Ingestible device with pharmaceutical product

Abstract
A pharmaceutical product including a housing that defines a cavity, wherein the cavity stores a pharmaceutical material, and wherein the housing comprises a material configured to dissolve based on contact with a fluid, an ingestible device to encode information in a current signature, wherein the ingestible device is positioned within the housing, and a protective material that encompasses the ingestible device. The ingestible device may be attached to a flexible component, wherein the flexible component is configured to releasably secure the ingestible device within the housing.
Description
RELATED APPLICATIONS

This application is related to and incorporates the following applications by reference: U.S. patent application Ser. No. 14/570,673, now published as U.S. Patent Application Publication No. 2015/0182463 and entitled CONTROLLED ACTIVATION INGESTIBLE IDENTIFIER, U.S. Pat. No. 8,945,005 issued on Feb. 3, 2015 and entitled CONTROLLED ACTIVATION INGESTIBLE IDENTIFIER; U.S. Provisional Application 60/862,925 filed on Oct. 25, 2006 and entitled CONTROLLED ACTIVATION PHARMA-INFORMATICS SYSTEM; and PCT Patent Application Publication No. WO 2008/052136 and published on Oct. 23, 2008 and entitled CONTROLLED ACTIVATION INGESTIBLE IDENTIFIER.


FIELD OF INVENTION

The present invention relates to electronic devices and, more specifically, to electronic devices with a particle power source that are secured to a pharmaceutical product.


BACKGROUND

Capsules are made of a material that becomes gel-like once in contact with fluids. Such gel-like materials can interfere with the operation of an ingestible device, which is carried inside the capsule, with dissolvable components and electronic components. For example, gelatinous materials have low conductivity and, hence, if the device operates using conduction through fluids, then it will not operate properly. Thus, it is important to prevent the gel-like material of the capsule, as it is dissolving, from coming into contact with the device's components.


Additionally, capsules contain pharmaceutical materials that can interact with or damage the device during long term storage. For example, the product inside the capsule may be acidic and harmful to the electronic components. Alternatively, the content may be too basic, which can also harm the electronics. Furthermore, the material or product within the capsule will start to interact with the surrounding fluids, once the capsule is ingested and the capsule starts to disintegrate. The content of the capsule may include material, such as a drug or excipient or compound, that when dissolved at high concentrations, will interfere with the operation of the ingested device placed within the same capsule. As the material enters the solution at the site where the capsule is dissolving, there is a high concentration localized around the device. The stomach motion and diffusion disperses the capsule content throughout the stomach and reduces the concentration. During this time, the device will not operate properly if activated in the localized high concentration areas. Thus, the activation of the device needs to be delayed and the device should be protected from the capsule dissolving or disintegrating.


Thus, the devices need to be protected from the surrounding environment, including the content of the capsule as well as moisture. Furthermore, a manufacturing solution is needed to allow for manufacturing of these devices and placement of same within a capsule in such a manner that does not damage the device. Therefore, what is needed is suitable system and manufacturing process that protects the devices.


SUMMARY

The present disclosure includes a system and a manufacturing process that protects the device and allows for placement or combination of the device within a pharmaceutical product or capsule. The system includes circuitry and components that can be placed within certain environments. The device includes an assembly including an electronic unit, a flexible membrane secured to the unit, and a protective coating.


In one aspect of the present disclosure, a pharmaceutical product includes: (i) a capsule having an upper end and a lower end, wherein the upper and lower ends are brought together to form a housing that defines a cavity and wherein the cavity is filled with a drug, the capsule configured to disintegrate when in contact with a surrounding fluid, and (ii) an ingestible device associated with the capsule to encode information in a current signature, wherein the ingestible device is placed within the housing, wherein the ingestible device comprises electronic components that are surrounded by a protective layer, wherein the protective layer is configured to begin to disintegrate after the capsule has disintegrated and has exposed the content of the capsule to the surrounding fluids.


In another aspect of the present disclosure, a pharmaceutical product includes: (i) a housing that defines a cavity, wherein the cavity stores a pharmaceutical material, and wherein the housing comprises a material configured to dissolve based on contact with a fluid, (ii) an ingestible device to encode information in a current signature, wherein the ingestible device is positioned within the housing, and (iii) a protective material that encompasses the ingestible device.


In yet another aspect of the present disclosure, a pharmaceutical product includes: (i) a soluble structure comprising a pharmaceutical material, (ii) an electronic unit to encode information in a current signature, wherein the electronic unit is secured within the soluble structure, and (iii) a protective material that surrounds the electronic unit, wherein the protective material is configured to dissolve based on contact with a fluid.


Notwithstanding the claims, the present invention is also defined by the following clauses.


Clause 1: A process for creating a pharmaceutical product, the process comprising the steps of:


creating a device sheet including a plurality of devices;


securing an upper sheet to one side of the device sheet to produce a partially coated device sheet;


securing a lower sheet to another side of the partially coated device sheet, to produce a protected device sheet, wherein the upper sheet and the lower sheet form a protective layer; separating a protected device from the protected device sheet; and


combining the protected device with a pharmaceutical agent to produce the pharmaceutical product.


Clause 2: The process of clause 1, wherein the device sheet defines a plurality of holes surrounding each device.


Clause 3: The process of clause 2, wherein the step of securing the lower sheet to another side of the partially coated device sheet includes the step of heating the lower sheet and the upper sheet such that the lower sheet comes into contact with the upper sheet through the holes, the lower sheet surrounding each device and the upper sheet and lower sheet secured to one another at the point of the contact.


Clause 4: The process of any of clauses 1-3, wherein the step of separating includes the steps of:


aligning the protected device sheet with an opening defined within a die such that the protected device is aligned with the opening of the die; and


punching the protected device using a punch through the opening and into a capsule placed within a capsule holder.


Clause 5: The process of any of preceding clauses, wherein the step of separating includes the steps of:


aligning the protected device sheet with an opening defined by a tray such that the protected device of the protected device sheet is aligned with the opening of the tray;


separating the protected device from the protected device sheet using a punch; and placing the protected device into the opening of the tray.


Clause 6: The process of clause 5, further comprising the step of aligning the opening of the tray that comprises the protected device with a capsule holder that defines a plurality of cavities that hold a first end of a capsule, wherein the capsule includes the first end and a second end.


Clause 7: The process of clause 6, further comprising the step of pushing the protected device out of the opening of the tray and into the first end of the capsule placed within the cavity of the capsule holder.


Clause 8: The process of clause 7, wherein the step of combining includes the steps of: filling the first end of the capsule that includes the protected device with a pharmaceutical product; and securing the second end of the capsule to the first end of the capsule.


Clause 9: A device for placement within a capsule, the device comprising:


an assembly including:


a unit to encode information in a current signature, the unit comprising a partial power source; and


a flexible membrane secured to the unit, wherein the membrane engages the capsule's wall and holds the device in place within the capsule.


Clause 10: The device of clause 9, further comprising a protective coating surrounding the assembly.


Clause 11: The device of clause 9 or 10, further comprising a first protective sheet secured to an upper surface of the assembly and a second protective sheet secured to a lower surface of the assembly.


Clause 12: The device of clause 11, wherein the first protective sheet and the second protective sheet are secured to each other through a plurality of holes defined by the flexible membrane.


Clause 13: The device of clause 11 or 12, wherein the first protective sheet and the second protective sheet are secured to each other at the edge of the assembly and extend beyond the perimeter of the assembly such that the assembly is enclosed within the protective sheets.


Clause 14: The device of any of clauses 9-13, wherein the unit includes:


a first material secured to a support structure; and


a second material secured to the support structure and electrically isolated from the first material, such that the first material and second material represent a chemical voltage potential when in contact with a conducting fluid.


Clause 15: The device of clause 14, wherein the support structure comprises a control module electrically connected to the first material and the second material to control the conductance between the first material and the second material, wherein the control module encodes the information in the current signature by altering the conductance.


Clause 16: The device of any of clauses 9-15, wherein the flexible membrane includes a plurality of legs that engage the capsule's wall when the assembly is pressed into the capsule.


Clause 17: The device of any of clauses 9-16, wherein the flexible membrane includes a plurality of extensions shaped to fit within the capsule and hold the assembly in place.


Clause 18: A pharmaceutical product comprising:


a capsule having an upper end and a lower end, wherein the upper and lower ends are brought together to form a housing that defines a cavity and wherein the cavity is filled with a drug, the capsule configured to disintegrate when in contact with a surrounding fluid; and


an ingestible device associated with the capsule, preferably a device according to any of the clauses 9-17, to encode information in a current signature, wherein the ingestible device is placed within the housing, wherein the ingestible device includes electronic components that are surrounded by a protective layer, wherein the protective layer is configured to begin to disintegrate after the capsule has disintegrated and has exposed the content of the capsule to the surrounding fluids.


Clause 19: The product of clause 18, further comprising a flexible membrane that is secured to the ingestible device to produce an assembly wherein the flexible membrane positions the assembly within the capsule.


Clause 20: The product of clause 19, further comprising a first protective sheet secured to an upper surface of the assembly and a second protective sheet secured to a lower surface of the assembly, wherein the first protective sheet and the second protective sheet are secured to each other and surround the assembly.





DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a capsule with a laminated device inside the capsule.



FIG. 2A shows a capsule with a table inside the capsule and the tablet includes a covered device.



FIG. 2B shows a capsule with a table inside the capsule and the tablet includes a device.



FIG. 3 shows a capsule with a covered device inside one portion of the capsule.



FIG. 4A shows an example of a device that can be used in the capsule of FIG. 3.



FIG. 4B shows another example of a device that can be used in a capsule end for FIG. 3 with a specific designed capsule end to mechanically hold the device in place.



FIG. 5 shows a device with a cover secured onto a tablet and the tablet placed inside a capsule.



FIG. 6 shows the process of laminating or covering the device.



FIG. 7 shows a closer view of the assembly pieces of FIG. 6.



FIG. 8 shows a process of inserting a device within a capsule end in accordance with one aspect of the present invention.



FIG. 9 shows an advanced stage of the process of FIG. 8.



FIG. 10 shows a perspective view of a transfer tray.



FIG. 11 shows an initial stage of the process of inserting a device within a capsule end in accordance with one aspect of the present invention.



FIG. 12 shows the device of FIG. 11 within the transfer tray of FIG. 10.



FIG. 13 shows an advanced stage of the process of FIG. 11 in accordance with one aspect of the present invention.



FIG. 14 shows an advanced stage of the process of FIG. 13 in accordance with one aspect of the present invention.





DETAILED DESCRIPTION

The present invention discloses multiple approaches to protecting a device from the harmful effects of a capsule and the content of the capsule when the device is placed within the capsule. The present invention also discloses multiple approaches to securing the device within the capsule that contains the product. The scope of the present invention is not limited by the type of product within the capsule. For example, the product can be a capsule, a time-release oral dosage, a powder, a gel, a sub-lingual tablet or any oral dosage product. In accordance with one aspect of the present invention, the capsule has the device positioned inside or secured to the interior. In an alternative arrangement, the device is secured to the exterior of the capsule or as part of the capsule wall.


In accordance with the teachings of the present, in some embodiments, the device is placed within the capsule. In accordance with other aspects of the present invention, the device is secured with the capsule. Various methods of securing the device to the capsule are disclosed. For example, the device may be secured to the capsule using ingestible glues, pressure sensitive adhesives, thermal adhesives, mechanically attached, secured to a band that is later placed around the product.


In addition to the methods used to secure the device to the product, there are various methods of coating or laminating the device, surrounding the device, or separating and isolating the device from the drug or product within the capsule to prevent a reaction between the device and the drug or product. For example, certain products contain acids that can damage the device, such as tartaric acid. Additionally, there are times when the device, upon activation may interact with the product or drug when the device is activated too quickly. Thus, as discussed in detail below, there are various lamination and packaging options that may be used in association with the device to prevent such problems.


Referring now to FIG. 1, an ingestible device 20 is shown with a layer 20a surrounding electronics 20b. The layer 20a is soluble and a disintegrating layer of material around the electronics 20b. The layer 20a delays the exposure of the electronics 20b to surrounding fluids. The device 20 is placed inside the capsule 22, which also contains a pharmaceutical product or drug. The capsule 22 has a bottom end 22a and a top end 22b. The capsule 22 is made of a dissolvable material, such as gelatin. Upon ingestion, the capsule 22 walls turn into a gel-like material, due to contact with fluids. The layer 20a prevents contact between the gel-like material of the capsule 22 and the electronics 20b until the gel-like material has dissolved and no longer interferes with the operation of the device 20. During the time the capsule 22 is dissolving, the layer 20a is also slowly disintegrating away to allow the electronics 20b to come into contact with the fluids and become activated. One example of the type of electronic components that are part of the device 20 is disclosed in U.S. patent application Ser. No. 12/564,017 filed on Sep. 21, 2009, which issued on Jul. 12, 2011 as U.S. Pat. No. 7,978,064 and is titled COMMUNICATION SYSTEM WITH PARTIAL POWER SOURCE, the entire disclosure of which is incorporated herein by reference. The capsule 22, in all instances described herein is intended to carry a drug and includes a drug product in addition to the device.


Referring now to FIGS. 2A and 2B, in accordance with another aspect of the present invention, the capsule 22 is shown with a device 24 inside the capsule. The device 24 includes a disintegrating film or material 24a and components and electronics 24b. In accordance with one embodiment, the device 24 has a laminated coating as shown in FIG. 2A. In accordance with another embodiment, the device 24 has is surrounded by the material 24a as shown in FIG. 2B. As the capsule 22 is ingested, the capsule ends 22a and 22b disintegrate or dissolve. The content of the capsule 22 comes into contact with the surrounding fluids. The material 24a reacts with the fluids to prevent the gel-like material of the capsule 22 from coming into contact with the electronics 24b as discussed with respect to FIG. 2.


Referring now to FIG. 3, the capsule 22 is shown with a device 26 positioned within the capsule end 22b in accordance with another aspect of the present invention. The device 26 is held in position inside the capsule end 22b using friction or by a mechanical means as will be discussed with respect to FIGS. 4A and 4B, respectively. In accordance with various aspects of the present invention, the device 26 may be covered in a manner similar to the device 20 or the device 24 of FIG. 1 and FIGS. 2A and 2B, respectively. For example, the device 26 may include a layer or lamination material or the device 26 may include a disintegration material. As noted, the device 26 is held in position using friction or mechanical attachment.


Referring now to FIG. 4A, in accordance with one aspect of the present invention, the device 26 includes tabs or legs 28 and electronics 26b. The legs 28 are flexible and as the device 26 is pushed into the capsule end 22b, the friction between the legs 28 and the wall of the capsule end 22b hold the device 26 in place. As the capsule 22 dissolves, the walls of the capsule end 22b change shape or collapse causing the friction between the legs 28 and walls of the capsule end 22b to reduce and thereby allow the device 26 to be released from the capsule end 22b.


Referring now to FIG. 4B, in accordance with another aspect of the present invention, the device 26a includes tabs or legs 30 and electronics 26b. The legs 30 are used to secure the device 26a into a capsule end 22c. The capsule end 22b of FIG. 3 is replaced with the capsule end 22c. The capsule end 22c includes a matching number of slots or indentations 32 to the legs 30 of the device 26a. In an alternative aspect of the present invention, the number of legs 30 may differ from the number of slots 32. As the device 26a is pressed inside the capsule end 22c, the tabs 30 engage the slots 32 and lock the device 26a into place mechanically. As the capsule end 22c dissolves, the walls of the capsule end 22c change shape or collapse causing the device 26a to be released from the capsule end 22c.


Referring now to FIG. 5, the capsule 22 is shown with device 34 in accordance with another aspect of the present invention. The device 34 includes a material 34a to which is secured electronics 34b, similar to the electronics 24b, and a layer or covering 34c.


Referring now to FIG. 6 and FIG. 7, a process for creating a device with a covering or lamination is shown in accordance with one aspect of the present invention. Devices 40 are shown on a sheet 41 that is placed between a top lamination sheet 42a and a bottom lamination sheet 42b. The sheets 42a and 42b may be made of a variety of materials or films, such as polymer films that include polyethylene oxide, hydroxypropyl cellulose, and triethyl citrate. Other films that can be used include any solulable polymer, plasticizer. The film provides a moisture barrier and dissolves under the proper conditions to delay activation of the device. The film layer is designed to provide sufficient delay in exposure of the device to the surrounding fluids relative to the disintegration and dispersion of the capsule material and the content of the capsule. The film layer may includes the soluble materials, barrier materials (such as lipids, polyvinyl alcohol), processing aids (such as plasticizers, adhesion promoters), and stabilizers. Furthermore, the film layer may be manufactured via lamination, application of a coating solution or slurry followed by a cure. In accordance with other aspects of the present invention, the film or layer may be similar to FIG. 2 and formed using dry compression, such as a tablet press.


There are a variety of active agents or pharmaceutical products that can be placed inside of a capsule. For example, there are FDA approved drugs, drugs that are disclosed chemically in a patent application or in an issued patent, there are drugs are disclosed in the Orange Book as part of the approved drug products, and generics. In accordance with the teachings of the present inventions, any one or combination of such drugs may be placed within the capsule along with the device. Each of those drugs will have a specific and unique impact on the operation of the device as well as the disintegration of the film used because of the unique chemical composition. As such, the type of material uses as the film layer will vary to be compatible to the chemical composition of the products used. Thus, the scope of the present invention is not limited by the type of content of the capsule and the film or coating layer around the electronic components of the device.


In accordance with another aspect and benefit of the present invention, the film or coating will also prevent the interaction components of the device with the drug inside the capsule and as such the device will not alter or impact the effectiveness of the drug.


As shown in FIG. 7, one example of the device 40 includes a skirt 40a with a plurality of holes 44 and electronics 40b. As the sheets 42a and 42b are subject to heating or pressure, then the sheets 42a and 42b are secured to each other through the holes 44 and the device 40 is securely held between the sheets 42a and 42b. As shown in FIG. 7, the device 40 is laminated between the sheets 42a and 42b. In accordance with another aspect of the present invention, the sheets 42a and 42b may have the portions for each device 40 punched, cut-out, or removed first and then positioned above and below the device 40. The portions are cut to be oversized. Thus, as the portions of the sheets 42a and 42b are exposed to heat or pressure, then the oversized portions at the edges are secured to each other forming a pocket that surrounds the device 40 as well as secured to in place through the holes 44 as noted above. In accordance with another aspect of the present invention, the holes 44 may be eliminated when the device is placed between the oversized portions and secured within a pocket that surrounds the device 40.


Referring now to FIG. 8 and FIG. 9, in accordance with one aspect of the present invention, a laminated device sheet 50 is positioned above a die 52 with a hole 52a in the die 52. Even though only one hole 52a is shown, it will be understood by those skilled in art that the die may include multiple holes and the example discussed with respect one, may be repeated for many. The hole 52a of the die 52 is positioned above a capsule holder 54 that contains a capsule end 56. As the sheet 50 is positioned above the hole 52a, a punch 58 is used to cut the device 50a out of the sheet 50 and insert the device 50a into the capsule end 56. As noted above in accordance with various aspects of the present invention, the device 50a can have a variety of shapes and those shapes can be created by the punch 58.


Referring now to FIGS. 10-14, in accordance with one aspect of the present invention, the device 40 of FIG. 6 may be punched out and placed inside a hole 62a of a transfer tray 62. The tray 62 is shown in FIG. 10 with a plurality of holes. As shown in FIG. 11, the tray 62 is positioned below a sheet of devices, such as the sheet 50 of FIG. 8. A punch blade 64 cuts a device 66 from the sheet of devices and inserts the device 66 into the hole 62a. The device 66 is held in place in the hole 62 with friction as shown in FIG. 12. The tray 62 is then advanced to the next step of the process and a punch press 70 pushes the device 66 into a capsule end 72 held within a capsule holder 74 as shown in FIGS. 13 and 14.


As noted above various disintegration materials may be used to surround the electronic components. For example, a disintegrant may be sodium starch glycolate or a water soluble excipient such as hydroxypropyl cellulose. It will also be apparent that the various layers disclosed can be eliminated or combined depending on the material employed and the properties thereof.


As described herein, a system of the present invention is used with a conducting fluid to indicate the event marked by contact between the conducting fluid and the system. For example, the system of the present disclosure may be used with a pharmaceutical product and the event that is indicated is when the product is taken or ingested. The term “ingested” or “ingest” or “ingesting” is understood to mean any introduction of the system internal to the in-vivo. For example, ingesting includes simply placing the system in the mouth all the way to the descending colon. Thus, the term ingesting refers to any instant in time when the system is introduced to an environment that contains a conducting fluid. Another example would be a situation when a non-conducting fluid is mixed with a conducting fluid. In such a situation the system would be present in the non-conduction fluid and when the two fluids are mixed, the system comes into contact with the conducting fluid and the system is activated. Yet another example would be the situation when the presence of certain conducting fluids needed to be detected. In such instances, the presence of the system, which would be activated, within the conducting fluid could be detected and, hence, the presence of the respective fluid would be detected.


It is noted that, as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.


As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.


Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is readily apparent to those of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.


Accordingly, the preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.

Claims
  • 1. An ingestible device, comprising: electronic components;a skirt material surrounding the electronic components in one planar dimension, the skirt material comprising a plurality of holes;a first protective sheet over a first side of the electronic components and the skirt material; anda second protective sheet over a second side of the electronic components and the skirt material, the second side positioned opposite the first side;wherein the first protective sheet and the second protective sheet are secured to one another via heat or pressure through the plurality of holes of the skirt material;wherein the first protective sheet and the second protective sheet are configured to disintegrate when immersed in conductive fluid; andwherein the ingestible device is configured to encode information in a current signature using the conductive fluid as a transmissible medium.
  • 2. The ingestible device of claim 1, further configured to be positioned within a capsule having an upper end and a lower end, wherein the upper and lower ends are brought together to form a housing that defines a cavity and wherein the cavity is filled with a drug, the capsule configured to disintegrate when in contact with a surrounding fluid.
  • 3. The ingestible device of claim 2, wherein the first protective sheet and the second protective sheet are configured to begin to disintegrate after the capsule has disintegrated and has exposed the content of the capsule to the surrounding fluids.
  • 4. The ingestible device of claim 1, further comprising dissolvable components that are surrounded by the first protective sheet and the second protective sheet.
  • 5. The ingestible device of claim 2, wherein the first protective sheet and the second protective sheet together configured to prevent at least one of the capsule or the drug from interacting with the electronic components of the ingestible device.
  • 6. The ingestible device of claim 2, wherein the protective layer is configured to delay exposure of the electronic components to the surrounding fluid.
  • 7. The ingestible device of claim 6, wherein the delayed exposure delays activation of the ingestible device.
  • 8. The ingestible device of claim 1, wherein the first protective sheet comprises two different materials.
  • 9. The ingestible device of claim 1, wherein at least one of the first protective sheet and the second protective sheet comprises at least one of polyethylene oxide, hydroxypropyl cellulose, and triethyl citrate.
  • 10. The ingestible device of claim 1, wherein the first protective sheet and the second protective sheet provides a moisture barrier over the electronic components.
  • 11. The ingestible device of claim 1, wherein at least one of the first protective sheet and the second protective sheet comprises a plasticizer and a stabilizer.
  • 12. The ingestible device of claim 1, wherein the skirt comprises a plurality of legs protruding outwardly from the electronic components.
  • 13. The ingestible device of claim 12, wherein the plurality of legs are configured to hold the ingestible device in place within a housing by applying friction to one or more inner walls of the housing.
  • 14. The ingestible device of claim 1, wherein the first protective sheet and the second protective sheet are laminated over the electronic components and the skirt material.
  • 15. The ingestible device of claim 1, wherein the first protective sheet and the second protective sheet are dry compressed over the electronic components and the skirt material.
  • 16. The ingestible device of claim 1, wherein the first protective sheet and the second protective sheet are oversized compared to a size of the skirt material.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 16/849,391, entitled INGESTIBLE DEVICE WITH PHARMACEUTICAL PRODUCT, filed Apr. 15, 2020, which is a continuation application claiming priority under 35 U.S.C. § 120 to U.S. patent application Ser. No. 15/491,409, entitled INGESTIBLE DEVICE WITH PHARMACEUTICAL PRODUCT, filed Apr. 19, 2017, now U.S. Pat. No. 10,653,875, which is a divisional application claiming priority under 35 U.S.C. § 121 to U.S. patent application Ser. No. 14/829,229, entitled INGESTIBLE DEVICE WITH PHARMACEUTICAL PRODUCT, filed Aug. 18, 2015, which is a divisional application claiming priority under 35 U.S.C. § 121 to U.S. patent application Ser. No. 13/521,993, entitled INGESTIBLE DEVICE WITH PHARMACEUTICAL PRODUCT, filed Jul. 12, 2012, now U.S. Pat. No. 9,107,806, which is a U.S. National Stage Entry under 35 U.S.C. § 371 of International Patent Application No. PCT/US2011/061478, entitled INGESTIBLE DEVICE WITH PHARMACEUTICAL PRODUCT, filed Nov. 18, 2011, which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 61/416,150, entitled INGESTIBLE DEVICE WITH PHARMACEUTICAL PRODUCT, filed Nov. 22, 2010, the entire disclosures of which are hereby incorporated by reference herein.

US Referenced Citations (984)
Number Name Date Kind
1548459 Hammer Aug 1925 A
2587158 Hofberg Feb 1952 A
2973555 Schwepke Mar 1961 A
3048526 Boswell Aug 1962 A
3079824 Schott Mar 1963 A
3096248 Rudzki Jul 1963 A
3176399 Marino et al. Apr 1965 A
3589943 Grubb et al. Jun 1971 A
3607788 Adolph Sep 1971 A
3642008 Bolduc Feb 1972 A
3679480 Brown et al. Jul 1972 A
3682160 Murata Aug 1972 A
3719183 Schwartz Mar 1973 A
3799802 Schneble, Jr. et al. Mar 1974 A
3828766 Krasnow Aug 1974 A
3837339 Aisenberg et al. Sep 1974 A
3849041 Knapp Nov 1974 A
3893111 Cotter Jul 1975 A
3944064 Bashaw et al. Mar 1976 A
3967202 Batz Jun 1976 A
3989050 Buchalter Nov 1976 A
4017856 Wiegand Apr 1977 A
4055178 Harrigan Oct 1977 A
4062750 Butler Dec 1977 A
4077397 Ellis Mar 1978 A
4077398 Ellis Mar 1978 A
4082087 Howson Apr 1978 A
4090752 Long May 1978 A
4106348 Auphan Aug 1978 A
4129125 Lester Dec 1978 A
4139589 Beringer et al. Feb 1979 A
4143770 Grimmett et al. Mar 1979 A
4166453 McClelland Sep 1979 A
4239046 Ong Dec 1980 A
4251795 Shibasaki et al. Feb 1981 A
4269189 Abraham May 1981 A
4331654 Morris May 1982 A
4345588 Widder et al. Aug 1982 A
4418697 Tama Dec 1983 A
4425117 Hugemann Jan 1984 A
4439196 Higuchi Mar 1984 A
4494950 Fischel Jan 1985 A
4559950 Vaughan Dec 1985 A
4564363 Bagnall et al. Jan 1986 A
4635641 Hoffman Jan 1987 A
4654165 Eisenber Mar 1987 A
4663250 Ong et al. May 1987 A
4669479 Dunseath Jun 1987 A
4687660 Baker et al. Aug 1987 A
4725997 Urquhart et al. Feb 1988 A
4749575 Rotman et al. Jun 1988 A
4763659 Dunseath Aug 1988 A
4767627 Caldwell et al. Aug 1988 A
4775536 Patell Oct 1988 A
4784162 Ricks Nov 1988 A
4793825 Benjamin et al. Dec 1988 A
4814181 Jordan et al. Mar 1989 A
4844076 Lesho Jul 1989 A
4847090 Della Posta et al. Jul 1989 A
4876093 Theeuwes et al. Oct 1989 A
4896261 Nolan Jan 1990 A
4975230 Pinkhasov Dec 1990 A
4987897 Funke Jan 1991 A
5000957 Eckenhoff et al. Mar 1991 A
5016634 Vock et al. May 1991 A
5018335 Yamamoto et al. May 1991 A
5079006 Urguhart Jan 1992 A
5110441 Kinlen et al. May 1992 A
5160885 Hannam et al. Nov 1992 A
5167626 Casper Dec 1992 A
5176626 Soehendra Jan 1993 A
5187723 Mueller Feb 1993 A
5213738 Hampton et al. May 1993 A
5218343 Stobbe et al. Jun 1993 A
5261402 DiSabito Nov 1993 A
5263481 Axelgaard et al. Nov 1993 A
5273066 Graham et al. Dec 1993 A
5279607 Schentag et al. Jan 1994 A
5281287 Lloyd Jan 1994 A
5283136 Peled et al. Feb 1994 A
5288564 Klein Feb 1994 A
5305745 Zacouto Apr 1994 A
5318557 Gross Jun 1994 A
5331953 Andersson et al. Jul 1994 A
5394882 Mawhinney Mar 1995 A
5395366 D'Andrea et al. Mar 1995 A
5436091 Shackle et al. Jul 1995 A
5443461 Atkinson et al. Aug 1995 A
5443843 Curatolo et al. Aug 1995 A
5458141 Neil et al. Oct 1995 A
5458994 Nesselbeck et al. Oct 1995 A
5485841 Watkin et al. Jan 1996 A
5506248 Nikfar et al. Apr 1996 A
5551020 Flax et al. Aug 1996 A
5567210 Bates et al. Oct 1996 A
5596302 Mastrocola et al. Jan 1997 A
5600548 Nguyen et al. Feb 1997 A
5603363 Nelson Feb 1997 A
5634468 Platt Jun 1997 A
5645063 Straka et al. Jul 1997 A
5659247 Clements Aug 1997 A
5703463 Smith Dec 1997 A
5705189 Lehmann et al. Jan 1998 A
5724432 Bouvet et al. Mar 1998 A
5738708 Peachey et al. Apr 1998 A
5740811 Hedberg Apr 1998 A
5757326 Koyama et al. May 1998 A
5772575 Lesinski et al. Jun 1998 A
5792048 Schaefer Aug 1998 A
5802467 Salazar Sep 1998 A
5833716 Bar-Or Nov 1998 A
5842324 Grosskopf et al. Dec 1998 A
5845265 Woolston Dec 1998 A
5862803 Besson Jan 1999 A
5868136 Fox Feb 1999 A
5914132 Keim et al. Jun 1999 A
5914701 Gersheneld et al. Jun 1999 A
5925030 Gross et al. Jul 1999 A
5957854 Besson et al. Sep 1999 A
5963132 Yoakum et al. Oct 1999 A
5974124 Schlueter, Jr. et al. Oct 1999 A
5981166 Mandecki Nov 1999 A
5999846 Pardey et al. Dec 1999 A
6018229 Mitchell et al. Jan 2000 A
6038464 Axelgaard et al. Mar 2000 A
6042710 Dubrow Mar 2000 A
6047203 Sackner Apr 2000 A
6068465 Wilson May 2000 A
6068589 Neukermans May 2000 A
6076016 Feierbach et al. Jun 2000 A
6081734 Batz Jun 2000 A
6091975 Daddona et al. Jul 2000 A
6095985 Raymond et al. Aug 2000 A
6115636 Ryan Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6141592 Pauly Oct 2000 A
6149940 Maggi et al. Nov 2000 A
6200265 Walsh et al. Mar 2001 B1
6206702 Hayden et al. Mar 2001 B1
6217744 Crosby Apr 2001 B1
6231593 Meserol May 2001 B1
6245057 Sieben et al. Jun 2001 B1
6269058 Yamanoi et al. Jul 2001 B1
6285897 Kilcoyne et al. Sep 2001 B1
6287252 Lugo Sep 2001 B1
6288629 CoIino et al. Sep 2001 B1
6289238 Besson et al. Sep 2001 B1
6315719 Rode et al. Nov 2001 B1
6317714 Del Castillo Nov 2001 B1
6342774 Kreisinger et al. Jan 2002 B1
6344824 Takasugi et al. Feb 2002 B1
6358202 Arent Mar 2002 B1
6364834 Reuss Apr 2002 B1
6366206 Ishikawa et al. Apr 2002 B1
6371927 Brune Apr 2002 B1
6374670 Spelman Apr 2002 B1
6380858 Yarin et al. Apr 2002 B1
6390088 Noehl May 2002 B1
6394997 Lemelson May 2002 B1
6426863 Munshi Jul 2002 B1
6432292 Pinto et al. Aug 2002 B1
6440069 Raymond et al. Aug 2002 B1
6441747 Khair Aug 2002 B1
6453199 Kobozev Sep 2002 B1
6477424 Thompson et al. Nov 2002 B1
6496705 Ng et al. Dec 2002 B1
6526315 Inagawa Feb 2003 B1
6531026 Takeichi et al. Mar 2003 B1
6544174 West Apr 2003 B2
6547994 Monkhouse et al. Apr 2003 B1
6564079 Cory May 2003 B1
6567685 Takamori et al. May 2003 B2
6572636 Hagen et al. Jun 2003 B1
6577893 Besson Jun 2003 B1
6579231 Phipps Jun 2003 B1
6595929 Stivoric Jul 2003 B2
6599284 Faour et al. Jul 2003 B2
6602518 Seielstad et al. Aug 2003 B2
6605038 Teller Aug 2003 B1
6609018 Cory Aug 2003 B2
6612984 Kerr Sep 2003 B1
6632175 Marshall Oct 2003 B1
6632216 Houzego et al. Oct 2003 B2
6635279 Kolter et al. Oct 2003 B2
6643541 Mok et al. Nov 2003 B2
6654638 Sweeney Nov 2003 B1
6663846 McCombs Dec 2003 B1
6673474 Yamamoto Jan 2004 B2
6680923 Leon Jan 2004 B1
6689117 Sweeney et al. Feb 2004 B2
6694161 Mehrotra Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6720923 Hayward et al. Apr 2004 B1
6738671 Christophersom et al. May 2004 B2
6740033 Olejniczak et al. May 2004 B1
6745082 Axelgaard et al. Jun 2004 B2
6755783 Cosentino Jun 2004 B2
6757523 Fry Jun 2004 B2
6759968 Zierolf Jul 2004 B2
6767200 Sowden et al. Jul 2004 B2
6773429 Sheppard et al. Aug 2004 B2
6800060 Marshall Oct 2004 B2
6801137 Eggers et al. Oct 2004 B2
6816794 Alvi Nov 2004 B2
6822554 Vrijens et al. Nov 2004 B2
6824512 Warkentin et al. Nov 2004 B2
6836862 Erekson et al. Dec 2004 B1
6839659 Tarassenko et al. Jan 2005 B2
6840904 Goldberg Jan 2005 B2
6842636 Perrault Jan 2005 B2
6845272 Thomsen Jan 2005 B1
6864780 Doi Mar 2005 B2
6879810 Bouet Apr 2005 B2
6888337 Sawyers May 2005 B2
6889165 Lind et al. May 2005 B2
6909878 Haller Jun 2005 B2
6922592 Thompson et al. Jul 2005 B2
6928370 Anuzis et al. Aug 2005 B2
6929636 Von Alten Aug 2005 B1
6937150 Medema Aug 2005 B2
6942616 Kerr Sep 2005 B2
6942770 Cai et al. Sep 2005 B2
6946156 Bunick Sep 2005 B2
6951536 Yokoi Oct 2005 B2
6957107 Rogers et al. Oct 2005 B2
6958603 Kondo Oct 2005 B2
6960617 Omidian et al. Nov 2005 B2
6968153 Heinonen Nov 2005 B1
6977511 Patel et al. Dec 2005 B2
6982094 Sowden Jan 2006 B2
6987965 Ng et al. Jan 2006 B2
6990082 Zehavi et al. Jan 2006 B1
7002476 Rapchak Feb 2006 B2
7004395 Koenck Feb 2006 B2
7009634 Iddan et al. Mar 2006 B2
7009946 Kardach Mar 2006 B1
7013162 Gorsuch Mar 2006 B2
7016648 Haller Mar 2006 B2
7020508 Stivoric Mar 2006 B2
7024248 Penner et al. Apr 2006 B2
7031745 Shen Apr 2006 B2
7031857 Tarassenko et al. Apr 2006 B2
7039453 Mullick May 2006 B2
7044911 Drinan et al. May 2006 B2
7046649 Awater et al. May 2006 B2
7061236 Britton Jun 2006 B2
7083578 Lewkowicz Aug 2006 B2
7116252 Teraguchi Oct 2006 B2
7118531 Krill Oct 2006 B2
7122143 Sowden et al. Oct 2006 B2
7127300 Mazar et al. Oct 2006 B2
7146228 Nielsen Dec 2006 B2
7146449 Do et al. Dec 2006 B2
7149581 Goedeke et al. Dec 2006 B2
7154071 Sattler et al. Dec 2006 B2
7155232 Godfrey et al. Dec 2006 B2
7160258 Imran Jan 2007 B2
7164942 Avrahami Jan 2007 B2
7171166 Ng et al. Jan 2007 B2
7171177 Park et al. Jan 2007 B2
7171259 Rytky Jan 2007 B2
7176784 Gilbert et al. Feb 2007 B2
7187960 Abreu Mar 2007 B2
7188199 Leung et al. Mar 2007 B2
7188767 Penuela Mar 2007 B2
7194038 Inkinen Mar 2007 B1
7196495 Burcham Mar 2007 B1
7206630 Tarler Apr 2007 B1
7209790 Thompson et al. Apr 2007 B2
7215660 Perlman May 2007 B2
7215991 Besson May 2007 B2
7218967 Bergelson May 2007 B2
7231451 Law Jun 2007 B2
7243118 Lou Jul 2007 B2
7246521 Kim Jul 2007 B2
7249212 Do Jul 2007 B2
7252792 Perrault Aug 2007 B2
7253716 Lovoi et al. Aug 2007 B2
7261690 Teller Aug 2007 B2
7270633 Goscha Sep 2007 B1
7273454 Raymond et al. Sep 2007 B2
7289855 Nghiem Oct 2007 B2
7291497 Holmes Nov 2007 B2
7292139 Mazar et al. Nov 2007 B2
7294105 Islam Nov 2007 B1
7311665 Hawthorne Dec 2007 B2
7313163 Liu Dec 2007 B2
7317378 Jarvis et al. Jan 2008 B2
7318808 Tarassenko et al. Jan 2008 B2
7336929 Yasuda Feb 2008 B2
7342895 Serpa Mar 2008 B2
7346380 Axelgaard et al. Mar 2008 B2
7349722 Witkowski et al. Mar 2008 B2
7352998 Palin Apr 2008 B2
7353258 Washburn Apr 2008 B2
7357891 Yang et al. Apr 2008 B2
7359674 Markki Apr 2008 B2
7366558 Virtanen et al. Apr 2008 B2
7368190 Heller et al. May 2008 B2
7368191 Andelman et al. May 2008 B2
7373196 Ryu et al. May 2008 B2
7375739 Robbins May 2008 B2
7376435 McGowan May 2008 B2
7382247 Welch et al. Jun 2008 B2
7382263 Dancwski et al. Jun 2008 B2
7387607 Holt Jun 2008 B2
7388903 Godfrey et al. Jun 2008 B2
7389088 Kim Jun 2008 B2
7392015 Farlow Jun 2008 B1
7395106 Ryu et al. Jul 2008 B2
7396330 Banet Jul 2008 B2
7404968 Abrams et al. Jul 2008 B2
7413544 Kerr Aug 2008 B2
7414534 Kroll et al. Aug 2008 B1
7414543 Rye et al. Aug 2008 B2
7415242 Ngan Aug 2008 B1
7424268 Diener Sep 2008 B2
7424319 Muehlsteff Sep 2008 B2
7427266 Ayer et al. Sep 2008 B2
7442164 Berrang et al. Oct 2008 B2
7443290 Takiguchi Oct 2008 B2
7458887 Kurosawa Dec 2008 B2
7469838 Brooks et al. Dec 2008 B2
7471665 Perlman Dec 2008 B2
7471992 Schmidt et al. Dec 2008 B2
7492128 Shen Feb 2009 B2
7499674 Salokannel Mar 2009 B2
7510121 Koenck Mar 2009 B2
7512448 Malick Mar 2009 B2
7515043 Welch Apr 2009 B2
7519416 Sula et al. Apr 2009 B2
7523756 Minai Apr 2009 B2
7525426 Edelstein Apr 2009 B2
7527807 Choi et al. May 2009 B2
7537590 Santini, Jr. et al. May 2009 B2
7539533 Tran May 2009 B2
7542878 Nanikashvili Jun 2009 B2
7547278 Miyazaki et al. Jun 2009 B2
7551590 Haller Jun 2009 B2
7554452 Cole Jun 2009 B2
7558620 Ishibashi Jul 2009 B2
7575005 Mumford Aug 2009 B2
7616111 Covannon Nov 2009 B2
7617001 Penner et al. Nov 2009 B2
7626387 Adachi Dec 2009 B2
7639473 Hsu et al. Dec 2009 B2
7640802 King et al. Jan 2010 B2
7645262 Greenberg et al. Jan 2010 B2
7647112 Tracey Jan 2010 B2
7647185 Tarassenko et al. Jan 2010 B2
7653031 Godfrey et al. Jan 2010 B2
7672714 Kuo Mar 2010 B2
7673679 Harrison et al. Mar 2010 B2
7678043 Gilad Mar 2010 B2
7686839 Parker Mar 2010 B2
7697994 VanDanacker et al. Apr 2010 B2
7720036 Sadri May 2010 B2
7729776 Von Arx et al. Jun 2010 B2
7733224 Tran Jun 2010 B2
7736318 Costentin Jun 2010 B2
7756587 Penner et al. Jul 2010 B2
7760104 Asp Jul 2010 B2
7782991 Sobchak et al. Aug 2010 B2
7796043 Euliano et al. Sep 2010 B2
7797033 D'Andrea et al. Sep 2010 B2
7809399 Lu Oct 2010 B2
7844341 Von Arx et al. Nov 2010 B2
7881799 Greenberg et al. Feb 2011 B2
7975587 Schneider Jul 2011 B2
7978064 Zdeblick et al. Jul 2011 B2
7983189 Bugenhagen Jul 2011 B2
8036731 Kimchy et al. Oct 2011 B2
8036748 Zdeblick et al. Oct 2011 B2
8054047 Chen et al. Nov 2011 B2
8054140 Fleming et al. Nov 2011 B2
8055334 Savage et al. Nov 2011 B2
8082919 Brunnberg et al. Dec 2011 B2
8119045 Schmidt et al. Feb 2012 B2
8131376 Faraji et al. Mar 2012 B1
8177611 Kang May 2012 B2
8185191 Shapiro et al. May 2012 B1
8185646 Headley May 2012 B2
8200320 Kovacs Jun 2012 B2
8207731 Moskalenko Jun 2012 B2
8224596 Agrawal et al. Jul 2012 B2
8253586 Matak Aug 2012 B1
8254853 Rofougaran Aug 2012 B2
8271146 Heber et al. Sep 2012 B2
8298574 Tsabari et al. Oct 2012 B2
8343068 Najafi et al. Jan 2013 B2
8374698 Ok et al. Feb 2013 B2
8389003 Mintchev et al. Mar 2013 B2
8404275 Habboushe Mar 2013 B2
8425492 Herbert et al. Apr 2013 B2
8443214 Lee et al. May 2013 B2
8454528 Yuen et al. Jun 2013 B2
8532776 Greenberg et al. Sep 2013 B2
8540633 Hafezi et al. Sep 2013 B2
8540664 Robertson et al. Sep 2013 B2
8545402 Hafezi et al. Oct 2013 B2
8547248 Zdeblick et al. Oct 2013 B2
8558563 Zdeblick Oct 2013 B2
8564432 Covannon et al. Oct 2013 B2
8597186 Hafezi et al. Dec 2013 B2
8634838 Hellwig et al. Jan 2014 B2
8660645 Stevenson et al. Feb 2014 B2
8668643 Kinast Mar 2014 B2
8685451 Toneguzzo et al. Apr 2014 B2
8697057 Van Epps et al. Apr 2014 B2
8698006 Bealka et al. Apr 2014 B2
8721540 Hafezi et al. May 2014 B2
8758237 Sherman et al. Jun 2014 B2
8784308 Duck et al. Jul 2014 B2
8802183 Frank et al. Aug 2014 B2
8816847 Zdeblick et al. Aug 2014 B2
8836513 Hafezi et al. Sep 2014 B2
8838217 Myr Sep 2014 B2
8858432 Robertson Oct 2014 B2
8908943 Berry et al. Dec 2014 B2
8912908 Berkman et al. Dec 2014 B2
8926509 Magar et al. Jan 2015 B2
8932221 Colliou et al. Jan 2015 B2
8945005 Hafezi et al. Feb 2015 B2
8951234 Hafezi et al. Feb 2015 B2
8989837 Weinstein et al. Mar 2015 B2
9031658 Chiao et al. May 2015 B2
9088168 Mach et al. Jul 2015 B2
9107806 Hafezi et al. Aug 2015 B2
9119554 Robertson et al. Sep 2015 B2
9119918 Robertson et al. Sep 2015 B2
9149423 Duck et al. Oct 2015 B2
9158890 Meredith et al. Oct 2015 B2
9161707 Hafezi et al. Oct 2015 B2
9189941 Eschelman et al. Nov 2015 B2
9226663 Fei Jan 2016 B2
9226679 Baida Jan 2016 B2
9268909 Jani et al. Feb 2016 B2
9270025 Robertson et al. Feb 2016 B2
9271897 Costello et al. Mar 2016 B2
9277864 Yang et al. Mar 2016 B2
9320455 Hafezi et al. Apr 2016 B2
9415010 Hafezi et al. Aug 2016 B2
9433371 Hafezi et al. Sep 2016 B2
9439582 Berkman et al. Sep 2016 B2
9439599 Thompson et al. Sep 2016 B2
9517012 Lane et al. Dec 2016 B2
9597010 Thompson et al. Mar 2017 B2
9597487 Robertson et al. Mar 2017 B2
9599679 Taylor et al. Mar 2017 B2
9649066 Zdeblick et al. May 2017 B2
9681842 Zdeblick et al. Jun 2017 B2
9741975 Laulicht et al. Aug 2017 B2
9756874 Ame et al. Sep 2017 B2
9962107 Frank et al. May 2018 B2
9968284 Vidalis et al. May 2018 B2
20010027331 Thompson Oct 2001 A1
20010044588 Mault Nov 2001 A1
20010051766 Gazdinski Dec 2001 A1
20020002326 Causey et al. Jan 2002 A1
20020026111 Ackerman Feb 2002 A1
20020032384 Raymond et al. Mar 2002 A1
20020032385 Raymond et al. Mar 2002 A1
20020040278 Anuzis et al. Apr 2002 A1
20020077620 Sweeney et al. Jun 2002 A1
20020099423 Berg et al. Jul 2002 A1
20020128934 Shaer Sep 2002 A1
20020132226 Nair Sep 2002 A1
20020136744 McGlynn et al. Sep 2002 A1
20020179921 Cohn Dec 2002 A1
20020192159 Reitberg Dec 2002 A1
20020193669 Glukhovsky Dec 2002 A1
20020198470 Imran et al. Dec 2002 A1
20030017826 Fishman et al. Jan 2003 A1
20030023150 Yokoi et al. Jan 2003 A1
20030028226 Thompson Feb 2003 A1
20030062551 Chen et al. Apr 2003 A1
20030065536 Hansen Apr 2003 A1
20030076179 Branch et al. Apr 2003 A1
20030083559 Thompson May 2003 A1
20030091625 Hariharan et al. May 2003 A1
20030126593 Mault Jul 2003 A1
20030130714 Nielsen et al. Jul 2003 A1
20030135128 Suffin et al. Jul 2003 A1
20030135392 Vrijens et al. Jul 2003 A1
20030152622 Louie-Helm et al. Aug 2003 A1
20030158466 Lynn et al. Aug 2003 A1
20030158756 Abramson Aug 2003 A1
20030162556 Libes Aug 2003 A1
20030164401 Andreasson et al. Sep 2003 A1
20030167000 Mullick et al. Sep 2003 A1
20030171791 KenKnight Sep 2003 A1
20030171898 Tarassenko et al. Sep 2003 A1
20030181788 Yokoi et al. Sep 2003 A1
20030185286 Yuen Oct 2003 A1
20030187337 Tarassenko et al. Oct 2003 A1
20030187338 Say et al. Oct 2003 A1
20030195403 Berner et al. Oct 2003 A1
20030213495 Fujita et al. Nov 2003 A1
20030214579 Iddan Nov 2003 A1
20030216622 Meron et al. Nov 2003 A1
20030216625 Phipps Nov 2003 A1
20030216666 Ericson et al. Nov 2003 A1
20030216729 Marchitto Nov 2003 A1
20030219484 Sowden et al. Nov 2003 A1
20030232895 Omidian et al. Dec 2003 A1
20040008123 Carrender et al. Jan 2004 A1
20040018476 LaDue Jan 2004 A1
20040034295 Salganicoff Feb 2004 A1
20040049245 Gass Mar 2004 A1
20040073095 Causey et al. Apr 2004 A1
20040073454 Urquhart et al. Apr 2004 A1
20040077995 Ferek-Petric Apr 2004 A1
20040082982 Gord et al. Apr 2004 A1
20040087839 Raymond et al. May 2004 A1
20040092801 Drakulic May 2004 A1
20040106859 Say et al. Jun 2004 A1
20040115507 Potter et al. Jun 2004 A1
20040115517 Fukada et al. Jun 2004 A1
20040117062 Bonnev et al. Jun 2004 A1
20040121015 Chidlaw et al. Jun 2004 A1
20040148140 Tarassenko et al. Jul 2004 A1
20040153007 Harris Aug 2004 A1
20040167226 Serafini Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040193020 Chiba Sep 2004 A1
20040193029 Gluhovsky Sep 2004 A1
20040193446 Mayer et al. Sep 2004 A1
20040199222 Sun et al. Oct 2004 A1
20040215084 Shimizu et al. Oct 2004 A1
20040218683 Batra Nov 2004 A1
20040220643 Schmidt Nov 2004 A1
20040224644 Wu Nov 2004 A1
20040225199 Evanyk Nov 2004 A1
20040253304 Gross et al. Dec 2004 A1
20040258571 Lee et al. Dec 2004 A1
20040259899 Sanghvi et al. Dec 2004 A1
20040260154 Sidelnik Dec 2004 A1
20050003074 Brown et al. Jan 2005 A1
20050017841 Doi Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050021370 Riff Jan 2005 A1
20050024198 Ward Feb 2005 A1
20050027205 Tarassenko et al. Feb 2005 A1
20050038321 Fujita et al. Feb 2005 A1
20050043634 Yokoi et al. Feb 2005 A1
20050043894 Fernandez Feb 2005 A1
20050054897 Hashimoto et al. Mar 2005 A1
20050055014 Coppeta et al. Mar 2005 A1
20050062644 Leci Mar 2005 A1
20050065407 Nakamura et al. Mar 2005 A1
20050070778 Lackey Mar 2005 A1
20050075145 Dvorak et al. Apr 2005 A1
20050090753 Goor et al. Apr 2005 A1
20050092108 Andermo May 2005 A1
20050096514 Starkebaum May 2005 A1
20050096562 Delalic et al. May 2005 A1
20050101843 Quinn May 2005 A1
20050101872 Sattler May 2005 A1
20050115561 Stahmann et al. Jun 2005 A1
20050116820 Goldreich Jun 2005 A1
20050117389 Worledge Jun 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131281 Ayer et al. Jun 2005 A1
20050143623 Kojima Jun 2005 A1
20050146594 Nakatani et al. Jul 2005 A1
20050148883 Boesen Jul 2005 A1
20050154428 Bruinsma Jul 2005 A1
20050156709 Gilbert et al. Jul 2005 A1
20050165323 Montgomery Jul 2005 A1
20050177069 Takizawa Aug 2005 A1
20050182389 LaPorte Aug 2005 A1
20050187789 Hatlestad et al. Aug 2005 A1
20050192489 Marshall Sep 2005 A1
20050197680 DelMain et al. Sep 2005 A1
20050208251 Aisenbrey Sep 2005 A1
20050228268 Cole Oct 2005 A1
20050234307 Heinonen Oct 2005 A1
20050240305 Bogash et al. Oct 2005 A1
20050245794 Dinsmoor Nov 2005 A1
20050259768 Yang et al. Nov 2005 A1
20050261559 Mumford Nov 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20050267756 Schultz et al. Dec 2005 A1
20050277912 John Dec 2005 A1
20050277999 Strother et al. Dec 2005 A1
20050279054 Mauze et al. Dec 2005 A1
20050280539 Pettus Dec 2005 A1
20050285746 Sengupta Dec 2005 A1
20050288594 Lewkowicz et al. Dec 2005 A1
20060001496 Abrosimov et al. Jan 2006 A1
20060028727 Moon et al. Feb 2006 A1
20060036134 Tarassenko et al. Feb 2006 A1
20060058602 Kwiatkowski et al. Mar 2006 A1
20060061472 Lovoi et al. Mar 2006 A1
20060065713 Kingery Mar 2006 A1
20060068006 Begleiter Mar 2006 A1
20060074283 Henderson Apr 2006 A1
20060074319 Barnes et al. Apr 2006 A1
20060078765 Yang et al. Apr 2006 A1
20060095091 Drew May 2006 A1
20060095093 Bettesh et al. May 2006 A1
20060100533 Han May 2006 A1
20060109058 Keating May 2006 A1
20060110962 Powell May 2006 A1
20060122474 Teller et al. Jun 2006 A1
20060122494 Bouchoucha Jun 2006 A1
20060122667 Chavan et al. Jun 2006 A1
20060129060 Lee et al. Jun 2006 A1
20060136266 Tarassenko et al. Jun 2006 A1
20060142648 Banet Jun 2006 A1
20060145876 Kimura Jul 2006 A1
20060148254 McLean Jul 2006 A1
20060149339 Burnes Jul 2006 A1
20060155174 Glukhovsky et al. Jul 2006 A1
20060155183 Kroecker Jul 2006 A1
20060161225 Sormann et al. Jul 2006 A1
20060179949 Kim Aug 2006 A1
20060183993 Horn Aug 2006 A1
20060184092 Atanasoska et al. Aug 2006 A1
20060204738 Dubrow et al. Sep 2006 A1
20060210626 Spaeder Sep 2006 A1
20060216603 Choi Sep 2006 A1
20060218011 Walker Sep 2006 A1
20060235489 Drew Oct 2006 A1
20060243288 Kim et al. Nov 2006 A1
20060247505 Siddiqui Nov 2006 A1
20060253005 Drinan Nov 2006 A1
20060270346 Ibrahim Nov 2006 A1
20060273882 Posamentier Dec 2006 A1
20060276702 McGinnis Dec 2006 A1
20060280227 Pinkney Dec 2006 A1
20060282001 Noel Dec 2006 A1
20060289640 Mercure Dec 2006 A1
20060293607 Alt Dec 2006 A1
20070000776 Karube et al. Jan 2007 A1
20070002038 Suzuki Jan 2007 A1
20070006636 King et al. Jan 2007 A1
20070008113 Spoonhower et al. Jan 2007 A1
20070016089 Fischell et al. Jan 2007 A1
20070027386 Such Feb 2007 A1
20070027388 Chou Feb 2007 A1
20070029195 Li et al. Feb 2007 A1
20070038054 Zhou Feb 2007 A1
20070049339 Barak et al. Mar 2007 A1
20070055098 Shimizu et al. Mar 2007 A1
20070060797 Ball Mar 2007 A1
20070060800 Drinan et al. Mar 2007 A1
20070066929 Ferren et al. Mar 2007 A1
20070073353 Rooney et al. Mar 2007 A1
20070096765 Kagan May 2007 A1
20070106346 Bergelson May 2007 A1
20070123772 Euliano May 2007 A1
20070129622 Bourget Jun 2007 A1
20070130287 Kumar Jun 2007 A1
20070135803 On Jun 2007 A1
20070142721 Bemer et al. Jun 2007 A1
20070156016 Betesh Jul 2007 A1
20070160789 Merical Jul 2007 A1
20070162089 Mosesov Jul 2007 A1
20070162090 Penner Jul 2007 A1
20070167495 Brown et al. Jul 2007 A1
20070167848 Kuo et al. Jul 2007 A1
20070173701 Al-Ali Jul 2007 A1
20070179347 Tarassenko et al. Aug 2007 A1
20070179371 Peyser et al. Aug 2007 A1
20070185393 Zhou Aug 2007 A1
20070191002 Ge Aug 2007 A1
20070196456 Stevens Aug 2007 A1
20070207793 Myer Sep 2007 A1
20070208233 Kovacs Sep 2007 A1
20070213659 Trovato et al. Sep 2007 A1
20070237719 Jones Oct 2007 A1
20070244370 Kuo et al. Oct 2007 A1
20070255198 Leong et al. Nov 2007 A1
20070255330 Lee Nov 2007 A1
20070270672 Hayter Nov 2007 A1
20070279217 Venkatraman Dec 2007 A1
20070282174 Sabatino Dec 2007 A1
20070282177 Pilz Dec 2007 A1
20070299480 Hill Dec 2007 A1
20080000804 Carey et al. Jan 2008 A1
20080014866 Lipowshi Jan 2008 A1
20080020037 Robertson et al. Jan 2008 A1
20080021519 DeGeest Jan 2008 A1
20080021521 Shah Jan 2008 A1
20080027679 Shklarski Jan 2008 A1
20080033273 Zhou Feb 2008 A1
20080038588 Lee Feb 2008 A1
20080039700 Drinan et al. Feb 2008 A1
20080045843 Tsuji et al. Feb 2008 A1
20080046038 Hill Feb 2008 A1
20080051647 Wu et al. Feb 2008 A1
20080051667 Goldreich Feb 2008 A1
20080058614 Banet Mar 2008 A1
20080062856 Feher Mar 2008 A1
20080065168 Bitton et al. Mar 2008 A1
20080074307 Boric-Lubecke Mar 2008 A1
20080077015 Botic-Lubecke Mar 2008 A1
20080077028 Schaldach et al. Mar 2008 A1
20080077188 Denker et al. Mar 2008 A1
20080091089 Guillory et al. Apr 2008 A1
20080091114 Min Apr 2008 A1
20080097549 Colbaugh Apr 2008 A1
20080097917 Dicks Apr 2008 A1
20080103440 Ferren et al. May 2008 A1
20080112885 Okunev et al. May 2008 A1
20080114224 Bandy et al. May 2008 A1
20080119705 Patel May 2008 A1
20080119716 Boric-Lubecke May 2008 A1
20080121825 Trovato et al. May 2008 A1
20080137566 Marholev Jun 2008 A1
20080139907 Rao et al. Jun 2008 A1
20080140403 Hughes et al. Jun 2008 A1
20080146871 Arneson et al. Jun 2008 A1
20080146889 Young Jun 2008 A1
20080146892 LeBeouf Jun 2008 A1
20080154104 Lamego Jun 2008 A1
20080166992 Ricordi Jul 2008 A1
20080175898 Jones et al. Jul 2008 A1
20080183245 Van Oort Jul 2008 A1
20080188837 Belsky et al. Aug 2008 A1
20080194912 Trovato et al. Aug 2008 A1
20080208009 Shklarski Aug 2008 A1
20080214901 Gehman Sep 2008 A1
20080214985 Yanaki Sep 2008 A1
20080243020 Chou Oct 2008 A1
20080249360 Li Oct 2008 A1
20080262320 Schaefer et al. Oct 2008 A1
20080262336 Ryu Oct 2008 A1
20080269664 Trovato et al. Oct 2008 A1
20080275312 Mosesov Nov 2008 A1
20080284599 Zdeblick et al. Nov 2008 A1
20080288027 Kroll Nov 2008 A1
20080294020 Sapounas Nov 2008 A1
20080299197 Toneguzzo et al. Dec 2008 A1
20080300572 Rankers Dec 2008 A1
20080303638 Nguyen Dec 2008 A1
20080306357 Korman Dec 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20080306360 Robertson et al. Dec 2008 A1
20080311852 Hansen Dec 2008 A1
20080312522 Rowlandson Dec 2008 A1
20080316020 Robertson Dec 2008 A1
20090009330 Sakama et al. Jan 2009 A1
20090009332 Nunez et al. Jan 2009 A1
20090024045 Prakash Jan 2009 A1
20090024112 Edwards et al. Jan 2009 A1
20090030293 Cooper et al. Jan 2009 A1
20090030297 Miller Jan 2009 A1
20090034209 Joo Feb 2009 A1
20090043171 Rule Feb 2009 A1
20090047357 Tomohira et al. Feb 2009 A1
20090048498 Riskey Feb 2009 A1
20090062634 Say et al. Mar 2009 A1
20090062670 Sterling Mar 2009 A1
20090062730 Woo Mar 2009 A1
20090069642 Gao Mar 2009 A1
20090069655 Say et al. Mar 2009 A1
20090069656 Say et al. Mar 2009 A1
20090069657 Say et al. Mar 2009 A1
20090069658 Say et al. Mar 2009 A1
20090069724 Otto et al. Mar 2009 A1
20090076343 James Mar 2009 A1
20090076350 Bly et al. Mar 2009 A1
20090082645 Hafezi et al. Mar 2009 A1
20090087483 Sison Apr 2009 A1
20090088618 Arneson Apr 2009 A1
20090099435 Say et al. Apr 2009 A1
20090105561 Boydon et al. Apr 2009 A1
20090110148 Zhang Apr 2009 A1
20090112626 Talbot Apr 2009 A1
20090124871 Arshak May 2009 A1
20090124965 Greenberg et al. May 2009 A1
20090131774 Sweitzer May 2009 A1
20090135886 Robertson et al. May 2009 A1
20090142853 Warrington et al. Jun 2009 A1
20090149839 Hyde et al. Jun 2009 A1
20090157113 Marcotte Jun 2009 A1
20090157358 Kim Jun 2009 A1
20090161602 Matsumoto Jun 2009 A1
20090163789 Say et al. Jun 2009 A1
20090171180 Pering Jul 2009 A1
20090171420 Brown et al. Jul 2009 A1
20090173628 Say et al. Jul 2009 A1
20090177055 Say et al. Jul 2009 A1
20090177056 Say et al. Jul 2009 A1
20090177057 Say et al. Jul 2009 A1
20090177058 Say et al. Jul 2009 A1
20090177059 Say et al. Jul 2009 A1
20090177060 Say et al. Jul 2009 A1
20090177061 Say et al. Jul 2009 A1
20090177062 Say et al. Jul 2009 A1
20090177063 Say et al. Jul 2009 A1
20090177064 Say et al. Jul 2009 A1
20090177065 Say et al. Jul 2009 A1
20090177066 Say et al. Jul 2009 A1
20090182206 Najafi Jul 2009 A1
20090182207 Riskey et al. Jul 2009 A1
20090182212 Say et al. Jul 2009 A1
20090182213 Say et al. Jul 2009 A1
20090182214 Say et al. Jul 2009 A1
20090182215 Say et al. Jul 2009 A1
20090182388 Von Arx Jul 2009 A1
20090187088 Say et al. Jul 2009 A1
20090187089 Say et al. Jul 2009 A1
20090187090 Say et al. Jul 2009 A1
20090187091 Say et al. Jul 2009 A1
20090187092 Say et al. Jul 2009 A1
20090187093 Say et al. Jul 2009 A1
20090187094 Say et al. Jul 2009 A1
20090187095 Say et al. Jul 2009 A1
20090187381 King et al. Jul 2009 A1
20090192351 Nishino Jul 2009 A1
20090192368 Say et al. Jul 2009 A1
20090192369 Say et al. Jul 2009 A1
20090192370 Say et al. Jul 2009 A1
20090192371 Say et al. Jul 2009 A1
20090192372 Say et al. Jul 2009 A1
20090192373 Say et al. Jul 2009 A1
20090192374 Say et al. Jul 2009 A1
20090192375 Say et al. Jul 2009 A1
20090192376 Say et al. Jul 2009 A1
20090192377 Say et al. Jul 2009 A1
20090192378 Say et al. Jul 2009 A1
20090192379 Say et al. Jul 2009 A1
20090194747 Zou et al. Aug 2009 A1
20090197068 Yamaguchi et al. Aug 2009 A1
20090198115 Say et al. Aug 2009 A1
20090198116 Say et al. Aug 2009 A1
20090198175 Say et al. Aug 2009 A1
20090203964 Shimizu et al. Aug 2009 A1
20090203971 Sciarappa Aug 2009 A1
20090203972 Heneghan Aug 2009 A1
20090203978 Say et al. Aug 2009 A1
20090204265 Hackett Aug 2009 A1
20090210164 Say et al. Aug 2009 A1
20090216101 Say et al. Aug 2009 A1
20090216102 Say et al. Aug 2009 A1
20090227204 Robertson et al. Sep 2009 A1
20090227876 Tran Sep 2009 A1
20090227940 Say et al. Sep 2009 A1
20090227941 Say et al. Sep 2009 A1
20090227988 Wood et al. Sep 2009 A1
20090228214 Say et al. Sep 2009 A1
20090231125 Baldus Sep 2009 A1
20090234200 Husheer Sep 2009 A1
20090243833 Huang Oct 2009 A1
20090253960 Takenaka et al. Oct 2009 A1
20090256702 Robertson Oct 2009 A1
20090260212 Schmett et al. Oct 2009 A1
20090264714 Chou Oct 2009 A1
20090264964 Abrahamson Oct 2009 A1
20090265186 Tarassenko et al. Oct 2009 A1
20090273467 Elixmann Nov 2009 A1
20090281539 Selig Nov 2009 A1
20090287109 Ferren et al. Nov 2009 A1
20090295548 Ronkka Dec 2009 A1
20090296677 Mahany Dec 2009 A1
20090303920 Mahany Dec 2009 A1
20090306633 Trovato et al. Dec 2009 A1
20090312619 Say et al. Dec 2009 A1
20090318303 Delamarche et al. Dec 2009 A1
20090318761 Rabinovitz Dec 2009 A1
20090318779 Tran Dec 2009 A1
20090318783 Rohde Dec 2009 A1
20090318793 Datta Dec 2009 A1
20100001841 Cardullo Jan 2010 A1
20100010330 Rankers Jan 2010 A1
20100033324 Shimizu et al. Feb 2010 A1
20100036269 Ferren et al. Feb 2010 A1
20100049004 Edman et al. Feb 2010 A1
20100049006 Magar Feb 2010 A1
20100049012 Dijksman et al. Feb 2010 A1
20100049069 Tarassenko et al. Feb 2010 A1
20100056878 Partin Mar 2010 A1
20100056891 Say et al. Mar 2010 A1
20100056939 Tarassenko et al. Mar 2010 A1
20100057041 Hayter Mar 2010 A1
20100062709 Kato Mar 2010 A1
20100063438 Bengtsson Mar 2010 A1
20100063841 D'Ambrosia et al. Mar 2010 A1
20100069002 Rong Mar 2010 A1
20100069717 Hafezi et al. Mar 2010 A1
20100099967 Say et al. Apr 2010 A1
20100099968 Say et al. Apr 2010 A1
20100099969 Say et al. Apr 2010 A1
20100100077 Rush Apr 2010 A1
20100100078 Say et al. Apr 2010 A1
20100106001 Say et al. Apr 2010 A1
20100118853 Godfrey May 2010 A1
20100139672 Kroll et al. Jun 2010 A1
20100168659 Say et al. Jul 2010 A1
20100179398 Say et al. Jul 2010 A1
20100191073 Tarassenko et al. Jul 2010 A1
20100210299 Gorbachov Aug 2010 A1
20100222652 Cho Sep 2010 A1
20100228113 Solosko Sep 2010 A1
20100233026 Ismagilov et al. Sep 2010 A1
20100234706 Gilland Sep 2010 A1
20100234715 Shin Sep 2010 A1
20100234914 Shen Sep 2010 A1
20100245091 Singh Sep 2010 A1
20100249541 Geva et al. Sep 2010 A1
20100249881 Comdorf Sep 2010 A1
20100256461 Mohamedali Oct 2010 A1
20100259543 Tarassenko et al. Oct 2010 A1
20100268048 Say et al. Oct 2010 A1
20100268049 Say et al. Oct 2010 A1
20100268050 Say et al. Oct 2010 A1
20100274111 Say et al. Oct 2010 A1
20100280345 Say et al. Nov 2010 A1
20100280346 Say et al. Nov 2010 A1
20100295694 Kauffman et al. Nov 2010 A1
20100297640 Kumar et al. Nov 2010 A1
20100298650 Moon et al. Nov 2010 A1
20100298730 Tarassenko et al. Nov 2010 A1
20100312188 Robertson et al. Dec 2010 A1
20100312580 Tarassenko et al. Dec 2010 A1
20110009715 O'Reilly et al. Jan 2011 A1
20110077660 Janik et al. Mar 2011 A1
20110124983 Kroll et al. May 2011 A1
20110134906 Garudadri et al. Jun 2011 A1
20110160549 Saroka et al. Jun 2011 A1
20110224912 Bhavaraju et al. Sep 2011 A1
20110230732 Edman et al. Sep 2011 A1
20110270135 Dooley et al. Nov 2011 A1
20120004520 Whitworth et al. Jan 2012 A1
20120011699 Hafezi et al. Jan 2012 A1
20120016231 Westmoreland Jan 2012 A1
20120032816 Cho et al. Feb 2012 A1
20120062371 Radivoievic et al. Mar 2012 A1
20120071743 Todorov et al. Mar 2012 A1
20120109112 Strand et al. May 2012 A1
20120179004 Roesicke et al. Jul 2012 A1
20120245043 England Sep 2012 A1
20120276451 Lestriez et al. Nov 2012 A1
20120299723 Hafezi et al. Nov 2012 A1
20130129869 Hafezi et al. May 2013 A1
20130129872 Kruger May 2013 A1
20130131283 Wang et al. May 2013 A1
20130171596 French Jul 2013 A1
20130172690 Ame et al. Jul 2013 A1
20130185228 Dresner Jul 2013 A1
20130196012 Dill Aug 2013 A1
20130199662 Gebbink Aug 2013 A1
20130209877 Kren et al. Aug 2013 A1
20130223028 Arne et al. Aug 2013 A1
20130275296 Tietzen et al. Oct 2013 A1
20140066734 Zdeblick Mar 2014 A1
20140179221 Whitworth et al. Jun 2014 A1
20140180202 Zdeblick et al. Jun 2014 A1
20140280125 Bhardwaj et al. Sep 2014 A1
20140308930 Tran Oct 2014 A1
20140349256 Connor Nov 2014 A1
20140374276 Guthrie et al. Dec 2014 A1
20150017486 Lai Jan 2015 A1
20150059922 Thompson et al. Mar 2015 A1
20150080678 Frank et al. Mar 2015 A1
20150080680 Zdeblick et al. Mar 2015 A1
20150112243 Hafezi et al. Apr 2015 A1
20150127737 Thompson et al. May 2015 A1
20150127738 Thompson et al. May 2015 A1
20150149375 Thompson et al. May 2015 A1
20150150480 Zdeblick et al. Jun 2015 A1
20150164746 Costello et al. Jun 2015 A1
20150230729 Zdeblick et al. Aug 2015 A1
20150248833 Arne et al. Sep 2015 A1
20150352343 Hafezi et al. Dec 2015 A1
20150361234 Hafezi et al. Dec 2015 A1
20160033667 Schmidt et al. Feb 2016 A1
20160345906 Johnson et al. Dec 2016 A1
20160380708 Dua et al. Dec 2016 A1
20170000179 Cheng et al. Jan 2017 A1
20170014046 Hafezi et al. Jan 2017 A1
20170020182 Schmidt et al. Jan 2017 A1
20170265813 Zdeblick et al. Sep 2017 A1
20170274194 Robertson et al. Sep 2017 A1
20170296799 Hafezi et al. Oct 2017 A1
20180026680 Shirvani et al. Jan 2018 A1
20180110441 Frank et al. Apr 2018 A1
20180184698 Arne et al. Jul 2018 A1
20180214048 Zdeblick et al. Aug 2018 A1
20180229996 Thompson Aug 2018 A1
20190158151 Shirvani et al. May 2019 A1
Foreign Referenced Citations (167)
Number Date Country
1588649 Mar 2005 CN
1650844 Aug 2005 CN
101795202 Aug 2010 CN
10313005 Oct 2004 DE
0344939 Dec 1989 EP
0526166 Feb 1993 EP
0981152 Feb 2000 EP
1246356 Oct 2002 EP
1534054 May 2005 EP
1702553 Sep 2006 EP
1244308 Dec 2007 EP
2143369 Jan 2010 EP
827762 Feb 1960 GB
61072712 Apr 1986 JP
H01285247 Nov 1989 JP
05228128 Sep 1993 JP
H11195415 Jul 1999 JP
2000506410 May 2000 JP
2002263185 Sep 2002 JP
2002282219 Oct 2002 JP
2003050867 Feb 2003 JP
2004313242 Nov 2004 JP
2005073886 Mar 2005 JP
2005087552 Apr 2005 JP
2005102959 Apr 2005 JP
2005124708 May 2005 JP
2005514966 May 2005 JP
2005304880 Nov 2005 JP
2005343515 Dec 2005 JP
20055332328 Dec 2005 JP
2006006377 Jan 2006 JP
2006509574 Mar 2006 JP
2007200739 Aug 2007 JP
2007313340 Dec 2007 JP
2009514870 Apr 2009 JP
2009528909 Aug 2009 JP
200600 977523 Jul 2006 KR
200406192 May 2004 TW
200916136 Apr 2009 TW
WO1988002237 Apr 1988 WO
WO1992021307 Dec 1992 WO
WO1993008734 May 1993 WO
WO1993019667 Oct 1993 WO
WO1994001165 Jan 1994 WO
WO1997039963 Oct 1997 WO
WO1998043537 Oct 1998 WO
WO1999037290 Jul 1999 WO
WO1999059465 Nov 1999 WO
WO2000032474 Jun 2000 WO
WO2000033246 Jun 2000 WO
WO2001000085 Jan 2001 WO
WO2001047466 Jul 2001 WO
WO2001058236 Aug 2001 WO
WO2001074011 Oct 2001 WO
WO2001080731 Nov 2001 WO
WO2002000920 Jan 2002 WO
WO2002045489 Jun 2002 WO
WO2002058330 Jul 2002 WO
WO2002062276 Aug 2002 WO
WO2002087681 Nov 2002 WO
WO2002095351 Nov 2002 WO
WO2003005877 Jan 2003 WO
WO2003050643 Jun 2003 WO
WO2003068061 Aug 2003 WO
WO2004014225 Feb 2004 WO
WO2004019172 Mar 2004 WO
WO2004039256 May 2004 WO
WO2004066833 Aug 2004 WO
WO2004066834 Aug 2004 WO
WO2004066903 Aug 2004 WO
WO2004068881 Aug 2004 WO
WO2004075032 Sep 2004 WO
WO2004109316 Dec 2004 WO
WO02005011237 Feb 2005 WO
WO2005020023 Mar 2005 WO
WO02005024687 Mar 2005 WO
WO02005041438 May 2005 WO
WO2005047837 May 2005 WO
WO2005051166 Jun 2005 WO
WO02005053517 Jun 2005 WO
WO02005083621 Sep 2005 WO
WO2005110238 Nov 2005 WO
WO2005123569 Dec 2005 WO
WO2006021932 Mar 2006 WO
WO2006027586 Mar 2006 WO
WO2006028347 Mar 2006 WO
WO2006055892 May 2006 WO
WO2006055956 May 2006 WO
WO2006075016 Jul 2006 WO
WO2006100620 Sep 2006 WO
WO2006104843 Oct 2006 WO
WO2006116718 Nov 2006 WO
WO2006127355 Nov 2006 WO
WO02007001724 Jan 2007 WO
WO2007001742 Jan 2007 WO
WO2007013952 Feb 2007 WO
WO2007014084 Feb 2007 WO
WO2007014527 Feb 2007 WO
WO2007021496 Feb 2007 WO
WO2007027660 Mar 2007 WO
WO2007028035 Mar 2007 WO
WO2007036687 Apr 2007 WO
WO2007036741 Apr 2007 WO
WO2007036746 Apr 2007 WO
WO2007040878 Apr 2007 WO
WO2007067054 Jun 2007 WO
WO2007071180 Jun 2007 WO
WO2007096810 Aug 2007 WO
WO2007101141 Sep 2007 WO
WO2007115087 Oct 2007 WO
WO2007120946 Oct 2007 WO
WO2007127316 Nov 2007 WO
WO2007127879 Nov 2007 WO
WO2007128165 Nov 2007 WO
WO2007130491 Nov 2007 WO
WO2007143535 Dec 2007 WO
WO2007149546 Dec 2007 WO
WO2008008281 Jan 2008 WO
WO2008012700 Jan 2008 WO
WO2008030482 Mar 2008 WO
WO2008052136 May 2008 WO
WO2008063626 May 2008 WO
WO2008066617 Jun 2008 WO
WO2008076464 Jun 2008 WO
WO2008089232 Jul 2008 WO
WO2008091683 Jul 2008 WO
WO2008095183 Aug 2008 WO
WO2008097652 Aug 2008 WO
WO2008101107 Aug 2008 WO
WO2008112577 Sep 2008 WO
WO2008112578 Sep 2008 WO
WO2008120156 Oct 2008 WO
WO2008133394 Nov 2008 WO
WO2008134185 Nov 2008 WO
WO2008150633 Dec 2008 WO
WO2009000447 Dec 2008 WO
WO2009001108 Dec 2008 WO
WO2009006615 Jan 2009 WO
WO2009029453 Mar 2009 WO
WO2009031149 Mar 2009 WO
WO2009036334 Mar 2009 WO
WO2009051829 Apr 2009 WO
WO2009051830 Apr 2009 WO
WO2009063377 May 2009 WO
WO2009081348 Jul 2009 WO
WO2009111664 Sep 2009 WO
WO2009146082 Dec 2009 WO
WO2010009100 Jan 2010 WO
WO2010011833 Jan 2010 WO
WO2010019778 Feb 2010 WO
WO2010057049 May 2010 WO
WO2010080765 Jul 2010 WO
WO2010080843 Jul 2010 WO
WO2010107563 Sep 2010 WO
WO2010129288 Nov 2010 WO
WO2010132331 Nov 2010 WO
WO2010135516 Nov 2010 WO
WO2011068963 Jun 2011 WO
WO2011133799 Oct 2011 WO
WO2011159336 Dec 2011 WO
WO2011159337 Dec 2011 WO
WO2011159338 Dec 2011 WO
WO2011159339 Dec 2011 WO
WO2012112561 Aug 2012 WO
WO2015112603 Jul 2015 WO
WO2015112604 Jul 2015 WO
WO2015119911 Aug 2015 WO
Non-Patent Literature Citations (85)
Entry
Aade, “AADE 37th Annual Meeting San Antonio Aug. 4-7, 2010” American Association of Diabetes Educators (2010); http://www.diabeteseducator.org/annualmeeting/2010/index.html; 2 pp.
Arshak et al., A Review and Adaptation of Methods of Object Tracking to Telemetry Capsules IC-Med (2007) vol. 1, No. 1, Issue 1, 12pp.
“ASGE Technology Status Evaluation Report: wireless capsule endoscopy” American Soc. For Gastrointestinal Endoscopy (2006) vol. 63, No. 4; 7 pp.
Au-Yeung, K., et al., “A Networked System for Self-Management of Drug Therapy and Wellness”, Wireless Health '10, Oct. 5-7, 2010, San Diego, 9 pages.
Aydin et al., “Design and implementation considerations for an advanced wireless interface in miniaturized integrated sensor Microsystems” Sch. of Eng. & Electron., Edinburgh Univ., UK; (2003); abstract (1 page).
Barrie, Heidelberg pH capsule gastric analysis. Texbook of Natural Medicine, (1992), Pizzomo, Murray & Barrie (4 pages).
Bohidar et al., “Dielectric Behavior of Gelatin Solutions and Gels” Colloid Polym Sci (1998) 276:81-86.
Brock, “Smart Medicine: The Application of Auto-ID Technology to Healthcare” Auto-ID Labs (2002) http://www.autoidlabs.org/uploads/mediajMIT-AUTOID-WH-010.pdf (14 pages).
Carlson et al., “Evaluation of a non-invasive respiratory monitoring system for sleeping subjects” Physiological Measurement (1999) 20(1): 53.
Coury, L. “Conductance Measurement Part 1: Theory”; Current Separations, 18:3 (1999) pp. 91-96.
Delvaux et al., “Capsule endoscopy: Technique and indications” Clinical Gastroenterology (2008) vol. 22, Issue 5, pp. 813-837.
Description of ePatch Technology Platform for ECG and EMG, located it http://www.madebydelta.com/imported/images/DELTA_Web/documents/ME/ePatch_ECG_EMG.pdf, Dated Sep. 2, 2010; 1 page.
Dhar et al., “Eleclioless nickel plated contacts on porous silicon” Appl. Phys. Lett. 68 (10) pp. 1392-1393 (1996).
Eldek A., “Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications” Progress in Electromagnetics Research PIER 59, 1-15 (2006).
Fawaz et al., “Enhanced Telemetry System using CP-QPSK Band- Pass Modulation Technique Suitable for Smart Pill Medical Application” IFIP IEEE Dubai Conference (2008); http://www.asic.fh-offenburg.de/downloads/ePille/IFIP_IEEE_Dubai_Conference.pdf (5 pages).
Ferguson et al., “Dielectric Constant Studies III Aqueous Gelatin Solutions” J. Chem. Phys. 2, 94(1934) pp. 94-98.
Furse C. M., “Dipole Antennas” J. Webster(ed). Wiley Encyclopedia of Electrical and Electronics Engineering (1999) pp. 575-581.
Gaglani S. “Put YourPhone, Or Skin, on Vibrate” MedGadget (2012) http://medgadget.com/2012/03/put-your-phone-or-skin-on-vibrate.html 8pp.
Gilson, DR. “Moleculardynamics simulation of dipole interactions”. Department of Physics, Hull University, Dec. 2002, pp. 1-43.
Given Imaging, “Agile Patency Brochure” (2006) http://www.inclino.no/documents/AgilePatencyBrochure_Global_GMB-0118-01.pdf; 4pp.
Gonzalez-Guillaumin et al., “Ingestible capsule for impedance and pH monitoring in the esophagus” IEEE Trans Biomed Eng. (2007) 54(12): 2231-6; abstract.
Greene, “Edible RFID microchip monitor can tell if you take your medicine” Bloomberg Businessweek (2010) 2 pp.; http://www.businessweek.com/idg/2010-03-31/edible-rfid-microchip-monitor-can-tell-if-you-take-your-medicine.html (1 page).
Heydari et al., “Analysis of the PLL jitter due to power/ground and substrate noise”; IEEE Transactions on Circuits and Systems (2004) 51(12): 2404-16.
Hoeksma, J. “New ‘smart pill’ to track adherence” E-Health-Insider(2010) http://www.e-health-insider.com/news/5910/new_‘smart_pill‘_monitors_medicines (1 page).
Hoover et al., “Rx for health: Engineers design pill that signals it has been swallowed” University of Florida News (2010) 2pp.; http://news.ufl.edu/2010/03/31/antenna-pill-2/.
Intromedic, MicroCam Innovative Capsule Endoscope Pamphlet. (2006) 8 pp (http://www.intromedic.com/en/product/productinfb.asp) (8 pages).
ISFET—Ion Sensitive Field-Effect Transistor Microsens S.A. pdf document. First cited by Examiner in Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345; 4pp.
Jung, S. “Dissolvable ‘Transient Electronics’ Will Be Good For Your Body and the Environment” MedGadget; Oct. 1, 2012; Onlne website: http://medgadget.com/2012/10/dissolvable-transient-electronics-will-be-good-for-your-body-and-the-environment.html; downloaded Oct. 24, 2012; 4 pp.
Juvenile Diabetes Research Foundation International (JDRF), “Artificial Pancreas Project” (2010); http://www.aitincialpancreasproject.com/; 3 pp.
Kamada K., “Electrophoretic deposition assisted by soluble anode” Materials Letters 57 (2003) 2348-2351.
Kendle, Earl R. and Morris, Larry A , “Preliminary Studies in the Development of a Gastric Battery for Fish” (1964). Nebraska Game and Parks Commission White Papers, Conference Presentations, & Manuscripts. Paper22. pp. 1-6.
Kim et al., “A Semi-Interpenetrating Network System for a Polymer Membrane”; Eur. Polym. J. Vol. 33 No. 7; pp. 1009-1014(1997).
Li, P. Y, etal “An electrochemical intraocular drug delivery device”. Sensors and Actuators A 143 (2008) pp. 41-48.
Lifescan, “OneTouch UltraLink™” http://www.lifescan.com/products/meters/ultralink (2010) 2 pp.
MacKay et al., “Radio Telemetering from within the Body” Inside Information is Revealed by Tiny Transmitters that can be Swallowed or Implanted in Man or Animal Science (1991) 1196-1202; 134; American Association for the Advancement of Science, Washington D.C.
MacKay et al., “Endoradiosonde” Nature, (1957) 1239-1240,179 Nature Publishing Group.
McKenzie et al., “Validation of a new telemetric core temperature monitor” J. Therm. Biol. (2004) 29(7-8):605-11.
Medtronic, “CareLink Therapy Management Software for Diabetes” (2010); https://carelink minimed.com/patient/entry jsp?bhcp=1; 1 pp.
Medtronic, “Carelink™ USB” (2008) http://www.medtroniodiabetes.com/pdf/carelink_usb_factsheet.pdf 2pp.
MEDTRONIC “The New MiniMed Paradigm® REAL-Time Revel™ System” (2010) http://www.medtronicdiabetes.com/products/index.html; 2 pp.
Medtronic, “Mini Med Paradigm ® Revel ™ Insulin Pump” (2010) http://www.medtronicdiabetes.com/products/insulinpumps/index html; 2 pp.
Medtronic, “Mini Med Paradigm™ Veo™ System” Factsheet (2010). http://www.medtronic-diabetes.com.au/downloads/Paradigm%20Veo%20Factsheet.pdf; 4 pp.
Melanson, “Walkers swallow RFID pills for science” Engadget (2008); http://www.engadget.com/2008/07/29/walkers-swallow-rfd-pills-for-science/(1 page).
Minimitter Co. Inc. “Actiheart” Traditional 510(k) Summary. Sep. 27 (2005) (8 pages).
Minimitter Co. Inc. Noninvasive technology to help your studies succeed. MiniMitter.com Mar. 31, 2009 (4 pages).
Mini Mitter Co, Inc 510(k) Premarket Notification Mini-Logger for Diagnostic Spirometer. 9-21 (1999) (9 pages).
Mini Mitter Co, Inc. 510(k) Premarket Notification for VitalSense. Apr. 22, 2004 (11 pages).
Minimitter Co. Inc. VitalSense Integrated Physiological Monitoring System. Product Description. (2005) (4 pages).
Minimitter Co. Inc. VitalSense Wireless Vital Signs Monitoring. Temperatures.com Mar. 31, 2009 (3 pages).
Mojaverian et al., “Estimation of gastric residence time of the Heidelberg capsule in humans: effect of varying food composition” Gastroenterology (1985) 89:(2): 392-7.
O'Brien et al., “The Production and Characterization of Chemicaly Reactive Porous Coatings of Zirconium Via Unbalanced Magnetron Sputtering” Surface and Coatings Technology (1996) 86-87; 200-206.
Park, “Medtronic to Buy MiniMed for $3.7 Bilion” (2001) HomeCare; http://homecaremag.com/mag/medical_medtronic_buy_minimed/; 2 pp.
Philips Respironics Products, Noninvasive Technology to Help Your Studies Succeed. 510 (k) Permanent Notification for Vital Sense. Apr. 22, 2004; http/minimitter.com/products.cfm.
Radio Antennae, http://www.erikdeman.de/htmi/sail018h.htm; (2008) 5 pages.
“RFID ”pill“ monitors marchers” RFID News (2008) http://www.rfidnews.org/2008/07/23/rfid-pilL monitors-marchers/ (4 pages).
Rolison et al., “Electrically conductive oxide aerogels: new materials in electrochemistry” J. Mater. Chern. (2001) 1,963-980.
Roulstone, et al., “Studies on Polymer Latex Films: I Astudy of latexfilm morphology” Polymer International 24 (1991) pp. 87-94.
Sanduleanu et al., “Octave tun able, highly linear, RC-ring oscillator with differential fine-coarse tuning, quadrature outputs and amplitude control for fiber optic transceivers” (2002) IEEE Ml l-S International Microwave Symposium Digest 545-8.
Santini, J.T et al., “Microchips as controled drug delivery-devices”, Agnew. Chem. Int. Ed. (2000), vol. 39, p. 2396-2407.
“SensiVida minimally invasive clinical systems” Investor Presentation October (2009) 28pp; http://www.sensividamedtech.com/SensiVidaGeneralOctober09.pdf; pp. 1-28.
Shawgo, R.S. et al. “BioMEMS from drug delivery”, Current Opinion in Solid State and Material Science 6 (2002), pp. 329-334.
Shin et al., “A Simple Route to Metal Nanodots and Nanoporous Metal Films”; Nano Letters, vol. 2, No. 9 (2002) pp. 933-936.
Shrivas et al., “A New Platform for Bioelectronics-Electronic Pill”, Cummins College, (2010); http://www.cumminscollege.org/downloads/electronics_and_telecommunication/Newsletters/Current%20News letters.pdf; First cited in third party client search conducted by Patent Eagle Search May 18, 2010 (2010); pp. 11-12.
“Smartlife awarded patent for knitted transducer” Innovation in Textiles News: http://www.innovationintexties.com/articles/208.php; 2pp. (2009).
“The SmartPill Wreless Motility Capsule” SMARTPILL, The Measure of Gl Health; (2010) http://www.smartpilcorp.com/indexcfm?pagepath=Products/The_SmartPill_Capsule&id=17814 (1 page).
Solanas et al., “RFID Technology for the Health Care Sector” Recent Patents on Electrical Engineering (2008) 1, 22-31.
Soper, S.A. et al. “Bio-Mems Technologies and Applications”, Chapter 12, “MEMS for Drug Delivery”, pp. 325-346 (2007).
Swedberg, “University Team Sees Ingestible RFID Tag as a Boon to Clinical Trials” RFID Journal Apr. 27, 2010; http://www.rfidjournal.com/article/view/7560/1 3pp.
Tajalli et al., “Improving the power-delay performance in subthreshold source-coupled logic circuits” Integrated Circuit and System Design. Powerand Timing Modeling, Optimization and Simulation, Springer Bertin Heidelberg (2008) 21-30.
Target Innovations, Tablet Metal Detector, https ://web. arch ive.org/web/20 130215063351 /http://www.metaldetectorindia.com/tablet-metal-detector. html, Feb. 15, 2013.
TargetPharmaceutical Metal Detector, Feb. 15, 2013 downloaded from Target Innovations, Tablet Metal Detector, Feb. 15, 2013.
Tatbul et al., “Confidence-based data management for personal area sensor networks” ACM International Conference Proceeding Series (2004) 72; 3 pages.
Tierney, M.J. et al. “Electroreleasing Composite Membranes for Delivery of Insulin and other Biomacromolecules”, J. Electrochem. Soc., vol. 137, No. 6, Jun. 1990, pp. 2005-2006.
Trutag Technologies, Inc., Spectral Microtags for Authentication and Anti-Counterfeiting; “Product Authentication and Brand Protection Solutions”; http://www.trutags.com/; downloaded Feb. 12, 2013; 1 pp.
Walkey, “Mosfet Structure and Processing”; 97.398* Physical Electronics Lecture 20; 24 pages, Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345.
Wang, X. et al. “Resistance to Tracking and Erosion of Silicone Rubber Material under Various Types of Precipitation”, Jpn. J. Appl Phys. Vol. 38 (1999) pp. 5170-5175.
Watson, et al., “Determination of the relationship between the pH and conductivity of gastric juice” Physiol Meas. 17 (1996) pp. 21-27.
Winter, J. et al. “The material properties of gelatin gels”; USA Ballistic Research Laboratories, Mar. 1975, p. 1-157.
Wongmanerod et al., “Determination of pore size distribution and surface area of thin porous silicon layers by spectroscopic ellipsometry” Applied Surface Science 172 (2001) 117-125.
Xiaoming et al., “Atelemedicine system forwireless home healthcare based on bluetooth and the internet” Telemedicine Journal and e-health (2004) 10(S2): S110-6.
Yang et al., “Fast-switching frequency synthesizer with a discriminator-aided phase detector” IEEE Journal of Solid-State Circuits (2000) 35(10): 1445-52.
Yao et al., “Low Power Digital Communication in Implantable Devices Using vol. Conduction of Biological Tissues” Proceedings of the 28th IEEE, Embs Annual International Conference, Aug. 30-Sep. 3, 2006; pp. 6249-6252.
Youtube video Pharmaceutical Metal Detector/Tablet Metal Detector/Capsule Metal Detector/ Dry Fruits; https://www.youtube.com/watch?v=I0126txam_s, May 12, 2012.
Zimmerman, “Personal Area Networks: Near-field intrabody communication” IBM Systems Journal (1996) 35 (3-4):609-17.
Zworykin, “A Radio Pill” Nature, (1957) 898, 179 Nature Publishing Group.
Related Publications (1)
Number Date Country
20210060319 A1 Mar 2021 US
Provisional Applications (1)
Number Date Country
61416150 Nov 2010 US
Divisions (2)
Number Date Country
Parent 14829229 Aug 2015 US
Child 15491409 US
Parent 13521993 US
Child 14829229 US
Continuations (1)
Number Date Country
Parent 15491409 Apr 2017 US
Child 16849391 US