079836 Reghabi et al. Apr 2007 A1
20070083160 Hall et al. Apr 2007 A1
20070088271 Richards Apr 2007 A1
20070093750 Jan et al. Apr 2007 A1
20070093786 Goldsmith et al. Apr 2007 A1
20070100222 Mastrototaro et al. May 2007 A1
20070100635 Mahajan et al. May 2007 A1
20070106135 Sloan et al. May 2007 A1
20070106218 Yodfat et al. May 2007 A1
20070112298 Mueller et al. May 2007 A1
20070116601 Patton May 2007 A1
20070118364 Wise et al. May 2007 A1
20070118405 Campbell et al. May 2007 A1
20070123819 Mernoe et al. May 2007 A1
20070124002 Estes et al. May 2007 A1
20070129690 Rosenblatt et al. Jun 2007 A1
20070142720 Ridder et al. Jun 2007 A1
20070142776 Kovelman et al. Jun 2007 A9
20070155307 Ng et al. Jul 2007 A1
20070156092 Estes et al. Jul 2007 A1
20070156094 Safabash et al. Jul 2007 A1
20070166170 Nason et al. Jul 2007 A1
20070166453 Van et al. Jul 2007 A1
20070167905 Estes et al. Jul 2007 A1
20070167912 Causey et al. Jul 2007 A1
20070169607 Keller et al. Jul 2007 A1
20070173761 Kanderian et al. Jul 2007 A1
20070173974 Lin Jul 2007 A1
20070179352 Randlov et al. Aug 2007 A1
20070179444 Causey et al. Aug 2007 A1
20070191702 Yodfat et al. Aug 2007 A1
20070191716 Goldberger et al. Aug 2007 A1
20070197163 Robertson Aug 2007 A1
20070219432 Thompson Sep 2007 A1
20070219480 Kamen et al. Sep 2007 A1
20070225675 Robinson et al. Sep 2007 A1
20070233521 Wehba et al. Oct 2007 A1
20070239116 Follman et al. Oct 2007 A1
20070244381 Robinson et al. Oct 2007 A1
20070248238 Abreu Oct 2007 A1
20070249007 Rosero Oct 2007 A1
20070252774 Qi et al. Nov 2007 A1
20070255250 Moberg et al. Nov 2007 A1
20070259768 Kear et al. Nov 2007 A1
20070264707 Liederman et al. Nov 2007 A1
20070282269 Carter et al. Dec 2007 A1
20070282299 Hellwig Dec 2007 A1
20070287931 DiLorenzo Dec 2007 A1
20070287985 Estes et al. Dec 2007 A1
20070293843 Ireland et al. Dec 2007 A1
20080009824 Moberg et al. Jan 2008 A1
20080015422 Wessel Jan 2008 A1
20080027574 Thomas Jan 2008 A1
20080031481 Warren et al. Feb 2008 A1
20080033272 Gough et al. Feb 2008 A1
20080033320 Racchini et al. Feb 2008 A1
20080045891 Maule et al. Feb 2008 A1
20080051697 Mounce et al. Feb 2008 A1
20080051698 Mounce et al. Feb 2008 A1
20080051714 Moberg et al. Feb 2008 A1
20080051716 Stutz Feb 2008 A1
20080051730 Bikovsky Feb 2008 A1
20080051738 Griffin Feb 2008 A1
20080051764 Dent et al. Feb 2008 A1
20080058625 McGarraugh et al. Mar 2008 A1
20080065050 Sparks et al. Mar 2008 A1
20080071157 McGarraugh et al. Mar 2008 A1
20080071158 McGarraugh et al. Mar 2008 A1
20080077081 Mounce et al. Mar 2008 A1
20080078400 Martens et al. Apr 2008 A1
20080097289 Steil et al. Apr 2008 A1
20080097326 Moberg et al. Apr 2008 A1
20080097375 Bikovsky Apr 2008 A1
20080097381 Moberg et al. Apr 2008 A1
20080103022 Dvorak et al. May 2008 A1
20080109050 John May 2008 A1
20080114304 Nalesso et al. May 2008 A1
20080125700 Moberg et al. May 2008 A1
20080125701 Moberg et al. May 2008 A1
20080129535 Thompson et al. Jun 2008 A1
20080132880 Buchman Jun 2008 A1
20080160492 Campbell et al. Jul 2008 A1
20080161664 Mastrototaro et al. Jul 2008 A1
20080172026 Blomquist Jul 2008 A1
20080172027 Blomquist Jul 2008 A1
20080172028 Blomquist Jul 2008 A1
20080172029 Blomquist Jul 2008 A1
20080177149 Weinert et al. Jul 2008 A1
20080183060 Steil et al. Jul 2008 A1
20080188796 Steil et al. Aug 2008 A1
20080198012 Kamen Aug 2008 A1
20080200838 Goldberger et al. Aug 2008 A1
20080201325 Doniger et al. Aug 2008 A1
20080206067 De et al. Aug 2008 A1
20080208113 Damiano et al. Aug 2008 A1
20080208627 Skyggebjerg Aug 2008 A1
20080214919 Harmon et al. Sep 2008 A1
20080215035 Yodfat et al. Sep 2008 A1
20080228056 Blomquist et al. Sep 2008 A1
20080234630 Iddan et al. Sep 2008 A1
20080249386 Besterman et al. Oct 2008 A1
20080255516 Yodfat et al. Oct 2008 A1
20080269585 Ginsberg Oct 2008 A1
20080269683 Bikovsky Oct 2008 A1
20080269687 Chong et al. Oct 2008 A1
20080269714 Mastrototaro et al. Oct 2008 A1
20080269723 Mastrototaro et al. Oct 2008 A1
20080287906 Burkholz et al. Nov 2008 A1
20080294094 Mhatre et al. Nov 2008 A1
20080294109 Estes et al. Nov 2008 A1
20080294142 Patel et al. Nov 2008 A1
20080300572 Rankers et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20080312512 Brukalo et al. Dec 2008 A1
20080312634 Helmerson et al. Dec 2008 A1
20080319381 Yodfat et al. Dec 2008 A1
20080319383 Byland et al. Dec 2008 A1
20080319384 Yodfat et al. Dec 2008 A1
20080319394 Yodfat et al. Dec 2008 A1
20080319414 Yodfat et al. Dec 2008 A1
20080319416 Yodfat et al. Dec 2008 A1
20090006061 Thukral et al. Jan 2009 A1
20090018406 Yodfat et al. Jan 2009 A1
20090030398 Yodfat et al. Jan 2009 A1
20090036753 King Feb 2009 A1
20090036760 Hayter Feb 2009 A1
20090036870 Mounce et al. Feb 2009 A1
20090043240 Robinson et al. Feb 2009 A1
20090043291 Thompson Feb 2009 A1
20090048584 Thompson Feb 2009 A1
20090054753 Robinson et al. Feb 2009 A1
20090069743 Krishnamoorthy et al. Mar 2009 A1
20090069745 Estes et al. Mar 2009 A1
20090069746 Miller et al. Mar 2009 A1
20090069749 Miller et al. Mar 2009 A1
20090069784 Estes et al. Mar 2009 A1
20090069785 Miller et al. Mar 2009 A1
20090069787 Estes et al. Mar 2009 A1
20090076453 Mejlhede et al. Mar 2009 A1
20090076849 Diller Mar 2009 A1
20090082728 Bikovsky Mar 2009 A1
20090093756 Minaie et al. Apr 2009 A1
20090099507 Koops Apr 2009 A1
20090099521 Gravesen et al. Apr 2009 A1
20090105573 Malecha Apr 2009 A1
20090105636 Hayter et al. Apr 2009 A1
20090112333 Sahai Apr 2009 A1
20090118664 Estes et al. May 2009 A1
20090131861 Braig et al. May 2009 A1
20090143916 Boll et al. Jun 2009 A1
20090156922 Goldberger et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090156990 Wenger et al. Jun 2009 A1
20090163781 Say et al. Jun 2009 A1
20090164190 Hayter Jun 2009 A1
20090177142 Blomquist et al. Jul 2009 A1
20090177154 Blomquist Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090198191 Chong et al. Aug 2009 A1
20090198215 Chong et al. Aug 2009 A1
20090198350 Thiele Aug 2009 A1
20090212966 Panduro Aug 2009 A1
20090221890 Saffer et al. Sep 2009 A1
20090228214 Say et al. Sep 2009 A1
20090318791 Kaastrup Dec 2009 A1
20090326343 Gable et al. Dec 2009 A1
20090326472 Carter et al. Dec 2009 A1
20100010330 Rankers et al. Jan 2010 A1
20100017141 Campbell et al. Jan 2010 A1
20100036326 Matusch Feb 2010 A1
20100057040 Hayter Mar 2010 A1
20100057041 Hayter Mar 2010 A1
20100064243 Buck et al. Mar 2010 A1
20100077198 Buck et al. Mar 2010 A1
20100094078 Weston Apr 2010 A1
20100114026 Karratt et al. May 2010 A1
20100121167 McGarraugh May 2010 A1
20100137784 Cefai et al. Jun 2010 A1
20100145272 Cefai et al. Jun 2010 A1
20100152658 Hanson et al. Jun 2010 A1
20100165795 Elder et al. Jul 2010 A1
20100168538 Keenan et al. Jul 2010 A1
20100168820 Maniak et al. Jul 2010 A1
20100174228 Buckingham et al. Jul 2010 A1
20100174229 Hsu et al. Jul 2010 A1
20100174266 Estes Jul 2010 A1
20100179409 Kamath et al. Jul 2010 A1
20100185183 Alme et al. Jul 2010 A1
20100211003 Sundar et al. Aug 2010 A1
20100211005 Edwards et al. Aug 2010 A1
20100241066 Hansen et al. Sep 2010 A1
20100249530 Rankers et al. Sep 2010 A1
20100262117 Magni et al. Oct 2010 A1
20100262434 Shaya Oct 2010 A1
20100273738 Valcke et al. Oct 2010 A1
20100286601 Yodfat et al. Nov 2010 A1
20100286653 Kubel et al. Nov 2010 A1
20100298685 Hayter et al. Nov 2010 A1
20100298765 Budiman et al. Nov 2010 A1
20100324382 Cantwell et al. Dec 2010 A1
20100324977 Dragt Dec 2010 A1
20100325864 Briones et al. Dec 2010 A1
20110009813 Rankers Jan 2011 A1
20110015511 Bousamra et al. Jan 2011 A1
20110021584 Berggren et al. Jan 2011 A1
20110028817 Jin et al. Feb 2011 A1
20110040247 Mandro et al. Feb 2011 A1
20110049394 De Rochemont Mar 2011 A1
20110054390 Searle et al. Mar 2011 A1
20110054399 Chong et al. Mar 2011 A1
20110065224 Bollman et al. Mar 2011 A1
20110071464 Palerm Mar 2011 A1
20110071765 Yodfat et al. Mar 2011 A1
20110098637 Hill Apr 2011 A1
20110098674 Vicente et al. Apr 2011 A1
20110105955 Yudovsky et al. May 2011 A1
20110106050 Yodfat et al. May 2011 A1
20110118699 Yodfat et al. May 2011 A1
20110124996 Reinke et al. May 2011 A1
20110130716 Estes et al. Jun 2011 A1
20110144586 Michaud et al. Jun 2011 A1
20110160652 Yodfat et al. Jun 2011 A1
20110163880 Halff et al. Jul 2011 A1
20110178472 Cabiri Jul 2011 A1
20110190694 Lanier et al. Aug 2011 A1
20110199194 Waldock et al. Aug 2011 A1
20110202005 Yodfat et al. Aug 2011 A1
20110218495 Remde Sep 2011 A1
20110224523 Budiman Sep 2011 A1
20110230833 Landman et al. Sep 2011 A1
20110251509 Beyhan et al. Oct 2011 A1
20110313390 Roy et al. Dec 2011 A1
20110313680 Doyle et al. Dec 2011 A1
20110316562 Cefai et al. Dec 2011 A1
20110319813 Kamen et al. Dec 2011 A1
20120003935 Lydon et al. Jan 2012 A1
20120010594 Holt et al. Jan 2012 A1
20120016304 Patel et al. Jan 2012 A1
20120029468 Diperna et al. Feb 2012 A1
20120030393 Ganesh et al. Feb 2012 A1
20120046606 Arefieg Feb 2012 A1
20120053556 Lee Mar 2012 A1
20120065894 Tubb et al. Mar 2012 A1
20120078067 Kovatchev et al. Mar 2012 A1
20120078161 Masterson et al. Mar 2012 A1
20120078181 Smith et al. Mar 2012 A1
20120101451 Boit et al. Apr 2012 A1
20120123234 Atlas et al. May 2012 A1
20120124521 Guo May 2012 A1
20120150446 Chang et al. Jun 2012 A1
20120150556 Galasso et al. Jun 2012 A1
20120172694 Desborough et al. Jul 2012 A1
20120172802 Blomquist Jul 2012 A1
20120185267 Kamen et al. Jul 2012 A1
20120190955 Rao et al. Jul 2012 A1
20120197207 Stefanski Aug 2012 A1
20120203085 Rebec Aug 2012 A1
20120203178 Tverskoy Aug 2012 A1
20120203467 Kamath et al. Aug 2012 A1
20120209208 Stefanski Aug 2012 A1
20120215087 Cobelli et al. Aug 2012 A1
20120225134 Komorowski Sep 2012 A1
20120226259 Yodfat et al. Sep 2012 A1
20120227737 Mastrototaro et al. Sep 2012 A1
20120232520 Sloan et al. Sep 2012 A1
20120238851 Kamen et al. Sep 2012 A1
20120238853 Arefieg Sep 2012 A1
20120238999 Estes et al. Sep 2012 A1
20120245448 Shariati et al. Sep 2012 A1
20120245556 Kovatchev et al. Sep 2012 A1
20120245855 Kamath et al. Sep 2012 A1
20120246106 Atlas et al. Sep 2012 A1
20120250449 Nakano Oct 2012 A1
20120259191 Shariati et al. Oct 2012 A1
20120271655 Knobel et al. Oct 2012 A1
20120277668 Chawla Nov 2012 A1
20120277723 Skladnev et al. Nov 2012 A1
20120282111 Nip et al. Nov 2012 A1
20120283694 Yodfat et al. Nov 2012 A1
20120289931 Robinson et al. Nov 2012 A1
20120295550 Wilson et al. Nov 2012 A1
20120302991 Blomquist et al. Nov 2012 A1
20120323590 Udani Dec 2012 A1
20120330270 Colton Dec 2012 A1
20130030358 Yodfat et al. Jan 2013 A1
20130046281 Javitt Feb 2013 A1
20130053818 Estes Feb 2013 A1
20130053819 Estes Feb 2013 A1
20130053820 Estes et al. Feb 2013 A1
20130102867 Desborough et al. Apr 2013 A1
20130116649 Breton et al. May 2013 A1
20130138205 Kushwaha et al. May 2013 A1
20130158503 Kanderian et al. Jun 2013 A1
20130159456 Daoud et al. Jun 2013 A1
20130165041 Bukovjan et al. Jun 2013 A1
20130172695 Nielsen et al. Jul 2013 A1
20130172710 Mears et al. Jul 2013 A1
20130178791 Javitt Jul 2013 A1
20130204186 Moore et al. Aug 2013 A1
20130204202 Trombly et al. Aug 2013 A1
20130218126 Hayter et al. Aug 2013 A1
20130231642 Doyle et al. Sep 2013 A1
20130237932 Thueer et al. Sep 2013 A1
20130245545 Arnold et al. Sep 2013 A1
20130245563 Mercer et al. Sep 2013 A1
20130245604 Kouyoumjian et al. Sep 2013 A1
20130253284 Fraier et al. Sep 2013 A1
20130253418 Kamath et al. Sep 2013 A1
20130253472 Cabiri Sep 2013 A1
20130261406 Rebec et al. Oct 2013 A1
20130275139 Coleman Oct 2013 A1
20130281965 Kamen et al. Oct 2013 A1
20130296792 Cabiri Nov 2013 A1
20130296823 Melker et al. Nov 2013 A1
20130297334 Galasso et al. Nov 2013 A1
20130298080 Griffin et al. Nov 2013 A1
20130317753 Kamen et al. Nov 2013 A1
20130332874 Rosinko et al. Dec 2013 A1
20130338576 O'Connor et al. Dec 2013 A1
20130338629 Agrawal et al. Dec 2013 A1
20130338630 Agrawal et al. Dec 2013 A1
20130345663 Agrawal et al. Dec 2013 A1
20130346858 Neyrinck Dec 2013 A1
20140005633 Finan Jan 2014 A1
20140018730 Mueller-Pathle Jan 2014 A1
20140025015 Cross et al. Jan 2014 A1
20140031759 Kouyoumjian et al. Jan 2014 A1
20140032549 McDaniel et al. Jan 2014 A1
20140039383 Dobbles et al. Feb 2014 A1
20140052091 Dobbles et al. Feb 2014 A1
20140052092 Dobbles et al. Feb 2014 A1
20140052093 Dobbles et al. Feb 2014 A1
20140052094 Dobbles et al. Feb 2014 A1
20140052095 Dobbles et al. Feb 2014 A1
20140066859 Ogawa et al. Mar 2014 A1
20140066884 Keenan et al. Mar 2014 A1
20140066885 Keenan et al. Mar 2014 A1
20140066886 Roy et al. Mar 2014 A1
20140066887 Mastrototaro et al. Mar 2014 A1
20140066888 Parikh et al. Mar 2014 A1
20140066889 Grosman et al. Mar 2014 A1
20140066890 Sloan et al. Mar 2014 A1
20140066892 Keenan et al. Mar 2014 A1
20140074033 Sonderegger et al. Mar 2014 A1
20140088428 Yang et al. Mar 2014 A1
20140088557 Mernoe et al. Mar 2014 A1
20140094766 Estes et al. Apr 2014 A1
20140107607 Estes Apr 2014 A1
20140108046 Echeverria et al. Apr 2014 A1
20140114278 Dobbles et al. Apr 2014 A1
20140121635 Hayter May 2014 A1
20140127048 Diianni et al. May 2014 A1
20140128705 Mazlish May 2014 A1
20140128803 Dobbles et al. May 2014 A1
20140128839 Diianni et al. May 2014 A1
20140129951 Amin et al. May 2014 A1
20140135880 Baumgartner et al. May 2014 A1
20140142508 Diianni et al. May 2014 A1
20140146202 Boss et al. May 2014 A1
20140171901 Langsdorf et al. Jun 2014 A1
20140180203 Budiman et al. Jun 2014 A1
20140180240 Finan et al. Jun 2014 A1
20140200426 Taub et al. Jul 2014 A1
20140200559 Doyle et al. Jul 2014 A1
20140228627 Soffer et al. Aug 2014 A1
20140228668 Wakizaka et al. Aug 2014 A1
20140230021 Birtwhistle et al. Aug 2014 A1
20140235981 Hayter Aug 2014 A1
20140249500 Estes Sep 2014 A1
20140276553 Rosinko et al. Sep 2014 A1
20140276554 Finan et al. Sep 2014 A1
20140276555 Morales Sep 2014 A1
20140276556 Saint et al. Sep 2014 A1
20140276583 Chen et al. Sep 2014 A1
20140278123 Prodhom et al. Sep 2014 A1
20140309615 Mazlish Oct 2014 A1
20140316379 Sonderegger et al. Oct 2014 A1
20140323959 Ebel et al. Oct 2014 A1
20140325065 Birtwhistle et al. Oct 2014 A1
20150018633 Kovachev et al. Jan 2015 A1
20150025329 Amarasingham et al. Jan 2015 A1
20150025471 Enggaard Jan 2015 A1
20150025495 Peyser Jan 2015 A1
20150025503 Searle et al. Jan 2015 A1
20150030641 Anderson et al. Jan 2015 A1
20150041498 Kakiuchi et al. Feb 2015 A1
20150045737 Stefanski Feb 2015 A1
20150073337 Saint et al. Mar 2015 A1
20150080789 Estes et al. Mar 2015 A1
20150120317 Mayou et al. Apr 2015 A1
20150120323 Galasso et al. Apr 2015 A1
20150134265 Kohlbrecher et al. May 2015 A1
20150134353 Ferrell et al. May 2015 A1
20150136336 Huang May 2015 A1
20150148774 Yao May 2015 A1
20150157794 Roy et al. Jun 2015 A1
20150164414 Matthews Jun 2015 A1
20150165119 Palerm et al. Jun 2015 A1
20150173674 Hayes et al. Jun 2015 A1
20150193585 Sunna Jul 2015 A1
20150202386 Brady et al. Jul 2015 A1
20150205509 Scriven et al. Jul 2015 A1
20150205511 Vinna et al. Jul 2015 A1
20150213217 Amarasingham et al. Jul 2015 A1
20150217051 Mastrototaro et al. Aug 2015 A1
20150217052 Keenan et al. Aug 2015 A1
20150217053 Booth et al. Aug 2015 A1
20150265767 Vazquez et al. Sep 2015 A1
20150265768 Vazquez et al. Sep 2015 A1
20150301691 Qin Oct 2015 A1
20150306314 Doyle et al. Oct 2015 A1
20150314062 Blomquist et al. Nov 2015 A1
20150320933 Estes Nov 2015 A1
20150328402 Nogueira et al. Nov 2015 A1
20150331995 Zhao et al. Nov 2015 A1
20150351671 Vanslyke et al. Dec 2015 A1
20150351672 Vanslyke et al. Dec 2015 A1
20150351683 Brauker et al. Dec 2015 A1
20150352282 Mazlish Dec 2015 A1
20150352283 Galasso Dec 2015 A1
20150356250 Polimeni Dec 2015 A1
20150366945 Greene Dec 2015 A1
20160000998 Estes Jan 2016 A1
20160015891 Papiorek Jan 2016 A1
20160019352 Cohen et al. Jan 2016 A1
20160030669 Harris et al. Feb 2016 A1
20160038673 Morales Feb 2016 A1
20160038689 Lee et al. Feb 2016 A1
20160051749 Istoc Feb 2016 A1
20160082187 Schaible et al. Mar 2016 A1
20160082188 Blomquist et al. Mar 2016 A1
20160089494 Guerrini Mar 2016 A1
20160158438 Monirabbasi et al. Jun 2016 A1
20160162662 Monirabbasi et al. Jun 2016 A1
20160175520 Palerm et al. Jun 2016 A1
20160213841 Geismar et al. Jul 2016 A1
20160220181 Rigoard et al. Aug 2016 A1
20160228641 Gescheit et al. Aug 2016 A1
20160243318 Despa et al. Aug 2016 A1
20160256087 Doyle et al. Sep 2016 A1
20160256629 Grosman et al. Sep 2016 A1
20160259889 Murtha et al. Sep 2016 A1
20160287512 Cooper et al. Oct 2016 A1
20160302054 Kimura et al. Oct 2016 A1
20160331310 Kovatchev Nov 2016 A1
20160354543 Cinar et al. Dec 2016 A1
20170007882 Werner Jan 2017 A1
20170021096 Cole et al. Jan 2017 A1
20170049386 Abraham et al. Feb 2017 A1
20170131887 Kim et al. May 2017 A1
20170143899 Gondhalekar et al. May 2017 A1
20170143900 Rioux et al. May 2017 A1
20170156682 Doyle et al. Jun 2017 A1
20170173261 O'Connor et al. Jun 2017 A1
20170182248 Rosinko Jun 2017 A1
20170188943 Braig et al. Jul 2017 A1
20170189614 Mazlish et al. Jul 2017 A1
20170189625 Cirillo et al. Jul 2017 A1
20170203036 Mazlish et al. Jul 2017 A1
20170216524 Haider et al. Aug 2017 A1
20170239415 Hwang et al. Aug 2017 A1
20170258987 Caspers Sep 2017 A1
20170281877 Marlin et al. Oct 2017 A1
20170296746 Chen et al. Oct 2017 A1
20170311903 Davis et al. Nov 2017 A1
20170347971 Davis et al. Dec 2017 A1
20170348482 Duke et al. Dec 2017 A1
20180036495 Searle et al. Feb 2018 A1
20180040255 Freeman et al. Feb 2018 A1
20180075200 Davis et al. Mar 2018 A1
20180075201 Davis et al. Mar 2018 A1
20180075202 Davis et al. Mar 2018 A1
20180092576 Ambrsio Apr 2018 A1
20180126073 Wu et al. May 2018 A1
20180169334 Grosman et al. Jun 2018 A1
20180200434 Mazlish et al. Jul 2018 A1
20180200438 Mazlish et al. Jul 2018 A1
20180200441 Desborough et al. Jul 2018 A1
20180204636 Edwards et al. Jul 2018 A1
20180277253 Gondhalekar et al. Sep 2018 A1
20180289891 Finan et al. Oct 2018 A1
20180296757 Finan et al. Oct 2018 A1
20180307515 Meller et al. Oct 2018 A1
20180342317 Skirble et al. Nov 2018 A1
20180369479 Hayter et al. Dec 2018 A1
20190076600 Grosman et al. Mar 2019 A1
20190095052 De et al. Mar 2019 A1
20190132801 Kamath et al. May 2019 A1
20190184091 Sjolund et al. Jun 2019 A1
20190240403 Palerm et al. Aug 2019 A1
20190290844 Monirabbasi et al. Sep 2019 A1
20190321545 Saint Oct 2019 A1
20190336683 O'Connor et al. Nov 2019 A1
20190336684 O'Connor et al. Nov 2019 A1
20190348157 Booth et al. Nov 2019 A1
20190374714 Rioux et al. Dec 2019 A1
20200001006 Pizzochero et al. Jan 2020 A1
20200046268 Patek et al. Feb 2020 A1
20200101222 Lintereur et al. Apr 2020 A1
20200101223 Lintereur et al. Apr 2020 A1
20200101225 O'Connor et al. Apr 2020 A1
20200113515 O'Connor et al. Apr 2020 A1
20200219625 Kahlbaugh Jul 2020 A1
20200342974 Chen et al. Oct 2020 A1
20210050085 Hayter et al. Feb 2021 A1
20210098105 Lee et al. Apr 2021 A1
20220023536 Graham et al. Jan 2022 A1
20220105270 Doyle et al. Apr 2022 A1
Foreign Referenced Citations (249)
Number Date Country
2015200834 Mar 2015 AU
2015301146 Mar 2017 AU
1040271 Oct 1978 CA
2543545 May 2005 CA
3026851 Feb 2020 CA
1297140 May 2001 CN
1859943 Nov 2006 CN
101208699 Jun 2008 CN
4200595 Jul 1993 DE
19627619 Jan 1998 DE
19756872 Jul 1999 DE
19912459 Sep 2000 DE
10236669 Feb 2004 DE
202005012358 Oct 2005 DE
200401893 Dec 2004 DK
0026056 Apr 1981 EP
0062974 Oct 1982 EP
0098592 Jan 1984 EP
0275213 Jul 1988 EP
0341049 Nov 1989 EP
0496141 Jul 1992 EP
0496305 Jul 1992 EP
0549341 Jun 1993 EP
0580723 Feb 1994 EP
0612004 Aug 1994 EP
0721358 Jul 1996 EP
0867196 Sep 1998 EP
0939451 Sep 1999 EP
1045146 Oct 2000 EP
1136698 Sep 2001 EP
1376759 Jan 2004 EP
1177802 Sep 2004 EP
1491144 Dec 2004 EP
1495775 Jan 2005 EP
1527792 May 2005 EP
1571582 Sep 2005 EP
0801578 Jul 2006 EP
1754498 Feb 2007 EP
1818664 Aug 2007 EP
1824536 Aug 2007 EP
1951340 Aug 2008 EP
2139382 Jan 2010 EP
2397181 Dec 2011 EP
2468338 Jun 2012 EP
2666520 Nov 2013 EP
2695573 Feb 2014 EP
2703024 Mar 2014 EP
2764881 Aug 2014 EP
2830499 Feb 2015 EP
2897071 Jul 2015 EP
2943149 Nov 2015 EP
3177344 Jun 2017 EP
3193979 Jul 2017 EP
3314548 May 2018 EP
3607985 Feb 2020 EP
2096275 Feb 1972 FR
2585252 Jan 1987 FR
0747701 Apr 1956 GB
1125897 Sep 1968 GB
2218831 Nov 1989 GB
2443261 Apr 2008 GB
51-125993 Nov 1976 JP
02-131777 May 1990 JP
09-504974 May 1997 JP
11-010036 Jan 1999 JP
2000-513974 Oct 2000 JP
2002-085556 Mar 2002 JP
2002-507459 Mar 2002 JP
2002-523149 Jul 2002 JP
2003-531691 Oct 2003 JP
2004-283378 Oct 2004 JP
2005-326943 Nov 2005 JP
2007-525276 Sep 2007 JP
2008-513142 May 2008 JP
2010-502361 Jan 2010 JP
2010-524639 Jul 2010 JP
2012-527981 Nov 2012 JP
2017-516548 Jun 2017 JP
2017-525451 Sep 2017 JP
2018-153569 Oct 2018 JP
2019-525276 Sep 2019 JP
200740148 Oct 2007 TW
M452390 May 2013 TW
8606796 Nov 1986 WO
9015928 Dec 1990 WO
9509021 Apr 1995 WO
9721457 Jun 1997 WO
9800193 Jan 1998 WO
9804301 Feb 1998 WO
9811927 Mar 1998 WO
9855073 Dec 1998 WO
9857683 Dec 1998 WO
9907425 Feb 1999 WO
9910040 Mar 1999 WO
9910049 Mar 1999 WO
9921596 May 1999 WO
9939118 Aug 1999 WO
9948546 Sep 1999 WO
9956803 Nov 1999 WO
9962576 Dec 1999 WO
0030705 Jun 2000 WO
0032258 Jun 2000 WO
0048112 Aug 2000 WO
0154753 Aug 2001 WO
0172354 Oct 2001 WO
0172360 Oct 2001 WO
0178812 Oct 2001 WO
0191822 Dec 2001 WO
0191833 Dec 2001 WO
0215954 Feb 2002 WO
0226282 Apr 2002 WO
0240083 May 2002 WO
0243866 Jun 2002 WO
0257627 Jul 2002 WO
0268015 Sep 2002 WO
0276535 Oct 2002 WO
0281012 Oct 2002 WO
0282990 Oct 2002 WO
0284336 Oct 2002 WO
2002100469 Dec 2002 WO
0316882 Feb 2003 WO
0323728 Mar 2003 WO
0326728 Mar 2003 WO
0326726 Apr 2003 WO
0339362 May 2003 WO
0345233 Jun 2003 WO
0397133 Nov 2003 WO
2003103763 Dec 2003 WO
2004041330 May 2004 WO
2004043250 May 2004 WO
2004056412 Jul 2004 WO
2004092715 Oct 2004 WO
2004093648 Nov 2004 WO
2004110526 Dec 2004 WO
2005002652 Jan 2005 WO
2005011779 Feb 2005 WO
2005011799 Feb 2005 WO
2005039673 May 2005 WO
2005051170 Jun 2005 WO
2005072794 Aug 2005 WO
2005072795 Aug 2005 WO
2005082436 Sep 2005 WO
2005110601 Nov 2005 WO
2005113036 Dec 2005 WO
2006053007 May 2006 WO
2006061354 Jun 2006 WO
2006067217 Jun 2006 WO
2006075016 Jul 2006 WO
2006097453 Sep 2006 WO
2006105792 Oct 2006 WO
2006105793 Oct 2006 WO
2006105794 Oct 2006 WO
2007005219 Jan 2007 WO
2007056247 May 2007 WO
2007056504 May 2007 WO
2007056592 May 2007 WO
2007064835 Jun 2007 WO
2007066152 Jun 2007 WO
2007071255 Jun 2007 WO
2007078937 Jul 2007 WO
2007078992 Jul 2007 WO
2007141786 Dec 2007 WO
2008016621 Feb 2008 WO
2008024810 Feb 2008 WO
2008029403 Mar 2008 WO
2008073609 Jun 2008 WO
2008089184 Jul 2008 WO
WO-2008103175 Aug 2008 WO
2008-133702 Nov 2008 WO
2008134146 Nov 2008 WO
2009032402 Mar 2009 WO
2009035759 Mar 2009 WO
2009039203 Mar 2009 WO
2009045462 Apr 2009 WO
2009049252 Apr 2009 WO
2009066287 May 2009 WO
2009066288 May 2009 WO
2009098648 Aug 2009 WO
2009134380 Nov 2009 WO
2010022069 Feb 2010 WO
2010045460 Apr 2010 WO
2010053702 May 2010 WO
2010077279 Jul 2010 WO
2010097796 Sep 2010 WO
2010132077 Nov 2010 WO
2010138848 Dec 2010 WO
2010139793 Dec 2010 WO
2010147659 Dec 2010 WO
2011031458 Mar 2011 WO
2011075042 Jun 2011 WO
2011095483 Aug 2011 WO
2011133823 Oct 2011 WO
2012045667 Apr 2012 WO
2012073032 Jun 2012 WO
2012108959 Aug 2012 WO
2012134588 Oct 2012 WO
2012177353 Dec 2012 WO
2012178134 Dec 2012 WO
2013050535 Apr 2013 WO
2013078200 May 2013 WO
2013134486 Sep 2013 WO
2013149186 Oct 2013 WO
2013177565 Nov 2013 WO
2013182321 Dec 2013 WO
2014029416 Feb 2014 WO
2014035672 Mar 2014 WO
2014062399 Apr 2014 WO
2014074476 May 2014 WO
2014109898 Jul 2014 WO
2014110538 Jul 2014 WO
2014134459 Sep 2014 WO
2014149357 Sep 2014 WO
2014172467 Oct 2014 WO
2014179774 Nov 2014 WO
2014194183 Dec 2014 WO
2015056259 Apr 2015 WO
2015061493 Apr 2015 WO
2015073211 May 2015 WO
2015081337 Jun 2015 WO
2015117082 Aug 2015 WO
2015117854 Aug 2015 WO
2015167201 Nov 2015 WO
2015177082 Nov 2015 WO
2015187366 Dec 2015 WO
2015191459 Dec 2015 WO
2016004088 Jan 2016 WO
2016004210 Jan 2016 WO
2016022650 Feb 2016 WO
2016041873 Mar 2016 WO
2016089702 Jun 2016 WO
2016141082 Sep 2016 WO
2016161254 Oct 2016 WO
2017004278 Jan 2017 WO
2017091624 Jun 2017 WO
2017105600 Jun 2017 WO
2017184988 Oct 2017 WO
2017187177 Nov 2017 WO
2017205816 Nov 2017 WO
2018009614 Jan 2018 WO
2018067748 Apr 2018 WO
2018120104 Jul 2018 WO
2018136799 Jul 2018 WO
2018204568 Nov 2018 WO
2019077482 Apr 2019 WO
2019094440 May 2019 WO
2019213493 Nov 2019 WO
2019246381 Dec 2019 WO
2020081393 Apr 2020 WO
2021011738 Jan 2021 WO
Non-Patent Literature Citations (44)
Entry
US 5,954,699 A, 09/1999, Jost et al. (withdrawn)
“Minimed Inc. Introduces 407C Infusion Pump for General Medication Use” [online]. Business Wire, AllBusiness.com, Aug. 10, 1999 [retrieved on Feb. 28, 2011]. Retrieved from the Internet: <URL: http://www.allbusiness.com/company-activities-management/product-management/6734565-1.html>.
“Using the Deltec Cozmo Insulin Pump Correction Bolus Feature” believed to be publicly available before May 5, 2008, pp. 36-41.
“Which Insulin Pump is Right for Me?”, Albany Medical Center, Goodman Diabetes Service, Jan. 2006, 4 pages.
Accu-Chek Spirit, “Pump Therapy Made for You,” Roche, 2006, 6 pages.
Animas Corporation, IR1200 User Guide Manual, pp. 29-31, revised Sep. 2006.
Asante Pearl, Insulin Pump User Manual, 2012 (180 pages).
Asante Solutions Pearl User Manual, Asante Inc., 2012, 180 pages.
Brown et al., “CGM, Pumps, and SMBG.” American Diabetes Association—71st Scientific Sessions, San Diego, CA, Jun. 24-28, 2011, 38 pages.
Collins and Lee, “Microfluidic flow transducer based on the measurement of electrical admittance,” Lab Chip, 2003, 12 pages.
Copp et al., “Simultaneous Model Predictive Control and Moving Horizon Estimation for Blood Glucose Regulation in Type 1 Diabetes,” Optim. Control Appl. Meth. 2016, 15 pages.
Cox et al. “Prediction of Severe Hypoglycemia.” Diabetes Care, vol. 30, No. 6, Jun. 2007, 4 pages.
Dassau et al., “12-Week 24/7 Ambulatory Artificial Pancreas With Weekly Adaptation of Insulin Delivery Settings: Effect on Hemoglobin AIc and Hypoglycemia” Diabetes Care, Dec. 1, 2017, 40(12):1719-26.
Debiotech News Release, “Debiotech reveals its new miniaturized Disposable Insulin Nanopump. TM. for Diabetes therapy,” available at http://www.debiotech.com/news/nw_159.html Apr. 24, 2006, 3 pages.
Debiotech SA; Debiotech reveals its new miniaturized Disposable Insulin Nanopump} for Diabetes therapy (news release); retrieved from the internet: (http://web.archive.org/web/20060822033820/http://www.debiotech.com/news/nw_159.html); 3 pgs.; Apr. 24, 2006.
DOCNews; The latest in high-tech and convenient devices; American Diabetes Assoc.; 2(7); retrieved from the internet: (http://web.archive.org/web/20080526162751/http://docnews.diabetesjournals.org/cgi/content/full/2/7/13?); 3 pgs.; Jul. 1, 2005.
Duden Deutsches Universaiworterbuch, Dudenveriag, Mannheim, 1989, p. 822.
Dumont, “Feedback control for clinicians,” Journal of clinical monitoring and computing, Feb. 1, 2014, 28(1):5-11.
Fischer et al., “In Vivo Comparison of Different Algorithms for the Artificial Beta-Cell,” Artificial organs, May 1, 1985, 9(2):173-9.
Guarnieri et al. .; Flexible versus rigid catheters for chronic administration of exogenous agents into central nervous system tissues (abstract only); J Neurosc Meth; 144(2); pp. 147-152; Jun. 2005.
Honan, Matthew. “Apple unveils iPhone” Jan. 9, 2007. MacCentral. Accessed Dec. 29, 2011. 2 pages.
Hornby et al.; Catheter (definition); Oxford Advanced Learners Dictionary, 4th Ed.; Oxford University Press; Oxford, UK; p. 178; Apr. 1989.
Insulet Corporation; Innovative New System for Managing Diabetes Receives FDA Clearance; The OmniPod (Registered) Insulin Management System (press release); retrieved from the internet: (http://phx.corporate-ir.net/phoenix.zhtml? c=209336&p=irol-newsArticle_pf&ID=988708&highlight=); 2 pgs.; Feb. 1, 2005.
Insulet Corporation; OmniPod (Registered) Insulin Management System (quick-start guide); 2 pgs.; (Copyright) 2008.
International Search Report and Written Opinion in International Application No. PCT/US2014/67665, dated Apr. 21, 2015, 13 pages.
Keith Hynes et al., “DiAs User Interface: A Patient-Centric Interface for Mobile Artificial Pancreas Systems,” J Diabetes Sci Tech 7(6):1416-1426, Nov. 2013.
Kovatchev B. P. et al.: “Safety of Outpatient Closed-Loop Control: First Randomized Crossover Trials of a Wearable Artificial Pancreas”, Diabetes Care, vol. 37, No. 7, Jun. 14, 2014 (Jun. 14, 2014), pp. 1789-1796.
Medtronic News Release, “Medtronic Receives FDA Approval for World's First Insulin Pump with Realtime Continuous Glucose Monitoring,” Apr. 13, 2006, 3 pages.
OmniPod Insulin Management System-Investor Relations—Press Release, Feb. 1, 2005, http://investors insulet.com/phoenix.zhtml?c=209336&p=irol-newsA-rdele&ID=988708&highlight=1 page.
OmniPod Quick Start Guide, 2007, 2 pages.
Percival et al., “Closed-Loop Control and Advisory Mode Evaluation of an Artificial Pancreatic Beta Cell: Use of Proportional-Integral-Derivative Equivalent Model-Based Controllers,” J Diabetes Sci Tech 2(4):636-644, Jul. 2008.
Salzsieder et al., “Estimation of individually adapted control parameters for an artificial beta cell,” Biomed. Biochim. Acta, Jan. 1, 1984, 43(5):585-596.
Shiavon et al., “Quantitative Estimation of Insulin Sensitivity in Type 1 Diabetic Subjects Wearing a Sensor-Augmented Insulin Pump,” Diabetes care, May 1, 2014, 37(5):1216-23.
The Content of Investigational Device Exemption (IDE) and Premarket Approval (PMA) Application for Low Glucose Suspend (LGS) Device System. Rockville, MD, Food and Drug Administration, 2011, 59 pages.
The Medtronic Diabetes Connection, 2006, 6 pages.
U.S. Appl. No. 60/753,684, filed Dec. 23, 2005.
U.S. Appl. No. 60/753,984, filed Dec. 23, 2005.
U.S. Appl. No. 60/734,382, filed Nov. 8, 2005, Mernoe, et al.
U.S. Appl. No. 11/362,616.
Vozeh et al., “Feedback Control Methods for Drug Dosage Optimisation, Concepts, Classifications and Clinical Application,” Clinical pharmacokinetics, Nov. 1, 1985, 10(6):457-76.
Walsh et al., “Guidelines for Insulin Dosing in Continuous Subcutaneious Insulin Infusion Using New Formulas from a Retrospective Study of Individuals with Optimal Glucose Levels”, J. Diabetes Science and Technology, vol. 4 Issue 5, Sep. 2010 (8 pages).
Walsh et al.,“Guidelines for Optimal Bolus Calculator Settings in Adults”, J. Diabetes Science and Technology; vol. 5 Issue 1; Jan. 2011 (7 pages).
Xilas Temp Touch, “The latest in high-tech and convenient devices,” DOCNews, vol. 2, No. 7, Jul. 1, 2005, http;//docnews.diabetesjournals.ord/cgi/content/full/2/7/13, 3 pages.
Australian Examination Report for Application No. 2021204821 dated Jul. 6, 2022, 4 pages.
Related Publications (1)
Number Date Country
20200368426 A1 Nov 2020 US
Divisions (1)
Number Date Country
Parent 12195034 Aug 2008 US
Child 13071061 US
Continuations (4)
Number Date Country
Parent 15948356 Apr 2018 US
Child 16947627 US
Parent 14797400 Jul 2015 US
Child 15948356 US
Parent 13524200 Jun 2012 US
Child 14797400 US
Parent 13071061 Mar 2011 US
Child 13524200 US