Gastro-esophageal reflux disease (GERD) is characterized by the reflux of gastric content back into the esophagus. Detection of changes in conductivity, using impedance sensors (MII), and detection of changes in pH using pH sensors, may be used to evaluate non-acidic reflux, acidic reflux, and bolus in the esophagus. While catheters may house the sensors, they cause patient discomfort. Hence, small ingestible pills or capsules, equipped with wireless transmitters, and other sensors, such as temperature sensors and timers, have been developed to locate the sensors in the appropriate position in the esophagus. For example, the Bravo™ capsule, provided by Medtronic Inc., of Shoreview, Minn., is affixable to the mucosal wall of the esophagus using a needle. However, the needle is positioned and removed using an invasive endoscopic clinical procedure. In another example, the Olympus capsule endoscope of Olympus Corporation, Tokyo, Japan, carries an external helix on the capsule. The capsule includes a magnet, and carries video and sampling systems. The capsule is rotated by manipulation of the external magnetic fields, and the external helix propels the capsule through the gastrointestinal system. The Olympus device requires complicated external magnetic field generators. There is therefore room for improvement in existing esophageal diagnostic capsules.
According to an aspect of the invention, there is provided an innovative impedance-pH wireless capsule capable of discriminating between acidic and non-acidic reflux, which can be affixed on the inner side of the esophageal wall above the lower esophageal sphincter (LES) and with minimal discomfort to the patient.
According to an aspect of the invention, the esophageal diagnostic sensor may comprise a sensor body having a size and shape suitable for use within the esophagus of a human, a sensor system carried by the sensor body, a processing and communication module connected to the sensor system, and a magnet bound to the sensor body. In operation, a magnetic field generator is disposed about the sensor body, the magnetic field generator being configured to produce a magnetic force on the magnet that is capable of resisting motility forces on the capsule body within the esophagus of a human. According to an aspect of the invention, friction enhancing elements are provided on at least one side of the sensor body to help hold the sensor in the correct position for sensing. The sensor system may comprise impedance sensors and pH sensors.
According to a further aspect of the invention, there is provided a method of sensing one or more conditions of the esophagus, the method comprising the steps of placing a sensor body in the esophagus, where the sensor body is bound to a magnet, a sensor system and a processing and communication module connected to the sensor system, the esophagus having a longitudinal axis, holding the sensor body in the esophagus by frictional forces generated by a magnetic field acting on the magnet established transversely to the longitudinal axis of the esophagus and detecting and analyzing signals sent from the sensor system with a processing and communication module connected to the sensor system.
These and other aspects of the invention are set out in the claims, which are incorporated here by reference.
Preferred embodiments of the invention will now be described with reference to the figures, in which like reference characters denote like elements, by way of example, and in which:
In the claims, the word “comprising” is used in its inclusive sense and does not exclude other elements being present. The indefinite article “a” before a claim feature does not exclude more than one of the feature being present.
An exemplary esophageal diagnostic sensor is shown in various views in
As shown in
As shown in
The sensor body 10 itself may be a 28 mm×8 mm×8 mm capsule. The capsule 10 is held in position using a magnetic field generator, such as may be produced by magnets or coils 34 disposed about a patient's body, as illustrated in
The pH sensor may comprise an antimony electrode 14 and a reference electrode 15. The antimony electrode 14 may be formed of an ingot of metallic antimony, for example 99.999% metal basis (Alfa Aesar, Ward Hill, Mass.), pulverized, melted and chemically treated to form antimony billets of 1 mm in diameter and 2 mm in length. Reference electrode 15 may for example be formed of a silver wire (California Fine Wire, Grover Beach, Calif.), chloridized, rinsed and baked at 175° C. The antimony billet is soldered to a copper wire connected to the module 16. The reference electrode 15 may be coated in gel (Signa Gel, Parker Laboratories, Inc., Fairfield, N.J.) and encapsulated next to the antimony electrode 14. The fabricated pH sensor may have for example dimensions of 2.2 mm in diameter by 20 mm in length. The difference in voltage between the reference electrode 15 and the antimony billet 14 depends on the pH value of liquids lying in contact with the electrodes 14, 15. A miniature low power operational amplifier (for example an LMV981BL, National Semiconductors Corporation, Santa Clara, Calif.) may be used as a buffer 36 between the pH sensing electrodes 14, 15 and an analog-digital converter 38 in the microcontroller 26. The reference electrode 15 may be connected to ground 40 through a switch 42 such as a 14-Quad-Flatpack-No-Lead analog switch available from Texas Instruments Inc., Dallas Tex.) to minimize interference provoked by the impedance stimulating pulse.
The impedance sensors 12 may be made using stainless steel half-ring electrodes, split ring electrodes or any other suitable electrodes. The electrodes 12 are driven by five cycles of a 100-Hz square pulse from the microcontroller 26. A resistor, such as a 100 kΩ resistor network 45, may be used to limit the current flow through each of the electrodes 12. The sensing electrodes 12 and the reference may be connected to the microcontroller 26 and ground 40 through the analog switch 42 and AD converters 44. Two impedance channels may for example be implemented using three 2.5 mm wide half-ring electrodes 12. The distance between the electrodes depends on the application, but may be in the order of 2.5 mm.
Voltage changes in the pH and impedance sensors are monitored by the A/D converters 38, 44 of the microcontroller 26. Digital data from the A/D converters 38, 44 may be stored in memory, and periodically transmitted from the capsule 10 using the transmitter 28. Control software for the microcontroller 26 may be designed using the description in this patent document. Security identifications may be added to each reading. To assure the integrity of the data during the wireless communication, a checksum test may be implemented. The microcontroller 26 may also determine the delays between transmissions in order to save power and generated all the necessary control signals. A flowchart diagram of the embedded microcontroller software is shown in
Outside the body, a receiving computer station 30 receives the transmitted signals. For example, a MAX1473 receiver kit (Maxim Integrated Products Inc., Sunnyvale, Calif.) may be used. A microcontroller may also form part of the receiver kit, for example an Attiny26 microcontroller. The received digital results are acquired into a computer forming part of the computer station 30, which may be a conventional computer, and converted to pH and impedance values for real-time monitoring, data analysis and system debugging. A DAQCard AI-16XE-50 and C for Virtual Instrumentation (CVI) v. 7.0.0 may be used to implement this stage (National Instruments Corporation, Austin Tex.).
The sensor uses a magnetic field to fix the position of the sensor in the body. For example a field of 1000 Gauss is sufficient to hold a 20 g mass in position against gravity. The human esophagus is located approximately at the center of the rib cage, behind the lungs and in front of the spinal cord and the aorta. The magnetic force holding the capsule in place can be combined with static friction between the shell of the capsule and the inner side of the esophageal wall to overcome the propelling peristaltic force (FPP). The static friction is defined as the required force to start moving a body at rest. The static friction coefficient (μ) between two solid surfaces can be defined as the ratio of the tangential force (F) required to cause the movement, divided by the normal force between the surfaces (FN).
μ=F/FN (1)
The forces acting on the capsule are shown in
μ=FPPY/(FMX+FPPX) (2)
Manometric recordings obtained on healthy volunteers during peristalsis show that the strongest pressure (P) provoked by peristalsis is about 96 mmHg during meals. This corresponds to 12.8 kPa or 12800 Newtons per square meter. The force propelling the capsule depends on the shape of the capsule and the angle between the surface of the capsule and the contracting esophageal wall at the point of contact. Therefore, a capsule housing design at an angle ≧45° considerably reduces the propelling force acting on its surface. Peristaltic forces acting at a 90° angle would not propel the capsule, but instead would only push it against the esophageal wall. Therefore, the surface area A of the capsule exposed to FPP is only at the proximal end. If we consider this area to be approximately ¼ of the capsule total surface area, and at a 45° angle, FPPY can be estimated as:
FPPY=(P*A/4)sin(−45°)=−0.863 N. (3)
A force of 0.863 N corresponds to a mass of 88 g against gravity. The negative sign indicates the direction of the force. Therefore, a combination of the external magnetic field and friction-enhancing pins capable of handling a load of about 100 g without penetrating the mucosa should be able to overcome FPPY. An array of 18 stainless steal pins 22 (0.16 mm in diameter and 0.7 mm in length) may for example be built by silver-soldering the pins to a stainless steel plate (Stay-Brite Silver Solder Kit, J. W. Harris Corporation, Manson, Ohio). The inventors have found that the combination of the magnetic field and the friction enhancing elements is sufficient to hold the capsule 10 in position. That is, FM is strong enough to cancel FG. The friction-enhancing pins are able to hold a 100 g load against gravity. Therefore, it is believed that the capsule 10 can overcome esophageal peristalsis while remaining affixed to the esophageal wall without penetrating the mucosal lining.
A capsule design for combined impedance-pH monitoring has been presented. In contrast to previously proposed solutions, this design is able to discriminate between acidic and non-acidic reflux. Other magnets, preferably lighter magnets, may be used for the magnets. Magnets with dimensions of 20 cm×20 cm×1 cm, which deliver the same magnetic flux, may be used in a vest 76 used for application on humans (
The swallowable capsule 10 for pH monitoring may also include a pressure sensor and a receiving coil embedded in the capsule casing for power transfer instead of a battery. Circumferential split-electrodes may be used for the impedance sensors, which are advantageous due to their very small size. Split ring electrodes 96 are shown in
In order to provide a meaningful and sufficiently long (preferably, 24-hour or longer) pH monitoring, the capsule has to be affixed at a particular location on the inner side of the esophageal wall (preferably, about 5 cm above the LES). The external magnet may be worn by the patient in a specially designed band, belt or vest, and positioned in such way so that that the internal miniature magnet is attracted to it. The enclosure may contain also a Hall effect sensor, which may be used to quantify the bond between the internal permanent magnet embedded into the capsule, and the cutaneous DC magnet controlling its position, so that a feedback mechanism can be implemented maintaining the force bonding the two magnets to be strong enough to keep the capsule at the desired position overcoming the peristaltic forces, but not substantially strong to displace the wall of the esophagus by moving it closer to the external magnet. The capsule can be power-supplied either by an autonomous battery, or transcutaneously using electromagnetic inductance. The transmitting coil can be located on a belt or a vest worn by the patient, which contains also the external DC magnet for affixing the capsule. The receiving coil may be wrapped around the inner circumference of the capsule in a spiral fashion.
A transmitting coil (not shown) may be used to transfer wireless power to the capsule 80. The frequency of the electromagnetic field for transcutaneous power transfer is high enough (in the MHz range), so that the permanent magnet in the capsule 80 is not influenced by this alternating electromagnetic field, but continues to be controlled by the strong external DC magnet, preserving its affixed position above the LES and having the feedback control mechanism based on the Hall effect sensor.
The capsule 10 or 80 may also be located in the esophagus using a pressure-monitoring catheter 98 shown in
A further embodiment of an esophageal diagnostic sensor will now be described with reference to
In this embodiment, magnetic holder 132 is made of a suitable plastic or metal, and houses a magnet 136. Friction enhancing devices 138 such as pins protrude from one face 140 of the magnet holder 132. The magnet holder 132 is held in position utilizing one or more magnets or electromagnets 120 located at the base of the neck. The magnet 120 should be able to hold a 6 g mass against gravity at 5 cm from its surface. A magnetic field of 200 gauss has been found to be sufficient to hold a 6 g mass against gravity. The capsule 130 may be of the same construction as the capsule 10, and thus similar reference numerals have been used to identify the various components, but with the magnet 18 omitted. The soft flexible element 134 may be made of any suitable material or construction type, for example chain links, that provides a flexible supporting link between the magnet 136 and capsule 130.
As shown by the analysis of FPP set out above, the combination of the external magnetic field and friction-enhancing elements capable of handling a load of about 100 g without penetrating the mucosal wall of the esophagus should be able to overcome FPPY. An exemplary friction enhancing element is an array of 18 stainless steel pins (0.16 mm in diameter and 0.7 mm in length) silver-soldered to a stainless steel plate. A permanent neodymium magnet 120 of 5 cm×4 cm×2.5 cm for example will generate the desired magnetic field at 5 cm from its surface. An electromagnet able to generate a similar field may also be used. For example, with a current of 3 amperes, 1000 turns would be required to generate the desired field. Both electromagnets and permanent magnets are able to hold a capsule in position. However, electromagnets are larger in size and require a power supply able to continuously deliver 3 A. On the other hand, permanent magnets can be of a smaller size and do not require a power supply. The main disadvantage of permanent magnets is the lack of control on the magnetic field.
An innovative multi-sensor esophageal capsule design has been presented for the purpose of simultaneous detection of acidic and non-acidic gastro-esophageal reflux. The obtained results suggest that if appropriate shielding of the external permanent magnets is provided, and the latter are of appropriate weight and size, this technique may offer a minimally invasive and reliable testing of all aspects of GERD. Immaterial modifications may be made to the embodiment of the invention disclosed without departing from the invention.
This application claims the benefit under 35 USC 119(e) of provisional patent application No. 60/664,633 filed Mar. 24, 2005.
Number | Date | Country | |
---|---|---|---|
60664633 | Mar 2005 | US |