This application relates generally to infusion sets and inserter assemblies for infusion sets, and more particularly, to infusion sets and inserter assemblies as well as methods for the use thereof.
Many potentially valuable medicines or compounds, including biologicals, are not orally active due to poor absorption, hepatic metabolism or other pharmacokinetic factors. Additionally, some therapeutic compounds, although they can be orally administered, are sometimes required to be taken so often that it is difficult for a patient to maintain the desired schedule. In these cases, parenteral delivery is often employed or could be employed.
Effective parenteral delivery routes of drugs, other fluid, and compounds such as subcutaneous injection, intramuscular injection, and intravenous (IV) administration include puncture of the skin with a needle or stylet. Insulin is an example of a therapeutic fluid that is self-injected by millions of diabetic patients. Users of parenterally delivered drugs may benefit from a wearable device that would automatically deliver needed drugs/compound over a period of time.
To this end, there have been efforts to design portable and wearable devices for the controlled release of therapeutics. Such devices are known to have a reservoir such as a cartridge, syringe, or bag, and to be electronically controlled. These devices suffer from a number of drawbacks including the malfunction rate. Reducing the size, weight, and cost of these devices is also an ongoing challenge. Additionally, these devices often apply to the skin and pose the challenge of frequent relocation for application.
In accordance with an embodiment of the present disclosure an inserter assembly may comprise a casing. The inserter assembly may further comprise a body including a cavity disposed within the casing. The inserter assembly may further comprise a sharp holder affixed to an insertion sharp. The sharp holder may be at least partially disposed within the cavity. The inserter assembly may further comprise a bias member within the cavity. The bias member may be positioned between the sharp holder and a wall of the cavity. The inserter assembly may further comprise a trigger having a first state in which the bias member is maintained in an energy storing state and a second state in which the bias member is released from the energy storing state. The bias member may be configured to propel the sharp holder to displace the insertion sharp out of the casing when released from the energy storing state. The inserter assembly may further comprise an infusion set base in retaining engagement with the body. The infusion set base may have an adhesive included on a bottom face thereof. The inserter assembly may further comprise a trigger actuation projection extending from the casing and arranged to actuate the trigger from the first to the second state as the casing is displaced away from a body once the adhesive is stuck to skin and the skin has been tugged a distance away from the body.
In some embodiments, the casing may include a housing and a retaining base coupled to the housing so as to move together as a unit with the housing. In some embodiments, the trigger actuation projection may be included on the retaining base. In some embodiments, the trigger may include a latch. In some embodiments the latch may include a catch disposed on the body which engages a ledge formed on a cantilevered arm of the sharp holder. In some embodiments, the bottom face of the infusion set base may be substantially level with a skin contacting face of the casing prior to application of the inserter assembly to the skin. In some embodiments, the inserter assembly may further comprise a cannula subassembly through which the insertion sharp extends. In some embodiments, the cannula subassembly may be separate from the infusion set base when the trigger is in the first state. In some embodiments, the cannula subassembly may include a cannula which is integral with a septum housing. In some embodiments, the cannula subassembly and infusion set base may include cooperating coupling features which interface to join the cannula subassembly and infusion set base when the cannula subassembly is displaced into the infusion set base. In some embodiments, the energy storing state of the first bias member is a compressed state. In some embodiments, the inserter assembly may further comprise a second bias member. In some embodiments, the second bias member may be configured to be released from an energy storing state of the second bias member due to displacement of the insertion sharp out of the casing. In some embodiments, the second bias member may propel the sharp holder and insertion sharp to a retracted position within the casing when released from its energy storing state.
In accordance with another embodiment of the present disclosure an inserter assembly may comprise a first unit including a deflector member and a trigger actuation projection. The inserter assembly may further comprise a second unit housed within the first unit. The second unit may comprise a body including a cavity and an arm having a resiliency. The arm may be aligned with the deflector member. The second unit may further comprise a sharp holder having an insertion sharp thereon. The sharp holder may be at least partially disposed in the cavity. The second unit may further comprise a bias member held in an energy storing state by a trigger. The second unit may further comprise an insertion set base. The insertion set base may include an adhesive. The insertion set base may be releasably coupled to the body. When the adhesive is stuck to skin and the inserter assembly is withdrawn from body, the first and second unit may move together tugging the skin away from the body until a force exerted by the elasticity of the skin overcomes the resiliency of the arm by pressing the arm into the deflector in a first stage of actuation. In a second stage of actuation, the trigger may be displaced and energy stored in the bias member may be released to propel the sharp holder toward the skin.
In some embodiments, the first unit may include an exterior housing and a retainer base which is coupled to the exterior housing. In some embodiments, the deflector member and trigger actuation projection may be included on the retainer base. In some embodiments, the trigger actuation projection includes a finger including a fin. The fin may extend from a portion of the retainer base into the second unit. In some embodiments, the trigger may include a catch of the body which engages with a ledge included on a deflectable member of the sharp holder. In some embodiments, the first unit may include a second deflector member. In some embodiments, the body of the second unit may include a second arm having a second arm resiliency. In some embodiments, the second arm may be aligned with the second deflector member. In some embodiments, the infusion set base may be arranged to be decoupled from the body as the sharp holder is propelled toward the skin. In some embodiments, the bias member may be a compression spring. In some embodiments, the deflector member may include an angled deflector face disposed in opposition to an angled arm face include on the arm. In some embodiments, the infusion set base may be releasably coupled to the body by a set of cantilevered arms. In some embodiments, the cantilevered arms may be configured for displacement to a splayed apart state to release the infusion set base by ears of a cannula subassembly carried with the insertion sharp as the sharp holder is propelled by the bias member. In some embodiments, the inserter assembly may further comprise a cannula subassembly carried by the insertion sharp and spaced from the infusion set base during the first stage of actuation. In some embodiments, the cannula subassembly may be coupled into the base during the second stage of actuation.
In accordance with another embodiment of the present disclosure, an inserter assembly may comprise a casing including a skin contacting face. The skin contacting face may surround an opening in the casing. The inserter assembly may further comprise a sharp holder including an insertion sharp. The inserter assembly may further comprise a cannula subassembly carried by the insertion sharp. The insertion sharp and a cannula of the cannula subassembly each may have a skin penetrating end disposed above the skin contacting surface. The inserter assembly may further comprise an infusion set base disposed within the opening in the casing and having a bottom face substantially level with the skin contacting surface. The infusion set base may include a cannula subassembly receiving void sized to receive the cannula subassembly and prevent finger ingress. The inserter assembly may further comprise an insertion bias member. The sharp holder may be configured for displacement by a transition of the insertion bias member from an insertion energy storing state to a relaxed state to drive the insertion sharp and cannula at least partially out of the casing and couple the cannula subassembly to the infusion set base.
In some embodiments, the inserter assembly may further comprise a plurality of standoffs which position the infusion set base level with the skin contacting face prior to actuation. In some embodiments, the cannula subassembly may include the cannula, a septum, a septum retainer, and a septum housing. In some embodiments, the septum housing and the cannula are formed as a continuous, monolithic, or unitary part. In some embodiments, the cannula subassembly receiving void and cannula subassembly include cooperating coupling features which interact to join the infusion set base and cannula subassembly to one another when the cannula subassembly is advanced into the cannula subassembly receiving void. In some embodiments, the cooperating coupling features may include a cantilevered arm having a protuberance on the infusion set base and a receiving notch to accept the protuberance on the cannula subassembly. In some embodiments, the inserter assembly may further comprise a sharp retractor and a retractor bias member configured to be released from a retraction energy storing state in response to a projection on the cannula subassembly disengaging a latch as the sharp holder is displaced by the transition of the insertion bias member. In some embodiments, the retractor bias member may be configured to displace the sharp retractor away from the skin contacting surface as the retractor bias member transitions from the retraction energy storing state to a relaxed state. In some embodiments, the sharp holder may include at least one ledge and the sharp retractor includes a least one stop. There may be a dwell distance between the at least one ledge and the stop when the retractor bias member is released from the retraction energy storing state.
In accordance with another embodiment of the present disclosure an inserter assembly may comprise a casing. The inserter assembly may further comprise a sharp holder having an insertion sharp coupled thereto and a cantilevered arm having a protuberance defining a ledge. The inserter assembly may further comprise a sharp retractor having a cavity at least partially containing the sharp holder and having a stop therein configured to engage the ledge. The sharp retractor may additionally have a catch configured to engage the ledge and hold an insertion spring in a biased state. The inserter assembly may further comprise a cannula subassembly carried by the insertion sharp. The inserter assembly may further comprise an infusion set base releasably coupled to the sharp retractor and holding a retraction spring in a biased state while releasably coupled to the sharp retractor. The insertion spring may be configured to drive the sharp holder along an insertion path upon disengagement of the ledge from the catch. The infusion set base may be uncoupled from the sharp retractor, the cannula subassembly may be coupled to the infusion set base, and the ledge may be spaced from the stop by a dwell distance when the sharp holder transits to the end of the insertion path. The retraction spring may be configured to displace the sharp retractor into the casing along with the sharp holder after the sharp retractor transits the dwell distance and engages the stop with the ledge.
In some embodiments, the infusion set base may be releasably coupled to the sharp retractor by a set of cantilevered arms extending from the sharp retractor. In some embodiments, the cannula subassembly may include a pair of ears configured to splay the set of arms apart releasing the infusion set base when the sharp holder transits to the end of the insertion path. In some embodiments, the sharp holder may include a second cantilevered arm having a second protuberance defining a second ledge. In some embodiments, the cavity may include a second stop therein configured to engage the second ledge. In some embodiments, the cannula subassembly may include a notch. The notch may be configured to couple to a protuberance included in the infusion set base when the sharp holder transits to the end of the insertion path. In some embodiments, the cannula subassembly includes a salient which is configured to couple to a protuberance included in the infusion set base when the sharp holder transits to the end of the insertion path. In some embodiments, a cannula and septum housing of the cannula subassembly may be formed together as a monolithic part in a straight pull mold. In some embodiments, the casing may include an exterior housing and a retainer base. The infusion set base may be disposed within an opening in the retainer base and level with a skin contacting surface of the retainer base prior to actuation of the inserter assembly. In some embodiments, the infusion set base may include an adhesive on a bottom face thereof and the ledge may be disengaged from the catch by lifting of the inserter assembly from a patch of skin to which it has been applied.
In accordance with another embodiment of the present disclosure an inserter assembly may comprise a first unit including a skin contacting face which surrounds an opening. The inserter assembly may further comprise a second unit housed within the first unit. The second unit may comprise an infusion set base disposed within the opening and having a bottom face which is substantially level with the skin contacting face and covered at least partially with adhesive. The second unit may further comprise a spring biased insertion assembly. The second unit may further comprise a cannula subassembly carried by an insertion sharp of the insertion assembly. The spring biased insertion assembly and a cannula of the cannula subassembly may be configured to be driven into skin and the cannula subassembly may be configured to be coupled into the infusion set base by an insertion spring which may be configured to be released from an energy storing state after the skin has been tugged upward beyond a certain distance by the adhesive as the inserter assembly is withdrawn.
In some embodiments, the inserter assembly may further comprise a sharp retractor and a retractor spring which may be configured to retract the sharp retractor along with the insertion assembly away from the skin contacting face. In some embodiments, the inserter assembly may include at least one latch configured to maintain the retractor spring in an energy storing state. The latch may be disengaged upon displacement of the cannula subassembly into coupling engagement with the infusion set base. In some embodiments, the at least one latch may include a set of cantilevered arms included on the sharp retractor. In some embodiments, the cantilevered arms may each include a ledge which engages a respective projection on the infusion set base. In some embodiments, the respective projection on the infusion set base may be a portion of a guide for a portion of a tubing set connector. In some embodiments, the infusion set base may include a cannula subassembly receiving void extending therethrough and sized to accept the cannula subassembly but prevent finger ingress. In some embodiments, the cannula subassembly and cannula subassembly receiving void include cooperating coupling features which interact to couple the infusion set base and cannula subassembly to one another.
In accordance with another embodiment of the present disclosure an inserter assembly may comprise a first unit. The first unit may comprise an infusion set base including an adhesive on a bottom face thereof. The first unit may further comprise an insertion sharp drive assembly releasably coupled to the infusion set base and including an insertion sharp, a drive spring, a resilient member, and a latch arrangement configured to, in an engaged state, retain the drive spring in an energy storing state. The inserter assembly may further comprise a casing. The infusion set base may be disposed within an opening in the casing. Displacement of the inserter assembly away from the body when the adhesive is in an adhering relationship to skin, in a first stage, tugs the skin from underlying structures. In a second stage where a force exerted by elasticity of the skin overcomes a resiliency of the resilient member displaces the casing relative to the first unit and disengages the latch arrangement. The drive spring may be arranged to displace the insertion sharp out of the casing upon transition to a relaxed state.
In accordance with another embodiment of the present disclosure an inserter assembly for placing an infusion set on an infusion site of a body may comprise a casing having an actuation projection. The inserter assembly may further comprise a first unit within the casing moveable relative to the casing. The first unit may comprise an infusion set base having an adhesive. The first unit may further comprise a sharp holder including an insertion sharp. The first unit may further comprise a body including a cavity in which a drive spring and the sharp holder are a least partially disposed. The sharp holder may be displaceable by the drive spring from a raised state to a forward state. The first unit may further comprise a drive spring release latch arrangement. The actuation projection may be configured to disengage the drive spring release latch arrangement after a magnitude of relative displacement between the casing and first unit exceeds a threshold. The adhesive may be configured to anchor the first unit against the body while casing is pulled away from the body and the magnitude of relative displacement between the casing and first unit increases.
In some embodiments, the first unit may further comprise a resilient member. In some embodiments, the resilient member may be aligned with a deflector on the casing. In some embodiments, the resilient member may be configured to abut a portion of the casing to inhibit relative displacement of the casing and first unit until a force threshold is exceeded. In some embodiments, the portion of the casing may be a deflector member and the resilient member may be a resilient arm included on the body. In some embodiments, the force threshold may be selected such that, as the casing is pulled away from the body, skin of the body is lifted due to adhesion of the adhesive at least a certain distance from underlying body structures before the magnitude of relative displacement exceeds the threshold. In some embodiments, the force threshold may be selected such that, as the casing is pulled away from the body, skin of the body is lifted due to adhesion of the adhesive at least a certain distance from underlying body structures before relative displacement of the casing and first unit begins. In some embodiments, the force threshold may be selected such that, as the casing is pulled away from the body, skin of the body is lifted due to adhesion of the adhesive at least a certain distance from underlying body structures. In some embodiments, the infusion set base may be releasably coupled to the body. In some embodiments, the infusion set base may be arranged to be released from the body upon displacement of the sharp holder to the forward state. In some embodiments, the inserter assembly may further comprise a retraction spring. The sharp holder may be displaceable by the retraction spring from the forward state to a retracted state. In some embodiments, the inserter assembly may further comprise a retraction spring release latch arrangement configured to disengage upon displacement of the sharp holder to the forward state via the drive spring. In some embodiments, the retraction spring release latch arrangement may releasably couple the infusion set base to the body. The infusion set base may be released from the body when the spring release latch arrangement is disengaged. In some embodiments, a cannula subassembly may be carried on the insertion sharp.
In accordance with an embodiment of the present disclosure a cannula subassembly for an infusion set may comprise a continuous monolithic body including a cannula and a septum housing. The septum housing may have a septum receptacle with a raised region at a bottom thereof. A lumen of the cannula may be continuous with a sharp guide included in raised region. The cannula subassembly may further comprise a septum including a septum recess having a centering wall section formed as a negative version of the raised region. The cannula subassembly may further comprise a septum retainer including a body having latch arms extending through the septum housing and each including a latching surface which in an engaged state catches a cooperating feature of the septum housing to capture the septum within the septum housing.
In some embodiments, the septum housing may include a salient arranged to engage a latch of an infusion set base to retain the cannula subassembly within the infusion set base. In some embodiments, a top face of a wall of the septum receptacle may include slots recessed therein. In some embodiments, the slots may include two slots which are disposed opposite one another. In some embodiments, the septum retainer may further comprise a set of projections. In some embodiments, the set of projections are sized to be received within slots recessed into a top face of a wall defining the septum receptacle. In some embodiments, the set of projections obstructs only a top portion of the slot when received therein so as to leave a bottom segment of the slot open and exposing a side wall of the septum at a location even with at least a portion of the septum recess. In some embodiments, the raised section of the septum receptacle has a frusto-conic outer wall. In some embodiments, the septum housing may include a notch in a side wall thereof configured to engage a latch of an infusion set base to retain the cannula subassembly within the infusion set base. In some embodiments, the monolithic body may be formed via straight pull molding. In some embodiments, the monolithic body may be devoid of undercut features. In some embodiments, the monolithic body may be polypropylene. In some embodiments, the monolithic body may be PTFE. In some embodiments, the body of the septum retainer may include a channel extending therethrough and sized to receive a nub on a face of the septum. In some embodiments, the sharp guide may be encompassed by a substantially flat peripheral edge at an uppermost part of the raised section.
In accordance with another embodiment of the present disclosure a cannulated housing for an infusion set may comprise a continuous monolithic body. The continuous monolithic body may comprise a cannula. The continuous monolithic body may further comprise a septum housing having septum receptacle defined by a side wall and bottom wall. The septum housing may include a raised region, a lumen of the cannula being a continuous surface with raised region. The side wall may have at least one guide extending the length of the septum receptacle and aligned with an aperture extending through a bottom of the septum housing.
In some embodiments, the septum housing may include a salient on the exterior face of the side wall arranged to engage a latch of an infusion set base to retain the cannulated housing within the infusion set base. In some embodiments, a top face of a wall of the septum receptacle may have slots recessed therein. In some embodiments, the slots may include two slots which may be disposed opposite one another. In some embodiments, the slots may be configured to accept a set of projection included in a septum retainer so as to leave a bottom segment of each of the slots open and providing a path the volume of the septum receptacle. In some embodiments, the raised section of the septum receptacle may have a frusto-conic outer wall. In some embodiments, the septum housing may include a notch in an exterior face of the side wall configured to engage a latch of an infusion set base to retain the cannulated housing assembly within the infusion set base. In some embodiments, the monolithic body may be formed via straight pull molding. In some embodiments, the monolithic body may be devoid of undercut features. In some embodiments, the monolithic body may be polypropylene. In some embodiments, the monolithic body may be PTFE. In some embodiments, the cannula may include a sharp guide encompassed by a substantially flat peripheral edge at an uppermost part of the raised section. In some embodiments, a ledge may be positioned adjacent the aperture on an exterior face of the bottom wall. In some embodiments, a wall of the aperture may form a catch configured to engage a protuberance of a projection of a portion of a septum retainer. In some embodiments, the guides may be recessed into the side wall.
In accordance with an embodiment of the present disclosure a method of placing an infusion set on a body of a user may comprise adhering an infusion set base releasably coupled to an inserter assembly to the body. The method may further comprise pulling the inserter assembly away from the body. The method may further comprise lifting skin, via adhesion of the infusion set, from underlying structures of the body as the inserter assembly is pulled away from the body. The method may further comprise displacing a trigger actuator into a trigger of the inserter assembly after the skin has been lifted at least a certain distance. The method may further comprise driving an insertion sharp through the skin.
In some embodiments, the method may further comprise releasing a bias member from an energy storing state to drive the insertion sharp through the skin. In some embodiments, the method may further comprise releasing the infusion set base from the inserter assembly. In some embodiments, the method may further comprise removing a lock member from the inserter assembly and removing an adhesive backing from the infusion set base. In some embodiments, the method may further comprise releasing a retraction prevention latch and driving the insertion sharp in a direction away from the skin. In some embodiments, method may further comprise driving a cannula subassembly of carried by the insertion sharp into the infusion set base. In some embodiments, driving the cannula subassembly into the infusion set base may comprise driving a cannula of the cannula subassembly through the skin. In some embodiments, the method may further comprise inhibiting relative movement between a casing of the inserter assembly and the rest of the inserter assembly at least when the skin begins being lifted.
In accordance with another embodiment of the present disclosure a method of placing an infusion set on a body of a user may comprise adhering an infusion set base which is releasably coupled to an inserter assembly to the body. The method may further comprise pulling the inserter assembly away from the body. The method may further comprise displacing skin, via adhesion of the infusion set, from its resting position as the inserter assembly is pulled away from the body. The method may further comprise prohibiting actuation of a trigger until the skin has been displaced to a point at which the elasticity of the skin exerts more than a threshold force against the infusion set base. The method may further comprise displacing a trigger actuator into a trigger of the inserter assembly. The method may further comprise driving an insertion sharp through the skin.
In some embodiments, the method may further comprise freeing a bias member from an energy storing state to drive the insertion sharp through the skin. In some embodiments, the method may further comprise decoupling the infusion set base from the inserter assembly. In some embodiments, the method may further comprise removing a lock member from the inserter assembly and removing an adhesive backing from the infusion set base. In some embodiments, the method may further comprise driving a cannula subassembly along with the insertion sharp toward the skin such that the cannula subassembly is driven into a retraction prevention latch. The method may further comprise driving the insertion sharp in a direction away from the skin. In some embodiments, the method may further comprise driving a cannula subassembly of carried by the insertion sharp into the infusion set base. In some embodiments, driving the cannula subassembly into the infusion set base may comprise driving a cannula of the cannula subassembly through the skin. In some embodiments, prohibiting actuation of the trigger may comprise inhibiting relative movement between a casing of the inserter assembly and the rest of the inserter assembly at least when the skin begins being displaced.
In accordance with another embodiment of the present disclosure an inserter assembly may comprise a first unit comprising a casing. The inserter assembly may further comprise a second unit comprising an infusion set base having an adhesive. The second unit may further comprise a sharp holder including an insertion sharp. The second unit may further comprise a trigger. The second unit may further comprise a body including a cavity in which a drive spring and the sharp holder are a least partially disposed. The sharp holder may be displaceable by the drive spring from a raised state to a forward state upon actuation of the trigger from a first state to a second state. The adhesive may be configured to anchor the second unit against the body while casing is pulled away from the body. The trigger may be precluded from being actuated until a magnitude of relative displacement between the casing and second unit reaches a threshold.
In some embodiments, the second unit may further comprise a resilient member aligned with a deflector on the casing. In some embodiments, the second unit may further comprise a resilient member configured to abut a portion of the casing to inhibit relative displacement of the casing and second unit until a force threshold is exceeded. In some embodiments, the portion of the casing may be a deflector member and the resilient member may be a resilient arm included on the body. In some embodiments, the force threshold may be selected such that, as the casing is pulled away from the body, skin of the body may be lifted due to adhesion of the adhesive at least a certain distance from its resting position before the magnitude of relative displacement exceeds the threshold. In some embodiments, the force threshold may be selected such that, as the casing is pulled away from the body, skin of the body may be lifted due to adhesion of the adhesive at least a certain distance from its resting position before relative displacement of the casing and first unit begins. In some embodiments, the force threshold may be selected such that, as the casing is pulled away from the body, skin of the body may be lifted due to adhesion of the adhesive at least a certain distance from its resting position. In some embodiments, the infusion set base may be releasably coupled to the body. In some embodiments, the infusion set base may be arranged to be released from the body upon displacement of the sharp holder to the forward state.
In some embodiments, the inserter assembly may further comprise a retraction spring. The sharp holder may be displaceable by the retraction spring from the forward state to a retracted state. In some embodiments, the sharp holder may be in a different location in the retracted state than it is in the raised state. In some embodiments, the inserter assembly may further comprise a retraction spring release latch arrangement configured to disengage upon displacement of the sharp holder to the forward state. In some embodiments, the retraction spring release latch arrangement releasably couples the infusion set base to the body. The infusion set base may be released from the body when the spring release latch arrangement is disengaged. In some embodiments, a cannula subassembly may be carried on the insertion sharp.
In accordance with another embodiment of the present disclosure a cartridge for a reusable inserter assembly may comprise an exterior housing. The cartridge may further comprise an interior housing releasably coupled to the exterior housing. The cartridge may further comprise an infusion set base retainer having an infusion set base retained thereon. The cartridge may further comprise a sharp holder having an insertion sharp coupled thereto. The cartridge may further comprise a cannula subassembly mounted on the insertion sharp such that an insertion end of the insertion sharp extends out of an outlet end of a cannula of the cannula subassembly. The insertion end of the insertion sharp may be within the interior housing.
In some embodiments, the cartridge may further comprise a removable barrier member. In some embodiments, the barrier member may be permeable to a sterilization agent. In some embodiments, the exterior housing may be shaped as a cup. In some embodiments, the exterior housing may include at least one receptacle and the interior housing may include at least one displaceable projection. In some embodiments, the interior housing may be releasably coupled to the exterior housing via engagement of each of the at least one projection with a respective one of the at least one receptacle. In some embodiments, each of the at least one projection may be included on an unsupported end of a cantilevered arm. In some embodiments, each cantilevered arm may include a ramped projection at the unsupported end thereof. The ramped projection may be configured to interact with a deflector member on the reusable inserter assembly such that the deflector member deflects the cantilevered arm and displaces the associated projection out of engagement with a receptacle of the at least one receptacle upon coupling of the cartridge to the reusable inserter assembly. In some embodiments, the cartridge may further comprise a set of mating pins. In some embodiments, the mating pins may be configured to be received in retention shoes of the reusable inserter assembly when the cartridge is coupled to the reusable inserter assembly. In some embodiments, the sharp holder may include a terminal flange which extend out of the interior housing. In some embodiments, the terminal flange may have an obround cross sectional shape. In some embodiments, the infusion set base may include adhesive on a face thereof. The adhesive being covered by a liner or backing. In some embodiments, the interior housing may include an indention providing a recess within which pull tabs of the liner are positioned. In some embodiments, the infusion set base retainer may include a cavity within which a majority of the insertion sharp holder is disposed. In some embodiments, the cavity may include guides and the insertion sharp holder may include rails which cooperate with the guides to constrain displacement of the insertion sharp holder within the cavity to a prescribed path.
In accordance with an embodiment of the present disclosure a cartridge for a reusable inserter assembly may comprise a container. The cartridge may further comprise a housing releasably coupled within the container. The housing may include a bay. The cartridge may further comprise an infusion set base disposed within the bay. The cartridge may further comprise a retainer body including a set of cantilevered arms and a cavity. The infusion set base may be releasably coupled to the retainer body via the set of cantilevered arms. The cartridge may further comprise a sharp holder having an insertion sharp coupled thereto. The sharp holder may be configured for displacement along guides included in the cavity. The cartridge may further comprise a cannula subassembly mounted on the insertion sharp such that an end of the cannula subassembly is adjacent a first end of the sharp holder.
In some embodiments, the cartridge further comprises a barrier member which, together with the container, may enclose the housing. In some embodiments, the cartridge may further comprise a set of mating pins. In some embodiments, the mating pins may be configured to be received in retention shoes of the reusable inserter assembly when the cartridge is coupled to the reusable inserter assembly. In some embodiments, the sharp holder may include a terminal flange which extends out of the housing. In some embodiments, the terminal flange may have an obround cross-sectional shape. In some embodiments, the bay may include at least one notch and the infusion set base may include at least one tube retainer. Each tube retainer of the infusion set base may be disposed within one of the notches of the bay. In some embodiments, the cannula subassembly may include a salient arranged to engage a latch of the infusion set base to retain the cannula subassembly within the infusion set base when the cannula subassembly is displaced into a receiving void in the infusion set base. In some embodiments, the cannula subassembly may include a notch arranged to engage a latch of the infusion set base to retain the cannula subassembly within the infusion set base when the cannula subassembly is displaced into a receiving void in the infusion set base. In some embodiments, the retainer body may be coupled to the housing via a snap fit engagement. In some embodiments, the cantilevered arms may be configured for displacement to a splayed apart state to release the infusion set base by ears of the cannula subassembly when the cannula subassembly is displaced toward the infusion set base. In some embodiments, the housing may include an indention within which pull tabs of an adhesive backing covering adhesive on the infusion set base are disposed. In some embodiments, the housing may include at least one set of stop surfaces.
In accordance with another embodiment of the present disclosure a cartridge for a reusable inserter assembly may comprise a container. The cartridge may further comprise a housing including a spring loaded tab. The housing may be coupled within the container with the spring loaded tab in a first state and freed from the container with the spring loaded tab deflected from the first state to a deflected state. The cartridge may further comprise a retainer body including a cavity, a set of retainer arms, and an end plate having mating pins projecting therefrom. The cartridge may further comprise a medical device. At least a portion of the medical device may be retained by the retainer arms. The cartridge may further comprise an insertion sharp. The cartridge may further comprise a sharp holder configured to displace along guides included in the cavity. The insertion sharp may be coupled to the sharp holder.
In some embodiments, the spring loaded tab may be included on a resilient cantilevered arm. In some embodiments, the cartridge further may comprise a second spring loaded tab opposite the spring loaded tab. In some embodiments, the medical device may be an analyte sensor. In some embodiments, the medical device may be a physiological monitor. In some embodiments, the medical device may be an infusion set. The infusion set may include an infusion set base and a cannula subassembly. In some embodiments, the infusion set base may be retained by the retainer arms and the cannula subassembly may be disposed on the insertion sharp and may be separated from the infusion set base. In some embodiments, the cannula subassembly may include a set of ears. The retainer arms may be configured for displacement to a splayed apart state to release the infusion set base by the ears of the cannula subassembly when the sharp holder is displaced toward the infusion set base. In some embodiments, the infusion set base may include an aperture therethrough. In some embodiments, the infusion set base may have an adhesive coupled thereto. The adhesive may be covered by an adhesive backing. At least one of the adhesive and the adhesive backing may extend across and cover the aperture. In some embodiments, the sharp holder may include a terminal flange configured to mate to an insertion driver of the reusable inserter assembly. In some embodiments, the mating pins may be configured to mate with retention shoes included in the inserter assembly. In some embodiments, the cartridge may further comprise an adhesive backing covering adhesive on a portion of the medical device. The housing may include an indention in which pull tabs of the adhesive backing are disposed. In some embodiments, the housing may include a set of stop surfaces configured to interact with lock members of the inserter assembly to lock the housing from rotational displacement once the inserter assembly and housing are coupled. In some embodiments, the container may be configured to displace the lock members when pressed against the inserter assembly to unlock rotational displacement of the housing. In some embodiments, the spring loaded tab may be configured to displace to the deflected state upon coupling of the cartridge to the inserter assembly. In some embodiments, the medical device may include an adhesive patch coupled thereto. The adhesive patch may be covered by a release liner.
In accordance with another embodiment of the present disclosure an inserter assembly may comprise a first unit. The inserter assembly may further comprise a second unit. The first unit may be displaceable relative to the second unit. The inserter assembly may further comprise an insertion bias member configured to transition to a stressed state when the first unit is pressed against the second unit. The inserter assembly may further comprise a retainer configured engage a first latch maintaining the insertion bias member in the stressed state when the first unit is displaced toward the second unit beyond a first threshold distance. The inserter assembly may further comprise an insertion driver included in the second unit and displaceable from a first position to an extended position. The inserter assembly may further comprise a release finger included on the first unit. The release finger may be configured to dislodge the insertion driver from an insertion driver latch releasing the insertion bias member from the stressed state when the first unit is pulled back away from the second unit beyond a second threshold distance. The insertion bias member may propel the insertion driver from the first position to the extended position when released from the stressed state. The insertion driver may disengage the first latch when displaced to the extended position.
In some embodiments, the inserter assembly may be needle free. In some embodiments, the inserter assembly may not include an insertion sharp. In some embodiments, the inserter assembly may further comprise at least one retraction bias member. In some embodiments, the at least one retraction bias member may be configured to transition to a stressed state when the first unit is pressed against the second unit. In some embodiments, the at least one retraction bias member may be maintained in the stressed state when the retainer is engaged with the first latch. In some embodiments, the at least one retraction bias member may be released from the stressed state when the first latch is disengaged as the inserter driver is propelled to the extended position. In some embodiments, the insertion driver may be displaced to the first position as the at least one retraction bias member transitions from the stressed state to a relaxed state. In some embodiments, the release finger may include a paddle body having a first side and a second side. The first side may be more medial to a longitudinal axis of the inserter assembly. In some embodiments, the second unit may include a director wedge projecting into a displacement path followed by the release finger as the first unit is displaced relative to the second unit. In some embodiments, the first and second side of the paddle body may include sloped portions. At least one of the sloped portions may be configured to contact the director wedge and deflect the release finger away from the insertion driver latch as the first unit is pressed toward the second unit. In some embodiments, the first and second side of the paddle body may include sloped portions and at least one of the sloped portions may be configured to contact the director wedge and deflect the release finger into the insertion driver latch as the first unit is pulled away from the second unit. In some embodiments, the insertion driver may include a port configured to mate with an insertion sharp holder. In some embodiments, the second unit may include a receptacle body coupled thereto. The receptacle body may be disposed on an end of the second unit. In some embodiments, the receptacle body may include at least one retention interface configured to couple with a mating projection of a disposable cartridge. In some embodiments, the first latch may include a pair of arms each having a latching ledge. The pair of arms may be cantilevered from a main portion of a latch body. In some embodiments, the inserter driver latch may include a projection which extends into a notch in a cantilevered arm extending from a main body of the insertion driver. In some embodiments, the second threshold distance may be measured from a location of the first unit after the first unit has been displaced the first threshold distance. In some embodiments, the second unit may include a receptacle body which is configured to mate with any of an infusion set cartridge, a sensor cartridge, and a lancet cartridge.
In accordance with an embodiment of the present disclosure an inserter assembly may comprise an exterior housing and a cap coupled to an end thereof. The inserter assembly may further comprise an interior housing. The exterior housing and cap may be displaceable relative to the interior housing. The inserter assembly may further comprise an insertion driver included in the interior housing and displaceable from a stowed position to an extended position. The inserter assembly may further comprise an insertion bias member housed in a portion of the insertion driver and configured to transition to a stressed state when the exterior housing and cap are displaced toward the interior housing. The inserter assembly may further comprise a retainer configured engage a first latch maintaining the insertion bias member in the stressed state when the exterior hosing and cap are displaced toward the interior housing to a ready position. The inserter assembly may further comprise a release finger projecting from the cap configured to dislodge the insertion driver from an insertion driver latch releasing the insertion bias member from the stressed state when the exterior housing and cap are pulled from the ready position more than a threshold distance. The insertion bias member may propel the insertion driver from the first position to the extended position when released from the stressed state. The insertion driver may disengage the first latch when displaced to the extended position.
In some embodiments, the inserter assembly may not include an insertion sharp. In some embodiments, the inserter assembly may be needle free. In some embodiments, the inserter assembly may further comprise at least one retraction bias member. In some embodiments, the at least one retraction bias member may be configured to transition to a stressed state when the exterior housing and cap are pressed against the interior housing. In some embodiments, the at least one retraction bias member may be maintained in the stressed state when the retainer is engaged with the first latch. In some embodiments, the at least one retraction bias member may be released from the stressed state when the first latch is disengaged. In some embodiments, the insertion driver may be displaced to the stowed position as the at least one retraction bias member transitions from the stressed state to a relaxed state. In some embodiments, the release finger may include a paddle body having a first side and a second side. The first side may be more medial to a longitudinal axis of the inserter assembly. In some embodiments, the interior housing may include a director wedge projecting into a displacement path followed by the release finger as the exterior housing and cap are displaced relative to the interior housing. In some embodiments, the first and second side of the paddle body may include ramped portions. At least one of the ramped portions may be configured to contact the director wedge and deflect the release finger away from the insertion driver latch as the exterior housing and cap are pressed toward the interior housing. In some embodiments, the first and second side of the paddle body may include ramped portions. At least one of the ramped portions may be configured to contact the director wedge and deflect the release finger into the insertion driver latch as the exterior housing and cap are pulled away from the interior housing. In some embodiments, the insertion driver may include a port configured to mate with an insertion sharp holder. In some embodiments, the interior housing may include a receptacle body coupled thereto. The receptacle body may be disposed on an end of the interior housing. In some embodiments, the receptacle body may include at least one retention interface configured to couple with a mating projection of a disposable cartridge. In some embodiments, the receptacle body may include at least one retention shoe configured to couple with a mating pin of a disposable cartridge. In some embodiments, the first latch may include a pair of arms each having a latching ledge, the arms being cantilevered from a main portion of a latch body. In some embodiments, the inserter driver latch includes a projection which extends into a notch in a cantilevered arm extending from a main body of the insertion driver.
In accordance with an embodiment of the present disclosure an inserter assembly may comprise a first portion. The inserter assembly may further comprise a second portion. The first portion may be displaceable relative to the second portion. The inserter assembly may further comprise an insertion driver included in the second portion. The inserter assembly may further comprise an insertion bias member included in the second portion configured to urge the insertion driver from a stowed state to an extended state when the insertion bias member is in a stressed state. The inserter assembly may further comprise a retainer included in the second portion. The inserter assembly may further comprise a first latch included in the second portion. The inserter assembly may further comprise an insertion driver latch included in the second portion. The insertion driver may releasably engage with the insertion driver latch. Displacement of the first portion toward the second portion and into a ready position may stress the insertion bias member and engage the retainer with the first latch to maintain the insertion bias member in the stressed state. Displacement of the first portion away from the ready position beyond a threshold distance may dislodge the insertion driver from the insertion driver latch and may release the insertion bias member from the stressed state.
In some embodiments, the first latch may include a set of cantilevered arms having catch ledges. In some embodiments, the inserter driver may include a body having a width greater than a separation distance between the arms of the set of cantilevered arms. The body may splay the arms apart when the insertion driver is in the extended position. In some embodiments, the insertion driver may include a body having a width greater than a separation distance between the arms of the set of cantilevered arms. The body may be configured to actuate the cantilevered arms out of engagement with the retainer when the insertion driver is in the extended position. In some embodiments, the insertion bias member may be housed within a portion of the inserter driver. In some embodiments, the insertion driver may include a port configured to mate with an insertion sharp holder from which an insertion sharp extends. In some embodiments, the insertion driver may include at least one cantilevered arm. The at least one cantilevered arm may include a notch. In some embodiments, the inserter assembly may be insertion sharp free. In some embodiments, the inserter assembly may not include an insertion sharp. In some embodiments, the insertion driver latch may be a projection extending from a housing of the second portion. The projection may extend into the notch. In some embodiments, the first portion may include a release finger and the second portion may include a deflector wedge. The deflector wedge may be configured to deflect the release finger into a portion of the insertion driver to dislodge the insertion driver from the insertion driver latch upon displacement of the first portion past the threshold distance. In some embodiments, the second portion may include a receptacle for one of a list consisting of a disposable infusion set cartridge, a disposable analyte sensor cartridge, and a lancet cartridge. In some embodiments, the second portion may include a receptacle including at least one mating interface for a mating projection of a disposable cartridge. In some embodiments, the insertion bias member may be in a relaxed state when the inserter assembly is in a storage state. In some embodiments, the insertion bias member may be a polymer spring. In some embodiments, the insertion bias member may be an injection molded spring. In some embodiments, the insertion bias member may be a compression spring. In some embodiments, the inserter assembly may further comprise at least one retraction bias member. In some embodiments, the at least one retraction bias member may be configured to transition to a stressed state as the first portion is displaced to the ready position. In some embodiments, the at least one retraction bias member may be maintained in the stressed state when the retainer is engaged with the first latch. In some embodiments, the at least one retraction bias member may be released from the stressed state when the first latch is disengaged. In some embodiments, the insertion driver may be displaced to the stowed state as the at least one retraction bias member transitions from the stressed state to a relaxed state.
In accordance with an embodiment of the present disclosure, a method of placing an infusion set may comprise coupling an infusion set cartridge to an inserter assembly. The method may further comprise adhering a portion of an infusion set contained within the infusion set cartridge to an infusion site. The method may further comprise latching an insertion bias member of the inserter assembly in a stressed state by displacing a first portion of the inserter assembly toward a second portion of the inserter assembly. The method may further comprise releasing the insertion bias member from the stressed state by displacing the first portion of the inserter assembly away from the second portion of the inserter assembly. The method may further comprise propelling an insertion driver and an insertion sharp of the infusion set cartridge coupled to the insertion driver toward the infusion site. The method may further comprise releasing the infusion set from the infusion set cartridge.
In some embodiments, latching the insertion bias member in the stressed state may comprise pressing the first portion of the inserter assembly against the second portion of the inserter assembly. In some embodiments, latching the insertion bias member in the stressed state may comprise pressing the first portion of the inserter assembly toward the infusion site. In some embodiments, displacing the first portion of the inserter assembly toward the second portion of the inserter assembly may stress the insertion bias member. In some embodiments, releasing the insertion bias member from the stressed state may comprise pulling the first portion of the inserter assembly away from the infusion site. In some embodiments, the method further may comprise lifting skin at the infusion site from underlying body structures before completing propelling an insertion driver and insertion sharp of the infusion set cartridge toward the infusion site. In some embodiments, propelling the insertion driver and the insertion sharp toward the infusion site may further comprise propelling a cannula subassembly toward the infusion site. In some embodiments, the method may further comprise coupling a cannula subassembly of the infusion set to a base of the infusion set. In some embodiments, adhering the portion of the infusion set to the infusion site may comprise adhering the base of the infusion set to the infusion site. In some embodiments, coupling the infusion set cartridge to the inserter assembly may comprise displacing mating projections included in the cartridge into retention interfaces on the inserter assembly. In some embodiments, coupling the infusion set cartridge to the inserter assembly may comprise removing an exterior housing of the infusion set cartridge. In some embodiments, the method may further comprise removing the infusion set cartridge from the inserter assembly and removing the infusion set cartridge from the inserter assembly may comprise recoupling the exterior housing to the infusion set cartridge. In some embodiments, the method further may comprise removing the infusion set cartridge from the inserter assembly once the infusion set cartridge has been used. In some embodiments, releasing the infusion set from the cartridge may comprise deflecting retainer arms of the infusion set cartridge out of engagement with a portion of the infusion set. In some embodiments, deflecting the retainer arms may comprise driving ears of a cannula subassembly of the infusion set into the retainer arms as the cannula subassembly is propelled into engagement with an infusion set base of the infusion set. In some embodiments, coupling the infusion set cartridge to the inserter assembly may comprise rotationally locking the infusion set cartridge in place on the inserter assembly. In some embodiments, the method may further comprise retracting the insertion driver and insertion sharp to a retracted state. In some embodiments, coupling the infusion set cartridge to the inserter assembly may comprise mating an insertion sharp holder of the infusion set cartridge into a port of the insertion driver. In some embodiments, displacing a first portion of the inserter assembly toward a second portion of the inserter assembly may stress at least one retraction spring. In some embodiments, the method may further comprise releasing the at least one retraction spring from a stressed state and propelling the insertion driver and the insertion sharp away from the infusion site. In some embodiments, releasing the at least one retraction spring from the stressed state may comprise propelling the insertion driver into a portion of a latch body to dislodge a latch.
In accordance with an embodiment of the present disclosure an inserter system may comprise an inserter assembly comprising a receptacle including a least one retention interface and an aperture therethrough. The inserter assembly may further comprise an insertion driver being displaceable through the aperture and being displaceable between a stowed position and an extended position. The inserter assembly may further comprise at least one spring biased lock member displaceable from a withdrawn position to an extended position. The system may further comprise a disposable cartridge comprising at least one mating projection, a medical device, and at least one set of stop surfaces. Each of the at least one mating projection configured to rotate into engagement with a respective one of the at least one retention interface. The at least one set of stop surfaces configured to flank the at least one lock member when the lock member is in the extended position inhibiting rotation of the disposable cartridge.
In some embodiments, the at least one lock member may be a resiliently cantilevered member. In some embodiments, the medical device may be an infusion set. In some embodiments, the infusion set may include an infusion set base and a cannula subassembly. The cannula subassembly me be separate from the infusion set base. In some embodiments, the medical device may be a lancet. In some embodiments, the medical device may be an analyte sensor. In some embodiments, each of the at least one mating projection may be a mating pin having a head portion with a cross sectional area greater than a stem portion of the mating pin which couples the head portion to the cartridge. In some embodiments, the at least one retention interface may be a retention shoe. In some embodiments, each of the at least one retention interface may be configured to prevent translational displacement of a respective one of the at least one mating projection along a longitudinal axis of the inserter assembly when the respective mating projection is in engagement with that retention interface. In some embodiments, the cartridge may be configured to displace the at least one lock member to the withdrawn position when the at least one mating projection is out of engagement with the at least one retention interface and the cartridge is against the receptacle. In some embodiments, the cartridge may comprise an interior housing including tabs disposed on cantilevered portions of the interior housing. The housing may further comprise an exterior housing including receiving slots for the tabs. The interior housing may be coupled to the exterior housing when the tabs are disposed at least partially within the receiving slots. In some embodiments, the receptacle may include deflector members. In some embodiments, the deflector members may be configured to deflect the cantilevered portions of the interior housing when the mating projections are in engagement with the retention interfaces. The exterior housing being uncoupled from the interior housing when the cantilevered portions of the interior housing are in a deflected state. In some embodiments, the at least one set of stop surfaces may be defined by edge walls on either side of at least one of the cantilevered portions. In some embodiments, the insertion driver may include a port. In some embodiments, the cartridge may include a sharp holder coupled to an insertion sharp. The sharp holder may be configured to couple into the port when each of the at least one mating projection is in engagement with a respective one of the at least one retention interface. In some embodiments, the cartridge may include a sharp holder with a terminal flange having a shape which may be displaced into the port when the cartridge is in a first orientation on the receptacle and may not be displaced out of the port when the cartridge is in a position in which each of the at least one mating projection is in engagement with a respective one of the at least one retention interface. In some embodiments, the cartridge may include a sharp holder coupled to a sharp. In some embodiments, the cartridge may include at least one guide. At least a portion of the medical device may be configured to displace along the guide when the insertion driver is displaced from the stowed position to the extended position. In some embodiments, the cartridge may include a first housing and a second housing releasably coupled to the first housing. The second housing may displace the at least one lock member to the withdrawn state when the second housing is against the receptacle. In some embodiments, the inserter assembly may further comprise an insertion bias member and an insertion driver latch. The insertion bias member may be configured to urge the insertion driver to the extended position when the insertion driver is disengaged from the insertion driver latch.
In accordance with an embodiment of the present disclosure an infusion set base for an infusion set may comprise a platform portion having a first face and a second face on an opposing side thereof. The infusion set base may further comprise a set of connector finger receptacles extending from the second face of the platform portion. The infusion set base may further comprise a set of guides raised from the second face of the platform portion. Each of the guides may include a guide notch recessed into the guides from a face of the guides most distal to the second face of the platform portion. The infusion set base may further comprise a cannula subassembly receptacle defined by an aperture in the platform portion, a receptacle wall raised from the second face of the platform and by a portion of each guide which includes the guide notch. The infusion set base may further comprise a cantilevered arm included as a section of the receptacle wall, the cantilevered arm having a protuberance at an unsupported end thereof.
In some embodiments, the first face of the platform portion may include an adhesive attached thereto. In some embodiments, the adhesive may be covered by an adhesive backing. In some embodiments, the adhesive backing may extend across and cover the aperture. In some embodiments, the first face of the platform portion may include two annular ridges at the periphery of the first face and a plurality of radially arrayed ridges. In some embodiments, a substrate to which an adhesive is applied may be bonded to the annular ridges and the radially arrayed ridges. In some embodiments, the substrate may be welded to the annular ridges and the radially arrayed ridges. In some embodiments, the platform may include a plurality of passthroughs extending therethrough. In some embodiments, the platform portion may include at least one tubing retainer which extends from the periphery of the platform portion. In some embodiments, each of the connector receptacles may include a catch for engaging a projection on a connector finger of an infusion tubing connector. In some embodiments, at least one of the receptacle wall or the portions of the guides defining the receptacle may include a tapered portion at a section thereof most distal to the second face of the platform portion. In some embodiments, the cantilevered arm may be configured to deflect as a cannula subassembly is displaced into the cannula subassembly receptacle and resiliently restore to relaxed state when the cannula subassembly is in an installed orientation within the cannula subassembly receptacle such that the protuberance engages a ledge of a salient on the cannula subassembly. In some embodiments, the cantilevered arm may be configured to deflect as a cannula subassembly is displaced into the cannula subassembly receptacle and resiliently restore to relaxed state when the cannula subassembly is in an installed orientation within the cannula subassembly receptacle such that the protuberance engages a wall of a fenestration in a housing of the cannula subassembly. In some embodiments, the cantilevered arm may be configured to deflect as a cannula subassembly is displaced into the cannula subassembly receptacle and the resiliently restore to relaxed state when the cannula subassembly is in an installed orientation within the cannula subassembly receptacle such that the protuberance engages a wall of a cannula housing slot in a housing of the cannula subassembly. In some embodiments, each of the guides may define a ledge which has at least a portion which is parallel to the second face of the platform portion. In some embodiments, each ledge may be more proximal to the second face of the platform portion than the portion of each notch which is most proximal to the second face of the platform portion. In some embodiments, the cannula subassembly receptacle may be centrally disposed on the platform portion. In some embodiments, the aperture may include a salient receiving region for receiving a salient of a housing of a cannula subassembly. In some embodiments, each of the guides may include a first portion ledge and a second portion ledge each extending from a main portion of the respective guide. The first portion ledge may be substantially parallel to the second face of the platform portion and the second portion ledge may be disposed at an angle to the first portion ledge. In some embodiments, a surface of the second portion ledge most proximal to the second face of the platform portion increases in distance from the second face of the platform portion as the second portion ledge extends distally with respect to the first portion ledge. In some embodiments, the guides may extend parallel to one another and each may include a medial face and a lateral face. The medial faces may be more proximal to a midplane of the infusion set base than the lateral faces. In some embodiments, the guides may include a guide ledge disposed on the lateral face of each guide and an additional guide ledge on the medial face of each guide.
In accordance with an embodiment of the present disclosure a tubing connector for fluidically coupling a flow lumen of a run of infusion tubing to a cannula of an infusion set may comprise a flow hub having a channel therethrough. The run of infusion tubing may be coupled to a first end of the channel and a sharp may be coupled to a second opposing end of the channel. A sharp lumen of the sharp may be in fluid communication with the flow lumen. The tubing connector may further comprise a pair of alignment channels. One of the alignment channels may be recessed into a first side face of the flow hub. The other of the alignment channels may be recessed into a second opposing side face of the flow hub. The alignment channels may include a variable width segment proximal the second end of the channel and a constant width segment. The tubing connector may further comprise a pair of cantilevered connector fingers. A first connector finger of the pair of connector fingers may be coupled to the first side face via a first tubing connector body portion and a second connector finger of the pair of connector fingers coupled to the second opposing side face via a second tubing connector body portion. Each of the connector fingers may include a latch projection. The tubing connector may further comprise at least one sharp flanking projection extending from the flow hub parallel to an axis of the sharp.
In some embodiments, the at least one sharp flanking projection may include a centrally disposed flanking projection which extends from a top face of the flow hub over at least a portion of the sharp. In some embodiments, the at least one sharp flanking projection may include a set of sharp flanking projections disposed lateral to the sharp. In some embodiments, the at least one sharp flanking projection may include a first sharp flanking projection and a second sharp flanking projection disposed laterally to the sharp and in a plane along which the connector fingers extend. In some embodiments, the first sharp flanking projection may extend parallel to an axis of the sharp from the first tubing connector body portion and the second sharp flanking projection may extend parallel to the axis of the sharp from the second tubing connector body portion. In some embodiments, the first sharp flanking projection and second sharp flanking projection may each have a projection tip. The projection tips may be more distal to the flow hub than a terminal portion of each connector finger. In some embodiments, the first sharp flanking projection and the second sharp flanking projection may each include a curved end region. In some embodiments, the curved end regions may each have a curvature which swings an arc greater than 90°. In some embodiments, the radius of the curvature may be variable. In some embodiments, the curved end regions may each include a substantially straight expanse at a terminus thereof. In some embodiments, the curved end regions may curve in front of and around a terminal portion of a respective connector finger of the pair of connector fingers. In some embodiments, the first sharp flanking projection may extend parallel to an axis of the sharp from the first side face of the flow hub and the second sharp flanking projection may extend parallel to the axis of the sharp from the second side face of the flow hub. In some embodiments, each of the pair of alignment channels may be configured to ride along a guide ledge of an infusion set base. In some embodiments, the sharp may include a tip. The tip may be clocked to a prescribed rotational orientation during assembly of the tubing connector. In some embodiments, the tip may be magnetically clocked to the prescribed rotational orientation.
In accordance with another example embodiment of the present disclosure an inserter assembly may comprise a housing. The inserter assembly may further comprise an infusion set. The inserter assembly may further comprise a sharp bearing body. The inserter assembly may further comprise a trigger. The inserter assembly may further comprise a drive spring held in an energy storing state by the trigger. The drive spring may urge the sharp bearing body from a raised state to a forward state when the trigger is released. The inserter assembly may further comprise a means for releasing the trigger as the inserter assembly is tugged away from the body.
In some embodiments, the inserter assembly may further comprise a means for preventing release of the trigger before skin at a selected infusion set placement site has been lifted from underlying anatomy. In some embodiments, a portion of the infusion set may include an adhesive for anchoring the portion of the infusion set to a patch of skin. In some embodiments, the infusion set may include a base and a cannula assembly. In some embodiments, the cannula subassembly may be carried by the sharp bearing body and uncoupled to the base when the sharp bearing body is in the raised state. In some embodiments, the cannula subassembly may be coupled to the base when the sharp bearing body is urged to the forward state. In some embodiments, the inserter assembly may further comprise a retraction spring configured to displace the sharp bearing body from the forward state to a retracted state when the retraction spring is freed from an energy storing state. In some embodiments, the infusion set may be configured to be decoupled from the inserter assembly when the sharp bearing body is urged to the forward state. In some embodiments, the inserter assembly may further comprise a retraction spring held in an energy storing state by a coupling between the infusion set and another portion of the inserter assembly. The coupling may be released when the sharp bearing body is urged to the forward position. The retraction spring may urge the sharp bearing body to a retracted state when freed from its energy storing state. In some embodiments, the sharp bearing body may be in a different location within the inserter assembly in the raised state compared to the retracted state.
In accordance with yet another example embodiment of the present disclosure an inserter assembly may comprise a housing. The inserter assembly may further comprise an infusion set having adhesive on a portion thereof for adhering the portion of the infusion set to skin. The inserter assembly may further comprise a sharp bearing body. The inserter assembly may further comprise a trigger. The inserter assembly may further comprise an insertion bias member held in an energy storing state by the trigger. The insertion bias member may urge the sharp bearing body from a raised state to a forward state when the trigger is released. The inserter assembly may further comprise a means for releasing the trigger after inserter assembly is withdrawn from the body and skin adhered to the portion of the infusion set has been lifted from underlying anatomy.
In some embodiments, the infusion set may include a base and a cannula assembly. In some embodiments, the cannula subassembly may be carried by the sharp bearing body and uncoupled to the base when the sharp bearing body is in the raised state. In some embodiments, the cannula subassembly may be configured to couple to the base when the sharp bearing body is urged to the forward state. In some embodiments, the inserter assembly may further comprise a retraction bias member configured to displace the sharp bearing body from the forward state to a retracted state when the retraction bias member is freed from an energy storing state. In some embodiments, the inserter assembly may further comprise a means for releasing the infusion set when the sharp bearing body is displaced to the forward state. In some embodiments, the inserter assembly may further comprise a means for retracting the sharp bearing body to a retracted state after the sharp bearing body has been urged to the forward state. In some embodiments, the sharp bearing body may be in a different location within the inserter assembly in the raised state compared to the retracted state. In some embodiments, the infusion set may include an infusion set base and a cannula subassembly and the infusion set base may include a means for coupling the cannula subassembly to the infusion set base.
In accordance with yet another exemplary embodiment of the present disclosure an inserter assembly may comprise a housing. The inserter assembly may further comprise an infusion set having adhesive on a portion thereof for adhering the portion of the infusion set to skin. The inserter assembly may further comprise a sharp bearing body. The inserter assembly may further comprise a trigger arrangement. The inserter assembly may further comprise a bias member held in an energy storing state by the trigger arrangement. The bias member may urge the sharp bearing body from a raised state to a forward state when the trigger arrangement is released. The inserter assembly may further comprise a means for preventing release of the trigger arrangement before skin adhered to the infusion set has been lifted from underlying anatomy.
In some embodiments, the inserter assembly may further comprise a means for actuating the trigger arrangement one the skin has been lifted. In some embodiments, the infusion set may include a base and a cannula assembly. In some embodiments, the cannula subassembly may be carried by the sharp bearing body and uncoupled to the base when the sharp bearing body is in the raised state. In some embodiments, the cannula subassembly may be configured to couple to the base when the sharp bearing body is urged to the forward state. In some embodiments, the inserter assembly may further comprise a retraction bias member configured to displace the sharp bearing body from the forward state to a retracted state when the retraction bias member is freed from an energy storing state. In some embodiments, the inserter assembly may further comprise a means for releasing the infusion set when the sharp bearing body is displaced to the forward state. In some embodiments, the inserter assembly may further comprise a means for retracting the sharp bearing body to a retracted state after the sharp bearing body has been urged to the forward state. In some embodiments, the sharp bearing body may be in a different location within the inserter assembly in the raised state compared to the retracted state. In some embodiments, the infusion set may include an infusion set base and a cannula subassembly and the infusion set base may include a means for coupling the cannula subassembly to the infusion set base.
In accordance with another example embodiment of the present disclosure, an inserter assembly may comprise a casing unit comprising at least one projection. The inserter assembly may further comprise a second unit. The second unit may comprise an infusion set having an adhesive on a portion of the infusion set for anchoring the infusion set to a patch of skin. The second unit may further comprise a sharp holder including an insertion sharp. The second unit may further comprise a trigger. The second unit may further comprise a drive spring held in an energy storing state by the trigger. The drive spring may urge the sharp bearing body from a raised state to a forward state when the trigger is released. The second unit may further comprise at least one resilient member. An interference between each of the at least one resilient member and an associated projection of the at least one projection may be present. The interference may block relative displacement of the casing unit and second unit when the adhesive is adhered to the patch of skin until the inserter assembly is displaced in a direction away from an infusion site and the patch of skin is lifted to a point that force exerted via elasticity of the skin reaches a threshold that deflects each of the at least one resilient member out of an interfering relationship with the associated projection of the at least one projection.
In some embodiments, the trigger may comprise a catch which engages with a ledge defined on the sharp holder. In some embodiments, the drive spring may be a compression spring. In some embodiments, each of the at least one resilient member may be a cantilevered arm. In some embodiments, each of the at least one projection may be a deflector. In some embodiments, the casing may further comprise a triggering projection. In some embodiments, the inserter assembly may further comprise a means for retracting the sharp bearing body to a retracted state after the sharp bearing body has been urged to the forward state. In some embodiments, the portion of the infusion set may be disposed within an opening in an end of the casing unit and is substantially even with the end of the casing unit when the inserter assembly is in an initial state.
In accordance with still another example embodiment of the present disclosure an inserter assembly may comprise a first unit including triggering body. The inserter assembly may further comprise a second unit including an actuation assembly including a trigger. The inserter assembly may further comprise an infusion set base releasably coupled to the second unit and having an adhesive thereon for anchoring the infusion set base to a patch of skin. When the adhesive is anchoring the infusion set base to the patch of skin and the first unit is displaced in a direction away from the patch of skin, the second unit may be restricted from displacing relative to the patch of skin. Relative motion between the first and second units may displace the triggering body into the trigger.
In some embodiments, the second unit may further comprise a resilient member aligned with a deflector included on part of the first unit. In some embodiments, the second unit may further comprise a resilient member configured to abut a portion of the first unit to inhibit relative motion of the first unit and second unit until a threshold force applied to separate the first and second unit is exceeded. In some embodiments, the portion of the first unit may be a deflector member and the resilient member may be a cantilevered arm extending from part of the second unit. In some embodiments, the threshold force may be selected such that, as the first unit is displaced in a direction away from the patch of skin, the patch of skin is lifted from underlying anatomy due to adhesion of the adhesive at least a certain distance from its resting position before the triggering body is displaced into the trigger. In some embodiments, the force threshold may be selected such that, as the first unit is displaced in a direction away from the patch of skin, the patch of skin is lifted from underlying anatomy due to adhesion of the adhesive before relative displacement of the first and second unit begins. In some embodiments, the force threshold may be selected such that, as the first unit is displaced in a direction away from the patch of skin, the patch of skin is lifted due to adhesion of the adhesive at least a certain distance from its resting position. In some embodiments, the adhesive may be configured to maintain adherence to the patch of skin and withstand force generated by the elasticity of the skin when the adhesive is in an adhering relationship with the patch of skin and the first unit is displaced away from an infusion site.
In accordance with yet another exemplary embodiment of the present disclosure an inserter assembly may comprise a first portion including triggering body. The inserter assembly may further comprise an infusion set base having an adhesive thereon for anchoring the infusion set base to a patch of skin. The inserter assembly may further comprise a second portion including an actuation assembly with a trigger. The infusion set base may be releasably coupled to the second unit. The second unit may be constrained from displacing relative to the patch of skin when the infusion set base is coupled to the second portion and the infusion set base is anchored to the skin by the adhesive. The first portion may be displaceable away from the second portion from an initial position to a triggering position. The triggering body may actuate the trigger as the first portion is displaced toward the triggering position.
In some embodiments, the second portion may further comprise a resilient member which is in abutment with a deflector of the first portion when the first portion is in the initial position. In some embodiments, the second portion may further comprise a resilient member configured to abut a portion of the first portion to inhibit relative motion of the first portion and second portion until a force threshold is exceeded. In some embodiments, the portion of the first portion may be a deflector member and the resilient member may be a cantilevered arm extending from part of the second portion. In some embodiments, the force threshold may be greater than a threshold necessary to lift the patch of skin from underlying anatomy when the infusion set base is anchored to the patch of skin via the adhesive. In some embodiments, the force threshold may be selected such that when the infusion set base is anchored to the patch of skin via the adhesive and the first unit is displaced in a direction away from the patch of skin, the patch of skin is lifted due to adhesion of the adhesive at least a certain distance from its resting position. In some embodiments, the adhesive may be configured to maintain adherence to the patch of skin and withstand force generated by the elasticity of the skin when the adhesive is in an adhering relationship with the patch of skin and the first unit is displaced away from the second portion.
In accordance with another example embodiment of the present disclosure an inserter assembly may comprise a first portion including triggering body. The inserter assembly may further comprise an infusion set base having an adhesive thereon for anchoring the infusion set base to a patch of skin. The inserter assembly may further comprise a second portion including an actuation assembly with a trigger. The infusion set base may be releasably coupled to the second unit. The second unit may be constrained from displacing relative to the patch of skin when the infusion set base is coupled to the second portion and the infusion set base is anchored to the skin by the adhesive. The first portion may be configured to displace with respect to second portion from an initial position to a triggering position once a threshold force in a direction away the second portion is applied to the first portion. The triggering body may be configured to actuate the trigger as the first portion is displaced toward the triggering position.
In some embodiments, the threshold force may be greater than a threshold necessary to lift the patch of skin from underlying anatomy when the infusion set base is anchored to the patch of skin via the adhesive. In some embodiments, the force threshold may be selected such that when the infusion set base is anchored to the patch of skin via the adhesive and the first unit is displaced in a direction away from the patch of skin, the patch of skin is lifted due to adhesion of the adhesive at least a certain distance from its resting position. In some embodiments, the adhesive may be configured to maintain adherence to the patch of skin and withstand force generated by the elasticity of the skin when the adhesive is in an adhering relationship with the patch of skin and the first unit is displaced in a direction away from the patch of skin. In some embodiments, first portion may be releasably engaged with the second portion and the first portion and second portion may be disengaged from one another when the threshold force is applied. In some embodiments, an interference may be present between the first portion and the second portion and a portion of the second portion may deflect out of an interfering relationship with the first portion when the threshold force is applied. In some embodiments, the inserter assembly may further comprise a removable lock member. The lock member may be positioned to inhibit relative displacement of the first and second portion even when the threshold force is applied. In some embodiments, the inserter assembly may further comprise a removable liner which covers the adhesive. In some embodiments, the first portion may form a casing for the inserter assembly and the infusion set base may be positioned within an opening in an end of the casing and even with the end when the inserter assembly is in an initial state. In some embodiments, the inserter assembly may further comprise a cannula subassembly. The actuation assembly may be configured to displace the cannula subassembly into engagement with the infusion set base when the trigger is actuated.
In accordance with still another example embodiment of the present disclosure an inserter assembly may comprise a first unit. The inserter assembly may further comprise a second unit. There may be an interference between the first unit and second unit which inhibits relative displacement of the first unit and second unit until more than a threshold force is applied to pull apart the first and second unit. The inserter assembly may further comprise an infusion set having an adhesive on a portion thereof for adhering the portion of the infusion set to a patch of skin. The inserter assembly may further comprise an insertion actuation assembly including a trigger. The trigger may be configured to be actuated once a magnitude of relative displacement separating the first and second unit exceeds a displacement threshold.
In some embodiments, the adhesive may be configured to maintain adherence to the patch of skin and withstand force generated by the elasticity of the skin when the adhesive is in an adhering relationship with the patch of skin and the inserter assembly is displaced away from an infusion site. In some embodiments, the threshold force may be selected to ensure that the patch of skin is lifted from underlying anatomy when the adhesive is in an adhering relationship with the patch of skin and first unit is displaced in a direction away from the patch of skin. In some embodiments, the interference may be supplied by an abutment of a resilient member of one of the first and second unit and a deflector of the other of the first and second unit. In some embodiments, the interference may be supplied by at least one cantilevered arm of the second unit which each abut an associated deflector of the first unit. In some embodiments, the first unit may be a casing for the inserter assembly. In some embodiments, the infusion set may include a base and a cannula assembly. In some embodiments, the cannula subassembly may be carried by a spring loaded sharp bearing body of the second unit. The spring loaded sharp bearing body may be propelled by a bias member from a raised state to a forward state when the trigger is actuated. In some embodiments, the infusion set base may be releasably coupled to the second unit and the cannula subassembly may be uncoupled to and spaced from the base when the sharp bearing body is in the raised state. In some embodiments, the cannula subassembly may be coupled to the base when the sharp bearing body is urged to the forward state. In some embodiments, the inserter assembly may further comprise a spring loaded sharp bearing body included as part of the second unit. The spring loaded sharp bearing body may be configured to be propelled by a bias member from a raised state to a forward state when the trigger is actuated. In some embodiments, the inserter assembly may further comprise a retraction spring configured to displace the sharp bearing body from the forward state to a retracted state when the retraction spring is freed from an energy storing state. In some embodiments, the infusion set may be releasably coupled to the second unit and may be configured to be decoupled from the second unit when the sharp bearing body is urged to the forward state. In some embodiments, the inserter assembly may further comprise a retraction spring held in an energy storing state at least by a coupling between a portion of the infusion set and the second unit. The coupling may be released when the sharp bearing body is urged to the forward position. The retraction spring may urge the sharp bearing body to a retracted state when freed from its energy storing state. In some embodiments, the sharp bearing body may be in a different location within the inserter assembly in the raised state compared to the retracted state. In some embodiments, the insertion actuation assembly may be included as part of the second unit.
In accordance with another example embodiment of the present disclosure an inserter assembly may comprise a first unit. The inserter assembly may further comprise a second unit in an interfering relationship with the first unit that blocks relative displacement of the first and second units until more than a threshold force is applied to separate the first and second units. The inserter assembly may further comprise an infusion set having an adhesive on a portion thereof configured to maintain adherence to a patch of skin and withstand force generated by the elasticity of the skin when the adhesive is in an adhering relationship with the patch of skin and the inserter assembly is displaced away from an infusion site. The inserter assembly may further comprise an insertion actuation assembly.
In some embodiments, the threshold force may be selected to ensure that the patch of skin is lifted from underlying anatomy when the adhesive is in an adhering relationship with the patch of skin and first unit is displaced in a direction away from the patch of skin. In some embodiments, the first unit may include a housing of the inserter assembly. In some embodiments, the infusion set may comprise an infusion set base and a cannula assembly. The cannula assembly may be uncoupled from and in spaced relation to the infusion set base prior to activation of the insertion actuation assembly. In some embodiments, the adhesive may be disposed on a bottom surface of the infusion set base. In some embodiments, the insertion actuation assembly may include a trigger arrangement and a spring loaded sharp bearing body. In some embodiments, the interfering relationship may be established by an abutment of a resilient member of one of the first and second unit and a deflector of the other of the first and second unit. In some embodiments, the interfering relationship may be established by at least one cantilevered arm of the second unit which each abut an associated deflector of the first unit. In some embodiments, the insertion actuation assembly may be included as part of the second unit.
In accordance with still another example embodiment of the present disclosure an inserter assembly may comprise a first unit. The inserter assembly may further comprise a second unit in an interfering relationship with the first unit that inhibits relative displacement of the first and second units until more than a threshold force is applied to separate the first and second unit. The inserter assembly may further comprise an infusion set having an adhesive on a portion thereof for adhering the portion of the infusion set to a patch of skin. The adhesive may be configured to lift the patch of skin from underlying anatomy when the adhesive is in an adhering relationship with the patch of skin and the inserter assembly is displaced away from an infusion site. The inserter assembly may further comprise an insertion actuation assembly.
In some embodiments, the infusion set may comprise an infusion set base and a cannula assembly. The cannula assembly may be uncoupled from and in spaced relation to the infusion set base prior to activation of the insertion actuation assembly. In some embodiments, the adhesive may be provided on a bottom surface of the infusion set base. In some embodiments, the first unit may include a casing for the inserter assembly and the infusion set base may be releasably coupled to the second unit and disposed at an opening in an end of the casing and even with the end of the casing when the inserter assembly is in an initial state. In some embodiments, the adhesive may be covered by a removable backing. In some embodiments, the inserter assembly may further comprise a removable lock member configured to inhibit activation of the insertion actuation assembly. In some embodiments, the inserter assembly may further comprise a removable lock member configured to prevent separation of the first and second units when the threshold force is exceeded. In some embodiments, the insertion actuation assembly may include a trigger arrangement and a spring loaded sharp bearing body. In some embodiments, the interfering relationship may be established by an abutment of at least one resilient member of one of the first and second unit and an associated deflector for each of the at least one resilient member included in the other of the first and second unit. In some embodiments, the interfering relationship may be established by at least one cantilevered arm of the second unit. Each of the at least one cantilevered arm may be abutting an associated projection of the first unit. In some embodiments, the insertion actuation assembly may be included as part of the second unit.
In accordance with another example embodiment of the present disclosure an inserter assembly may comprise a first unit. The inserter assembly may further comprise a second unit releasably engaged with the first unit. The second unit may be configured to displace in tandem with the first unit until more than a threshold force is applied to separate the first and second unit. The inserter assembly may further comprise an infusion set having an adhesive on a portion thereof for adhering the portion of the infusion set to a patch of skin. The adhesive may be configured to lift the patch of skin from underlying anatomy when the adhesive is in an adhering relationship with the patch of skin and the inserter assembly is displaced away from an infusion site. The inserter assembly may further comprise an insertion actuation assembly.
In some embodiments, the insertion actuation assembly may be included as part of the second unit. In some embodiments, the second unit may be releasably engaged with the first unit via an interference between part of the first unit and the second unit. In some embodiments, a portion of the second unit may be configured to deflect to a deflected state when the threshold force is applied. The portion of the second unit may be displaced out of an interfering relationship with the part of the first unit when in the deflected state. In some embodiments, the second unit may be releasably engaged with the first unit via a resilient member which is in abutting engagement with a deflector disposed on a portion of the first unit. In some embodiments, the resilient member may be configured to deflect to a deflected state when the threshold force is applied. The resilient member may be out of abutting engagement with the deflector when in the deflected state. In some embodiments, the second unit may be releasable engaged with the first unit via at least one cantilevered arm of the second unit, each of which being in abutting engagement with a cooperating projection on a part of the first unit for each of the at least one cantilevered arm. In some embodiments, each of the at least one cantilevered arm may be configured to deflect to a deflected state when the threshold force is applied. Each of the at least one cantilevered arm may be out of abutting engagement with the associated cooperating projection when in the deflected state. In some embodiments, the insertion actuation assembly may include a trigger arrangement and a spring loaded sharp bearing body. In some embodiments, the infusion set may comprise an infusion set base and a cannula assembly. The cannula assembly may be uncoupled from and in spaced relation to the infusion set base prior to activation of the insertion actuation assembly. In some embodiments, the adhesive may be provided on a bottom surface of the infusion set base. In some embodiments, the first unit may include a casing for the inserter assembly and the infusion set base may be releasably coupled to the second unit and disposed at an opening in an end of the casing even with the end of the casing when the inserter assembly is in an initial state. In some embodiments, the adhesive may be covered by a removable backing. In some embodiments, the inserter assembly may further comprise a removable lock member configured to inhibit activation of the insertion actuation assembly. In some embodiments, the inserter assembly may further comprise a removable lock member configured to block relative displacement of the first and second unit even when more than the threshold force is applied to separate the first and second unit.
In accordance with another exemplary embodiment of the present disclosure a method of placing an infusion set of an inserter assembly at an infusion site may comprise adhering a portion of the inserter assembly to skin at the infusion site. The method may further comprise pulling the inserter assembly away from the body to lift skin at the infusion site from underlying anatomy, via adhesion of skin to the inserter assembly. The method may further comprise triggering an actuation assembly of the inserter assembly after the skin has been lifted at least a certain distance. The method may further comprise driving an insertion sharp through the skin.
In some embodiments, the method may further comprise releasing a bias member of the actuation assembly from an energy storing state to drive the insertion sharp through the skin. In some embodiments, the method may further comprise releasing the portion of the infusion set from the inserter assembly. In some embodiments, the method may further comprise preventing triggering of the actuation assembly with a removable lock member. In some embodiments, the method may further comprise removing the lock member from the inserter assembly. In some embodiments, the method further may comprise removing an adhesive backing from the inserter assembly. In some embodiments, the method may further comprise releasing a retraction prevention latch and driving the insertion sharp in a direction away from infusion site. In some embodiments, the method may further comprise driving a cannula subassembly carried by the insertion sharp into a portion of the infusion set. In some embodiments, driving the cannula subassembly into the portion of the infusion set may comprise driving a cannula of the cannula subassembly through the skin. In some embodiments, the method may further comprise inhibiting relative movement between a casing of the inserter assembly and a second portion of the inserter assembly at least when the skin begins being lifted.
In accordance with another example embodiment of the present disclosure, a method of placing an infusion set of an inserter assembly at an infusion site may comprise coupling the inserter assembly to skin at the infusion site. The method may further comprise lifting the skin coupled to the inserter assembly from underlying anatomy at the infusion site by displacing the inserter assembly in a direction away from the infusion site. The method may further comprise triggering an actuation assembly of the inserter assembly automatically after the skin has been lifted at least a certain distance.
In some embodiments, the method may further comprise releasing a bias member of the actuation assembly from an energy storing state to drive an insertion sharp through the skin. In some embodiments, the method may further comprise assembling the infusion set by driving a cannula subassembly of the infusion set which is carried by the insertion sharp into another portion of the infusion set. In some embodiments, driving the cannula subassembly into the another portion of the infusion set may comprise driving a cannula of the cannula subassembly through the skin. In some embodiments, the method may further comprise releasing a retraction prevention latch and driving the insertion sharp in a direction away from infusion site. In some embodiments, the method may further comprise releasing a portion of the infusion set from the inserter assembly. In some embodiments, the method may further comprise removing a lock member which prevents triggering of the actuation assembly and removing an adhesive backing from the inserter assembly.
In accordance with still another example embodiment of the present disclosure a method of placing an infusion set of an inserter assembly at an infusion site may comprise anchoring, via adhesive, an infusion set base releasably coupled to the rest inserter assembly to skin at the infusion site. The method may further comprise pulling the inserter assembly away from the body and lifting the skin anchored to the infusion set base away from underlying anatomy. The method may further comprise inhibiting relative displacement of a first portion and a second portion of the inserter assembly until the skin has been displaced to a point at which the elasticity of the skin exerts more than a threshold force against the infusion set base. The method may further comprise displacing an actuator of the first portion into a trigger arrangement of the second portion. The method may further comprise driving an insertion sharp through the skin.
In some embodiments, the method may further comprise freeing a bias member from an energy storing state to drive the insertion sharp through the skin. In some embodiments, the method may further comprise decoupling the infusion set base from the rest of the inserter assembly. In some embodiments, the method may further comprise removing a lock member from the inserter assembly and removing an adhesive backing from the infusion set base. In some embodiments, the method may further comprise driving a cannula subassembly along with the insertion sharp toward the skin such that the cannula subassembly is driven into a retraction prevention latch. In some embodiments, the method may further comprise driving the insertion sharp in a direction away from the skin. In some embodiments, the method may further comprise driving a cannula subassembly carried by the insertion sharp into the infusion set base. In some embodiments, driving the cannula subassembly into the infusion set base may comprise driving a cannula of the cannula subassembly through the skin. In some embodiments, inhibiting relative displacement of a first portion and a second portion of the inserter assembly may comprise inhibiting relative movement between a casing of the inserter assembly and at least another portion of the inserter assembly at least when the skin begins being displaced. In some embodiments, the method may further comprise releasing a retraction prevention latch and driving the insertion sharp in a direction away from infusion site. In some embodiments, the method may further comprise displacing the insertion sharp to a protected position within the inserter assembly.
In accordance with another example embodiment of the present disclosure a method of triggering an inserter assembly for placing an infusion set at an infusion site may comprise establishing an interference relationship which inhibits relative displacement of a first portion of an inserter assembly and a second portion of the inserter assembly. The method may further comprise adhering a portion of the infusion set to skin at the infusion site. The portion of the infusion set may be releasably coupled to the second portion. The method may further comprise tugging the skin at the infusion site away from underlying anatomy by displacing the inserter assembly in a direction away from the infusion site. The method may further comprise deflecting at least one portion of the second portion out of the interference relationship when force exerted by the elasticity of the skin exceeds a threshold. The method may further comprise driving an actuator of the first portion into a trigger arrangement of the second portion.
In some embodiments, establishing the interference relationship may comprise placing a resilient member of the second portion into abutment with a deflector of the first portion. In some embodiments, adhering a portion of the infusion set to the skin at the infusion site may comprise adhering an infusion set base to the skin. The infusion set base may be spaced and separate from a cannula assembly of the infusion set. In some embodiments, driving the actuator of the first portion into the trigger arrangement may comprise increasing a magnitude of relative displacement between the first and second portion of the inserter assembly after deflecting the at least one portion of the second portion out of the interference relationship. In some embodiments, driving the actuator of the first portion into the trigger arrangement may comprise driving a projection of the first portion into the trigger arrangement. In some embodiments, driving the actuator of the first portion into the trigger arrangement may comprise driving the actuator of the first portion into a ledge of a spring loaded sharp bearing body. The ledge may be engaged with a catch on the second portion. In some embodiments, the method may further comprise disengaging the ledge from the catch.
In accordance with another example embodiment of the present disclosure a method of triggering an inserter assembly for placing an infusion set at an infusion site may comprise establishing a releasable engagement between a first portion and a second portion of the inserter assembly which inhibits displacement of the first portion away from a second portion. The method may further comprise adhering a portion of the infusion set to skin at the infusion site. The portion of the infusion set may be releasably coupled to the second portion. The method may further comprise pulling the skin at the infusion site away from underlying anatomy by displacing the inserter assembly in a direction away from the infusion site. The method may further comprise disengaging the first portion from the second portion when a force compelling separation of the first and second portion exceeds a threshold. The method may further comprise increasing a magnitude of relative displacement between the first and second portion of the at least until an actuator of the first portion displaces into a trigger arrangement of the second portion.
In some embodiments, establishing the releasable engagement may comprise placing a resilient member of the second portion into an interfering relationship with a deflector of the first portion. In some embodiments, adhering a portion of the infusion set to the skin at the infusion site may comprise adhering an infusion set base to the skin. The infusion set base may be spaced and separate from a cannula assembly of the infusion set. In some embodiments, driving the actuator of the first portion into the trigger arrangement may comprise driving a projection of the first portion into the trigger arrangement. In some embodiments, driving the actuator of the first portion into the trigger arrangement may comprise driving the actuator of the first portion into a ledge of a spring loaded sharp bearing body. The ledge may be engaged with a catch on the second portion. In some embodiments, the method may further comprise disengaging the ledge from the catch. In some embodiments, establishing the releasable engagement may comprise creating an interference between the first and second portions.
In accordance with still another example embodiment of the present disclosure a method of triggering an inserter assembly for placing an infusion set at an infusion site may comprise establishing a releasable engagement between a first portion and a second portion of the inserter assembly which inhibits displacement of the first portion away from a second portion. The method may further comprise adhering a portion of the inserter assembly to skin at the infusion site. The method may further comprise pulling the skin at the infusion site away from underlying anatomy by displacing the inserter assembly in a direction away from the infusion site. The method may further comprise disengaging the first portion from the second portion when a force compelling separation of the first and second portion exceeds a threshold. The method may further comprise increasing a magnitude of relative displacement between the first and second portion of the at least until an actuator of the first portion displaces into a trigger arrangement of the second portion.
In some embodiments, establishing the releasable engagement may comprise placing a resilient member of the second portion into an interfering relationship with a deflector of the first portion. In some embodiments, adhering a portion of the inserter assembly to the skin at the infusion site may comprise adhering an infusion set base to the skin, the infusion set base being spaced and separate from a cannula assembly of the infusion set. In some embodiments, driving the actuator of the first portion into the trigger arrangement may comprise driving a projection of the first portion into the trigger arrangement. In some embodiments, driving the actuator of the first portion into the trigger arrangement may comprise driving the actuator of the first portion into a ledge of a spring loaded sharp bearing body. The ledge may be engaged with a catch on the second portion. In some embodiments, the method may further comprise disengaging the ledge from the catch. In some embodiments, establishing the releasable engagement may comprise creating an interference between the first and second portions.
In accordance with another example embodiment of the present disclosure an inserter assembly may comprise a first unit. The inserter assembly may further comprise a second unit releasably engaged with the first unit. The second unit may be configured to displace in tandem with the first unit until more than a threshold force is applied to separate the first and second unit. The inserter assembly may further comprise an infusion set. The inserter assembly may further comprise an adhesive configured to lift a patch of skin from underlying anatomy when the adhesive is in an adhering relationship with the patch of skin and the inserter assembly is displaced away from an infusion site. The inserter assembly may further comprise an insertion actuation assembly.
In some embodiments, the insertion actuation assembly may be included as part of the second unit. In some embodiments, the second unit may be releasably engaged with the first unit via an interference between part of the first unit and the second unit. In some embodiments, a portion of the second unit may be configured to deflect to a deflected state when the threshold force is applied. The portion of the second unit may be displaced out of an interfering relationship with the part of the first unit when in the deflected state. In some embodiments, the second unit may be releasably engaged with the first unit via a resilient member which is in abutting engagement with a deflector disposed on a portion of the first unit. In some embodiments, the resilient member may be configured to deflect to a deflected state when the threshold force is applied. The resilient member may be out of abutting engagement with the deflector when in the deflected state. In some embodiments, the second unit may be releasable engaged with the first unit via at least one cantilevered arm of the second unit, each of which being in abutting engagement with a cooperating projection on a part of the first unit for each of the at least one cantilevered arm. In some embodiments, each of the at least one cantilevered arm may be configured to deflect to a deflected state when the threshold force is applied. Each of the at least one cantilevered arm may be out of abutting engagement with the associated cooperating projection when in the deflected state. In some embodiments, the insertion actuation assembly may include a trigger arrangement and a spring loaded sharp bearing body. In some embodiments, the infusion set may comprise an infusion set base and a cannula assembly. The cannula assembly may be uncoupled from and in spaced relation to the infusion set base prior to activation of the insertion actuation assembly. In some embodiments, the adhesive may be provided on a bottom surface of the infusion set base. In some embodiments, the first unit may include a casing for the inserter assembly and the infusion set base is releasably coupled to the second unit and disposed at an opening in an end of the casing even with the end of the casing when the inserter assembly is in an initial state. In some embodiments, the adhesive may be covered by a removable backing. In some embodiments, the removable backing includes a strip which projects from a periphery of a main portion of the removable backing, an end of the strip being coupled to another portion of the inserter assembly. In some embodiments, the inserter assembly may further comprise a removable lock member configured to inhibit activation of the insertion actuation assembly. In some embodiments, the inserter assembly may further comprise a removable lock member configured to block relative displacement of the first and second unit even when more than the threshold force is applied to separate the first and second unit.
In accordance with another embodiment of the present disclosure an inserter assembly for transcutaneously placing a cannula may comprise a casing. The inserter assembly may further comprise an infusion set including the cannula. The inserter assembly may further comprise a spring loaded sharp bearing body. The inserter assembly may further comprise an adhesive configured to adhere to a patch of skin at an infusion site and lift the skin from underlying anatomy when the casing is displaced in a direction away from the infusion site. The inserter assembly may further comprise a trigger for the spring loaded sharp bearing body actuatable between an untriggered state and a triggered state. The trigger may be configured to remain in the untriggered state at least until a force pulling the adhesive in a direction toward the infusion site reaches a threshold.
In some embodiments, a spring of the spring loaded sharp bearing body may be held in an energy storing state when the trigger is in an untriggered state. In some embodiments, the spring loaded sharp bearing body may be urged by the spring from a raised state to a forward state when the trigger is actuated to the triggered state. In some embodiments, the infusion set may be disassembled in the inserter assembly and may include an infusion set base and a cannula subassembly including the cannula. The cannula subassembly may be carried by the spring loaded sharp bearing body. In some embodiments, the casing may include a triggering projection. In some embodiments, the adhesive may be configured to restrict movement of a portion of the inserter assembly including the trigger when the adhesive is in an adhered to the skin and the casing is displaced in a direction away from the infusion site. In some embodiments, the casing may be configured to displace relative to the portion of the inserter assembly including the trigger between an initial relative position and a triggering position in which the triggering projection contacts a portion of the trigger when the adhesive is in an adhering relationship with the patch of skin. In some embodiments, the inserter assembly may further comprise a retraction spring configured to displace the spring loaded sharp bearing body from a forward state to a retracted state when the retraction spring is freed from an energy storing state. In some embodiments, the inserter assembly may further comprise a retraction spring held in an energy storing state at least by a coupling between a portion of the infusion set and a portion of the inserter assembly including the trigger. The coupling may be released when the spring loaded sharp bearing body is urged to a forward position. The retraction spring may be configured to urge the spring loaded sharp bearing body to a retracted state when freed from its energy storing state.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features and advantages will become apparent from the description, the drawings, and the claims.
These and other aspects will become more apparent from the following detailed description of the various embodiments of the present disclosure with reference to the drawings wherein:
In various embodiments, an infusion set may be used in conjunction with an infusion device, system, and related method as well as used in conjunction with an inserter assembly. In various embodiments, example infusion sets may be configured to be inserted into the subcutaneous layer of a user's skin and be fluidly connected to a fluid source. In various embodiments, example infusion sets may be fluidly connected to a length of tubing and/or to an infusion device. Infusion devices include any infusion pump and may include, but are not limited to, the various infusion devices described in U.S. patent application Ser. No. 13/788,260, filed Mar. 7, 2013 and entitled Infusion Pump Assembly, now U.S. Publication No. US-2014-0107579, published Apr. 17, 2014 (Attorney Docket No. K40); U.S. Pat. No. 8,491,570, issued Jul. 23, 2013 and entitled Infusion Pump Assembly (Attorney Docket No. G75); U.S. Pat. No. 8,414,522, issued Apr. 9, 2013 and entitled Fluid Delivery Systems and Methods (Attorney Docket No. E70); U.S. Pat. No. 8,262,616, issued Sep. 11, 2012 and entitled Infusion Pump Assembly (Attorney Docket No. F51); and U.S. Pat. No. 7,306,578, issued Dec. 11, 2007 and entitled Loading Mechanism for Infusion Pump (Attorney Docket No. C54); all of which are hereby incorporated herein by reference in their entireties.
Various embodiments are described and shown herein. Each embodiment of each element of each device may be used in any other device embodiment. Each embodiment of the inserter assembly may be used with any embodiment of an infusion set.
Drugs supplied may include drugs which are generally supplied as a continuous or substantially continuous infusion though other drugs may also be used. This may include small molecules, biologicals, recombinantly produced pharmaceuticals, and analogs thereof. Hormones such as insulin or glucagon may be administered through an infusion set 102. Other drugs such as peptides (e.g. amylin) may be provided. Drugs affecting the cardiovascular system may also be provided via an infusion set 102. As another example, vasodilators such as treprostinil may be delivered to a patient with an infusion set 102. Chemotherapy drugs may additionally be used. Exemplary physiological monitors may include blood glucose monitors such as continuous glucose monitors. Any other type of body analyte monitor such as interstitial fluid analyte monitors may also be used.
In some embodiments, inserter assemblies 100 may place an infusion set 102 on a site as well as at least partially assemble the infusion set 102. For example, the infusion set 102 may be provided as a number of portions (e.g. separate components, subassemblies, or combinations thereof) within an inserter assembly 100. Actuation of the inserter assembly 100 may cause each portion of the infusion set 102 to be coupled together to complete the assembly of an infusion set 102. For example, assemblage of an infusion set 102 may occur as an initial stage of the actuation of the inserter assembly 100 or may occur as part of an insertion stage of inserter assembly 100 actuation which results in the cannula 104 being introduced into the patient.
As shown in the exploded view in
The second portion of the infusion set 102 may be a subassembly 114 of two or more components of the infusion set 102. The second portion may include a cannula 104, septum housing 108, septum 110, and septum retainer 112 for example. In some embodiments, though not all, one or more components of the second portion may be provided integrated to one another such that the components are manufactured as a single, monolithic part during, for example, a single molding operation. Any attachment, fastening, bonding, fitting together, or other assembly of these parts after manufacture may thus be avoided. The cannula 104 and the septum housing 108 are shown as such a single continuous unitary part in the example embodiment. This cannulated housing may be a molded part which is constructed of a single material such as, PTFE, Teflon, polypropylene, etc. for example. Certain components may also be joined to one another during manufacture. For example, the septum retainer 112 may be over molded onto the septum 110 or vice versa.
As shown in
The exterior housing 116 may include a marking, tab, embossed section, recess section, textured section, protuberance, color coding, appliqué, or other indicia which serves to indicate position and/or orientation of the infusion set 102 within the insertion assembly. For example, the exterior housing 116 in
An inserter assembly 100 may also include an interior housing 120. The interior housing 120 may be disposed inside of the external housing 116 when the inserter assembly 100 is assembled. Various interior housings 120 may have at least one segment which is asymmetrically designed. In the exemplary embodiment shown in
In other embodiments, a rail and track type arrangement may not be used. One of the interior housing 120 or exterior housing 116 may include at least one projection such as a tab which interfaces with a recess or guide in the other. This may similarly provide a keyed engagement and prevent relative rotation. In other embodiments, the cross sectional shape of the interior housing 120 and external housing 116 may only allow for the parts to be placed together in one orientation and may inhibit any relative rotation. For example, the cross section may be tear drop shaped or various asymmetric polygonal shapes.
The interior housing 120 may also include an infusion set base interfacing segment 126. This base interfacing segment 126 may include a number of projections 352 which may ensure that the base 106 may only be inserted into the inserter assembly 100 in a desired orientation. The projections 352 may also optionally aid in retention of the base 106 within the inserter assembly 100 and some friction between the projections 128 and surfaces of the base 106 may be present when the base 106 is installed in the inserter assembly 100. For example, the base 106 may be press fit into the projections 352. The tightness of the fit may be minimal so as to allow removal of the base 106 from the base interfacing segment 126 with little force. The projections 352 may also aid in maintain the base 106 in a level orientation within the base interfacing segment 126.
An inserter assembly 100 may further include a sharp holder 130. The sharp holder 130 may retain an insertion sharp 132 thereon. The insertion sharp 132 may be glued or otherwise bonded into the sharp holder 130 so as to be fixedly located relative to the sharp holder 130. Any suitable type of sharp 132 may be used. For example, the sharp 132 may be a hollow or solid needle, stylet, or other pointed member which may be made of a metal material such as steel. A sharp retractor 134 and a number of springs 136, 138 may also be included in an inserter assembly 100. A retainer base 140 may a serve to couple to a bottom portion of the inserter assembly 100 to hold the various components in place within the inserter assembly 100. In the example, the retainer base 140 includes retaining interfaces 142 which may snap into cantilevered retainer arms 144 included on the exterior housing 116. Other couplings are also possible such as a bayonet mount, interference fit, snap fit, adhesive, glue, threads, solvent bonding, welding, etc. When coupled together, the exterior housing 116 and retainer base 140 may form a casing of the inserter assembly 100.
As will be further described later in the specification, a latch arrangement may be included in the inserter assembly 100 and may hold the sharp holder 130 and sharp retractor 134 in place prior to and during portions of the inserter assembly 100 actuation. The latch arrangement may include a number of catches. When free to move, the springs 136, 138, may displace the sharp holder 130 and sharp retractor 134 as well as components retained thereon to complete the insertion of the cannula 104 into the patient and attach the infusion set 102 onto an infusion site. Retraction of the sharp 132 into the inserter assembly 100 may also occur as part of the actuation so as to displace the sharp 132 to a point where it is pulled out of the infusion set 102 and protected from contact with a user.
When unpacked by a user, an insertion assembly 100 may be provided with a lock member 146. The lock member 146 may be inserted through fenestrations 148, 150 in the exterior housing 116 and interior housing 120 respectively so as to span the width of at least a portion the interior housing 120. While present in the inserter assembly 100, the lock member 146 may prevent actuation of the inserter assembly 100. Example lock members 146 may mechanically prevent displacement of one or more component of the inserter assembly 100 which initiates the actuation action of the inserter assembly 100. In the example embodiment, the lock member 146 includes a flange 152 which may be grasped by a user during removal of the lock member 146.
As shown, a lock member 146 may include a number of raised sections 154 (e.g. ridges or bumps) thereon. These raised sections 154 may provide material which may help to bond to a portion of the adhesive backing 111 during a welding operation. As a result, the lock member 146 may be attached to the adhesive backing 111 such that a user would have a visual cue in the event that one of the lock member 146 or adhesive backing 111 is removed while the other is still in place. This may help to encourage removal of both components prior to an attempt to actuate the inserter assembly 100 making the device more intuitive.
Referring now also to
Referring now also to
An interior housing 120 is also included in
A sharp holder 130 which may be affixed to an insertion sharp 132 is shown in the example embodiment. Additionally, a sharp retractor 134 and a number of springs 136, 138 may also be included. A retainer cap 406 may a serve to couple to a top portion of the inserter assembly 100 to hold the various components in place within the inserter assembly 100. In the example, the retainer cap 406 includes cantilevered retainer arms 408 which may snap into retaining interfaces 411 included on the exterior housing 116. Other couplings are also possible such as a bayonet mount, interference fit, snap fit, adhesive, glue, threads, solvent bonding, welding, etc. When coupled together, the exterior housing 116 and retainer cap 406 may form a casing of the inserter assembly 100.
As described in detail elsewhere herein, a latch arrangement may be included in the inserter assembly 100 may hold the sharp holder 130 and sharp retractor 134 in place prior to and during portions of the inserter assembly 100 actuation. The latch arrangement may include a number of catches. When free to move, the springs 136, 138, may displace the sharp holder 130 and sharp retractor 134 as well as components retained thereon to complete the insertion of the cannula 104 into the patient and attach the infusion set 102 onto an infusion site. Retraction of the sharp 132 into the inserter assembly 100 may also occur as part of the actuation.
In the example embodiment depicted in
Referring now to
As described in detail elsewhere herein, a latch arrangement may be included in the inserter assembly 100 may hold the sharp holder 130 and sharp retractor 134 in place prior to and during portions of the inserter assembly 100 actuation. The latch arrangement may include a number of catches. When free to move, the springs 136, 138, may displace the sharp holder 130 and sharp retractor 134 as well as components retained thereon to complete the insertion of the cannula 104 into the patient and attach the infusion set 102 onto an infusion site. Retraction of the sharp 132 into the inserter assembly 100 may also occur as part of the actuation.
In the example embodiment depicted in
Referring now to
In various embodiments, adhesive may be applied to the bottom face 162 of a platform portion 160. An adhesive backing 111 (see, e.g.
In various embodiments, a platform portion 160 may include a number of pass throughs 166. Three circular pass throughs 166 are shown in
Though the pass throughs 166 may be helpful during manufacturing, the pass throughs 166 may also provide other benefits. For example, the pass throughs 166 may provide a window to view skin around the infusion site. As a result, a user may be able to assess the skin for signs of irritation or inflammation (e.g. rubor or redness). Additionally, the pass throughs 166 may provide a pathway through which ambient air may be in communication with space between any raised segments 164 on the bottom face 162 of the infusion set base 106. This may help to allow the area under an infusion set 102 to breathe while the infusion set 102 is adhered against the skin.
Extending from the periphery of the platform portion 160 may be a number of tubing retainers 184. The tubing retainers 184 may allow for infusion tubing 366 to be wrapped around a portion of the infusion set 102 and held in place. This may aid in inhibiting kinking of the tubing 366 and help a user to conveniently route infusion tubing 366 as needed.
Referring now also to
Guides 172 for each of the connector fingers 370 and the flanking projections 372 may also be included and in the example embodiment define a number of slots along which the connector fingers 370 and flanking projections 372 may be slid as the connector 368 is displaced into engagement with the infusion set 102. The guides 172 may make it easier for a user to couple the infusion set 102 and connector 368 together. Additionally, the guides 172 may help to ensure that a sharp on the connector 368 is introduced into the infusion set 102 along or close to a desired insertion axis. In the example, the guides 172 include a notch 174. Each notch 174 may be sized to accept a projection on a component of the inserter assembly 100. Notches 174 may also be sized to accept at least a portion of a projection included on a cannula subassembly 114 (see, e.g.
In various embodiments, the base 106 may also include a receptacle 176 for mating with a cannula subassembly 114 (see, e.g.
Referring now also to
Referring now additionally to
The receiving section 192 of the septum housing 108 may also receive a portion of a septum retainer 112. The septum retainer 112 may be constructed with a body 206 from which extends at least one cantilevered projection 188 including a terminal protuberance or latch member 190. In the example, the body 206 is substantially planar. Additionally, two cantilevered projections 188 which are disposed opposite one another and extend generally perpendicular to the body 206 are present. These cantilevered projections 188 may fit within guides 208 included on the interior surface of the receiving section 192 of the septum housing 108. The guides 208 shown are recessed into the interior surface of the receiving section and are substantially in the same plane as the ears 204. The guides 208 are ramped such that distance between the two guides 208 decreases as distance from the cannula 104 decreases. This may deflect the cantilevered projections 188 of the septum retainer 112 toward the axis of extension of the cannula 104 as the septum retainer 112 is advanced into the receiving section 192. Once the septum retainer 112 has been advanced into the septum housing 108 a certain distance, the cantilevered projections 188 may spring outward such that the protuberance 190 on each cantilevered projection 188 enters into latching engagement with a catch 210 on the septum housing 108 as shown in
As shown, the septum retainer 112 includes a channel 218 which extends therethrough. The example channel 218 is disposed in substantially the center of the body 206. When the septum retainer 112 is locked in place within the cannula subassembly 114, a nub or projection 220 of the septum 110 may extend into the channel 218. Thus the channel 218 may provide an access pathway for an insertion sharp 132 of the inserter assembly 100 to extend though the infusion set 102 and out of the outlet 212 of the cannula 212.
The cannula 104 may include an insertion sharp guide section 216 which may aid in directing the insertion sharp 132 into the lumen 202 of the cannula 104. The insertion sharp guide section 216 may have a funnel like shape though other shapes are also possible. In the example embodiment, the insertion sharp guide section 216 includes relatively steep sides and is encompassed by a flat (or perhaps chamfered or rounded) peripheral edge which forms a wall of the fluid introduction volume within the infusion set 102. This peripheral edge may be the uppermost face of the raised section 192 in some embodiments. The insertion sharp guide section 216 may be continuous with the walls of the lumen 202 of the cannula 104 and may be wetted by any fluid delivered through the infusion set 102. The insertion sharp guide section 216 may also be continuous with the raised region 194 in the receiving section 192 of the septum housing 108.
Referring primarily to
In various embodiments, the cannula 104 may be tapered or non-tapered. In some embodiments, the cannula 104 may include one or more tapered section and one or more untapered or straight section. Any tapered sections may extend at an angle to the long axis of the cannula 104. In some embodiments, instead of being at some constant angle to this axis, a curvature may be present. The angle or the degree of curvature over a tapered section may also vary over the extent of a tapered section.
In some embodiments, a first portion of the cannula 104 proximal the outlet 212 is tapered. The taper present at this section results in a reduced wall thickness as proximity toward the outlet 212 of the cannula 104 increases. Additionally, a second portion of the cannula 104 adjacent the point on the septum housing 108 from which it extends is also tapered. The angle of the taper of the second portion may be substantially equal to the angle of the insertion sharp guide section 216 in certain embodiments. The taper at the second portion decreases the width of the cannula 104 at this section without substantially decreasing the thickness of the wall of the cannula 104 surrounding the lumen 202. A straight section may be disposed intermediate the first and second portions of the cannula 104 in the example embodiment. Alternatively, a slightly tapered section may be used as the intermediate segment. This section may be tapered to a lesser degree than the first and second portion of the cannula and may or may not be tapered in a manner which maintains a constant wall thickness along the length of the intermediate segment.
Referring now to
As shown, the cannula subassembly 114 includes a septum 110 similar to that shown in
Additionally, in the exemplary embodiment, the septum housing 108 does not include fenestrations which form a connector needle passage 222 (see, e.g.
In some embodiments, the slots 390 in the side wall 392 of the septum housing 108 may be used in place of the salient 388 as a retention arrangement which cooperates with a protuberance included as part of the base 106. The protuberance may catch against or engage with a wall of one of the slots 390 inhibiting removal of the cannula subassembly 114. In such embodiments, the salients 388 may not be included on the septum housing 108. This may help to further simplify production of the cannula subassembly 114.
Referring now to
Referring now to also to
Referring now to
In some embodiments, and as shown in
In certain examples, and referring now to
Referring now also to
Referring now to
Upon introduction of a cannula subassembly 114 into the base 106, the septum housing 108 (see, e.g.,
Referring now to
Referring now also to
The lock member 146 may include a flange 152 which may be grasped to aid in extraction. The lock member 146 may also include a stem portion 226 which projects away from the flange 152. The stem portion 226 may support a number of arms 228, 230. In the example embodiment, the arms 228, 230 are arranged in an “H” like pattern and the stem portion 226 is connected to the arms 228, 230 via the cross piece of the “H”. Arms 230 may reside in the fenestration 150 of the interior housing 120 most distal to the flange 152. Arms 230 may also include a chamfer feature 232 which may aid in guiding the lock member 146 during its installation into the inserter assembly 100.
As shown, arms 228 may be cantilevered so as to be able to deflect inward toward the stem portion 226. The distance between the outer edges arms 228 may be greater than the width of the fenestration 150 through which they pass when the lock member 146 is installed into the inserter assembly 100. During installation, the arms 228 may deflect toward the stem portion 226 to allow the arms 228 to pass through the fenestration 150. Once through the fenestration 150, the arms 228 may spring back outward to their unstressed state. Thus, as best shown in
In various examples, at least one component of the inserter assembly 100 may include at least one lock member constraining member such as raised bumpers 238. In the example embodiment, the bumpers 238 are included on the needle retractor 134 and extend from a top plate 328 thereof. The raised bumpers 238 may flank or be positioned aside or adjacent at least a portion of the lock member 146. The bumpers 238 may thus prevent any wobbling or pivoting of the lock member 146 within the inserter assembly 100. The bumpers 238 may also aid in redirecting the lock member 146 during installation if the lock member 146 is introduced into the inserter assembly 100 crookedly. A bumper 238 may also be provided to limit the depth which the lock member 146 may be pressed into the inserter assembly 100.
Referring now also to
The lock member 146 may include a flange 152 which may be grasped to aid in extraction. The lock member 146 may also include an appendage 376 which projects away from the flange 152. A tine 378 may be included within the appendage 376. The tine 378 is cantilevered to the appendage 376 at a portion of the tine 378 most distal to the flange. The tine 378 is also constructed to as to naturally project above a face 380 of the appendage 376 but be flexible when force is applied to the unsupported end of the tine 378. As shown, the unsupported end of the tine 378 includes a ramped region 382. The end of the appendage 376 most distal to the flange 152 may also include a chamfer feature 384 which may aid in guiding the lock member 146 during its installation into the inserter assembly 100. As the lock member 146 is installed into the inserter assembly 100, the top wall of the fenestration 150 may deflect the tine 378 toward the surface of the appendage 376 such that the tine 378 may pass through the fenestration 150. After completing introduction of the lock member 146, the tine 378 may spring back toward its initial unstressed state. Thus, as best shown in
Referring now to
A trigger for the inserter assembly 100 may be kept from actuation until the skin has been tugged away from the rest of the body a distance sufficient to generate the force required to begin relative movement. Triggering may not be possible until a requisite amount of relative displacement has occurred. Once triggered, an inserter actuation assembly (exemplary embodiments described below) of the inserter assembly 100 may be freed to complete placement of an infusion set 102 at the desired infusion site. The actuation assembly may include a trigger arrangement which, once released, causes an insertion sharp to be driven into an infusion site. The actuation assembly may also retract the insertion sharp back into the inserter assembly 100. The actuation assembly may couple a cannula subassembly 114 to an infusion set base 106. The actuation assembly may also uncouple the infusion set 102 from the inserter assembly 100 once the infusion set 102 has been installed at a desired infusion site.
In some embodiments, inserter assemblies 100 may be placed on the skin and trigger actuation as the inserter assembly 100 is lifted up so as to be removed. No other depression, twisting, squeezing, etc. of a trigger, button, housing sleeve or other portion of an inserter assembly 100 by a user may be needed to provoke the actuation, however, the actuation may still be under the control of the user. The relative movement of the free component(s) of the inserter assembly 100 with respect to the restricted component(s) may trigger actuation, by, for example, displacing or dislodging a latch and freeing one or more bias members to begin driving actuation. Thus, a trigger internal to the inserter assembly 100 may be actuated as a result of the removal action of the inserter assembly 100 from the body. The trigger may be automatically actuated, for example, when skin at the infusion site has been lifted at least a certain distance from underlying anatomy. From the perspective of a user, such an inserter assembly 100 may simply be placed on the skin and then withdrawn to execute placement of the infusion set 102.
In alternative embodiments, a discrete manual triggering action may be employed to trigger actuation of an inserter assembly 100. Any arrangement which would be apparent to one skilled in the art may be used to facilitate manual triggering. An inserter assembly 100 may include, for example, one or more button which when displaced may trigger actuation by dislodging a latch within the inserter assembly 100. Alternatively, a portion of the inserter assembly 100 may be deformable and squeezing the inserter assembly 100 may press a projection which displaces with the deformable section into a latch to dislodge the latch. The button or deformable section may, for instance, be included on exterior housing 116 in certain examples. A twisting action may be employed to trigger actuation of an inserter assembly 100. Such a twisting action of one portion of the inserter assembly 100 (e.g. the casing) relative to another (e.g. the remainder the inserter assembly 100) may sweep a projection of the inserter assembly 100 into a latch to dislodge the latch. In other embodiments, a pin or similar member may be pulled out of the inserter assembly 100 after the inserter assembly has been pulled away from the skin to trigger actuation. In embodiments including a lock member 146 (see, e.g.,
While such designs may make triggering actuation simple, intuitive, and more foolproof, other advantages may also be realized. For example, as the inserter assembly 100 is lifted, the inserter assembly 100 may be designed so as to tug the skin to which the base 106 of the infusion set 102 is attached away from the underlying muscle and other body structures or anatomy. Thus, when inserted, the cannula 104 of the infusion set 102 may be more reliably placed within a subcutaneous layer of adipose tissue. This may reduce pain upon insertion, help minimize bruising, increase the potential body area over which infusion sites may be chosen, and may lead to more predictable absorption of agents such as insulin. The skin may also be pulled taut facilitating easy penetration of the insertion sharp 132 through the skin. As the skin is passively lifted along with the inserter assembly 100, no pneumatic vacuum is required to be generated. This may allow an inserter assembly 100 to be less complicated and made with fewer parts. Additionally, pneumatic seals either against the skin or within the inserter assembly 100 may be omitted. Lifting of the skin may be more reliably accomplished as the contour of the body at the infusion site (which could present a sealing challenge) may be largely irrelevant. Furthermore, no pinching of the skin may be needed to pull the skin away from the underlying structures. This may help to make the insertion more comfortable, may limit bruising, and may more reliably pull the skin away from underlying structures. The inserter assembly 100 may also ensure that insertion of the cannula 104 into the skin occurs at a prescribed orientation. The skin may be held in place so as to be parallel or perpendicular to a reference plane or axis (e.g. parallel to the bottom face 162 of the base 106 of the infusion set 102 or perpendicular to the axis of the insertion sharp 132 or insertion sharp displacement path) which moves with the inserter assembly 100. Thus, the angle of the inserter assembly 100 or path along which the inserter assembly 100 is pulled away with respect to the body may not alter insertion angle. Example embodiments shown herein depict an insertion angle which is substantially perpendicular to the skin, however, insertion at any angle (just over 0° to 90°, e.g. 30°, 45°, 600 etc.) may be similarly ensured by fixing the skin relative to a reference plane or axis which moves with the inserter assembly 100. Another potential benefit is that there may be less psychological concern associated with the triggering of the actuation. As depression, twisting, squeezing, etc. of some actuator by the user may not be necessary, there may be less anxiety built up in anticipation of triggering the actuation. The exact moment of actuation as the inserter assembly 100 is withdrawn may not be known to the user. This may help to limit psychological concerns and may lower perceived pain.
As shown in
Referring now to
Referring now to
Referring now also to
In various embodiments, the wall 292 may also include interrupted regions which create one or more cantilevered arms 296. In the example embodiment, the cantilevered arms 296 are disposed opposite one another on the sharp holder 130. One of the cantilevered arms 296 may have a greater length than the other of the cantilevered arms 296. In other embodiments, both cantilevered arms 296 may be identical mirror images (see, e.g.,
An alternate embodiment of a sharp holder 130 is shown in
As best shown in
Referring now also to
In various embodiments, the sharp retractor 134 may include a guide 320 along which the fin 318 may slide during assembly. The guide 320 may also, in certain embodiments, ride along the fin 318 during at least a portion of the retraction of the sharp retractor 134. The example guide 320 is formed as two raised parallel ribs. The catch 306 includes two supports 324 which the ledge 302 of the cantilevered arm 296 may engage with. The supports 324 may include a gap 326 therebetween. The gap 326 may have a width equal to or wider than the width of the fin 318. The fin 318 may be advanced through the gap 326 during lifting of the inserter assembly 100 from the skin 356. This may cause the fin 318 to come into abutment with the protuberance 300 on the cantilevered arm 296 and force the cantilevered arm 296 to bend inward. Once the fin 318 has progressed a certain distance, the cantilevered arm 296 may be deflected to the point that the ledge 302 no longer engages the catch 306 and the spring 136 may be released and actuation may be triggered. The location of the fin 318 on the finger 308 and/or the height of the finger 308 may be adjusted to alter the displacement distance at which release of the ledge 302 from the catch 306 occurs. In embodiments where the protuberance 300 includes a ridge 301 (see, e.g.,
Still referring to
Again referring now primarily to
As best shown in
In certain embodiments, only one arm 332 may be included. In some embodiments, the arms 332 on the sharp retractor 134 may not engage the infusion set base 106. The arms 332 may engage a portion of the interior housing 120 so as to prevent premature retraction of the sharp retractor 134. The interior housing 120 may also include latch which may interface with the guide 172 or another cooperative portion of the infusion set base 106 to retain the infusion set base 106 in place.
A number of standoffs or alignment projections 352 may be included in the inserter assembly 100 to aid in ensuring that the infusion set base 106 is assembled into the inserter assembly 100 in a desired orientation. The standoffs 352 may be disposed on an interior housing 120 of the inserter assembly 100 as shown. While retained by the arms 332 of the sharp retractor 134, the infusion set base 106 may be held such that surfaces of the infusion set base 106 are adjacent to the standoffs 352. This may prevent infusion set base 106 and the sharp retractor 134 on which it is retained from displacing into the inserter assembly 100 due to the presentation of a mechanical interference by the standoffs 352. As a consequence, the catching of the ledges 348 of the arms 332 on the infusion set base 106 may also aid in holding the spring 138 in an energy storing state. The standoffs 352 may also ensure that the infusion set base 106 is positioned within the inserter assembly 100 such that the adhesive 374 may be pressed against the skin 356. In the example, the standoffs 352 ensure that the infusion set base 106 is substantially even with the skin contact face on the retaining base 140.
With the infusion set base 106 so positioned, the infusion set base 106 may also act as a protective barrier. As the cannula subassembly 114 and insertion sharp 132 may be internal to the inserter assembly 100, when the infusion set base 106 in the initial retained position, the user may be protected from accidental contact with the insertion sharp 132. This may additionally help to keep the cannula 104 or insertion sharp 132 from coming into contact with contaminants. Though a void for receipt of the cannula subassembly 114 may extend through the entirety of the infusion set base 106, the void may be sized to prevent finger ingress (e.g. have a cross-section smaller than that of a finger). Thus the infusion set base 106 may present an obstacle which blocks unintentional access to the insertion sharp 132 and cannula 104. Additionally, as the cannula subassembly 114 is internal to the inserter assembly 100, any adhesive backing 111 provided on the infusion set base 106 need not include an interruption to allow for passage of the cannula 104 therethrough. Thus, the void in the infusion set base 106 for the cannula subassembly 114 may be blocked by the adhesive backing 111 until just prior to use. This may further prevent finger ingress and may mitigate potential for detritus to enter the inserter assembly 100. In some examples, the adhesive 374 may also extend over this opening and may be punctured through during insertion of the cannula 104 into the skin 356.
Referring now to
Cross sectional views of the example embodiment of the inserter assembly 100 in
Referring now to
Still referring to
In various embodiments, the resiliency of the resilient members or arms 330 may control, at least in part, a distance which a given user's skin 356 is tugged away from the body before actuation of the inserter assembly 100 occurs. As the skin 356 is tugged away from the body, the elasticity of the skin 356 may exert a pulling force which presses the arms 330 against the deflector members 358. The type, amount, and/or arrangement of adhesive 374 on the infusion set base 106 may be selected so as to withstand this force while maintaining adherence to the skin 356 and compatibility with the skin 356. Once this force overcomes the resiliency of the arms 330 and the components of the inserter assembly 100 described above begin to move relative to one another, the finger 308 may begin to advance into the void 322. Prior to this, triggering of actuation may be prohibited. Thus, the releasable engagement between the first and second units and the trigger may form an actuation restricting arrangement which may ensure that the skin is lifted prior to the inserter assembly being triggered. The resiliency may be chosen such that an inserter assembly 100 may be used on a wide range of individuals having different skin 356 properties (e.g. elasticity) while still ensuring the skin 356 is tugged at least some minimum distance before actuation is triggered. In some embodiments, inserter assemblies 100 may be produced with differing arm 330 resiliencies which may be suitable for different user groups. For example, arms 330 with less resiliency (e.g. an elderly resiliency) may be available for use for older user groups whose skin 356 has a tendency to be less elastic.
The steepness of the ramped section 340 on each arm 330 may be modified to alter the amount of force applied before relative movement occurs. Shallower angles on the ramped section 340 may be employed where more force before relative movement occurs is desired. Sharper angles on the ramped section 340 may be used where a lower force may be desirable. There may be a high (e.g. juvenile), medium (e.g. adult), and low (e.g. elderly) skin elasticity ramp angle in certain implementations. Additionally, the thickness of the arms 330 may be altered to change their resiliency. Thinner arms may be used where less force is desired and thicker arms may be used where more force is desired. Various supporting features such as buttresses may also be included and may support the arms 330 against deflection at a point near the supported end of the arms 330. The location of the second plate 338 may also be modified in certain examples to alter the length of the deflectable portion of the arms 330 making them more or less resilient. The material used to form the arms may also be selected based on its resiliency properties.
The length of the finger 308 and location of the fin 318 on the finger 308 may play a role in controlling, at least in part, the distance a user's skin 356 is tugged away from the body. These parameters may be modified to alter this distance.
Referring now to 27C-D two additional cross-sections of an example inserter assembly 100 are shown. Each of the example inserter assemblies 100 includes an additional spring 156, 158. These springs 156, 158, are described above in relation to
Referring now to
Prior to the magnitude of relative displacement between the portions of the inserter assembly 100 increasing to this insertion release point threshold, the inserter assembly 100 may be precluded from triggering actuation. This may ensure that the skin is lifted some distance before actuation of the trigger arrangement (e.g. disengagement of a catch 306 and ledge 302, see, e.g.,
Referring now to
Referring now to
In certain embodiments, retraction may not be automatic and/or may not be spring biased. For example, the insertion sharp 132 may remain in the advanced position and the removal action of the user may manually pull the insertion sharp 132 out of the cannula 104. In such embodiments, spring 138 may be omitted. In some embodiments, disengagement of the arms 332 from the infusion set base 106 may not be automatic. Any arrangement which would be apparent to one skilled in the art may be used to facilitate manual decoupling of the arms 332 from the infusion set base 106. A twisting action may be employed to free the arms 332 from the infusion set base 106 allowing the insertion sharp 132 to then automatically retract or be manually pulled out. One or more button may be included in alternative embodiments. Displacement of the one or more button may uncouple the arms 332 from the infusion set base 106 allowing the insertion sharp 132 to then be manually or automatically retracted out of the cannula 104. Squeezing of a deformable portion of the inserter assembly 100 may similarly cause uncoupling of the arms 332 from the infusion set base 106. As would be appreciated by one skilled in the art, the inserter assembly 100 embodiments described herein could be otherwise modified to allow for various types of other manual arm 332 release schemes.
In alternative embodiments where the infusion set base 106 is retained by a portion of the interior housing 120 and the arms 332 engage a portion of the interior housing 120, displacement of the sharp holder 130 may similarly cause release of the infusion set 102 and trigger retraction. For example, the ears 204 may collide with and cause displacement of catch features (e.g. spread them away from the infusion set 102) on the interior housing 120 resulting in them decoupling from the infusion set 102. Additional ears 204 or other projections on the cannula subassembly 114 may be included to cause disengagement of the arms 332 (e.g. via spreading of the arms 332) from the interior housing 120 to permit retraction.
In certain embodiments, there may be a dwell period during inserter assembly 100 actuation where retraction of the insertion sharp 132 has been triggered and the sharp retractor 134 is displacing, however, the insertion sharp 132 remains substantially static. During this dwell period, spring 136 may continue to exert pressure on the cannula subassembly 114 through the sharp holder 130. This may block any possible tendency of the cannula subassembly 114 to bounce or rebound as it is propelled into the infusion set base 106 and ensure it is firmly retained in the base 106. As shown, once the insertion movement is complete, a dwell gap 360 may be present between a stop 362 on the sharp retractor 134 and the ledge 302 on each cantilevered arm 296 of the sharp holder 130. Spring 136 may still have energy stored therein and continue to press against the sharp holder 130. The dwell gap 360 on each side may be equal in size.
Referring now additionally to
As shown in
Referring now to
The exemplary lock members 141 in the example embodiment are depicted as cantilevered lock tabs. Each cantilevered tab includes a protuberance 143 which is disposed on a portion of that lock member 141 most distal to the skin contacting intermediary region 314 of the retainer base 140. The protuberance 143 be ramped and may define a ledge region 145. As the exterior housing 116 and the retainer base 140 displace relative to the interior housing 120 during withdrawal of the inserter assembly 100 from the skin 356, a portion of the interior housing 120 may contact ramped portion of the protuberance 143. As shown, the interior housing 120 includes a radial flange 121 which separates the infusion set base interfacing segment 126 of the interior housing 120 from the railed segment 122 (see
Referring now to
Referring now also to
A wall 426 may extend upward from the shelf 420. The exemplary wall 426 shown in
Additionally, each wall section 428 may include a first section 436 and a second section 438. The first section 436 may have a smaller width than the second section 438 and may be the more proximal of the regions to the shelf 420. The first section 436 and second section 438 may be connected by an intermediary region 440. The intermediary region 440 may be angled or curved so as to transition between the differing widths of the first section 436 and second section 438. A nub 442 may be included projecting from the intermediary section 440 or a portion one of the first section 436 and second section 438 adjacent to the intermediary section 440. Though not shown a glue or adhesive supply port similar to port 304 of
Referring now primarily to
Referring now primarily to
Still referring to
Each of the one or more notches 342 or the arms 330 may engage with a cooperating projection 344 (see, e.g.
Again referring now primarily to
Still referring primarily to
In various embodiments, the ledge section 434 of the sharp holder 130 may prevent displacement of the sharp holder 130 beyond a certain amount. Alternatively, the ledge section 434 may be disposed on the sharp holder 130 such that a dwell gap 360 (see, e.g.,
In various embodiments, as the sharp holder 130 displaces, the cannula subassembly 114 may be coupled into the infusion set 106 as described elsewhere herein. Additionally, ears 204 of the cannula subassembly 114 may cause the arms 332 to spread apart as the sharp holder 130 is displaced leading to release of the infusion set base 106 from the arms 332. This may release spring 138 and begin retraction of the insertion sharp 132. During retraction, the dwell gap 360 may decrease (if present) until top plate 328 of the sharp retractor 134 contacts the ledges 434 on the sharp holder 130. Once this occurs, the restoring action of spring 138 may begin to displace the sharp holder 130 and insertion sharp 132 affixed thereon along with the sharp retractor 134. This displacement may retract the insertion sharp 132 out of the cannula 104 and the infusion set 102. Once retraction has completed the sharp retractor 134 may be pressed against the exterior housing 116 by spring 138 and the insertion sharp 132 may be housed within the inserter assembly 100 to aid in protecting against unintentional finger sticks or the like. The infusion set 102 may be held in place on the skin 356 with the cannula 104 indwelling in the patient.
Referring now to
In some embodiments, the button 550 may not include a cantilevered beam section 554 and may instead be formed as a strip of material defined by cutouts flanking both sides of the strip. The enlarged section may be placed at or near the center of the strip. The strip may be deflected inward toward in inside of the inserter assembly 100 with application of pressure to trigger the insertion.
Referring now also to
Referring primarily to
Referring primarily to
Referring now also to
In some embodiments, and referring now to
Referring now to
Referring now to
Depending on the embodiment, actuation of the inserter assembly 1000 may also cause assembly of the infusion set 102 to be completed. The infusion set 102 may be provided as a number of portions (e.g. separate components, subassemblies, or combinations thereof) within a set cartridge 1002. Actuation of the inserter assembly 1000 may cause each portion of the infusion set 102 to be coupled together to complete the assembly of an infusion set 102. For example, assemblage of an infusion set 102 may occur as an initial stage of the actuation of the inserter assembly 1000 or may occur as part of an insertion stage of inserter assembly 1000 actuation which results in the cannula 104 being introduced into the patient.
Referring now to
As shown, an infusion set 102 may be contained within the set cartridge 1002 as a first portion and a second portion which are separate from one another, but coupled together during actuation of the inserter assembly 1000 to form the infusion set 102. The first portion may include a base 106 which may be applied to the skin of a patient and may couple to a fluid pathway (e.g. via a terminal connector on the pathway) which is part of or extends from an infusion pump. An adhesive backing, film, or liner 111 may be included and may be applied over adhesive 374 included on the infusion set base 106. The infusion set base 106 may seat within a receiving bay 1006 of an interior housing 1008 of the set cartridge 1002. The receiving bay 1006 may include notches 1010 which may accept tube retainers 184 included on the infusion set base 106. In the example embodiment, the notches 1010 may also serve to ensure that the base 106 may only be installed within the receiving bay 1006 in a desired orientation. As shown, the interior housing 1008 may include an indention 1012. The indention 1012 may be sized so as to accept pull tabs 410 included on the adhesive liner 111. As the indention 1012 may be visible to the user, the indention 1012 may be used as an orientation indicator. This may help the user install the infusion set 102 in a manner which accommodates their planned routing pathway for infusion tubing which is to be coupled to the infusion set 102. Indicators which show the orientation of the infusion set 102 may be included on portions of the inserter assembly 1000 as well. This may be particularly true in embodiments where the set cartridge 1002 may only be coupled to the inserter assembly 1000 in a single orientation.
The second portion of the infusion set 102 may be a subassembly 114 of two or more components of the infusion set 102. The second portion may include a cannula 104, septum housing 108, septum 110, and septum retainer 112 for example (an exemplary cannula subassembly 114 is shown exploded apart in
A set cartridge 1002 may further include a sharp holder 130. The sharp holder 130 may retain an insertion sharp 132 thereon. The insertion sharp 132 may be glued or otherwise bonded into the sharp holder 130 so as to be fixedly located relative to the sharp holder 130. The insertion sharp 132 may alternatively be press fit into the sharp holder 130 or the sharp holder 130 and insertion sharp 132 may be joined in an overmolding process. Any suitable type of sharp 132 may be used. For example, the sharp 132 may be a hollow or solid needle, stylet, or other pointed member which may be made of a metal material such as steel.
Referring now primarily to
Referring now also to
Referring again primarily to
Referring now to
In certain embodiments, only one arm 1016 may be included. In some embodiments, the interior housing 1008 may also or instead include latch which may interface with the guide 172 or another cooperative portion of the infusion set base 106 to retain the infusion set base 106 in place.
With the infusion set base 106 retained by the arms 1016, the infusion set base 106 may also act as a protective barrier. As the cannula subassembly 114 and insertion sharp 132 may be internal to the set cartridge 1002, when the infusion set base 106 in the initial retained position, the user may be protected from accidental contact with the insertion sharp 132. This may additionally help to keep the cannula 104 or insertion sharp 132 from coming into contact with contaminants. Though a void for receipt of the cannula subassembly 114 may extend through the entirety of the infusion set base 106, the void may be sized to prevent finger ingress (e.g. have a cross-section smaller than that of a finger). Thus the infusion set base 106 may present an obstacle which blocks unintentional access to the insertion sharp 132 and cannula 104. Additionally, as the cannula subassembly 114 is internal to the set cartridge 1002, any adhesive backing 111 provided on the infusion set base 106 need not include an interruption to allow for passage of the cannula 104 therethrough. Thus, the void in the infusion set base 106 for the cannula subassembly 114 may be blocked by the adhesive backing 111 until just prior to use. This may further prevent finger ingress and may mitigate potential for detritus to enter the set cartridge 1002. The exterior housing 1004 may also present a barrier which inhibits a user from interacting with the insertion sharp 132 and/or cannula 104.
As shown in
The infusion base retainer 1014 may also include a set of septum housing guides 1046. The septum housing guides 1046 (see,
Referring now to
As shown in the exploded views in
Example exterior housings 116 may include a marking, tab, embossed section, recess section, textured section, protuberance, color coding, appliqué, or other indicia which serves to indicate position and/or orientation of the infusion set 102 within the insertion assembly 1000. A raised rib 118 such as that shown in
A retainer cap 406 may a serve to couple to a top portion of the inserter assembly 1000 to hold the various components in place within the inserter assembly 1000. In the examples shown in
Still referring to
As shown in
A receptacle body 1060 (described in greater detail in relation to
A retraction latch body 1100 and a retracting spring retainer 1102 may also be included. As will be further described later in the specification, the retraction latch body 1100 and retraction spring retainer 1102 may engage with one another to hold a bias member such as spring 1104 (or springs 1104A, B of
An insertion driver 1062 may also be included in an inserter assembly 1000. As will be further described later in the specification, the insertion driver 1062 may have a plunger 1106 and a spring 1108 housed in a portion of the insertion driver 1062. An assembly resetting body 1110 may be included. As further described later in the specification, the resetting body 1110 may act on various components of the inserter assembly 1000 to place the components in a ready state in preparation for an actuation. When freed to transition from an energy storing state to a relaxed state, the spring 1108, may displace the insertion driver 1062 to cause insertion of a cannula 104 from an attached set cartridge 1002 and complete assembly of the infusion set 102 of the set cartridge 1002. Retraction of the sharp 132 into the set cartridge 1002 may also occur as spring 1104 (or springs 1104A, B of
Referring
A storage state in which bias members 1108, 1104A, B are in an unstressed state may facilitate use of a wide variety different of bias members 1108, 1104A, B or bias member 1108, 1104A, B materials. For example, spring relaxation and/or creep may be less of a concern allowing materials such as various polymers to more easily be utilized in construction of the bias members 1108, 1104A, B. Additionally, other components of an inserter assembly 1000 may not be subjected to sustained stress exerted by bias members of the inserter assembly 1000 being in a stressed state when the inserter assembly 1000 is being stored (e.g. during shipping or when sitting in stock). Consequentially, any creep engendered by this sustained stress may be removed. This in turn may allow for greater design flexibility in other components of the inserter assembly 1000. For example, a greater variety of materials may be used or certain components may be made smaller. It should be noted that in certain examples, the set cartridge 1002 (or sensor cartridge or lancet cartridge) may not include any bias members. Instead, all bias members may be included in the inserter assembly. As a result, the components of the set cartridge 1002 may also be stored in a state where they are not subjected to sustained stress. This may similarly assist in providing greater design flexibility for components of cartridges 1002.
Referring now to
To couple the cartridge 1002 to the inserter assembly 1000, the cartridge 1002 may be placed against a receptacle body 1060 included within the inserter assembly 1000. A sharp driver 1062 including a port 1064 for the mating section 1056 of the sharp holder 130 may be accessible through the receptacle body 1060. In an initial coupling state, the mating section 1056 may be oriented in an aligned position with the port 1064 such that the mating section 1056 may pass into the port 1064. The mating pins 1050 may act as standoffs which limit the amount that the mating section 1056 may be displaced into the port 1064. In the example embodiment, the mating pins 1050 may limit displacement of the mating section 1056 into the port 1064 such that the thinned section 1058 is in line with a rim 1066 surrounding the port 1064. The cartridge 1002 may then be rotated from the initial coupling state to a fully coupled state. As the thinned section 1058 is in line with the rim 1066, the mating section 1056 may be free to rotate. During coupling, the terminal flange 1059 may be swept over an interior face of the rim 1066 into an orientation in which it may no longer pass through the port 1064. The top flange 1059 may be biased against the interior face of the rim 1066 by at least one bias member 1108 (see, e.g.
Referring now also to
Still referring primarily to
Referring now to
Referring now to
Still referring to
Referring now to
As shown, the locating plate 1116 may include ridges 1122 which may be disposed on the sides of the locating plate 1116. Other components of the inserter assembly 1000 may also include ridges along their side edges (see e.g. the exploded views in
As shown in
Referring now to
Referring now to
Referring now to
As the reset body 1110 is displaced, bias members 1104A, B (or bias member 1104 of the example shown in
Referring primarily to
Referring now to
Referring now to
Referring now to
Referring now to
Each paddle body 1164 may include a medial face 1168 proximal to the longitudinal axis or midplane of the inserter assembly 1000 and a lateral face 1170 on a side of the paddle body 1164 opposite the medial face 1168. The projection 1166 may be disposed on the lateral face 1170 of each paddle body 1164. The projection 1166 may be centrally disposed on each paddle body 1164 such that the projection 1166 may be displaced without contacting the director wedges 1156 during actuation. The lateral face 1170 of each paddle body 1164 may include a lateral ramp portion 1172 on the flanking portions of the paddle body 1164. The lateral ramp portions 1172 may be included on a section of the paddle body 1164 most distal to the base portion 1174 of the retainer cap 406. The lateral ramp portions 1172 may slope toward the medial face 1168 as distance from the base portion 1174 of the retainer cap 406 increases. The medial face 1168 of the paddle body 1164 may also include a medial ramp portion 1176 on the flanking portions of the paddle body 1164. The medial ramp portions 1176 may be included on a portion of the paddle body 1164 most proximal to the base portion 1174 of the retainer cap 406. The medial ramp portions 1176 may slope toward the lateral face 1170 as distance to the base portion 1174 of the retainer cap 406 decreases.
Referring now also to
As will be described in greater depth later in the specification, the exterior housing 116 may be displaced relative to the interior housing 120 in the opposite direction to fire the inserter assembly 1000. As this occurs, the medial ramp portions 1176 of the paddle body 1164 of each release finger 1154 may contact the bottom face or underside 1182 of the associated director wedges 1156. Further displacement may cause the medial ramp portion 1176 to slide along the underside 1182 of the director wedges 1156. This may generate deflection of the release finger 1154 and projection 1166 of the paddle body 1164 away from the midplane of the inserter assembly 1000. The projection 1166 of the paddle body 1164 may pass through the gap between the associated pair of director wedges 1156 as the exterior housing 116 is displaced.
As the release fingers 1154 are deflected away from the midplane of the inserter assembly 1000, the projections 1166 may deflect toward cantilevered arms 1184 on the insertion driver 1062. The arms 1184 may form resilient projections which may deflect if sufficient force is exerted against them. The unsupported end of the arms 1184 may include a curved or ramped section. A notch or pair of notches 1188 may also be present on each of the cantilevered arms 1184. In the example, each arm 1184 includes a pair of notches 1188 located near the unsupported ends of the arms 1184. The notches 1188 may be disposed similarly to the notches 342 shown in
With the release fingers 1154 deflected toward the arms 1184, further displacement of the exterior housing 116 away from the skin 356 may cause the projections 1166 on the paddle bodies 1164 to collide with protrusions 1202 on the cantilevered arms 1184. This may dislodge the notches 1188 of the cantilevered arms 1184 from cooperating projections 1200 of the interior housing 120. Thus, once the first unit of the inserter assembly 1000 (e.g. exterior housing 116 and retainer cap 406) has been pulled away from the remainder of the inserter assembly 1000 (second unit of the inserter assembly 1000) beyond a threshold distance (which may be measured from the ready position), the insertion driver 1062 may be dislodged from the insertion driver latch. This may free the spring 1108 to transition to its unstressed state and displace the insertion driver 1062 toward the skin 356. As the spring transitions from its stressed state to a relaxed state, the inserter driver 1062 may displace from its stowed state to an extended position in which at least a portion of the insertion driver 1062 projects out of the inserter assembly 1000 and into the cartridge 1002. As shown in best in
Referring now to
Referring also to
As the exterior housing 116 is pressed toward the skin 356 during the setting stage, the medial ramped portions 1176 may deflect the paddle bodies 1164 of the release fingers 1154 outwardly around the director wedges 1158. As the inserter assembly 1000 is lifted from the skin 356 to trigger insertion, the lateral ramped portions 1172 may deflect the release fingers 1154 inwardly around the deflector wedges 1158 and towards the cantilevered arms 1184. With the release fingers 1154 deflected toward the arms 1184, further displacement of the exterior housing 116 away from the skin 356 may cause the projections 1166 on the paddle bodies 1164 to collide with protrusions 1202 on the cantilevered arms 1184. This may dislodge the notches 1188 (described above) of the cantilevered arms 1184 from cooperating projections 1200 (described above) of the interior housing 120. This may free the spring 1108 to transition to its unstressed state and displace the insertion driver 1062 toward the skin 356.
As shown in
During removal of the inserter assembly 1000 and set cartridge 1002, the exterior housing 116 and retainer cap 406 may displace away from the skin 356 substantially along the axis of the insertion sharp 132. This displacement relative to the other components may cause the release fingers 1154 to deflect towards the cantilevered arms 1184 of the insertion drive 1062 as described above. The resiliency of release fingers 1154 may cause the entire inserter assembly 1000 and set cartridge 1002 to move together for at least a portion of the inserter assembly 1000 withdrawal motion from the skin 356. During this portion of the removal action of the inserter assembly 1000, the skin 356 may be lifted off underlying body structures. Portions of the inserter assembly 1000 may again displace relative to one another once the force exerted by the elasticity of the skin exceeds a force threshold and the release fingers 1154 fully deflect around the deflector wedges 1158.
Referring now to
Referring now to
In some embodiments, a bias member may be included such that the stop arms 1204 must compress the bias member prior to the cantilevered arms 1184 of the insertion driver 1062 being dislodged from the cooperating projections 1200. This may aid in further lifting the skin 356 before insertion is triggered. In some embodiments, the portions of the interior housing 120 which the stop arms 1204 contact may be resiliently cantilevered in the path of the stop arms 1204. Thus, as the inserter assembly 1000 is withdrawn, the cantilevered portions of the interior housing 120 may be deflected by the stop arms 1204 before the cantilevered arms 1184 are dislodged from the cooperating projections 1200. The resiliency of these cantilevered portions may be chosen to ensure that the skin is lifted at least a certain amount. In other embodiments, springs (e.g. compression springs, leaf type springs, etc.) may be placed in the path of the stop arms 1204. These springs may need to be brought to a stressed state via displacement of the stop arms 1204 before the cantilevered arms are released. Again, the springs may be chosen such that at least a desired amount of skin lifting occurs prior to the cantilevered arms 1184 being freed from the cooperating projections 1200.
Referring now to
As also shown in
Referring now to
In certain alternative embodiments, retraction of the insertion sharp 132 may not be automatic and/or may not be spring biased. For example, the insertion sharp 132 may remain in the advanced position and the removal action of the user may manually pull the insertion sharp 132 out of the cannula 104. In such embodiments, bias member 1104A, B may be omitted. In some embodiments, a button press or similar interaction may be required to trigger a spring biased retraction of the insertion sharp 132.
Referring now to
After use, the exterior housing 1004 may serve as a containment for the remaining components of the spent set cartridge 1002. This may ensure that the used insertion sharp 132 is enclosed within the set cartridge 1002. Thus, the point of the insertion sharp 132 may be inaccessible to the user. The engagement of the housing tabs 1070 with the receiver slots 1072 may lock the insertion sharp 132 within the spent set cartridge 1002. In certain embodiments, placement of the infusion set 102 on the infusion site via the inserter assembly 1000 may be performed with one hand. Thus, after removing the exterior housing 1004, the user may be encouraged to hold the exterior housing 1004 in their free hand as the infusion set 102 is applied with the inserter assembly 1000. The user may then remove the spent set cartridge 1002 by reattaching the exterior housing 1004 to the interior housing 1008 and separating the set cartridge 1002 from the inserter 1000. Occupying both hands of the user during the process may aid in limiting opportunity for a user to inadvertently come into contact with the insertion sharp 132.
Referring now to
In the example, the sharp 482 is depicted with a lancet tip though other types of sharps may be used. For example, a sharp 482 with a back bevel may be used in certain embodiments. The exemplary sharp 482 (see
Additionally, the fixture 480 may ensure that the sharp 482 is brought into a prescribed rotational orientation. This may be achieved through the use of magnetism. Thus, tips 486 of sharps 482 of tubing connectors 368 may be uniformly oriented across tubing connectors 368. This may be desirable for a variety of reasons. For example, during the typical usage life of an infusion set 102, the tubing connector 368 may be disconnected and reconnected a number of times. As the tip 486 is ramped, there may be a tendency for the sharp 482 to veer from the axis of insertion as the tubing connector 368 is advanced into engagement with the infusion set base 106. This tendency may be exaggerated with repeated connection and disconnection. By ensuring the tip 486 is always oriented in a particular orientation any veering of the sharp 482 may occur in a predictable direction and the septum 110 may be designed to accommodate such veering. This may allow for the septum 110 to be made smaller in portions where veering of the sharp 482 is not expected to occur. The septum 110 may be made smaller in footprint or height and with less material. Additionally, the fluid introduction volume formed by the septum recess 196 (see, e.g.
As best shown in
The fixture 480 may include an adhesive port 510 (best shown in
Referring now to
As shown, the fixture 480 includes a first body 498 and a second body 500. The bodies 498, 500 may be coupled together via any suitable method including bonding, welding, adhesive, fasteners, etc. In the example, screws 502 are used to couple the first body 498 and second body 500. The second body 500 may fit within a cavity or slot 504 in the first body 498 which may serve to position the second body 500 with respect to the first body 498. As shown, the second body 500 may include a sloped face 506. The sloped face 506 may have an angle with respect to the axis of the sharp 482 which is substantially equal to the angle of one of the grinds 487, 489 on the sharp 482. In the example, the angle is about 15.5° which is the angle of the primary grind 487 of the sharp 482. The sloped face 506 may include a portion which is in line with a sharp receiving bore 508 of the first body 498. This portion may act as a support surface for a primary grind 487 of a sharp 482. The second body 500 may be constructed of a hard, non-metallic material.
As shown, the fixture 480 may include a first magnet 492 and a second magnet 494. The first magnet 492 may be larger than the second magnet 494. The dimensions of each edge of the second magnet 494 may be half the size of the dimensions of the respective sides of the first magnet 492. In some embodiments, the first magnet 492 may be a ⅛ in×⅛ in×½ in NdFeB magnet. The second magnet 494 may be a 1/16 in× 1/16 in×¼ in NdFeB magnet. In alternative embodiments electromagnets which may, for example, be equivalent to the permanent magnets just described may be used. The first magnet 492 and second magnet 494 may be located in channels 496 included in the fixture 480. The channel 496 for the second magnet 494 may be at an angle with respect to the channel 496 for the first magnet 492. In the example embodiment the angle is about 15.5°. The angle may reflect the angle of one of the grinds 487, 489 of the sharp 482. The angle may be the same as that of the sloped face 506 of the second body 500. The first magnet 492 may be oriented such that each of its poles are respectively most proximal to the opposing pole of the second magnet 494. The ends of the magnets 492, 494 are set back from the support surface portion of the sloped face 506. In the example embodiment, the ends of the magnets 492, 494 are set back about 0.060 inches.
As a sharp 482 is introduced into the tubing connector 368, the magnetic fields generated by the magnets 492, 494 may rotate and guide the sharp 482 into the desired rotational orientation. The magnetic fields may also draw the sharp 482 into contact with the sloped face 506 setting the length of the exposed portion 484 of the sharp 482. During introduction of the sharp 482, the sharp 482 may be displaced into the desired position and orientation with no or minimal contact of the point 485 or secondary grinds 489 with any material of the tubing connector 368 or the fixture 480. Only the primary grind 487 of the sharp 482 may rest against the sloped face 506. The beveled sections formed by the secondary grinds 489 as well as the point 485 may not be in contact with the sloped face 506. This may help to ensure that the tip 486 remains sharp and may help prevent any attenuation of the piercing capabilities of the tip 486.
With the sharp 482 in place, infusion tubing 366 may be coupled to the tubing connector 368. The tubing 366 may be introduced into a tubing receptacle 512 of the tubing connector 368. The lumen 514 of the tubing 336 may be placed into fluid communication with the lumen 516 of the sharp 482. The tubing receptacle 512 of the tubing connector 368 may include at least one tapered region 518 which may aid in funneling the tubing 366 into the tubing receptacle 512. Any force exerted on the sharp 482 as the tubing 366 is slid into place may be transmitted into the sloped face 506 through the primary grind 487 of the sharp 482. This may help to ensure the tip 486 of the sharp 482 is protected as the tubing 366 is assembled onto the tubing connector 368.
Once the tubing 366 is in place, an applicator may be advanced into the port 510. Glue or adhesive may be dispensed into an aperture 520 of the tubing connector 368. In some embodiments a UV curing adhesive may be used. UV light may be emitted toward the tubing connector 368 to cure the adhesive and fixedly retain the sharp 482 and tubing 366 onto the tubing connector 368. In some embodiments, UV emitting LEDS (no shown) may be included in the fixture 480 for this purpose, though an external light source may also be utilized. The tubing connector 368 may then be removed from the fixture 480.
Referring now also to
Various alternatives and modifications can be devised by those skilled in the art without departing from the disclosure. Accordingly, the present disclosure is intended to embrace all such alternatives, modifications and variances. Additionally, while several embodiments of the present disclosure have been shown in the drawings and/or discussed herein, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto. Other elements, steps, methods and techniques that are insubstantially different from those described above and/or in the appended claims are also intended to be within the scope of the disclosure.
The embodiments shown in drawings are presented only to demonstrate certain examples of the disclosure. The drawings described are only illustrative and are non-limiting. In the drawings, for illustrative purposes, the size of some of the elements may be exaggerated and not drawn to a particular scale. Additionally, elements shown within the drawings that have the same numbers may be identical elements or may be similar elements, depending on the context.
Where the term “comprising” is used in the present description and claims, it does not exclude other elements or steps. Where an indefinite or definite article is used when referring to a singular noun, e.g. “a” “an” or “the”, this includes a plural of that noun unless something otherwise is specifically stated. Hence, the term “comprising” should not be interpreted as being restricted to the items listed thereafter; it does not exclude other elements or steps, and so the scope of the expression “a device comprising items A and B” should not be limited to devices consisting only of components A and B.
Furthermore, the terms “first”, “second”, “third” and the like, whether used in the description or in the claims, are provided for distinguishing between similar elements and not necessarily for describing a sequential or chronological order. It is to be understood that the terms so used are interchangeable under appropriate circumstances (unless clearly disclosed otherwise) and that the embodiments of the disclosure described herein are capable of operation in other sequences and/or arrangements than are described or illustrated herein.
This application is a continuation in part of U.S. patent application Ser. No. 16/797,624, filed Feb. 21, 2020, now US2020/0289748A1, published Sep. 17, 2020 and entitled Infusion Set And Inserter Assembly Systems and Methods which claims the priority of U.S. Provisional Application Ser. No. 62/809,248 filed Feb. 22, 2019 and entitled Infusion Set and Inserter Assembly Systems and Methods (Attorney Docket No. Y85), each of which being hereby incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62809248 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16797624 | Feb 2020 | US |
Child | 17412898 | US |