This document relates to a portable infusion pump system, such as a wearable insulin pump system that delivers insulin to a user.
Pump devices are commonly used to deliver one or more fluids to a targeted individual. For example, a medical infusion pump device may be used to deliver a medicine to a patient as part of a medical treatment. The medicine that is delivered by the infusion pump device can depend on the condition of the patient and the desired treatment plan. For example, infusion pump devices have been used to deliver insulin to the vasculature of diabetes patients so as to regulate blood-glucose levels.
In some circumstances, the infusion pump devices may operate on battery power to facilitate portability of the pump devices. In some applications, it can be cost effective over the life of the infusion pump to utilize a rechargeable battery rather than a single use battery, as the rechargeable battery may be recharged many times, which can offset the higher initial cost of the rechargeable battery as compared to a single-use battery. Even during periods when the infusion pump device is not being used, circuitry of the device may drain current from the rechargeable battery. To reduce likelihood of an over-discharge condition of the rechargeable battery, which may damage the rechargeable battery and adversely affect its life cycle capacity, it is desirable to minimize idle current of the rechargeable battery during periods of non-use.
Some embodiments of an infusion pump system can include a controller in electrical communication with a pump device so as to provide selected dosages of a medicine to a user over a period of time. The infusion pump system can employ a number of power management techniques to reduce the likelihood current drain of a rechargeable battery of the infusion pump system. Thus, the infusion pump system can preserve the energy supply of the rechargeable battery in an efficient manner to reduce the likelihood of over-discharge of the rechargeable battery, for example, during periods when the system is idle or stored prior to use (e.g., shelf life). In some circumstances, the infusion pump system can be configured in a manner that prolongs the useful life of the rechargeable battery.
In particular embodiments, a portable infusion pump system may include a pump device and a controller device that is electrically connectable to the pump device. The pump device may include a pump housing that defines a space to receive a medicine, and a drive system to dispense the medicine from the pump device when the medicine is received in the space of the pump housing. The controller device may electrically connect to the pump device so as to control dispensation of the medicine from the pump device. The controller device may include a battery pack including a voltage output terminal, a return terminal, a third terminal, and at least one rechargeable battery cell that is coupled to the voltage output terminal. The rechargeable battery cell may provide electrical energy to at least one of a component of the controller device and the drive system of the pump device. The controller device may further include a monitor circuit that senses a voltage of the at least one rechargeable battery cell, a first resistor coupled between the at least one rechargeable battery cell and a voltage sense terminal of the monitor circuit, and a second resistor coupled between the voltage sense terminal of the monitor circuit and the third terminal of the battery pack. When a low-resistance connection is provided between the third terminal of the battery pack and the return terminal of the battery pack, the monitor circuit can shift the battery pack to a low power mode that reduces electrical current drawn from the at least one rechargeable battery cell.
In other embodiments, a method of controlling a portable infusion pump system may include providing a controller device that is electrically connectable to a pump device so as to control dispensation of medicine from the pump device. The controller device may include a battery pack including a voltage output terminal, a return terminal, a third terminal, and at least one rechargeable battery cell that is coupled to the voltage output terminal. The rechargeable battery cell can be configured to provide electrical energy to at least one of a user interface component of the controller device and a drive system of the pump device. The controller device may further include a monitor circuit that senses a voltage of the at least one rechargeable battery cell, a first resistor coupled between the at least one rechargeable battery cell and a voltage sense terminal of the monitor circuit, and a second resistor coupled between the voltage sense terminal of the monitor circuit and the third terminal of the battery pack. The method may also include providing a low-resistance connection between the third terminal of the battery pack and the return terminal of the battery pack to cause the safety integrated circuit to put the battery pack in a low power mode that reduces electrical current drawn from the at least one rechargeable battery cell.
Some or all of the embodiments described herein may provide one or more of the following advantages. First, some embodiments of the infusion pump system may include a configuration minimizes an idle current drain of a rechargeable battery. This may preserve the energy supply of the rechargeable battery in an efficient manner to prevent over-discharge of the rechargeable battery and prolong the useful life of the rechargeable battery.
Second, certain embodiments of an infusion pump system may include a configuration that can place the rechargeable battery into a low power mode even when the rechargeable battery retains a substantially full charge level, which is greater than a predefined low voltage threshold value established by a battery monitoring circuit device. This may preserve the energy supply of the rechargeable battery in an efficient manner to prevent over-discharge of the rechargeable battery and prolong the useful life of the rechargeable battery.
Third, some embodiments of the infusion pump system can cause the rechargeable battery to enter a low power mode without an application of an external voltage source. This may provide convenience because the low power mode may be entered without having to connect a separate device or power source, thereby simplifying the manufacturing and storage process for the controller device.
Fourth, using techniques discussed herein, some embodiments can permit the rechargeable battery to be placed in the low power mode following manufacture of the rechargeable battery, or alternatively during assembly and production of the infusion pump system. This may preserve the energy supply of the rechargeable battery in an efficient manner to prevent over-discharge of the rechargeable battery, and may permit the rechargeable battery to retain charge so that the system is usable immediately upon unpacking after shipping and storage (e.g., a period of shelf life) of the system.
Fifth, some embodiments of the infusion pump system can cause the rechargeable battery to enter a low power mode following a user-initiated action, such as disconnecting the pump assembly from the controller device. This may preserve the energy supply of the rechargeable battery in an efficient manner to prevent over-discharge of the rechargeable battery and prolong the useful life of the rechargeable battery.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Referring to
In some embodiments, the controller device 200 may be configured as a reusable component that provides electronics and a user interface to control the operation of the pump device 100. In such circumstances, the pump device 100 can be a disposable component that is disposed of after a single use. For example, as described in more detail below in connection with
The infusion pump system 10 may also include a rechargeable battery pack 245 (also referred to herein as rechargeable battery 245; refer also to
As described in more detail below in connection with
Briefly, in use, the pump device 100 is configured to removably attach to the controller device 200 in a manner that provides a secure fitting, an overall compact size, and a reliable electrical connection that is resistant to water migration. For example, as described in more detail below in connection with
Referring again to
In some embodiments, the pump device 100 can include one or more structures that interfere with the removal of the medicine cartridge 120 after the medicine cartridge 120 is inserted into the cavity 116. For example, the pump housing structure 110 can include one or more retainer wings that at least partially extend into the cavity 116 to engage a portion of the medicine cartridge 120 when the medicine cartridge 120 is installed therein. Such a configuration may facilitate the “one-time-use” feature of the pump device 100. In some embodiments, the retainer wings can interfere with attempts to remove the medicine cartridge 120 from the pump device 100, thus ensuring that the pump device 100 will be discarded along with the medicine cartridge 120 after the medicine cartridge 120 is emptied, expired, or otherwise exhausted. Accordingly, the pump device 100 can operate in a tamper-resistant and safe manner because the pump device 100 can be designed with a predetermined life expectancy (e.g., the “one-time-use” feature in which the pump device is discarded after the medicine cartridge 120 is emptied, expired, or otherwise exhausted).
Still referring to
As shown in
Still referring to
Accordingly, when the controller device 200 is connected to the pump device 100, the user can be provided with the opportunity to readily monitor the infusion pump operation by simply viewing the user interface 220 of the controller device 200 connected to the pump device 100. Such monitoring capabilities may provide comfort to a user who may have urgent questions about the current operation of the pump device 100. Also, in these embodiments, there may be no need for the user to carry and operate a separate module to monitor the operation of the infusion pump device 100, thereby simplifying the monitoring process and reducing the number of devices that must be carried by the user. If a need arises in which the user desires to monitor the operation of the pump device 100 or to adjust the settings of the pump system 10 (e.g., to request a bolus amount of medicine), the user can readily operate the user interface 220 of the controller device 200, which is removably attached to the pump device 100, without the requirement of locating and operating a separate monitoring module.
Referring now to
The controller device 200 can include a controller housing structure 210 having a number of features that are configured to mate with complementary features of the pump housing structure 110 so as to form a releasable mechanical connection. For example, the pump housing structure 110 can include a barrel 111 that mates with a complementary barrel channel 211 of the controller housing 210. In various implementations, the pump device 100 and the controller device 200 can be mounted to one another so that the assembled system 10 is resistant to water migration both into the pump housing structure 110 and the controller housing structure 210. Such a configuration can also provide water-resistant protection for the electrical connection between the pump device 100 and the controller device 200. Thus, the sensitive internal components in the controller device 200 and the pump device 100 can be reliably protected from water migration if the user encounters water (e.g., rain, incidental splashing, and the like) while using the pump system 10.
Referring to
In some embodiments, the infusion pump system 10 can be pocket-sized so that the pump device 100 and controller device 200 can be worn in the user's pocket or in another portion of the user's clothing. In some circumstances, the user may desire to wear the pump system 10 in a more discrete manner. Accordingly, the user can pass the tube 147 from the pocket, under the user's clothing, and to the infusion site where the adhesive patch can be positioned. As such, the pump system 10 can be used to deliver medicine to the tissues or vasculature of the user in a portable, concealable, and discrete manner.
In some embodiments, the infusion pump system 10 can be configured to adhere to the user's skin directly at the location in which the skin is penetrated for medicine infusion. For example, a rear surface 102 (
Referring now to
The controller device 200, however, may be reused with subsequent new pump devices 100′ and new medicine cartridges 120′. As such, the control circuitry, the user interface components, the rechargeable battery pack 245, and other components that may have relatively higher manufacturing costs can be reused over a longer period of time. For example, in some embodiments, the controller device 200 can be designed to have an expected operational life of about 1 year to about 7 years, about 2 years to about 6 years, or about 3 years to about 5 years—depending on a number of factors including the usage conditions for the individual user. Accordingly, the user can be permitted to reuse the controller device 200 (which can include complex or valuable electronics, and a rechargeable battery pack) while disposing of the relatively low-cost pump device 100 after each use. Such a pump system 10 can provide enhanced user safety as a new pump device 100′ (and drive system therein) is employed with each new fluid cartridge 120′.
Referring to
The new pump device 100′ can be removably attached to the controller device 200 to assemble into the infusion pump system 10 for delivery of medicine to the user. As previously described, the guided motion in the longitudinal direction 219 provides the user with a convenient “one-movement” process to attach the pump device 100′ and the controller device 200. For example, the user can readily slide the pump device 100′ and the controller device 200 toward one another in a single movement (e.g., in the longitudinal direction 219) that causes both a physical connection and an electrical connection. Thus, the infusion pump system 10 can permit users to readily join the pump device 100′ and the controller device 200 without compound or otherwise difficult hand movements—a feature that can be beneficial to child users or to elderly users.
Referring now to
In some embodiments, the controller circuitry 240 can include a logic board 520 in communication with a power board 540. In general, the logic board 520 (and also the power board 540) may include components that are used to control operation of the infusion pump system 10, and the power board 540 may include components that receive battery power signals from the rechargeable battery 245, the charger battery 345, or both, and provide sources of power for the electrical components of the controller device 200 and the pump device 100. It should be understood that although the logic board 520 are power board 540 are depicted as a printed circuit boards, one or both can have other forms, including multiple boards, a flexible circuit substrate, and other configurations. In some implementations, the logic board 520 and power board 540 may be combined as a single printed circuit board.
Still referring to
Some embodiments of the controller circuitry 240 can include a cable connector (e.g., a USB connection port or another data cable port) that is accessible on an external portion of the controller housing 210. As such, a cable can be connected to the controller circuitry 240 to upload data or program settings to the controller circuitry 240 or to download data from the controller circuitry 240. For example, historical data of medicine delivery can be downloaded from the controller circuitry 240 (via the cable connector) to a computer system of a physician or a user for purposes of analysis and program adjustments. Optionally, the data cable can also provide recharging power.
Referring now to
The rechargeable battery pack 245 can be coupled to the power board 540. For example, the connector 510 may be connected with a mating connector 542 disposed on the power board 540, and may thereby couple the three terminals 504, 506, 508 from the battery pack 245 to the power board 540 and further to one or more components for controller circuitry 240.
The rechargeable battery pack 245 can include a lithium-ion or lithium-polymer battery 500. In some implementations, the lithium-ion or lithium-polymer battery 500 may be a 3.8 volt battery. The rechargeable battery pack 245 can include a high-current-output battery that is capable of discharging a brief current burst to power, for example, the drive system 300 of the pump device 100, and can also provide energy sources for various electronic components of the infusion pump system 10. In other embodiments, it should be understood that the rechargeable battery 245 can include a capacitor device capable of being recharged over time and intermittently discharging a current burst to activate the drive system 300. Additional embodiments of the rechargeable battery 245 can include a combination of batteries and capacitors.
In some embodiments, one or more power supply components (e.g., disposed on power board 540) may receive charge energy from the rechargeable battery pack 245 and convert the energy into one or more usable power sources at one or more voltage levels for electronic components of the infusion pump system. The electronic components may reside, for example, in the pump assembly 100 or in the controller device 200.
The rechargeable battery 245 may be capable of accepting and storing electrical energy over time (e.g., “trickle charge”). For example, the rechargeable battery 245 can be charged with energy supplied from the charger battery 345, according to some implementations. The hard-wired transmission of electrical energy from the rechargeable battery 245 to the drive system 300 can occur through the previously described connectors 118 and 218 (
Accordingly, the infusion pump system 10 can include two power sources 345 and 245—one arranged in the disposable pump device 100 and another arranged in the reusable controller device 200—which can permit a user to continually operate the controller device 200 without having to recharge a battery via a plug-in wall charger or other cable. Because the controller device 200 can be reusable with a number of pump devices 100 (e.g., attach the new pump device 100′ after the previous pump device 100 is expended and disposed), the rechargeable battery 245 in the controller device can be recharged over a period of time, each time when a new pump device 100′ is connected thereto. Such a configuration can be advantageous in those embodiments where the pump device 100 is configured to be a disposable, one-time-use device that attaches to a reusable controller device 200. For example, in those embodiments, the “disposable” pump devices 100 recharges the rechargeable battery 245 in the “reusable” controller device 200, thereby reducing or possibly eliminating the need for separate recharging of the controller device 200 via a power cord plugged into a wall outlet.
Referring again to
In various implementations, processor 522 executes instructions stored in memory locations internal of the processor 522 or in memory locations in one or more memory devices external of the processor 522. For example, in some embodiments the processor 522 may include on-board random access memory (RAM), where instructions may be loaded and executed therefrom by the processor 522. Processor 522 may also include various forms of on-board non-volatile memory for storing instructions or data in some implementations, including but not limited to EPROM, EEPROM, Flash, and the like. In some embodiments, memory devices external of the processor 522 are used. A memory device 526 may store instructions, data, or both, for use by the processor 522. In some implementations, memory device 526 includes FRAM data storage. Memory device 526 may store user settings and alarms, as well as parameters for the infusion pump system 10, including last-used pump parameters. As will be described below with reference to
Referring now to
Referring now to
Referring again to
Referring now to
In some implementations, battery protection IC 501 may be a Seiko S-8211C device, although other battery protection devices may alternatively be used. In the embodiment shown in
Under normal operating conditions, the battery protection IC 501 controls switches 556 and 558 to be closed, so that a conductive path is formed (through switches 556, 558) between the ground reference 575 of battery 500 and the return terminal 506 of the battery pack 245. Also, under normal operating conditions the battery protection IC 501 monitors the voltage across its voltage sense terminal 553 and its return terminal 551, where this voltage is typically the voltage of battery 500. If the battery protection IC 501 detects that the voltage across its voltage sense terminal 553 and its return terminal 551 falls below a predetermined low voltage threshold value for a predetermined period of time, the battery protection IC 501 perceives an under-voltage condition and controls switch 556 to open, thereby breaking the conductive path between the ground reference 575 of the battery 500 and the return terminal 506 of the battery pack 245. In some embodiments, the low voltage threshold value may be about 2.8 volts. By contrast, if the battery protection IC 501 detects that the voltage across its voltage sense terminal 553 and its return terminal 551 is above a predetermined high voltage threshold value for a predetermined period of time, the battery protection IC 501 perceives an over-voltage condition and controls switch 558 to open, thereby also breaking the conductive path between the ground reference 575 of the battery 500 and the return terminal 506 of the battery pack 245.
In the case of a detected under-voltage condition, the battery protection IC 501 places the battery pack 245 in a low power mode. In the low power mode, the battery protection IC 501 may cease to monitor voltage across its voltage sense terminal 553 and its return terminal 551, which may reduce an amount of current drain from battery 500. For example, in low power mode, current consumption from the battery may be reduced to about 0.3 microamps in the case of a Seiko S8211C battery protection IC 501. This reduced current consumption may represent about 10% of the current required when the battery protection IC 501 is operating in normal mode, for example. Additionally and as described above, the battery protection IC 501 controls switch 556 to open while in low power mode. While operating in low power mode, the battery protection IC 501 monitors its “VM” pin 561, which as described above is coupled via current limiting resistor 560 to the return terminal 506 of the battery pack 245, and when a sufficiently high voltage is applied across the voltage output terminal 504 and the return terminal 506 of the battery pack 245, the battery protection IC 501 returns to normal mode and controls switch 556 to close. In this fashion, battery 500 may be recharged by the charge voltage applied at terminal pins 504 and 506.
The techniques discussed herein involve presenting, across the voltage sense terminal 553 and return terminal 551 of the battery protection IC 501, a voltage lower than the predetermined low voltage threshold value so that the battery protection IC 501 perceives an under-voltage condition and ceases to monitor the voltage of battery 500. By doing so, the energy supply of the battery 500 may be preserved in an efficient manner and over-discharge of the battery 500 may be prevented, which may prolong the useful life of the battery 500. This may be done, for example, even when a charge potential of the battery 500 (that is, the actual battery voltage) is greater than the predetermined low voltage threshold value.
For example, in some embodiments the battery 500 may be a 3.8 volt battery (when fully charged). As described above, the predetermined the low voltage threshold value for the battery protection IC 501 may be about 2.8 volts. As a first example, it may be desirable to cause the battery protection IC 501 to place the battery pack 245 in low power mode at the time the battery pack 245 is manufactured, or when the infusion pump system 10 is manufactured. In this example, even with a fully-charged or nearly fully-charged battery 500, the battery pack 245 may be caused to enter a low power mode using the techniques discussed herein, by causing a voltage of less than the low voltage threshold value (2.8 volts in this example) to be presented across the voltage sense terminal 553 and return terminal 551 of the battery protection IC 501. This may preserve the charge of the rechargeable battery during shipping and storage of the infusion pump system 10, so that the unit may be operational on receipt without first having to charge the rechargeable battery 245. As will be described further below, processor 522 may initiate the process by setting an output battery disable signal 577 low. When a new pump assembly 100′ is attached to the controller device 200 and a charging voltage (e.g., 3.8 volts in some embodiments) is applied across the voltage output terminal 504 and return terminal 506 of the battery pack 245, the battery protection IC 501 may bring the battery pack 245 out of the low power mode.
As a second example, it may similarly be desirable to minimize current drain of the rechargeable battery 245 at times after the infusion pump system has been put into service, such as when the pump assembly 100 (including charger battery 345) is disconnected from the controller device 200, especially if the controller device remains disconnected from a new pump assembly and charger battery for an extended period of time, such as one or more days. In this example, the processor 522 may use the techniques disclosed herein to cause the battery protection IC 501 to place the battery pack 245 in a low power mode when the battery voltage reaches a second voltage threshold value, where the second voltage threshold value is higher than the predetermined low voltage threshold value of the battery protection IC 501. For example, when the battery voltage reaches a second voltage threshold value of about 3.1 volts, the processor 522 may set a battery disable output 577 low, which may cause the battery protection IC 501 to place the battery pack 245 in the low power mode, as will be described in more detail below. This may preserve the charge of the rechargeable battery until a new pump assembly 100′ is attached to the controller device 200 and the rechargeable battery is recharged.
Referring again to
In operation, when switch 562 receives a logic low input at its “IN” terminal, switch 562 internally switches to couple pins A and B together, thereby providing a low-resistance connection between the third terminal 508 of the battery pack 245 and the return terminal 506 of the battery pack 245. A battery disable signal 577 may be received by the switch 562 at the IN terminal of the switch 562. In some implementations, the processor 522 controls the battery disable signal 577, which is received by the switch 562. The battery disable signal 577 may be pulled high by a pull-up resistor (not shown) so that when the processor 522 is not driving the signal 577 low the switch 562 sees a logic high input and remains open (i.e., pins A and B not internally connected within the switch 562).
Still referring to
Referring now to
It should be understood that, in some embodiments, the battery pack device 245 can be triggered to shift into or out of the low power without the use of a switch 562 or 564. For example, as an alternative to employing the switch 262 or 264 between the processor and the battery pack device, a pin of the processor 522 can be coupled directly to the third terminal 508 of the battery pack 245, thereby omitting the switch 562 (
A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of this disclosure. For example, other battery chemistries are also contemplated, particularly those where it is desirable to prevent excessive charging or discharging across a single cell of the battery, or across multiple cells of the battery. Also, it is contemplated that an existing signal terminal of a battery pack may be employed through use of a high-pass filter to separate the battery disable signal from lower frequency signals normally intended for the terminal, or by use of diode logic to separate positive-going from negative-going signals. Accordingly, other embodiments are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2605765 | Kollsman | Aug 1952 | A |
3886938 | Szabo et al. | Jun 1975 | A |
4077405 | Haerten et al. | Mar 1978 | A |
4231368 | Becker | Nov 1980 | A |
4265241 | Portner et al. | May 1981 | A |
4300554 | Hessberg et al. | Nov 1981 | A |
4313439 | Babb et al. | Feb 1982 | A |
4398908 | Siposs | Aug 1983 | A |
4435173 | Siposs et al. | Mar 1984 | A |
4443218 | DeCant, Jr. et al. | Apr 1984 | A |
4493704 | Beard et al. | Jan 1985 | A |
4529401 | Leslie et al. | Jul 1985 | A |
4850817 | Nason et al. | Jul 1989 | A |
5045064 | Idriss | Sep 1991 | A |
5088981 | Howson et al. | Feb 1992 | A |
5190522 | Wojcicki et al. | Mar 1993 | A |
5250027 | Lewis et al. | Oct 1993 | A |
5261882 | Sealfon et al. | Nov 1993 | A |
5314412 | Rex | May 1994 | A |
5335994 | Weynant Nee Girones | Aug 1994 | A |
5338157 | Blomquist | Aug 1994 | A |
5342180 | Daoud | Aug 1994 | A |
5395340 | Lee | Mar 1995 | A |
5411487 | Castagna | May 1995 | A |
5545143 | Fischell et al. | Aug 1996 | A |
5551850 | Williamson et al. | Sep 1996 | A |
5558639 | Gangemi et al. | Sep 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5626566 | Petersen et al. | May 1997 | A |
5637095 | Nason et al. | Jun 1997 | A |
5665065 | Colman et al. | Sep 1997 | A |
5712795 | Layman et al. | Jan 1998 | A |
5717308 | Nishitani et al. | Feb 1998 | A |
5741216 | Hemmingsen et al. | Apr 1998 | A |
5772635 | Dastur et al. | Jun 1998 | A |
5816306 | Giacomel | Oct 1998 | A |
5852803 | Ashby, III et al. | Dec 1998 | A |
5919167 | Mulhauser | Jul 1999 | A |
5925018 | Ungerstedt | Jul 1999 | A |
5928201 | Poulsen et al. | Jul 1999 | A |
5947934 | Hansen et al. | Sep 1999 | A |
5951530 | Steengaard et al. | Sep 1999 | A |
5957889 | Poulsen et al. | Sep 1999 | A |
5984894 | Poulsen et al. | Nov 1999 | A |
5984897 | Petersen et al. | Nov 1999 | A |
5997475 | Bortz | Dec 1999 | A |
6003736 | Ljunggren | Dec 1999 | A |
6010485 | Buch-Rasmussen et al. | Jan 2000 | A |
6033377 | Rasmussen et al. | Mar 2000 | A |
6045537 | Klitmose | Apr 2000 | A |
6074372 | Hansen | Jun 2000 | A |
6110149 | Klitgaard et al. | Aug 2000 | A |
6144186 | Thandiwe et al. | Nov 2000 | A |
6156014 | Petersen et al. | Dec 2000 | A |
6171276 | Lippe et al. | Jan 2001 | B1 |
6231540 | Smedegaard | May 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6248090 | Jensen et al. | Jun 2001 | B1 |
6248093 | Moberg | Jun 2001 | B1 |
6277098 | Klitmose et al. | Aug 2001 | B1 |
6302855 | Lav et al. | Oct 2001 | B1 |
6302869 | Klitgaard | Oct 2001 | B1 |
6375638 | Nason et al. | Apr 2002 | B2 |
6379339 | Klitgaard et al. | Apr 2002 | B1 |
6381496 | Meadows et al. | Apr 2002 | B1 |
6404098 | Kayama et al. | Jun 2002 | B1 |
6427088 | Bowman, IV et al. | Jul 2002 | B1 |
6461331 | Van Antwerp | Oct 2002 | B1 |
6474219 | Klitmose et al. | Nov 2002 | B2 |
6485461 | Mason et al. | Nov 2002 | B1 |
6508788 | Preuthun | Jan 2003 | B2 |
6524280 | Hansen et al. | Feb 2003 | B2 |
6533183 | Aasmul et al. | Mar 2003 | B2 |
6537251 | Klitmose | Mar 2003 | B2 |
6540672 | Simonsen et al. | Apr 2003 | B1 |
6544229 | Danby et al. | Apr 2003 | B1 |
6547764 | Larsen et al. | Apr 2003 | B2 |
6551276 | Mann et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6554800 | Nezhadian et al. | Apr 2003 | B1 |
6558320 | Causey, III et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6562011 | Buch-Rasmussen et al. | May 2003 | B1 |
6564105 | Starkweather et al. | May 2003 | B2 |
6569126 | Poulsen et al. | May 2003 | B1 |
6571128 | Lebel et al. | May 2003 | B2 |
6577899 | Lebel et al. | Jun 2003 | B2 |
6582404 | Klitgaard et al. | Jun 2003 | B1 |
6585644 | Lebel et al. | Jul 2003 | B2 |
6585699 | Ljunggreen et al. | Jul 2003 | B2 |
6595756 | Gray et al. | Jul 2003 | B2 |
6605067 | Larsen | Aug 2003 | B1 |
6613019 | Munk | Sep 2003 | B2 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6648821 | Lebel et al. | Nov 2003 | B2 |
6650951 | Jones et al. | Nov 2003 | B1 |
6656158 | Mahoney et al. | Dec 2003 | B2 |
6656159 | Flaherty | Dec 2003 | B2 |
6659948 | Lebel et al. | Dec 2003 | B2 |
6659978 | Kasuga et al. | Dec 2003 | B1 |
6659980 | Moberg et al. | Dec 2003 | B2 |
6663602 | Møller | Dec 2003 | B2 |
6668196 | Villegas et al. | Dec 2003 | B1 |
6669669 | Flaherty et al. | Dec 2003 | B2 |
6687546 | Lebel et al. | Feb 2004 | B2 |
6691043 | Ribeiro, Jr. | Feb 2004 | B2 |
6692457 | Flaherty | Feb 2004 | B2 |
6692472 | Hansen et al. | Feb 2004 | B2 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6699218 | Flaherty et al. | Mar 2004 | B2 |
6702779 | Connelly et al. | Mar 2004 | B2 |
6715516 | Ohms et al. | Apr 2004 | B2 |
6716198 | Larsen | Apr 2004 | B2 |
6723072 | Flaherty et al. | Apr 2004 | B2 |
6733446 | Lebel et al. | May 2004 | B2 |
6736796 | Shekalim | May 2004 | B2 |
6740059 | Flaherty | May 2004 | B2 |
6740072 | Starkweather et al. | May 2004 | B2 |
6740075 | Lebel et al. | May 2004 | B2 |
6744350 | Blomquist | Jun 2004 | B2 |
6749587 | Flaherty | Jun 2004 | B2 |
6752787 | Causey, III et al. | Jun 2004 | B1 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6768425 | Flaherty et al. | Jul 2004 | B2 |
6780156 | Haueter et al. | Aug 2004 | B2 |
6786246 | Ohms et al. | Sep 2004 | B2 |
6786890 | Preuthun et al. | Sep 2004 | B2 |
6796970 | Klitmose et al. | Sep 2004 | B1 |
6799149 | Hartlaub | Sep 2004 | B2 |
6809653 | Mann et al. | Oct 2004 | B1 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6811533 | Lebel et al. | Nov 2004 | B2 |
6811534 | Bowman, IV et al. | Nov 2004 | B2 |
6813519 | Lebel et al. | Nov 2004 | B2 |
6827702 | Lebel et al. | Dec 2004 | B2 |
6830558 | Flaherty et al. | Dec 2004 | B2 |
6852104 | Blomquist | Feb 2005 | B2 |
6854620 | Ramey | Feb 2005 | B2 |
6854653 | Eilersen | Feb 2005 | B2 |
6855129 | Jensen et al. | Feb 2005 | B2 |
6872200 | Mann et al. | Mar 2005 | B2 |
6873268 | Lebel et al. | Mar 2005 | B2 |
6878132 | Kipfer | Apr 2005 | B2 |
6893415 | Madsen et al. | May 2005 | B2 |
6899695 | Herrera | May 2005 | B2 |
6899699 | Enggaard | May 2005 | B2 |
6922590 | Whitehurst | Jul 2005 | B1 |
6936006 | Sabra | Aug 2005 | B2 |
6936029 | Mann et al. | Aug 2005 | B2 |
6945961 | Miller et al. | Sep 2005 | B2 |
6948918 | Hansen | Sep 2005 | B2 |
6950708 | Bowman, IV et al. | Sep 2005 | B2 |
6958705 | Lebel et al. | Oct 2005 | B2 |
6960192 | Flaherty et al. | Nov 2005 | B1 |
6979326 | Mann et al. | Dec 2005 | B2 |
6997911 | Klitmose | Feb 2006 | B2 |
6997920 | Mann et al. | Feb 2006 | B2 |
7005078 | Van Lintel et al. | Feb 2006 | B2 |
7008399 | Larsen et al. | Mar 2006 | B2 |
7014625 | Bengtsson | Mar 2006 | B2 |
7018360 | Flaherty et al. | Mar 2006 | B2 |
7025743 | Mann | Apr 2006 | B2 |
7029455 | Flaherty | Apr 2006 | B2 |
7054836 | Christensen et al. | May 2006 | B2 |
7104972 | Møller et al. | Sep 2006 | B2 |
7128727 | Flaherty et al. | Oct 2006 | B2 |
7133329 | Skyggebjerg et al. | Nov 2006 | B2 |
7232423 | Mernoe et al. | Jun 2007 | B2 |
7404796 | Ginsberg | Jul 2008 | B2 |
7935105 | Miller et al. | May 2011 | B2 |
8105279 | Mernoe et al. | Jan 2012 | B2 |
8287514 | Miller et al. | Oct 2012 | B2 |
20010056262 | Cabiri | Dec 2001 | A1 |
20020004651 | Ljndggreen et al. | Jan 2002 | A1 |
20020007154 | Hansen et al. | Jan 2002 | A1 |
20020040208 | Flaherty et al. | Apr 2002 | A1 |
20020091358 | Klitmose | Jul 2002 | A1 |
20020126036 | Flaherty et al. | Sep 2002 | A1 |
20030055380 | Flaherty | Mar 2003 | A1 |
20030065308 | Lebel et al. | Apr 2003 | A1 |
20030088238 | Poulsen | May 2003 | A1 |
20030199825 | Flaherty | Oct 2003 | A1 |
20030216683 | Shekalim | Nov 2003 | A1 |
20040008117 | Kawakami | Jan 2004 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040019325 | Shekalim | Jan 2004 | A1 |
20040064088 | Gorman et al. | Apr 2004 | A1 |
20040064096 | Flaherty et al. | Apr 2004 | A1 |
20040078028 | Flaherty et al. | Apr 2004 | A1 |
20040087894 | Flaherty | May 2004 | A1 |
20040092865 | Flaherty et al. | May 2004 | A1 |
20040092878 | Flaherty | May 2004 | A1 |
20040116866 | Gorman et al. | Jun 2004 | A1 |
20040127844 | Flaherty | Jul 2004 | A1 |
20040153032 | Garribotto et al. | Aug 2004 | A1 |
20040171983 | Sparks et al. | Sep 2004 | A1 |
20040176727 | Shekalim | Sep 2004 | A1 |
20040204673 | Flaherty | Oct 2004 | A1 |
20040220551 | Flaherty et al. | Nov 2004 | A1 |
20040235446 | Flaherty et al. | Nov 2004 | A1 |
20040260233 | Garibotto et al. | Dec 2004 | A1 |
20050021005 | Flaherty et al. | Jan 2005 | A1 |
20050022274 | Campbell et al. | Jan 2005 | A1 |
20050065760 | Murtfeldt et al. | Mar 2005 | A1 |
20050086410 | Landron et al. | Apr 2005 | A1 |
20050090808 | Malave et al. | Apr 2005 | A1 |
20050095063 | Fathallah | May 2005 | A1 |
20050160858 | Mernoe | Jul 2005 | A1 |
20050171512 | Flaherty | Aug 2005 | A1 |
20050182366 | Vogt et al. | Aug 2005 | A1 |
20050192561 | Mernoe | Sep 2005 | A1 |
20050203461 | Flaherty et al. | Sep 2005 | A1 |
20050215982 | Malave et al. | Sep 2005 | A1 |
20050222645 | Malave et al. | Oct 2005 | A1 |
20050238507 | DiIanni et al. | Oct 2005 | A1 |
20050245878 | Mernoe et al. | Nov 2005 | A1 |
20050251097 | Mernoe | Nov 2005 | A1 |
20050267402 | Stewart et al. | Dec 2005 | A1 |
20050273059 | Mernoe et al. | Dec 2005 | A1 |
20060041229 | Garibotto et al. | Feb 2006 | A1 |
20060047367 | Rogers et al. | Mar 2006 | A1 |
20060069382 | Pedersen | Mar 2006 | A1 |
20060074381 | Malave et al. | Apr 2006 | A1 |
20060079765 | Neer et al. | Apr 2006 | A1 |
20060095014 | Ethelfeld | May 2006 | A1 |
20060135913 | Ethelfeld | Jun 2006 | A1 |
20060142698 | Ethelfeld | Jun 2006 | A1 |
20060178633 | Garibotto et al. | Aug 2006 | A1 |
20060184119 | Remde et al. | Aug 2006 | A1 |
20060200073 | Radmer et al. | Sep 2006 | A1 |
20060206054 | Shekalim | Sep 2006 | A1 |
20060247581 | Pedersen et al. | Nov 2006 | A1 |
20070073228 | Mernoe et al. | Mar 2007 | A1 |
20070073235 | Estes et al. | Mar 2007 | A1 |
20070073236 | Mernoe et al. | Mar 2007 | A1 |
20070124002 | Estes et al. | May 2007 | A1 |
20070156092 | Estes et al. | Jul 2007 | A1 |
20070167905 | Estes et al. | Jul 2007 | A1 |
20070167912 | Causey et al. | Jul 2007 | A1 |
20070179444 | Causey et al. | Aug 2007 | A1 |
20080208627 | Skyggebjerg | Aug 2008 | A1 |
20080243079 | Wooley et al. | Oct 2008 | A1 |
20090069749 | Miller et al. | Mar 2009 | A1 |
20090295228 | Ochi | Dec 2009 | A1 |
20110112504 | Causey et al. | May 2011 | A1 |
20120022496 | Causey et al. | Jan 2012 | A1 |
20120123384 | Mernoe et al. | May 2012 | A1 |
20120130312 | Mernoe et al. | May 2012 | A1 |
20120302991 | Blomquist et al. | Nov 2012 | A1 |
20130012917 | Miller et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
2543545 | May 2005 | CA |
196 27 619 | Jan 1998 | DE |
102 36 669 | Feb 2004 | DE |
0275213 | Mar 1992 | EP |
0 496 141 | Jul 1992 | EP |
0 612 004 | Aug 1994 | EP |
1 045 146 | Oct 2000 | EP |
1 136 698 | Sep 2001 | EP |
1 177 802 | Feb 2002 | EP |
0 721 358 | May 2002 | EP |
1 384 490 | Jan 2004 | EP |
1 495 775 | Jan 2005 | EP |
1 527 792 | May 2005 | EP |
1 754 498 | Feb 2007 | EP |
2 585 252 | Jan 1987 | FR |
747 701 | Apr 1956 | GB |
2 218 831 | Nov 1989 | GB |
WO 9015928 | Dec 1990 | WO |
WO 9218175 | Oct 1992 | WO |
WO 9721457 | Jun 1997 | WO |
WO 9811927 | Mar 1998 | WO |
WO 9857683 | Dec 1998 | WO |
WO 9921596 | May 1999 | WO |
WO 9939118 | Aug 1999 | WO |
WO 9948546 | Sep 1999 | WO |
WO0123277 | Apr 2001 | WO |
WO 0172360 | Oct 2001 | WO |
WO 0191822 | Dec 2001 | WO |
WO 0191833 | Dec 2001 | WO |
WO 0240083 | May 2002 | WO |
WO 02057627 | Jul 2002 | WO |
WO 02100469 | Dec 2002 | WO |
WO 03103763 | Dec 2003 | WO |
WO 2004056412 | Jul 2004 | WO |
WO 2004110526 | Dec 2004 | WO |
WO 2005002652 | Jan 2005 | WO |
WO 2005039673 | May 2005 | WO |
WO 2005072794 | Aug 2005 | WO |
WO 2005072795 | Aug 2005 | WO |
WO 2006105792 | Oct 2006 | WO |
WO 2006105793 | Oct 2006 | WO |
WO 2006105794 | Oct 2006 | WO |
WO2007145951 | Dec 2007 | WO |
Entry |
---|
Seiko Instruments, Inc., Datasheet“S-8211C Series Battery Protection IC for 1-Cell Pack,” Rev.6.0—00, (2010). |
Medtronic News Release, “Medtronic Receives FDA Approval for World's First Insulin Pump with Real-time Continuous Glucose Monitoring,” Apr. 13, 2006, 3 pages. |
Debiotech News Release, “Debiotech reveals its new miniaturized Disposable Insulin Nanopump™ for Diabetes therapy,” available at http://www.debiotech.com/news/nw—159.html Apr. 24, 2006, 3 pages. |
Patent Abstracts of Japan, vol. 1999, No. 04, and JP 11 010036 , Apr. 30, 1999 and Jan. 19, 1999, Toray Ind. Inc. |
Number | Date | Country | |
---|---|---|---|
20120203178 A1 | Aug 2012 | US |