Ingestion-related biofeedback and personalized medical therapy method and system

Abstract
Methods, devices and systems for acquiring information useful to support a patient in implementing and adhering to a medically prescribed therapy plan are provided. The therapy may incorporate biofeedback methods and/or personalized therapy aspects. A method includes steps of receiving, by a receiving device, biometric information associated with an ingestible event marker; analyzing, by a computing device having a microprocessor configured to perform a biometric information analysis, the biometric information; and determining a therapeutic recommendation at least partly on the basis of the analysis and/or integrating biofeedback techniques into patient therapy or activity. A system includes a biometric information module to receive biometric information associated with an ingestible event marker; an analysis module to analyze the biometric information; and a determination module to optionally determine and communicate a therapeutic recommendation at least partly on the basis of the analysis.
Description
INTRODUCTION

The present invention relates generally to medical therapy systems, devices, and methods. More specifically, the invention relates to systems, devices, and methods for applying information related to an ingestion by a patient of a device, medication or substance.


Proper adjustment of medical treatment is an important factor in the success of medical therapies. Although some conclusions regarding the efficacy of treatment may be drawn from analysis of the patient's direct sensory symptoms during treatment and used as a modification indicator, many conditions exist where the patient has little direct sensory awareness. Hypertension is one such disease state. Patient adherence is another important factor in the success of medical therapies. Reliable adherence information may be used to inform efficacy and modification determinations. Lack of reliable adherence information, however, may be an issue. Adherence information may not be available. Further, adherence information may be faulty, inaccurate, or inadequate. Poorly informed medical treatment decisions, for example, those made in the absence of comprehensive, adherence information, may result in suboptimal therapy programs. Such programs may result in loss of quality of life, loss in health, and/or loss of life span.


Biofeedback is one technique that can be used to adjust medical treatment and to encourage patient adherence to medical therapy. Biofeedback may be defined as the technique of revealing certain selected internal physiologic indicators of physical health by presenting verbal, textual, visual and/or auditory signals to a monitored person in order to help the monitored person to manipulate these otherwise involuntary, unfelt and/or little felt vital processes (such as blood pressure, heart beat and respiration rate and intensity). Biofeedback techniques can enable a person to modify a monitored physiologic indicator to achieve, or more consistently maintain, a healthy condition. Achieving such health management goals typically requires voluntary cooperation on the part of the subject.


The management of certain chronic diseases or ongoing health conditions, hypertension for example, can be supported by monitoring and controlling one or more vital aspects of a patient. Examples of these disease control parameters include blood glucose of diabetes patients, respiratory flow of asthma sufferers, blood pressure of hypertensive patients, cholesterol of cardiovascular disease victims, body weight of eating disorder patients, T-cell or viral count of HIV bearers, and frequency or timing of undesirable episodes of depression of mental health patients. Because of the continuous nature of these diseases, clinicians can gain valuable information by monitoring one or more vital health processes on a regular basis outside of a clinical care facility.


A patient may monitor and control one or more vital health parameters in clinician assisted self-care or outpatient treatment programs. The term “health parameter” refers to any parameter associated with health, e.g., the health of a patient, athlete, or other living being. In these treatment programs, patients are responsible for performing self-care actions which impact the control parameter. Patients are also responsible for measuring the control parameter to determine the success of the self-care actions and the need for further adjustments. The successful implementation of such a treatment program requires a high degree of motivation, training, and understanding on the part of the patients to select and perform the appropriate self-care actions. When reliable, useful guidance is provided to the patient in a timely manner, the patient's confidence may increase in the health improvement program. With an increase in confidence, the patient may be more likely to adhere to the health improvement program. Adherence, in turn, increases the likelihood of success of the health improvement program.


Further, ingestible pharmaceutical agents, for example, prescription and non-prescription medicines and substances can be an important aspect of a therapeutic regime prescribed to a given patient. Reliable monitoring of adherence to scheduled dosages of pharmaceutical agents is desirable to optimize biofeedback effectiveness.


There is a long-felt need to provide behavioral guidance developed in view of various physiologic parameters and longitudinal monitoring of vital health aspects of the patient.


SUMMARY

The present disclosure seeks to address at least some of the previously discussed problems. The present disclosure includes methods and systems for acquiring information useful to support a patient in implementing and adhering to a medically prescribed therapy plan. The therapy may incorporate biofeedback methods and/or personalized therapy aspects.


A method includes steps of acquiring biometric information associated with an ingestible event marker; analyzing, by a computing device having a microprocessor configured to perform a biometric information analysis, the biometric information; and determining a therapeutic recommendation at least partly on the basis of the analysis. The method further optionally includes integrating biofeedback techniques into patient therapy and/or activity.


A system includes a biometric information module to acquire information associated with an ingestible event marker; an analysis module to analyze the information; and a determination module to optionally determine and communicate a therapeutic recommendation to a patient at least partly on the basis of the analysis of the information.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.


Such incorporations include United States Patent Application Publication No. 20080284599 published on Nov. 20, 2008 titled “Pharma-Informatics System”; United States Patent Application Publication No. 20090135886 titled “Transbody Communication Systems Employing Communication Channels”, United States Patent Application No. 20090082645, published on Mar. 26, 2009 titled “In-Body Device With Virtual Dipole Signal Amplification”; U.S. patent application Ser. No. 12/546,017 filed Sep. 21, 2009 titled, “Communication System With Partial Power Source”; U.S. Provisional Patent Application No. 61/251,088 filed Oct. 13, 2009 titled “Receiver and Method”; and U.S. Provisional Patent Application No. 61/034,085, filed Mar. 5, 2008.


Such incorporations further include patent applications filed under the Patent Cooperation Treaty (“PCT”), to include PCT Patent Application Serial No. PCT/US2006/016370, filed Apr. 28, 2006; PCT Patent Application Serial No. PCT/US07/82563, filed Oct. 17, 2007; PCT Patent Application Serial No. PCT/US2008/52845 filed Feb. 1, 2008; PCT Patent Application Serial No. PCT/US2006/016370 published as WO/2006/116718; PCT Patent Application Serial No. PCT/US2007/082563 published as WO/2008/052136; PCT Patent Application Serial No. PCT/US2007/024225 published as WO/2008/063626; PCT Patent Application Serial No. PCT/US2007/022257 published as WO/2008/066617; PCT Patent Application Serial No. PCT/US2008/053999 published as WO/2008/101107; PCT Patent Application Serial No. PCT/US2008/056296 published as WO/2008/112577; PCT Patent Application Serial No. PCT/US2008/056299 published as WO/2008/112578; and PCT Patent Application Serial No. PCT/US2008/077753.


The publications discussed or mentioned herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Furthermore, the dates of publication provided herein may differ from the actual publication dates which may need to be independently confirmed.





BRIEF DESCRIPTION OF THE FIGURES

These, and further features of various aspects of the present invention, may be better understood with reference to the accompanying specification, wherein:



FIG. 1 is a schematic of an electronic communications network communicatively coupled with an IEMD, a patient management data system and one or more vital parameter sensors.



FIG. 2 is a schematic of the patient management data system of FIG. 1



FIG. 3 is a schematic diagram of a system software of the patient management data system of FIGS. 1 and 2.



FIG. 4A is an illustration of a representative first patient record as stored in the patient management data system or elsewhere in the network of FIG. 1.



FIG. 4B is an illustration of a representative first medication record as stored in the patient management data system or elsewhere in the network of FIG. 1.



FIG. 4C is an illustration of a representative first behavior recommendation record as stored in the patient management data system or elsewhere in the network of FIG. 1.



FIG. 4D is an illustration of a representative patient history data of the first patient record of FIG. 4A.



FIG. 5 is an illustration of additional aspects of the method of the present invention, wherein a patient is treated for a health condition by means of the electronic communications network, the IEMD, the patient management data system and one or more vital parameter sensors of FIGS. 1 and 2.



FIG. 6 is an illustration of other aspects of the method of the present invention, wherein certain behaviors of the patient and interaction of the patient with the patient management data system of FIGS. 1 and 2 is denoted.



FIG. 7 is an illustration of a process implemented by the patient management data system of FIGS. 1, 2 and 3 in communication with the network, IEMD and sensors of FIG. 1.



FIG. 8 is a process chart of a method in which a clinician or an expert system monitors a vital parameter of the patient and suggest via the network of FIG. 1 a therapeutic behavior intended to improve the health of the patient.



FIG. 9 is a process chart of a method of the patient management data system to determine if and when to send a text or audio message to the patient transceiver and/or the patient input device of FIG. 1.



FIG. 10 is another process chart of a method of the patient management data system to determine if and when to send a text or audio message to the patient transceiver and/or the patient input device of FIG. 1.



FIG. 11 shows an exemplary process flow.



FIG. 12 is a schematic of a patient coupled with a plurality of biometric sensors and in communication with a cellular telephone, other mobile computational devices and information technology networks.



FIG. 13 is an illustration of a display screen of the cellular telephone of FIG. 12 displaying icons.



FIG. 14 is a schematic diagram of the cellular telephone of FIGS. 12 and 13.



FIG. 15 is a schematic diagram of a mobile phone system software of the cellular telephone of FIGS. 12, 13 and 14.



FIG. 16 illustrates a first disclosed exemplary additional or alternate process, wherein the cellular telephone of FIG. 12-15 displays one or more icons of FIG. 13.



FIG. 17A is an illustration of an exemplary record that includes an icon identifier relating to an icon of FIG. 13.



FIG. 17B is an illustration of log event data that contain biometric information generated and transmitted by a biometric sensor of FIG. 12.



FIG. 18 illustrates a graph 114 wherein a plurality of event log data of FIG. 6A and a plurality of biometric data of FIG. 17B are displayed on a display screen of FIGS. 12, 13 and 14.



FIG. 19 is an illustration of an additional or alternate method wherein the cellular telephone of FIGS. 12-15 transmits information via the network to the data base system and/or the diagnostic system of FIG. 12.



FIG. 20 is an illustration of an additional or alternate method, wherein the cellular telephone of FIGS. 12-15 receives information via the network from the data base system and/or the diagnostic system of FIG. 12.



FIG. 21 illustrates a still other additional or alternate method, wherein global positioning data (hereinafter “GPS data”) collected from the cellular telephone of FIGS. 12-15 of the patient of FIG. 12 are used to determine the current and relative level of social interaction in which the patient is engaging.



FIG. 22 illustrates yet another additional or alternate method, wherein a diagnostician applies an activity monitor logic of the diagnostic system of FIG. 12.



FIG. 23 is a schematic of a diagnostic system software of the diagnostic system of FIG. 12.



FIGS. 24A, 24B and 24C are schematics of information stored in the diagnostic system of FIGS. 12 and 23.



FIG. 25 illustrates a still other additional or alternate method, wherein GPS data collected from the cellular telephone of FIGS. 12-15 of the patient of FIG. 12 are used to determine the current and relative level of social interaction in which the patient is engaging.



FIG. 26 is an illustration of yet another additional or alternate method, wherein a diagnostician applies a mobility monitor logic of the diagnostic system of FIGS. 12 and 23 to generate a GPS data baseline (hereinafter “GPS baseline”).



FIG. 27 is a process chart of an even other additional or alternate method, wherein the cellular telephone of FIGS. 12-15 is programmed to render a distinctive ringtone, alarm tone, audio message, and/or text message to alert the patient of FIG. 1 to take a medication, engage in a medically recommended behavior, or cease a behavior.



FIG. 28 illustrates a still further additional or alternate method, wherein the phone of FIGS. 12-15 is programmed to remind the patient of FIG. 12 to take, e.g., ingest, inhale, insert, or topically apply, one or more medications of FIG. 12.



FIG. 29 is a schematic of a first exemplary patient record selected from a plurality of patient records that are stored in the cellular telephone of FIGS. 12-15, the DB computer of FIG. 12, and/or the diagnostic system of FIGS. 12 and 23.



FIG. 30 illustrates an even other additional or alternate method, wherein a patient record is applied by the phone of FIGS. 12-15 to record biometric data received from one or more sensors of FIG. 1 and to send reminding alerts to encourage the patient of FIG. 1 to perform meditative exercises, relaxation exercises, or other therapeutic or prescribed behaviors.



FIG. 31 describes another additional or alternate method, wherein high stress events that occur routinely in the routine life of the patient are identified and the phone of FIGS. 12-15 is programmed to encourage the patient of FIG. 12 to take therapeutic steps to reduce the harmful impact of the stress inducing events.



FIG. 32 is a schematic of an exemplary patient activity log.



FIG. 33 describes a yet other alternate or additional method, wherein the diagnostician analyzes information about diagnostic test results, genetic test results, patient records, patient activity logs, and other information to develop and prescribe therapy.



FIG. 34 is a schematic of an exemplary first diagnostic test record that includes a patient identifier, a phone identifier, and a plurality of diagnostic test notes.



FIG. 35 is a schematic of an exemplary first genetic test record that includes the patient identifier of FIG. 34, the phone identifier, and a plurality of genetic test notes.



FIG. 36 is a schematic illustrating the diagnostic system software as containing patient records, diagnostic records and genetic records.



FIG. 37 is a schematic of the patient of FIG. 12 being monitored by additional sensors.



FIG. 38 is a schematic diagram of the exemplary heart rate sensor of FIG. 12.



FIG. 39 illustrates another still additional or alternate method, wherein a diagnostician receives and analyzes information and advises the patient of FIGS. 12-15 and 37 with therapeutic guidance.



FIG. 40 illustrates another even additional or alternate method, wherein the patient of FIGS. 12 and 37 is encouraged by yet other engagement modalities to adhere to a prescribed ingestion of the medicine of FIG. 12.



FIG. 41 illustrates another even additional process wherein the patch receiver of FIG. 12 is attached or coupled to the patient of FIG. 12 and monitored over two separate time periods.



FIG. 42 illustrates a system to facilitate adherence to a treatment plan.



FIG. 43 illustrates a system to facilitate adherence to a treatment plan including a patient management system communicatively coupled with all other parts via a communications bus.





DETAILED DESCRIPTION

While the present invention has been described with reference to specific methods, devices and systems, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.


Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as the recited order of events.


Where a range of values is provided herein, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits ranges excluding either or both of those included limits are also included in the invention.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention, the methods and materials are now described.


It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.


Referring now generally to the Figures and particularly to FIG. 1, FIG. 1 is a schematic of an electronic communications network 2 communicatively coupled with an ingestible device 4 (hereinafter “IEMD” 4) wherein the IEMD 4 has been ingested within a patient's body 6. A patient transceiver 8 is configured to receive a wireless transmission from the IEMD 4 that includes an ingestible event datum M, or “IEM M”. Alternatively, the patient transceiver 8 may be configured to acquire communicated information comprising an IEM M, or a datum of an IEM M, via the electronic communications network 2 or an aspect device or source 6-24 communicatively coupled with or comprised within the electronic communications network 2.


The IEMD 4 gathers, collects, and/or generates ingestion data via various methods, e.g., ingestion timing, contact with alimentary system substances, sampling, etc. Further, various ingestible event marker data source devices IEMD 4 communicate the IEM M data via various methods, e.g., wireless methods, conductive methods via body tissue, etc. The following are examples of the ingestible devices 300a.


A pharma-informatics system described in PCT/US2006/016370, filed Apr. 28, 2006, includes compositions, systems and methods that allow for the detection of the actual physical delivery of a pharmaceutical agent to the body 6 are provided. Embodiments of the compositions include an identifier and an active agent.


A system described in PCT/US2008/52845, filed Feb. 1, 2008, includes an IEMD 4 referred to therein as an ingestible event marker IEM and patient transceiver 8 referred to therein as a personal signal receiver. Aspects of data transmitted from the IEMD 4 may include an identifier, which may or may not be present in a physiologically acceptable carrier. The identifier is characterized by being activated upon contact with a target internal physiological site of the body 6, such as digestive tract internal target site. The patient transceiver 8 may be configured to be associated with a physiological location, e.g., inside of or on the body 6, and to receive a signal from the IEMD 4. During use, the IEMD 4 broadcasts a signal which is received by the patient transceiver 8.


The ingestion data associated with the electronic communications network 2 (hereinafter “network” 2) include personal patient data, e.g., physiologic data generated by the IEMD 4. Examples are derived metrics, e.g., processed physical data to derive various metrics such as time of ingestion data; combined metrics, e.g., derived metrics combined with other derived metric data such as time of ingestion data combined with data identifying the ingested substance; and patient data, e.g., derived metrics and/or combined metrics aggregated with various physiologic data such as time of ingestion data combined with data identifying the ingested substance and physiologic data such as ECG data, temperature, etc.


Embodiments of activation component based on battery completion formats employ a battery that includes, when completed, a cathode, an anode, and an electrolyte, where the electrolyte is made up, at least in part, by fluid present at the target physiologic site (stomach fluid present in the stomach, where the stomach is the target physiological site). For example, when a stomach fluid activated IEM is ingested, it travels through the esophagus and proceeds to enter the stomach. The cathode and anode provided on the IEM do not constitute a full battery. However, when the cathode and anode are exposed to stomach fluid, the stomach fluid acts as the electrolyte component of the battery and completes the battery. Therefore, as the IEM contacts the target site, a power source is provided which activates the identifier. The data signal is then transmitted.


In certain embodiments, the IEMD is dimensioned to be orally ingestible, e.g., either by itself or upon combination with a physiologically acceptable carrier component of the composition so as to produce a composition that can be readily administered to a subject in need thereof. As such, in certain embodiments, the identifier element is dimensioned to have a width ranging from about 0.05 to about 2 or more mm, e.g., from about 0.05 mm to about 1 mm, such as from about 0.1 mm to about 0.2 mm; a length ranging from about 0.05 to about 2 or more mm, e.g., from about 0.05 mm to about 1 mm, such as from about 0.1 mm to about 0.2 mm and a height ranging from about 0.05 to about 2 or more mm, e.g., from about 0.1 mm to about 1 mm, such as from about 0.05 mm to about 0.3 mm, including from about 0.1 mm to about 0.2 mm. In certain embodiments the identifier is 1 mm3 or smaller, such as 0.1 mm3 or smaller, including 0.2 mm3 or smaller. The identifier element may take a variety of different configurations, such as but not limited to: a chip configuration, a cylinder configuration, a spherical configuration, a disc configuration, etc., where a particular configuration may be selected based on intended application, method of manufacture, etc.


A controlled activation ingestible identifier described in PCT Patent Application PCT/US07/82563, filed Oct. 17, 2007, includes ingestible compositions such as pharma-informatics enabled compositions. The controlled activation ingestible identifiers include a controlled activation element that provides for activation of the identifier in response to the presence of a predetermined stimulus at a target site of interest.


A life cycle pharma informatics system described in U.S. Patent Provisional Application Ser. No. 61/034,085, filed Mar. 5, 2008 includes RFID and conductive communications technology combined with medication and/or medication packaging such that the medication can be tracked for the duration of its existence. The system further allows in-body data transmissions while addressing the potential privacy and signal degradation concerns associated with RFID technology.


Additional examples of ingestible identifiers of interest include those described in Examples of different types of identifiers of interest include, but are not limited to, those identifiers described in PCT application serial no. PCT/US2006/016370 published as WO/2006/116718; PCT Patent Application Serial No. PCT/US2007/082563 published as WO/2008/052136; PCT Patent Application Serial No. PCT/US2007/024225 published as WO/2008/063626; PCT Patent Application Serial No. PCT/US2007/022257 published as WO/2008/066617; PCT Patent Application Serial No. PCT/US2008/052845 published as WO/2008/095183; PCT Patent Application Serial No. PCT/US2008/053999 published as WO/2008/101107; PCT Patent Application Serial No. PCT/US2008/056296 published as WO/2008/112577; PCT Patent Application Serial No. PCT/US2008/056299 published as WO/2008/112578; and PCT Patent Application Serial No. PCT/US2008/077753; the disclosures of which are herein incorporated by reference.


The patient transceiver 8 may be or comprise an electronic communications device configured for receipt of wireless transmissions from the IEMD 4 and optionally comprising, for example, (a.) an information appliance; (b.) a television set-top box; (c.) a VAIO FS8900™ notebook computer marketed by Sony Corporation of America, of New York City, N.Y., (d.) a SUN SPARCSERVER™ computer workstation marketed by Sun Microsystems of Santa Clara, Calif. and running a LINUX™ or a UNIX™ operating system; (e.) a wireless communications enabled personal computer configured for running WINDOWS XP™ or VISTA™ operating system marketed by Microsoft Corporation of Redmond, Wash.; (f.) a PowerBook G4™ personal computer as marketed by Apple Computer of Cupertino, Calif.; (g.) an iPhone™ cellular telephone as marketed by Apple Computer of Cupertino, Calif.; and/or (h.) a personal digital assistant enabled for wireless communications.


The electronic communications network 2 may be or comprise, for example, in whole or in part, a telephony network 2A, a wireless communications network, a computer network, and/or the Internet 2B.


The patient transceiver 8 is communicatively coupled with a patient management data system 10 (hereinafter, “PMDS” 10) via the electronics communications network 2. The patient transceiver 8 may be communicatively coupled with the electronics communications network 2 (hereinafter, “the network” 2) by a hard wire connection and/or a wireless communications mode with a first network transceiver 12, wherein the first network transceiver 12 is communicatively coupled with the network 2 by a hard wire connection.


A patient messaging module 14 is additionally coupled with the network 2, wherein the patient messaging module 14 enables a clinician or an automated information system (not shown) to transmit recommendations to the patient regarding medicinal ingestion, patient behavior and therapeutic activity. The patient messaging module 14 and/or the PDMS transceiver 8 may be communicatively coupled with the network 2 by means of a hard wire connection and/or a wireless communications mode with a second network transceiver 16, wherein the first network transceiver 12 is communicatively coupled with the network 2 by a hard wire connection.


It is understood that the patient messaging module 14 may be comprised within the PMDS 10, and that the patient messaging module 14 and/or the PMDS 10 may comprise or be comprised within a unified or distributed electronic information technology system configured for communication via the network 2 and optionally comprising, for example, (a.) an information appliance; (b.) a television set-top box; (c.) a VAIO FS8900™ notebook computer marketed by Sony Corporation of America, of New York City, N.Y., (d.) a SUN SPARCSERVER™ computer workstation marketed by Sun Microsystems of Santa Clara, Calif. and running a LINUX™ or a UNIX™ operating system; (e.) a wireless communications enabled personal computer configured for running WINDOWS XP™ or VISTA™ operating system marketed by Microsoft Corporation of Redmond, Wash.; (f.) a PowerBook G4™ personal computer as marketed by Apple Computer of Cupertino, Calif.; (g.) a mobile or cellular digital telephone; (h.) an iPhone™ cellular telephone as marketed by Apple Computer of Cupertino, Calif.; and/or (i.) a personal digital assistant enabled for wireless communications.


A patient input device 18 is additionally coupled with the network 2, wherein the patient input device 18 enables a patient or caregiver (not shown) to transmit reports and information regarding patient adherence or non-adherence to recommended therapy; patient behavior; patient physical, mental, or emotional condition; risk taking or risk seeking behavior by the patient; and therapeutic activity of the patient. The patient input device 18 may be included within the patient transceiver 8, and/or may comprise or be comprised within an electronic communications device, or a unified or distributed electronic information technology system configured for communication via the network 2 and optionally comprising, for example, (a.) an information appliance; (b.) a television set-top box; (c.) a VAIO FS8900™ notebook computer marketed by Sony Corporation of America, of New York City, N.Y., (d.) a SUN SPARCSERVER™ computer workstation marketed by Sun Microsystems of Santa Clara, Calif. and running a LINUX™ or a UNIX™ operating system; (e.) a wireless communications enabled personal computer configured for running WINDOWS XP™ or VISTA™ operating system marketed by Microsoft Corporation of Redmond, Wash.; (f.) a PowerBook G4™ personal computer as marketed by Apple Computer of Cupertino, Calif.; (g.) an iPhone™ cellular telephone as marketed by Apple Computer of Cupertino, Calif.; (h.) an iPhone™ cellular telephone as marketed by Apple Computer of Cupertino, Calif.; and/or (i.) a personal digital assistant enabled for wireless communications.


A first vital parameter monitor 20, or “first sensor” 20, is coupled with the patient's body 6 and may be or comprise, for example, a motion detector, a heart rate monitor, a blood pressure monitor, a respiration monitor, and/or a patient skin electrical current conductivity monitor. A second vital parameter monitor 22, or “second sensor” 22, is coupled with the patient's body 6 and may additionally be or comprise, for example, a motion detector 23, a heart rate monitor, a blood pressure monitor, a respiration monitor, and/or a patient skin electrical current conductivity monitor.


The motion detector 23 is communicatively coupled to the analysis module and the PMDS 10 whereby the PMDS 10 incorporates a patient motion datum generated by and communicated from the motion detector 23 in an analysis of at least one health parameter of a patient. The motion detector 23 may be, comprise, or comprised within, for example, a cellular telephone, an accelerometer and/or a global positioning signal device.


A third vital parameter monitor 24 is positioned remotely from the patient's body 6, and is configured to monitor a vital parameter of the patient's body 6 by remote sensing, for example, sound detection, air pressure variation, light energy reflection, and/or heat detection. The third sensor 24 may be or comprise a motion detector, for example, a heart rate monitor, a blood pressure monitor, a respiration monitor, and/or a patient skin electrical current conductivity monitor.


A system described in PCT/US2008/52845, filed Feb. 1, 2008, includes an IEMD 4 referred to therein as an ingestible event marker IEMD 4 and patient transceiver 8 referred to therein as a personal signal receiver. Aspects of IEM M data transmitted from the IEMD 4 and/or sensors 20, 22, 23 and 24 may include an identifier (sometimes, for example, referred to herein as an “ingestible event marker”, an “ionic emission module”, and/or an “IEM”), which may or may not be present in a physiologically acceptable carrier. The identifier is characterized by being activated upon contact with a target internal physiological site of a body, such as digestive tract internal target site. The patient transceiver 8 may be configured to be associated with a physiological location, e.g., inside of or on the body, and to receive a signal from the IEMD 4 and/or sensors 20, 22, 23 and 24. During use, the IEMD 4 and/or sensors 20, 22, 23 and 24 broadcasts signals that are received by the patient transceiver 8.


The ingestion data associated with the network 2 include personal data, e.g., physiologic data generated by the IEMD 4 and/or sensors 20, 22, 23 and 24. Examples are derived metrics, e.g., processed physical data to derive various metrics such as time of ingestion data; combined metrics, e.g., derived metrics combined with other derived metric data such as time of ingestion data combined with data identifying the ingested substance; and patient data, e.g., derived metrics and/or combined metrics aggregated with various physiologic data such as time of ingestion data combined with data identifying the ingested substance and physiologic data such as ECG data, temperature, etc.


A controlled activation ingestible identifier described in PCT/US07/82563, filed Oct. 17, 2007, includes ingestible compositions such as pharma-informatics enabled compositions. The controlled activation ingestible identifiers include a controlled activation element that provides for activation of the identifier in response to the presence of a predetermined stimulus at a target site of interest.


A life cycle pharma informatics system described in U.S. Patent Application Ser. No. 61/034,085, filed Mar. 5, 2008 includes RFID and conductive communications technology combined with medication and/or medication packaging such that the medication can be tracked for the duration of its existence. The system further allows in-body data transmissions while addressing the potential privacy and signal degradation concerns associated with RFID technology.


The computer architecture shown in FIG. 2 illustrates the aspects of the PMDS 10, including a central processing unit 26 (hereinafter, “CPU”), a system memory 28, including a random access memory 30 (hereinafter, “RAM”) and a read-only memory (hereinafter, “ROM”) 32, and a power and communications system bus 34 that couples the system memory 28 to the CPU 26. A basic input/output system 36 containing the basic software-encoded instructions and routines that help to transfer information between elements within the PMDS 10, such as during startup, is stored in the ROM 20. The PMDS 10 further includes a system software 38 and a database management system 40 (hereinafter “DBMS” 40), which will be described in greater detail below, stored in the system memory 28 and/or a computer-readable medium 42.


A media writer/reader 44 is bi-directionally communicatively coupled to the CPU 26 through the power and communications system bus 34 (hereinafter “the bus” 34). The media writer/reader 44 and the associated computer-readable media 42 are selected and configure to provide non-volatile storage for the PMDS 10. Although the description of computer-readable media 42 contained herein refers to a mass storage device, such as a hard disk or CD-ROM drive, it should be appreciated by those skilled in the art that computer-readable media can be any available media that can be accessed by the PMDS 10.


By way of example, and not limitation, computer-readable media 42 may comprise computer storage media and communication media. Computer storage media includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer storage media includes, for example, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, digital versatile disks (“DVD”), or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the PMDS 10.


The computer-readable medium 42 may comprise machine-readable instructions which when executed by the PMDS 10 to cause the PMDS 10 to perform one or more steps as described in the Figures and enabled by the present disclosure. The bus 34 further bi-directionally communicatively couples a network interface 46, a user input interface 48, a user audio input interface 50, and a video screen interface 52 with the CPU 26 and the system memory 28. The video screen interface 52 directs visual presentations of data on a visual display screen 54 and bi-directionally communicatively couples the visual display screen 54 with the CPU 26 via the communications bus 34. The user input interface 48 couples a user input device 56, for example, an electronic keyboard, a computer mouse, a computer trackball, or a computer mouse pad, with the CPU 26 via the communications bus 34 and enables the clinician to input icon selections, commands and data to the PMDS 10. The icon selections may be chosen from images presented on the visual display screen 54.


The audio input interface 50 couples a user audio input device 58, for example an audio microphone, with the CPU 26 via the communications bus 34 and enables the clinician to input vocal input that communicates icon selections, commands and data to the PMDS 10, and/or digitized representations of verbal expressions. The digitized representations of verbal expressions may be transmitted via the network interface 46 to enable VoIP communications with the patient input device 18 and/or the patient transceiver 8.


An audio output interface 60 communicatively coupled with the communications bus 34 receives digitized verbal information, for example, VoIP messages, from the network 2 via the network interface 46 and drives the audio output device 62 to audibly output verbal message derived from the digitized verbal communications.


An audio/text converter module 64 (1.) converts digitized audio data into textual data for storage in a patient record R.0; and (b.) converts text data into audio data representative of vocalizations of the source text data. The converted text data may be received via the bus 34 and from the system memory 28 or the network 2, or generated by the CPU 26.


A wireless interface 66 enables bi-directional communication between the bus 34 and a wireless transceiver 68, whereby the PMDS 10 may communicate via the wireless and/or hard wired telephony network 2A with an element 8-16 to the network 2.


It is understood that the additional elements 8 and 12-16 of the network 2 may include one, several or all of the aspects 26-68 of the PMDS 10. It is further understood that the PMDS 10 may optionally, additionally or alternatively be configured to acquire a communicated information comprising an IEM M, or a datum of an IEM M, via the electronic communications network 2 or an aspect device or source 6-24 communicatively coupled with or comprised within the electronic communications network 2.



FIG. 3 is an illustration of the system software 38 of the PMDS 10 of FIGS. 1 and 2. An operating system 70 enables a VoIP client software module 72 to provide voice data to the network 2 by directing the audio input driver 74 to digitize acoustic signals detected by the audio input device 58 to form a digitized voice record and transmit the digitized voice record to the patient transceiver 8 and or the patient input device 18 via the network 2. It is understood that the first network transceiver 12 and/or the second network transceiver 16 may facilitate the transmission of voice communications between the PMDS 10 and the patient transceiver 8 and/or the patient input device 18. An audio output driver 76 processes digitized acoustic signals received from the network 2 and directs the audio output interface 60 and the audio output device 62 to derive and broadcast acoustic signals from the received digitized acoustic signals for hearing by the clinician.


A display driver 78 directs the video interface 52 and the video screen 54 to visually present information received from, or derived from inputs derived from the network 2, the patient transceiver 8, the patient input device 18, the first network transceiver 12, the second network transceiver 16, a graphical user interface driver 80 of the PMDS 10, the audio input device 58 and/or the input device 56. A web browser 82 may enable the PMDS 10 to visually display information received from the Internet 2B. The user record R.0 and a plurality of user records R.1-R.N are stored in a patient database 84 of the DBMS 40.


A text editor 86 and an email client 87 separately or in combination enable the clinician to, for example, prepare text messages, and/or to include reminder messages for medication ingestion, for transmission via the network 2 and to the patient transceiver 8 and or the patient input device 18. It is understood that the first network transceiver 12 and/or the second network transceiver 16 may facilitate the transmission of text messages between the PMDS 10 and the patient transceiver 8 and/or the patient input device 18.


It is understood that the additional elements 8 and 12-16 of the network 2 may include one, several or all of the software aspects 70-86 of the PMDS 10.


Referring now generally to the Figures and particularly to FIG. 4A, FIG. 4A is an illustration of the representative first patient record R.0 the format of which may be followed in whole or in part by one or more of the remaining patient records R.1-R.N. A first record identifier R.0.ID uniquely identifies the first record R.0 within the PMDS 10 and a patient identifier R.0.PID identifies the patient associated with the first record R.0. A network patient address R.0.ADDR identifies a network address of the patient transceiver 8 and/or the patient input device 18 to which electronic messages, for example, email messages, may be sent. A patient telephone number R.0.ADDR.T identifies a telephone number used to establish a telephonic communications session during which a text message or a voice communication maybe accomplished. One or more medication records R.0.MR.0-R.0.MR.N specify one or more medicines prescribed to the patient. A medication reminder flag R.0.FM indicates whether the patient is to be reminded by the PMDS 10 to ingest or otherwise apply a medication. One or more behavior records R.0.BHR.0-R.0.BHR.N specify one or more behaviors prescribed to the patient. A behavior remind flag R.0.FB indicates whether the patient is to be reminded by the PMDS 10 to engage in (or to avoid) a specified behavior. A patient history data retains information associated with the patient and may include records of receipt of attestations from the patient and receipt of ingestible event data IEM M. A patient activity data R.ACT retains information describing expected types of patient activities and expected times of the patients may be engaging in each expected activities.


Referring now generally to the Figures and particularly to FIG. 4B, FIG. 4B is an illustration of the representative first medication record R.0.MR.0. A first medication record identifier RM.ID uniquely identifies the first medication record R.0.MR.0 within the PMDS 10, and the patient identifier R.0.PID identifies the patient associated with the first medication record R.0.MR.0. A medication identifier MED.ID identifies the medication and dosage thereof associated with the first medication record R.0.MR.0. A dosage data MED.D indicates what dosage of the identified medication is to be ingested or applied.


An application schedule MED.S indicates when the associated medication is prescribed to be ingested or otherwise applied. A first remind flag FLAG1 indicates if the patient shall be reminded to apply or ingest the associated medication before the next prescribed time, wherein the reminder may be sent at approximately a first remind time period TR1 before the next prescribed time. A first remind medication text TXT1 (hereinafter, “first remind text” TR1) is a prerecorded text message that may be sent prior to the scheduled time of ingestion or application as a reminder message to the patient to encourage ingesting or applying the associated medication.


A second remind flag FLAG2 indicates if the patient shall be reminded to ingest the medication associated with the first medication record R.0.MR.0 in the event that an ingestion event datum IEM M has not been received by the network 2 within a second remind TR2 time after a prescribed ingestion time has passed. A second remind text TXT2 is a prerecorded text message that may be sent after a scheduled time as a reminder message to the patient to encourage ingesting or applying the associated medication identified by the medication identifier MED.0.


Referring now generally to the Figures and particularly to FIG. 4C, FIG. 4C is an illustration of the representative first behavior record R.0.BHR.0. A first behavior record identifier R.BHR.ID uniquely identifies the first behavior record R.0.BHR.0 within the PMDS 10, and the patient identifier R.0.PID identifies the patient associated with the first behavior record R.0.BHR.0. A behavior identifier BHR.ID identifies the behavior associated with the first behavior record R.0.BHR.0. A behavior description text BHR.D includes a textual description of a behavior recommended to be engaged in or avoided. A behavior application schedule BHR.S indicates when the associated behavior is prescribed to be ingested or otherwise applied. A first behavior remind flag BFLG1 indicates if the patient shall be reminded to perform or avoid the associated behavior before the next prescribed time, wherein the reminder may be sent at approximately a TRB1 time period before the next prescribed time. A first behavior text TXT1B is a prerecorded text message that may be sent prior to the scheduled time of ingestion or application as a reminder message to the patient to encourage performing, or alternatively avoided, the behavior identified by the behavior identifier BHR.ID.


A second behavior remind flag BFLG2 indicates if the patient shall be reminded to perform, or alternatively avoid, the behavior associated with the first behavior record R.0.BHR.0 if an attestation by the patient has not been received by the network 2 within a time after a prescribed time of performance has passed. A second behavior text TXT2B is a prerecorded text message that may be sent, for example, after a scheduled time of behavior performance, or alternatively, a behavior avoidance, as a reminder message to the patient to encourage performing, or alternatively avoid performing, the associated behavior identified by the behavior identifier BHR.ID.


Referring now generally to the Figures and particularly to FIG. 4D, FIG. 4D is an illustration of the representative patient history data H.D of the first record R.0. The patient history data H.D includes, for example, (a.) a plurality of marker record H.M0-H.MN of previously received ingestion markers IEM M, (b.) a plurality of attestation records H.PA0-H.PAN containing notations of attestations received from the patient, and (c.) a plurality of text message records H.T0-H.TN of previously transmitted text messages sent to the patient transceiver 8 and/or the patient input device 18. The received patient attestation records H.PA0-H.PAN may include, for example, notations of attestations of performed behaviors, attestations of applications or ingestions of medicines, and/or attestations of avoided behaviors.


Referring now generally to the Figures and particularly to FIG. 5, FIG. 5 is an illustration of additional aspects of the method of the present invention, wherein a patient is treated for a health condition. In step 502 a database record R.0 is initiated in the PMDS 10 identifying the patient. The patient is evaluated in step 504 and diagnosed in step 506. A patient activity model is generated in step 508 wherein the daily activity of the patient is included in a software-encoded portion of the database record R.0. Medications and behaviors are prescribed in step 510 and the prescribed medications and behaviors are stored in the database record R.0. The patient is counseled and advised of the prescribed medications and behaviors as stored in the database record R in step 514.


The receipt of ingestion markers IEM M transmitted from one or more IEMD's 4 and measurements and transmissions of the sensors 20, 22, 23 and 24 are received by the patient transceiver 8 and transmitted to the PMDS 10 via the network 2 and the patient record R.0 is updated with the received parametric data in step 516. Attestations by the patient, for example, of (a.) changes in patient activity varying from the activity model of step 508; (b.) adherence and non-adherence to prescribed medication ingestion schedule by the patient; and (c.) performance and non-performance of prescribed patient behaviors are received via the patient input device 18 and by the PMDS 10 via the network 2 in step 518.


The information received in steps 516 and 518 are evaluated by a clinician or an expert information technology system (not shown) in step 520 in view of other information included in the patient record R.0. The clinician or the expert information technology system may update the patient diagnosis in step 522, and may further determine in step 524 whether to cease treatment of the patient. When the clinician or expert system determines in step 824 that the current treatment cycle of the patient shall cease, the patient is informed of the cessation of treatment, and the database record R.0 is updated with a notice of treatment termination, in step 526. The treatment is ended in step 528.


When the clinician or expert system determines in step 524 that the current treatment cycle of the patient shall continue, the clinician or expert system determines by analysis of the patient record R.0, or one or more additional patient records R.0-R.N and optionally in consultation with the patient, determines in step 530 whether to increase or decrease medication dosage or frequency. When the clinician or expert system determines in step 530 to increase or decrease medication dosage or frequency, the patient is informed of the prescription change and the pharmacy is updated in step 534.


The clinician or expert system determines by analysis of the patient record R.0, and optionally in consultation with the patient determines in step 536 whether to alter prescribed or recommended behaviors. The patient is informed in step 538 of any alterations or additions of prescribed or recommended behaviors.


The PMDS 10 determines by analysis of the patient record R.0, in step 542 whether to remind the patient to, for example, ingest or apply a medication, or engage in a prescribed or recommended behavior, and the patient is reminded in step 542 to, for example, ingest or apply a medicine, or engage in a prescribed or recommended behavior.


Referring now generally to the Figures and particularly to FIG. 6, FIG. 6 is an illustration of other aspects of the method of the present invention, wherein certain behavior of the patient is denoted. In step 602 the patient receives a prescription of medications and behaviors. It is understood that a prescription of medication may include both the medication to be ingested and a schedule for ingesting the prescribed medications. The patient reports a schedule of expected activities via the patient input device 18 to the PMDS 10 in step 604. The schedule of expected activities, for example, may include work sessions, such as manual labor, expense report authoring, staff meetings, customer interaction periods, negotiations sessions, employee review meetings, sales forecast development, and presentations. The expected activities reported by the patient in step 604 are integrated into a patient record R.0 of the patient database 84 by means of the patient input device 18 and the network 2. The patient positions one or more sensors 20, 22, 23 and 24 in step 606 to enable the sensors 20, 22, 23 and 24 to detect one or more vital parameters of the patient. The patient ingests an IEMD 4 wherein the IEMD 4 transmits an ingestion report with a marker datum IEM M in step 608. The patient may further adhere to behaviors in step 612 as suggested in the prescription received in step 602, and report adherence in step 612 with suggested behaviors, to include one or more ingestions of an IEMD 4.


The patient may elect to cease following medical advice in step 614, and for example, to cease ingesting IEMD's 4, may proceed on to report cessation of adherence to the PMDS 10 by means of the patient input device 18 and the network 2 in step 616. The patient may cease implementing the prescriptive behaviors in step 618. Alternatively, the patient may determine to proceed from step 614 to step 620 and to query the PMDS 10 to determine whether the prescription assigned by the PMDS 10 has been modified. When the patient determines in step 620 that the assigned prescription has not been modified, the patient proceeds from step 620 back to step 608. When the patient determines in step 620 that the assigned prescription has been modified, the patient proceeds from step 620 back to step 602 to receive and review the modified assigned prescription.


Referring now generally to the Figures and particularly to FIG. 7, FIG. 7 describes a process implemented by the PMDS 10 in communication with the network 2, the sensors 20, 22, 23 and 24 and the IEMD 4. In step 702, the PMDS 10 receives a marker datum IEM M of an ingestion report transmitted from the IEMD 4. In step 704, the PMDS 10 compares the medicine identified by the marker datum IEM M and the time of receipt of the marker datum IEM M with the medication records R.0.MR.0-R.0.MR.N. The PMDS 10 determines in step 7.06 whether the marker datum IEM M received step 7.02 is compliant with a medication record R.0.MR.0-R.0.MR.N. When the PMDS 10 determines in step 7.06 that receipt of the marker datum IEM M of step 7.02 is noncompliant with a medication record R.0.MR.0-R.0.MR.N, the PMDS 10 records the instant receipt of the marker datum IEM M in the patient history data H.D as a noncompliant event and issues and transmits a patient notice of nonadherence in step 710 to the patient transceiver 8 and/or the patient input device 18. When the PMDS 10 determines in step 7.06 that receipt of the marker datum IEM M of step 7.02 is compliant with a medication record R.0.MR.0-R.0.MR.N, the PMDS 10 updates patient history data H.D in step 712 with a notation of adherence. The PMDS 10 proceeds from either step 710 or 712 to step 714 and to perform alternate computational operations.


Referring now generally to the Figures and particularly to FIG. 8, FIG. 8 is a process chart of a method in which a clinician or an expert system monitors a vital parameter of the patient and suggest via the network 2 a therapeutic behavior intended to improve the health of the patient. In step 802 the PMDS 10 receives vital parameter data from one or more sensors 20, 22, 23 and 24. In step 804 the PMDS 10 compares the vital parameter data received in step 802 with a range of healthy values of the instant vital parameter, for example, heart rate, blood pressure, respiration rate, respiration intensity, and electrical skin conductivity. The PMDS 10 determines in step 806 whether the vital data received in step 802 falls within the healthy range of the instant vital parameter as stored in the PMDS 10 or elsewhere in the network 2. When the PMDS 10 determines in step 806 that the vital data received in step 802 does not falls within the healthy range of the instant vital parameter, the PMDS 10 proceeds from step 806 to step 808 and correlates the time of the receipt of the vital parameter data with the activity schedule of patient activity data R.ACT of one or more patient records R.0-R.N associated with the patient. In step 810 the PMDS 10 selects a therapeutic behavior intended to encourage the patient to maintain the vital parameter referenced in step 802 within the healthy range selected in step 802. The therapeutic behavior selected in step 810 may be provided by a clinician by input to the PMDS 10 or by means of the patient-messaging module 14. When the vital parameter referenced in step 802 is hypertension of the cardiovascular system, the selected therapeutic behavior may be or include, for example, listening to calming music, performing meditation, and/or physical exercise. In step 812 the therapeutic behavior is prescribed to the patient in view of a patient activity associated in the patient activity data R.ACT with the time of the receipt of the vital parameter data received in step 802. A patient behavior suggestion is transmitted from the PMDS 10 and/or the patient messaging module 14 in step 814, wherein the suggestion advises the patient to engage in the therapeutic behaviors selected in step 810 at times correlated with patient behavior correlated in step 808 and reported in the patient activity data R.ACT. The PMDS 10 proceeds from step 816 and to perform alternate or additional computational operations.


Referring now generally to the Figures and particularly to FIG. 9, FIG. 9 is a process chart of a method of the PMDS 10 to determine if and when to send a text or audio message to the patient transceiver 8 and/or the patient input device 18. In step 902 the PMDS accesses one or more patient records R.0-R.N. The PMDS 10 determines in step 904 whether an ingestion of a medicine has been prescribed to the patient. When the PMDS determines in step 904 that the patient has not been prescribed to ingest a medication, the PMDS 10 proceeds on from step 904 to step 906 and to perform alternate or additional computational operations.


When the PMDS determines in step 904 that the patient has been prescribed in a medication record R.0.MR.0-R.0.MR.N of a patient record R.0-R.N to ingest an IEMD 4 containing a medication, the PMDS 10 proceeds on from step 904 to step 908, and to examine the first remind flag FLAG1 of the instant medication record R.0.MR.0-R.0.MR.N. When the first remind flag FLAG1 indicates an instruction to remind the patient of a recommended medication ingestions. When the first remind flag FLAG1 indicates an instruction to remind the patient of prescribed medicine ingestion recommendations, the PMDS 10 proceeds from step 908 to step 910. The PMDS 10 calculates the next scheduled time for an IEMD 4 ingestion in step 910 by analyzing information of the application schedule MED.S and calculates the next scheduled ingestion time TNEXT. The PMDS 10 reads the first remind time period TR1 from the medication record R.0.MR.0-R.0.MR.N accessed in step 908. The PMDS 10 accesses the real time clock 27 determines the current real time TACTUAL in step 914, and calculates the time difference TDELTA between the current time TACTUAL and the next scheduled ingestion time TNEXT. The PMDS 10 determines in step 918 whether the time difference TDELTA is less than the first remind time period TR1. When the PMDS 10 determines in step 918 that the time difference TDELTA is not less than the first remind time period TR1, the PMDS 10 proceeds from step 918 to step 906. When the PMDS 10 determines in step 918 that the time difference TDELTA is less than the first remind time period TR1, the PMDS 10 proceeds from step 918 to step 920 and selects the first remind text TXT1 from the medication record R.0.MR.0-R.0.MR.N accessed in step 908, and transmits the first remind text TXT1 to the patient transceiver 8 and/or the patient input device 18 in step 922.


The PMDS 10 proceeds from either step 922 or step 906 to step 924 and to determine whether to cease monitoring for transmissions of markers IEM M from the IEMD 4 and the sensors 20, 22, 23 and 24. When the PMDS 10 determines to continue monitoring the sensors 20, 22, 23 and 24 and for transmissions of markers IEM M from the IEMD 4, the PMDS 10 proceeds from step 924 to step 902. When the PMDS 10 determines to cease monitoring the sensors 20, 22, 23 and 24 and for transmissions of markers IEM M from the IEMD 4, the PMDS 10 proceeds from step 924 to step 926 perform alternate or additional computational operations.


Referring now generally to the Figures and particularly to FIG. 10, FIG. 10 is a process chart of a method of the PMDS 10 to determine if and when to send a text or audio message to the patient transceiver 8 and/or the patient input device 18 when an ingestion marker datum IEM M is not received approximately when a marker datum IEM M would be received when the IEMD 4 is ingested prescribed. In step 1002 the PMDS accesses one or more patient records R.0-R.N. The PMDS 10 determines in step 1004 whether an ingestion of a medicine has been prescribed to the patient. When the PMDS determines in step 1004 that the patient has not been prescribed to ingest a medication, the PMDS 10 proceeds on from step 1004 to step 1006 and to perform alternate or additional computational operations.


When the PMDS determines in step 1004 that the patient has been prescribed in a medication record R.0.MR.0-R.0.MR.N of a patient record R.0-R.N to ingest an IEMD 4 containing a medication, the PMDS 10 proceeds on from step 1004 to step 1008, and to examine the second remind flag FLAG2 of the instant medication record R.0.MR.0-R.0.MR.N. When the second remind flag FLAG2 indicates an instruction to remind the patient of a recommended medication ingestion when an ingestible event marker datum IEM M has not been received as would be when an IEMD 4 had been ingested as directed by the medication record R.0.MR.0-R.0.MR.N of step 1004. When the second remind flag FLAG2 indicates an instruction to remind the patient of a tardiness in following prescribed medicine ingestion as prescribed, the PMDS 10 proceeds from step 1008 to step 1010. The PMDS 10 calculates the next scheduled time for an IEMD 4 ingestion in step 1010 by analyzing information of the application schedule MED.S and calculates the next scheduled ingestion time TNEXT. The PMDS 10 accesses the real time clock 27 determines the current real time TACTUAL in step 1012, and calculates the time difference TOVER between the current time TACTUAL and the scheduled ingestion time TNEXT IN STEP 1014.


The PMDS 10 reads the second remind time period TR2 in step 1016 from the medication record R.0.MR.0-R.0.MR.N accessed in step 1008. The PMDS 10 determines in step 1018 whether the time difference TOVER calculated in step 1014 is less than the second remind time TR2 of step 1016. When the PMDS 10 determines in step 1018 that the time difference TOVER is less than the second remind time TR2, the PMDS 10 proceeds from step 1018 to step 1006. When the PMDS 10 determines in step 1018 that the time difference TDELTA is not less than the second remind time TR2, the PMDS 10 proceeds from step 1018 to step 1020 and selects the second remind text TXT2 from the medication record R.0.MR.0-R.0.MR.N accessed in step 1008, and transmits the second remind text TXT2 to the patient transceiver 8 and/or the patient input device 18 in step 1022.


The PMDS 10 proceeds from either step 1022 or step 1006 to step 1024 and to determine whether to cease monitoring for transmissions of markers M from the IEMD 4 and the sensors 20, 22, 23 and 24. When the PMDS 10 determines to continue monitoring the sensors 20, 22, 23 and 24 and for transmissions of markers M from the IEMD 4, the PMDS 10 proceeds from step 1024 to step 1002. When the PMDS 10 determines to cease monitoring the sensors 20, 22, 23 and 24 and for transmissions of markers M from the IEMD 4, the PMDS 10 proceeds from step 1024 to step 1026 perform alternate or additional computational operations.


Referring now generally to the Figures and particularly to FIGS. 2, 4A, 4B, 4C, and 4D, the audio/text converter module 64 is configured to convert digitized audio data received from the patient transceiver 8, the patient input device 18, the patient messaging module 14, the first network transceiver 12 and/or the second network transceiver 16 into textual data for storage in a patient record R.0, for example in the patient history data H.D, the patient activity data R.ACT, the first remind text TXT1, the second remind text TXT2, the first behavior remind text TXT1B and the second behavior remind text TXT2B, and/or the behavior description text BHR.D.


The audio/text converter module 64 is further configured to convert text data into digitized audio data representative of vocalizations of the source text data from the PMDS 10 and/or the patient messaging module 14 and for transmission of the digitized audio data representations to the patient transceiver 8 and/or the patient input module 18. The text data and the digitized audio data may be received via the bus 34 and from the system memory 28 or the network 102, or generated by the CPU 26.


Referring now generally to the Figures and particularly to FIG. 12, FIG. 12 is a schematic of a patient coupled with a plurality of biometric sensors and in communication with a cellular telephone, other mobile computational devices and information technology networks. In one example, it is a schematic of a patient 88 with a blood pressure sensor 90 wrapped around a right arm 92, a wireless heart rate sensor 94 in contact with a right leg 96, a wireless body temperature sensor 98 positioned within a left ear canal 100, and a respiration monitor 102 positioned at a patient's mouth and nose area 104. These sensors are bi-directionally communicatively coupled to a first network computer 106. To illustrate, biometric data may include body related data, e.g., temperature, ph factor, pulse rate, and ingestion data may include event and/or medication related data, e.g., nature, type of medication, dosage, time at which ingestion took place, adherence to prescription, level of adherence to prescription, etc., communicated to a wireless communications device or receiver, e.g., computer, patch receiver, etc. The biometric data may include, for example, a unique identifier which may be compared to various data, e.g., genetic profile data, emotional data, and other data. Such data may be associated with one or more of a variety of devices, e.g., cellular phone, wireless computer, PDA, and wireless comms system or receiver for validation purposes.


A database computer 108, or “DB computer” 108, and a medical diagnostic computational system 110 (hereinafter, “diagnostic system” 110) are bi-directionally communicatively coupled with the network 2. A software-encoded database may be associated with the database computer 108 and may include current and historical data pertaining to the patient 88. The historical data includes, for example, medical record(s), health record(s), or medical chart(s) which are systematic documentation of a patient's medical history and care. The term “medical record” is used both for the physical information for the patient and for the body of information which comprises the total of each patient's health history. The network 2 is bi-directionally and communicatively coupled with a telephonic network, represented by telephony network 2A and with other forms of telecommunication devices, e.g., fax etc, represented by, telecommunications network 112 (hereinafter “TELCO” 112).


Communication devices, for example, a digital cellular telephone 114, a wireless enabled network computer 116 and a wireless enabled personal digital assistant (PDA) 118 are further bi-directionally communicatively coupled with the network 2 via a wireless communications system 120 (hereinafter “wireless comms system” 120). It is understood that the definition of the term “computer” as used in the present disclosures includes, for example, digital cellular telephones, personal digital assistants, network computer, computer workstations, automated database systems, servers, and web servers.


In another aspect, one or more sensors 20, 22, 23, 24, 94, 98, and/or 102 may be conductively or communicatively coupled to a patch receiver 122, positioned on the skin or subcutaneously or as a wristband or any such wearable device. The patch receiver 122 in turn may be communicatively coupled to the first network computer 106. The first network computer 106 is bi-directionally communicatively coupled to electronics communications network 2. The network 2 may further facilitate a two-way communication with the Internet 2B.


An IEMD 4 optionally includes a medicine 126. The IEMD 4 is an in-body device as disclosed herein. Examples of in-body devices include, but are not limited to: implantable devices, e.g., implantable therapeutic devices, such as but not limited to stents, drug delivery devices, orthopedic implants, implantable diagnostic devices, e.g., sensors, biomarker recorders, etc.; ingestible devices such as the IEMD 4 described in the preceding references; etc.


In various aspects, the biometric data may be communicated to and/or from one or more receiving devices (not shown), for example, a biometric data receiver such as the computer 106, etc. The biometric receiver 106, 114, 116, 118 and 120 may be embodied in various ways, for example, as the cellular telephone 114, the wireless computer 116, the personal digital assistant 118, and/or a personal receiver such as an implantable receiver, a semi-implantable receiver, and an externally applied device such as the personal signal patch receiver 122. The patch receiver is a personal receiver that may be removably affixed to the person's person, apparel, or personal equipment, for example, by an adhesive, a clip, a fabric, or other suitable attachment means known in the art.


To illustrate one exemplary application of the method of the present invention, a patient 88 may ingest the IEMD 4 integrated with medicine 126. The IEMD 4 may communicate data that includes biometric data and ingestion data. The biometric data may include body related data, for example, temperature, pH factor, pulse rate, and ingestion data may include event and/or medication related data, for example, nature, type of medication, dosage, time at which ingestion took place, adherence to prescription, level of adherence to prescription, etc., communicated to a wireless communications device 114, 116, 118, and 120, or receiver, for example, computer 106, patch receiver, etc. The biometric data may include, for example, a unique identifier which may be compared to various data, for example, genetic profile data, emotional data, and other data. Such data may be associated with one or more of a variety of devices, for example, the cellular phone 114, the wireless computer 116, PDA 118, and the wireless comms system 120 or receiver for validation purposes.


The biometric data reception may be affected or effected by one or more receiving devices, for example, personal signal receivers such as patch receivers that are removably attachable externally to the patient 88 or a non-human body; or comprised within a subcutaneous device, an implantable devices, and/or various external devices, for example, devices which are or are not designed for attachment or other permanent or semi-permanent contact with the body, for example, the cellular telephone 114. An ingestible event marker system is described in the Patent Application PCT/US2008/52845 and includes an IEMD 4 and a personal patch signal receiver 122. The patch receiver 122 includes, for example, devices capable of at least receiving data and/or signals, etc. Patch receivers 122 may be attachable, for example, permanently or removably attachable externally to a human body or a non-human body. For example, the patch receiver 122 may include the receiver and an adhesive layer to provide for attachment to and removal from the patient 88. Alternatively, the patch receiver 122 may be implantable or semi-implantable, for example, subcutaneous implantation.


The wireless communications system 120, the cellular telephone 114, the wireless computer 116, and/or the personal digital assistant 118, may include systems, subsystems, devices, and/or components that receive, transmit, and/or relay the biometric data. In various aspects, the wireless communications system 120 communicably interoperates with a receiver 37 such as the patch receiver 120 and a communications network 2 such as the Internet 2B. Examples of wireless comms systems 120 are computers, for example, servers, personal computers, desktop computers, laptop computers, intelligent devices/appliances, etc., as heretofore discussed.


In various aspects, the wireless communications system 120 may be embodied as an integrated unit or as distributed components, for example, a desktop computer and a mobile telephone in communication with one another and in communication with a patch receiver and the Internet 2B.


Further, various aspects of the network include combinations of devices. For example, one such combination is a receiver 122 such as the patch receiver 122 in communication with the portable digital assistant 118 or the mobile telephone 114. Thus, for example, the patch receiver 122 wirelessly transmits biometric data received from the IEMD 4 to the cellular telephone 114 having a receiver and a software agent available thereon. The cellular telephone 114 receives the biometric data transmitted by the IEMD 4. In one scenario, the patient 88 ingests prescription medication 126 in conjunction with an IEMD 4. The IEMD 4 identifies various information, for example, the medication type and dosage and transmits this information in a biometric data transmission via, for example, a conductive transmission to the patch receiver 120, which may be removably attached to the patient 88. The patch receiver 122 transmits the biometric data to, for example, the cellular telephone 114, the wireless computer 116, the personal digital assistant 118, and/or the wireless comms device 120 as the case may be.


For ease of description, the in-body devices of the invention will now be further described in terms of configurations having current path extender capabilities such as those provided by a skirt (not shown) where the skirt is part of the IEMD 4, for example, the wireless IEMD 4. One or more IEMD 4 may be or comprise a composition that includes in certain configurations a vehicle, where the vehicle may or may not include an active agent such as the medicine 126.


IEMDs 4 of interest include those described in PCT Application No. PCT/US2006/016370 filed on Apr. 28, 2006 titled “Pharma-Informatics System”; PCT Application No. PCT/US2007/022257 filed on Oct. 17, 2007 titled “In-vivo Low Voltage Oscillator for Medical Devices”; PCT Application No. PCT/US2007/82563 filed on Oct. 25, 2007 titled “Controlled Activation Ingestible Identifier”; U.S. patent application Ser. No. 11/776,480 filed Jul. 11, 2007 titled “Acoustic Pharma Informatics System”; PCT/US2008/52845 filed on Feb. 1, 2008 titled “Ingestible Event Marker Systems”; Patent Application No. PCT/US08/53999 filed Feb. 14, 2008 titled “In-Body Power Source Having High Surface Area Electrode”; U.S. patent application Ser. No. 12/238,345 filed Sep. 25, 2008 titled “In-Body Device With Virtual Dipole Signal Amplification, the disclosures of which applications are herein incorporated by reference.


The IEMD 4 communicates, e.g., generates, alters, produces, emits, etc., a communication upon contact of the IEMD 4 with a target physiological location (or locations) depending on the particular configuration of the IEMD 4. The IEMD 4 of the present compositions may vary depending on the particular configuration and intended application of the composition.


As such, variations of IEMDs 4 may communicate, for example, communicate a unique identifier, when activated at a target site, for example, when the instant IEMD 4 contacts a target surface or area within the patient's body 6, for example, a physiological, site and/or alters a current when in contact with a conducting fluid, for example, gastric acid in the stomach. Depending on the configuration, the target physiological site or location may vary, where representative target physiological sites of interest include, for example, but are not limited to: a location in the alimentary system, such as the mouth, esophagus, stomach, small intestine, large intestine, etc.


In certain configurations, the IEMD 4 is configured to be activated upon contact with fluid at the target site, for example, stomach fluid, regardless of the particular composition of the target site. In some configurations, the IEMD 4 is configured to be activated by interrogation, following contact of the composition with a target physiological site. In some configurations, the IEMD 4 is configured to be activated at a target site, wherein the target site is reached after a specified period of time.


Depending on the needs of a particular application, the communication of an ingestible event marker datum IEM M associated with the event marker IEMD 4, for example, altered current, an RFID signal, etc., may be generic such as a communication that merely identifies that the composition has contacted the target site, or may be unique, for example, a communication which in some way uniquely identifies that a particular event marker datum IEM M from a group or plurality of different markers M in a batch has contacted a target physiological site.


As such, the IEMD 4 may be one that, when employed with a batch of unit dosages, for example, a batch of tablets, is associated with a communication which cannot be distinguished from the signal emitted by the IEMD 4 of any other unit dosage member of the batch. In yet other configurations, each member of the batch has an IEMD 4 that is associated with a unique communication, at least with respect to all the other ingestible event markers of the members of the batch. For example, each wireless ingestible device IEMD 4 of the batch emits a signal that uniquely identifies that particular wireless ingestible device in the batch, at least relative to all the other ingestible event markers M of the batch and/or relative to a universe of ingestible event markers M. In one configuration, the communication may either directly convey information about a given event, or provide an identifying code, which may be used to retrieve information about the event from a database, for example, a database linking identifying codes with compositions.


The IEMD 4 may generate a variety of different types of signals as a marker datum IEM M, including, for example, but not limited to: RF signals, magnetic signals, conductive (near field) signals, acoustic signals, etc. Of interest in certain configurations are the specific signals described in the PCT application serial no. PCT/US2006/16370 filed on Apr. 28, 2006; the disclosures of various types of signals in this application being specifically incorporated herein by reference. The transmission time of the IEMD 4 may vary, where in certain configurations the transmission time may range from about 0.1 microsecond to about 48 hours or longer, for example, from about 0.1 microsecond to about 24 hours or longer, for example from about 0.1 microsecond to about 4 hours or longer, for example from about 1 sec to about 4 hours, including from about 1 minute to about 10 minutes. Depending on the given configuration, the IEMD 4 may transmit a given signal once. Alternatively, the IEMD 4 may be configured to transmit a signal with the same information, for example, identical signals, two or more times, where the collection of discrete identical signals may be collectively referred to as a redundant signal.


Various configurations of elements are possible, e.g., dissimilar materials 124A, 124B. When in contact with a conducting fluid, a current is generated. A control device 124C may alter the current. The altered current may be detectable, for example, by a receiving device, etc., and associated with a communication providing a unique IEM, etc., as previously discussed. The dissimilar materials making up the electrodes can be made of any two materials appropriate to the environment in which the identifier will be operating. The dissimilar materials are any pair of materials with different electrochemical potentials. For example, in some configurations where the ionic solution comprises stomach acids, electrodes may be made of a noble metal, e.g., gold, silver, platinum, palladium or the like, so that they do not corrode prematurely. Alternatively, for example, the electrodes can be fabricated of aluminum or any other conductive material whose survival time in the applicable ionic solution is long enough to allow the identifier to perform its intended function. Suitable materials are not restricted to metals, and in certain configurations the paired materials are chosen from metals and non-metals, for example, a pair made up of a metal (such as Mg) and a salt. With respect to the active electrode materials, any pairing of substances, for example, metals, salts, or intercalation compounds, that have suitably different electrochemical potentials (voltage) and low interfacial resistance are suitable.


Various other configurations may include other communication-related components, for example, an RFID signal generator, etc.


In various aspects, the IEMD 4 communicates an ingestion alert when the medicine 126 is dissolved within a gastrointestinal pathway of the patient 88. The IEMD 4 is configured to transmit the ingestion alert as a wireless transmission that is detectable by, for example, the cellular telephone 114, the wireless enabled network computer 116, the wireless enabled personal digital assistant 118, and/or the wireless comms system 120. In addition, the wireless heart rate sensor 94, the wireless body temperature sensor 98, and/or the respiration monitor 16 are optionally configured to transmit biometric measurements in a wireless transmission that is detectable by, for example, the cellular telephone 114, the wireless enabled network computer 116, the wireless enabled personal digital assistant 118 and/or the wireless comms system 120. The wireless transmissions, for example, of the IEMD 4, the wireless heart rate sensor 94, the wireless body temperature sensor 98, and/or the respiration monitor 102 alternately or additionally are or comprise radio frequency wave or pulse transmissions and/or light wave or pulse transmissions.


Information regarding alternate configurations of the pharmaceutical composition 40 and the IEMD 4 are disclosed in United States Patent Application Publication No. 20080284599, published on Nov. 20, 2008 titled “Pharma-Informatics System”, which is incorporated by reference in its entirety and for all purposes in this document.


Referring now generally to the Figures and particularly to FIG. 13, FIG. 13 is an illustration of a display screen 128 of the cellular telephone 114, the wireless enabled network computer 116 and/or the wireless enabled personal digital assistant 118 wherein a plurality of icons 129-136 are available for user selection. In one configuration, the display screen 128 is a touch screen and the icons 129-136 are selected by the application of the patient 88 of finger pressure or body heat. In other configurations, alternately or additionally the patient 88 may select one or more icon by positioning a cursor 138 over an icon 129-136 and selecting the icon 129-136 over which the cursor 138 is positioned by means of an input device 140 of, for example, the cellular telephone 114, the wireless enabled network computer 116 and/or the wireless enabled personal digital assistant 118. The medicine cursor 138 is selected by the patient 88 to indicate a taking of the medicine 126, for example by an oral or nasal ingestion of one or more pharmaceutical compositions 122, a topical application of the medicine 126, or injection or other introduction of the medicine 126 to the patient 88. Accomplishment icon 130 is selected by the patient 88 to indicate an achievement or an engagement in an activity, for example an athletic session, exercise or event, a hobby, a meditation session, a therapeutic practice or exercise, a leisure activity, a recreational activity, a rehabilitative activity, a period of sleep, a meal consumption, a liquid ingestion, an erotic thought, erotic act, or an occurrence of an aspect of menstruation.


Each emotion icon 129-136 is selected by the patient 88 to indicate a perception of an associated emotion or a psychological state by the user, for example an emotion or psychological state of happiness, appreciation, kindness, love, joy, fondness, bliss, anger, fear, dread, loathing, anxiety, jealousy, envy, contempt, resentment, perceived pain, perceived pleasure, confidence, insecurity, optimism, pessimism, patience, impatience, attraction, repulsion, clarity, confusion, encouragement, discouragement, a romantic sensation, a sexual arousal, or an erotic sensation. Each sad icon 134-135 is selected by the patient 88 to report an occurrence of an undesirable event or condition, for example nausea, diarrhea, anxiety, physical pain, bleeding, or a loss of balance. An external icon 136 may be selected by the patient 88 to indicate a perception of an event or condition external to the patient 88, for example an inbound phone call or a visit from a friend. It is understood that each icon 129-136 may be individually associated with a single emotion, perception, event, process or condition.


Referring now generally to the Figures and particularly to FIG. 14, FIG. 14 is a schematic diagram of the cellular telephone 114. It is understood that the network computer 106, the wireless enabled network computer 116, the wireless enabled personal digital assistant 118 and the wireless comms system 120 may comprise one or all of the elements of the cellular telephone 114.


The cellular telephone 114 includes a central processing unit 142, or “CPU” 142 and a firmware 144. The firmware 144 further includes a set of software-encoded instructions comprising a mobile basic input output system 146 used to boot-up the cellular telephone 114. A power and communications bus 148 (or “mobile bus” 148) bi-directionally communicatively couples the CPU 142, the firmware 144, a display device interface 150, the input device 140, a telephone audio output module 152, a wireless network interface 154, a global positioning system module 156, a telephone system memory 158, a telephone media writer/reader 160, a date time circuit stamp 162, a telephone audio input module 164, a telephone mechanical vibration module 166, a small message service module 168, and an accelerometer 170.


The display interface 150 bi-directionally communicatively couples a display module 172 comprising a telephone display screen 174 with the communications bus 148. The telephone audio output module 152 accepts digitized information from the bus 148 and derives and generates an audible sound wave output therefrom.


An electrical power battery 176 provides energy to the elements 142-174 of the cellular telephone 114 via the mobile bus 148.


The wireless network interface 154 bi-directionally communicatively couples the electronics communications bus 146 and the network 2. The system memory 158 is a random only access memory wherein a mobile telephone system software 178 is maintained and optionally edited or modified by deletion, addition or update of software-encoded instructions.


The global positioning system module GPS (hereinafter “GPS module” 156) is a communications device that communicates with a global positioning system that comprises earth-orbiting satellites and allows the GPS module 156 to determine coordinates of the location of the GPS module 156 on the earth's surface.


The date/time circuit 162 is bi-directionally communicatively coupled with the communications bus 148 and provides a digitized date time stamp data when polled by the telephone CPU 142. The date/time circuit 162 further generates time pulses and synchronizing signals that the telephone CPU 142 and the cellular telephone 114 generally, apply to measure the passage of time, time period durations, and to schedule alarms and alerts.


The telephone media writer/reader 160 is configured to read, and optionally write, machine readable, computer executable software encoded instructions from a computer program product 180. The telephone media writer/reader 160 and the associated computer program product 180 are selected and configured to provide non-volatile storage for the cellular telephone 114. Although the description of computer program product 180 contained herein refers to a mass storage device, for example a hard disk or CD-ROM drive, it should be appreciated by those skilled in the art that computer program product 160 can be any available media that can be accessed by the digital telephone 114.


By way of example, and not limitation, computer program product 180 may be or comprise computer operable storage medium 182 and communication media. Computer operable storage media 182 include, for example, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer operable storage media include, for example, but are not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, digital versatile disks (“DVD”), or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the cellular telephone 144.


The computer program product 180 may comprise machine-readable instructions within a computer operable storage medium which when executed by the computer to cause the computer to perform one or more steps as described in the Figures and enabled by the present disclosure, and/or generate, update, maintain and apply one or more data structures.


The input device 140 may be or comprise a character input keypad 184 and/or a mouse 186, or other point and click selection or data input device known in the art.


Referring now generally to the Figures and particularly to FIG. 15, FIG. 15 is a schematic diagram of the mobile telephone system software 178 of the cellular telephone 114. A mobile device operating system 188 acts as a control layer between the hardware elements 142-186 of the cellular telephone 114 and the mobile system software 178 of the cellular telephone 114. A network communications software 190 enables the wireless network interface 154 to bi-directionally couple the network 2 with internal communications bus 148 and the CPU 142. A mobile display device driver 192 enables the CPU 142 to direct the state of the telephone display screen 128 to include the rendering of the icons 129-136. A mobile input device driver 194 enables the CPU 142 to accept, execute and interpret commands, instructions, data and selections from the input device 140. A mobile reader driver 196 enables the CPU 140 to accept, execute and interpret software encoded programs, commands, instructions, data and selections from the computer program product 180. A graphical user interface driver 198, or “mobile GUI” 198, enables the cellular telephone 114 to visually render data, for example, to render the icons 129-136.


The mobile telephone system software 178 further includes a data base management system 98 (hereinafter, “mobile DBMS” 200) storing a plurality of records 202.A-202.N. and a plurality of logged event data 204.A-204.N (hereinafter, “log” 204.A-205.N). The system software 178 further comprises a plurality of software applications 206.A-206.N.


Referring now generally to the Figures and particularly to FIG. 16, FIG. 16 illustrates a first aspect of a method wherein an exemplary process is represented. In the process of FIG. 16, the cellular telephone 114 powers up in step 1600 and displays one or more icons 129-136 in step 1602. The computer determines in step 1604 whether the patient 88 has selected an icon 129-136. When the cellular telephone 114 determines in step 1604 that the patient 88 has selected an icon 129-136, the cellular telephone 114 proceeds on to step 1606 to form an exemplary record 202.A and store the record 202.A in the DBMS 188, wherein the record 202.A includes an icon identifier and a date/time stamp data generated by the date time circuit 162 and related to the time of selection of the icon 129-136.


The cellular telephone 114 determines in step 1608 whether or not to display the information contained or associated with the exemplary record 202.A in a graphical representation on the display screen 128. The cellular telephone 114 renders information of the record 202.A in a visually presented temporal relationship with information contained within or associated with the plurality of logged event data 204.A-204.N. The cellular telephone 114 alternately displays the graphical representation, such as an exemplary graph 181 of FIG. 18, in step 1610, or proceeds on to step 1612. The cellular telephone 114 determines in step 1612 to return or continue to display the icons 129-136 in step 1602, or to proceed on to step 1614 and cease displaying the icons 129-136 in step 1612 and to continue on to perform alternate computational processes.


Referring now generally to the Figures and particularly to FIGS. 17A and 17B, FIG. 17A is an illustration of the exemplary record 202.A that includes an icon identifier 202.A.1. The date time stamp 202.A.2 is generated by the date time circuit 162. The icon identifier 202.A.1 associates the exemplary record 202.A with an icon 29-36. FIG. 17B is an illustration of the exemplary log event data 204.A that includes a biometric identifier 204.A.1, a measured biometric value 204.A.2 and an event date time stamp 204.A.3 related to the time of recordation of the event biometric value 204.A.2. In certain exemplary methods, the biometric identifier 204.A.1 may associate the exemplary log data 204.A. with a measurement, for example, of a heart rate, a blood pressure, a body temperature, and/or a respiration, wherein the measured biometric value 204.A.2 may be a numeric value of the biometric parameter identified by the biometric identifier 204.A.1 of the exemplary log data 204.A. An optional record information 202.A.3 includes additional information provided by the patient 88 via the input module 140, by uploading from a computer program product 180 and/or by downloading from the network 2. The record information 202.A.3 may include textual information entered from a computer keyboard 184 or mouse 186. According to even other additional or alternate methods, the record information 202.A.3 may optionally be input to the cellular telephone 114 via an audio input module 164 that accepts sound waves and generates digitized recordings therefrom, wherein the digitized recordings may be stored as audio data in the record information 202.A.3. In addition, the audio input and/or a textual interpretation of sound waves received by the audio input module 122 and thereupon stored as text data in the record information 202.A.1.


When the icon identifier 202.A.1 indicates that the identified icon 132-136 specifies an accomplishment, or the record information 202.A.3 indicates that that the comprising exemplary record 202.A identifies an accomplishment, the exemplary record 202.A is defined as an accomplishment record 202.A, and the exemplary record information 202.A.3 is defined as an accomplishment information 202.A.3.


Referring now generally to the Figures and particularly to FIG. 18, FIG. 18 illustrates a graph 206 wherein a plurality of event log data 204.A-204.N that each datum includes a beats per minute measurement value as the biometric value 204.A.2-204.N.2. Each biometric value 204.A.2-204.N.2 is plotted within the graph 206 according to its value along a heart rate axis 208.A and the value of the date time stamp 204.A.3-204.N.3 of the same event log data 204.A-204.N along a time axis 208.B. In addition, one or more records 202.A-202.N are plotted as events along the same time axis 208.B, wherein the quality associated with each displayed record 202.A-202-N is presented along the time axis 208.B. The patient 88 may thus review the graph 206 and observe the temporal relationship between each event documented by a record 202.A-202.N and the biometric data measurement values 204.A.2-204.N.2 contained in the plurality of event log data 204.A-204.N.


Referring now generally to the Figures and particularly to FIG. 19, FIG. 19 is an illustration of an additional or alternate method, wherein the cellular telephone 114 transmits in step 1902 the exemplary record 202.A via the network 2 to the data base system 108 and/or the diagnostic system 110. In step 1904 the cellular telephone 114 receives a digitized message that includes a medical advice content via the network 2. The cellular telephone 114 displays the medical guidance content in the display screen 128 in step 1906. In a yet other aspect of the method of the FIG. 19, the medical guidance content is rendered as an audible signal output through the audio output module 152.


Referring now generally to the Figures and particularly to FIG. 20, FIG. 20 is an illustration of a still additional or alternate aspect of the method of the of FIG. 20 wherein the cellular telephone 114 receives one or more event logs 204.A-204.N in step 2002 via the network 2. The cellular telephone 114 then stores the one or more event logs 204.A-204.N in the mobile DBMS 200 in step 2004. The one or more event logs 204.A-204.N received in step 2002 will then be included in the next calculation of the graph 206 in the next execution of step 1610. It is understood that the one or more event logs 204.A-204.N received in step 2002 may include biometric measurement values 204.A.2-204.N.2 that are measures, for example, of heart rate, blood pressure, respiration or body temperature.


Referring now generally to the Figures and particularly to FIGS. 3 and 21, FIG. 21 illustrates a still other additional or alternate method, wherein GPS data collected from the cellular telephone 114 of the patient 88 are used to determine the current and relative level of social interaction in which the patient 88 is engaging. In step 2102 the cellular telephone 114 is associated with the patient 88. In step 2104 the communications traffic of the cellular telephone 114 is monitored and each phone call is recorded in a session record 210.A-210.N of the patient database 40 of the PMDS 10. The monitoring of the use of the cellular phone 114 may be accomplished by a telecommunications carrier from whom the patient 88 receives a communications enabling service and/or by monitoring by the wireless comms system 120. The session records 210.A-210.N and the patient database are transmitted to, stored in, and made accessible for review to a diagnostician at the diagnostic system 110 and/or the data base computer 108 in step 2106. The diagnostician determines in step 2108 that the level of social interaction indicates an increased risk of degradation in the state of mental health of the patient 88, the diagnostician then determines in step 2110 whether or not to issue an alarm to alert the patient 88 or third parties of a potential decline in mental health. An alarm is transmitted to and rendered in step 2112 by the cellular telephone 114 in optional step 1012. Additionally or alternatively, the diagnostician may in step 2114 generate a therapeutic recommendation, e.g., a diagnosis of, study of, analysis of, determination of or a prescription regarding, one or more health issues of the patient 88 in step 2114, and optionally the medical advice generated in step 2114 is transmitted to and rendered by the cellular telephone 114 in step 2116. It is understood that either or both the alarm transmitted and rendered in step 2112 and the advice transmitted and rendered in step 2116 may optionally, alternatively or additionally be sent to and rendered by the cellular telephone 114, the first network computer 106, the wireless-communications enabled network computer 116 and/or the wireless-communication enabled personal digital assistant 118 in whole or in part.


Referring to FIGS. 14, 15 and 21, it is understood that the cellular telephone 114 may have a plurality of pre-recorded ringtone records 212. The alarm of step 2112 may be rendered by the cellular telephone 114 generating a sound energy as derived from a digitized alarm tone record 214, wherein the sound generated is distinctive to the patient 88 from the sounds generated by the cellular telephone by rendering from one of the ringtones records 212. Alternatively or additionally, the alarm of step 2112 may direct the cellular telephone 114 to energize the vibration module 166 with the aim to attract the attention of the patient 88.


The medical advice transmitted and received by the cellular telephone 114 in step 2116 may be included in whole or in part in an audio message 216 that may be rendered by audible output module 152 for the patient 88 to listen to, and/or by a textual message 218 that the patient 88 may read from the display screen 128.


Additionally or alternatively, the textual message 218, some or all of the therapeutic advice of step 2116, and/or the alarm 2112 may be transmitted to the cellular telephone 114 by means of a text messaging service or a small message service as received and rendered by the SMS module 168 of the cellular telephone 114 and enabled via the TELCO 112 by a telephone services provider, for example, AT&T™ text messaging service or small message service provider.


Referring now generally to the Figures and particularly to the FIGS. 3 and 22, in yet another alternate or additional method, the diagnostician applies in the process of FIG. 22 an activity monitor process of the diagnostic system 110 to generate a communications activity baseline 220 of telephone communications and compares the baseline with a calculation of recent telephone communications to generate a current communications frequency to determine if the current telephone use of the patient 88 is indicative of an increased risk of the patient entering into a declining state of mental health, for example, in certain circumstances, decreased sociability may be an early indicator of declining mental state or other conditions. In step 2202 the diagnostic system 110 counts the number of phone calls C1 placed by the patient 88 over a first length of time T1, for example, over the preceding three months. In step 2204 the diagnostic system 110 calculates a baseline ratio R1 of placed phone calls C1 as divided the first length of time T1. The baseline ratio R1 is thus one instantiation of the communications activity baseline 220.


In step 2206 the diagnostic system 110 determines the number of telephone calls C2 placed by the patient 88 over a shorter and more recent second period of time T2, for example, over the most recent five-day period. In step 2208 the diagnostic system then calculates a current ratio R2 equal to the number of more recently placed phone calls C1 as divided the second length of time T2.


In step 2210 the diagnostic system 110 divides the current ratio R2 by the baseline ratio R1 and determines whether the result of this division is less than a first indicator value V1 of, for example, 0.70. In one exemplary application of the process of FIG. 22, the first indicator value V1 is 0.70, the first ratio R1 indicates the number of telephone calls placed by the patient 88 via the cellular telephone 114 per unit time during the most recent three months, and the second ratio R2 indicates the number of telephone calls placed by the patient 88 via the cellular telephone 114 per unit time during the most recent five day period, whereby if the frequency of phone call placed by the patient 88 dips below 70% of the frequency of telephone calls exhibited by the patient 88 in the most recent three month period, the diagnostic system 110 issues an alert to patient 88 in step 2212 as described above in the process of FIG. 21. It is understood that the alert of step 2212 may be issued by either direction of the diagnostician or by an automatic activity monitor logic 223 of the diagnostic system 110. It is further understood that the activity monitor logic 223 may calculate C1 and/or C2 by calculated number of telephone calls placed from the cellular telephone 114 summed with the number of telephone calls received through the cellular telephone 114. It is further understood that the activity monitor logic 223 may calculate C1 and/or C2 by including the number of attempted telephone calls placed from the cellular telephone 114. It is further understood that the activity monitor logic 223 may calculate C1 and/or C2 by additionally or alternately by counting the number of text messages sent to and/or from the cellular telephone 114.


It is further understood that the diagnostician may provide therapeutic guidance to the patient 88 as an element of the transmitted alarm of step 2212 in steps 2210 through 2216, as per steps 2112 through 2116 of FIG. 21.


Referring now generally to the Figures and particularly to FIG. 23, FIG. 23 is a schematic of a diagnostic system software 222 of the diagnostic system 110. The diagnostic system software 222 includes a diagnostic system operating system 224 and the patient DBMS 40 that stores a plurality digitized software encoded records of one or more ringtones records 212, alarm tone records 214, audio message records 216, and/or text messages 218 that may be transmitted via the network 2 to the cellular telephone 114. The patient DBMS 40 may include a plurality of call records 226.A-226.N, a plurality of GPS records 228.A-228.N, a plurality of text messages records 230.A-230.N and the GPS baseline data 220. The plurality of call records 226.A-226.N, plurality of GPS records 228.A-228.N and plurality of text message records 218 may be provided to the diagnostic system 110 via the network 2 by the TELCO 112 and/or the telecommunications network services provider.


Referring now generally to the Figures and particularly to FIGS. 24A, 24B and 24C, FIG. 24A is a schematic diagram of an exemplary first phone call record 224.A selected from the plurality of call records 226.A-226.N provided by or the via the TELCO 112 by the telephone services provider. Each phone call record 226.A-226.N contains information related to an individual communication session that is enabled by the network 2. It is understood that a communication session may be enabled by the Internet 2B by voice over Internet Protocol technology and/or by the telephony network 2B. The information contained within the plurality of phone call records 226.A-226.N may be provided by or via the TELCO 112 by the telephone services provider in whole or in part.


The exemplary first call record 226.A relates to a first communications session, for example, an “instant communications session”. A phone identifier 226.A.1 identifies the cellular telephone 114. The phone identifier 226.A.1 may be, for example, a telephone number or a network address, or may be another telephone (not shown) or a network address of a computer 106, 116. A second phone identifier 226.A.2 identifies a second telephone (not shown) or a computer 106 or 116. It is understood that the second phone identifier 226.A.2 may be a telephone number or a network address, or may be a reference number to the second telephone or a computer 106 or 116 that is issued to protect the privacy of another party. An origin flag 226.A.3 indicates whether the instant communications session was initiated by the means of either (a.) the cellular telephone 114, or (b.) the computer 106 or other computer 116. A call start data 226.A.4 identifies the start time of the instant communications session. A call duration data 226.A.5 documents the length of time of the instant communications session. A GPS data 226.A.6 includes a global position system data that indicates the location of the cellular telephone 114 at the start time of the instant communications session or at a moment during the duration of the instant communications session. The GPS data 226.A.6 may be generated by the GPS module 156 of the cellular telephone 114 in concert with information received from a global positioning system.


Referring now generally to the Figures and particularly to FIG. 24B, FIG. 24B is a schematic diagram of an exemplary first GPS record 228.A. A phone identifier 228.A.1 identifies the cellular telephone 114. A GPS sampling data 228.A.2 includes a global position system data that indicates the location of the cellular telephone 114. A GPS time data 228.A.3 indicates a time and date that the GPS sampling data 228.A.2 was acquired by the cellular telephone 114.


Referring now generally to the Figures and particularly to FIG. 24C, FIG. 24C is a schematic diagram of an exemplary first text message record 228.A selected from the plurality of text session records 230.A-230.N. Each text record 230.A-230.N contains information related to an individual texting session that is enabled by the network 2. It is understood that a communications session may be enabled by the Internet 2B by various technologies, for example, Voice Over Internet Protocol (VoIP) technology, the telephony network 2A, etc. The information contained within the plurality of text records 230.A-230.N may be provided by or via the TELCO 112 by the telephone services provider in whole or in part.


The exemplary text session record 230.A relates to a first text session, i.e., an “instant text session”. A phone identifier 230.A.1 identifies the cellular telephone 114. A second phone identifier 230.A.2 identifies a second telephone (not shown) or a computer 106 or 116 that participated in the instant text message. A text time data 230.A.3 identifies a time of initiation or completion of the instant text message session. An origin flag 230.A.4 indicates whether the instant communications session was initiated by the means of either, for example, (a.) the cellular telephone 114, or (b.) the computer 106 or other computer 116.


Referring now generally to the Figures and particularly to FIG. 25, FIG. 25 illustrates a still other additional or alternate method, wherein GPS data collected from the cellular telephone 114 of the patient 88 is used to determine the current and relative level of social interaction in which the patient 88 is engaging. In step 2502 the cellular telephone 114 is associated with the patient 88 and monitored. The GPS module 156 of the cellular telephone 114 is periodically sampled and each sampled GPS datum is recorded in an individual GPS record 228.A-228.N of the patient DBMS 40. The monitoring of the use of the cellular phone 114 may be provided by or via the TELCO 112 by the telephone services provider in whole or in part, for example, in step 2504 during a phone session, from which the patient 88 receives a text enabling service and/or by monitoring by the wireless comms system 120, etc. The GPS records 228.A-228.N and the patient database 40 are transmitted to, stored in, and made accessible for review to a diagnostician at the diagnostic system 110 and/or the data base computer 108. The diagnostician determines in step 2508 that the level of social interaction indicates an increased risk of degradation in the state of mental health of the patient 88, the diagnostician then determines in step 2510 whether or not to issue an alarm to alert the patient 88 or third parties of a potential decline in mental health. An alarm is transmitted to and rendered in step 2512 by the cellular telephone 114 in optional step 2512. Additionally or alternatively, the diagnostician may in step 2514 generate a therapeutic recommendation, for example, a diagnosis of, or a prescription regarding, one or more health issues of the patient 88 in step 2514, and optionally the medical advice generated in step 2516 is transmitted to and rendered by the cellular telephone 114. It is understood that either or both the alarm transmitted and rendered in step 2512 and the advice transmitted and rendered in step 2516 may optionally, alternatively or additionally be sent to and rendered by the cellular telephone 114, the first network computer 106, the wireless-communications enabled network computer 116 and/or the wireless-communication enabled personal digital assistant 118 in whole or in part.


It is understood that the cellular telephone 114 may have a plurality of pre-recorded standard ringtones records 212. The alarm of step 2112 may be rendered by the cellular telephone 114 generating a sound energy as derived from an alarm tone record 212, wherein the sound generated is distinctive to the patient 88 from the sounds generated by the cellular telephone 114 by rendering from one of the ringtones records 214. Alternatively or additionally, the alarm of step 2512 may direct the cellular telephone 114 to energize the vibration module 166 with the aim to attract the attention of the patient 88.


The medical advice transmitted and received by the cellular telephone 114 in step 2516 may be included in whole or in part in an audio message record 216 that may be rendered by audible output module 152 for the patient 88 to listen to, and/or by a textual message record 230 that the patient 88 may read from the display screen 128.


Additionally or alternatively, the textual message 230, some or all of the therapeutic advice of step 2116, and/or the alarm 2112 may be transmitted to the cellular telephone 114 by means of a text messaging service or a small message service as received and rendered by an SMS module 168 of the cellular telephone 114 and may be provided in whole or in part by or via the TELCO 112 by the telephone services provider.


Referring now generally to the Figures and particularly to the FIG. 26, in yet another additional or alternate method, the diagnostician applies a mobility monitor logic 232 of the diagnostic system 110 to generate the GPS baseline 220 derived from the telephone GPS information of the plurality of GPS records 226.A-226.N and compares the GPS baseline 220 with a more recent plurality of GPS readings to determine if the mobility of the patient 88 is indicative of an increased risk of the patient entering into a reduced state of mental health. In step 2602 the diagnostic system 110 examines the GPS records 228.A-228.N containing GPS information collected over an extended length of time T3, for example, over the preceding three months. In step 2604 the diagnostic system 110 calculates the GPS mobility baseline 220 indicative of the movement presented by the patient 88 during the extended time C3, for example, an extended mobility value M1.


In one alternate aspect of the method of FIG. 26, the mobility baseline 220 is automatically calculated by (a.) selecting a plurality of GPS records 228.A-228.N; (b.) ordering the GPS records 228.A-228.N in order of the GPS time data 228.A.3-228.N.3; (c.) calculating the distance between each ordered GPS records 228.A-228.N by straight line measurements between succeeding each ordered GPS location data 228.A.2-228.N.2; (d.) summing the distances measured in the previous step; and dividing the distance measurement by a length time measured between the earliest GPS time data 228.A.3-228.N.3 and the most recent GPS time data 228.A.3-228.N.3 of the selected plurality of GPS records 228.A-228.N.


In step 2604 the diagnostic system 110 examines the GPS records 228.A-228.N containing GPS information collected over a shorter and recent mobility period of time T4, for example, over the most recent five day period, and calculates a recent mobility value M1 in step 2604. In step 2606 the diagnostic system 110 examines the GPS records 228.A-228.N containing GPS information collected over a greater period of time and calculates an extended time period mobility value M2


In step 2608 the diagnostic system 110 calculates a current mobility ratio R3 equal to the recent mobility value M1 divided by the extended mobility value M2.


In step 2610 the diagnostic system 110 compares the current mobility ratio R3 to a level L. In one exemplary application of the measurement of the patient's recent mobility dips below 70% the patient's estimated mobility as expressed by the mobility baseline 220, the diagnostic system 110 issues an alert to patient 88 in step 2612 as described above in the process of FIG. 25. It is understood that the alert of step 2612 may be issued by either direction of the diagnostician or by the mobility monitor logic 232. It is further understood that the diagnostician may provide therapeutic guidance to the patient 88 as an element of the transmitted alarm of step 2612 in steps 2620 through 2216, and as per steps 2512 through 2520 of FIG. 25.


Referring now generally to the Figures and particularly to FIG. 27, FIG. 27 is a process chart of an even other additional or alternate method, wherein the cellular telephone 114 is programmed to render a distinctive ringtone record 212, alarm tone record 214, audio message record 216, and/or text message record 218 to alert the patient 88 to take a medication, engage in a medically recommended behavior, or cease a behavior. In step 2702 the cellular telephone 114 determines if a programmer, for example, the patient 88, the diagnostician, a health care provider, or other party, has input a command to place the cellular phone 114 into an alert programming mode. When the cellular telephone 114 determines in step 2702 that the programmer has input a programming command, the cellular telephone 114 proceeds to step 2704 and accepts a selection of an alert selection from the programmer, where the alert selection may be indicated from a group including for example, but not limited to, a distinctive ringtone record 212, alarm tone record 214, audio message record 216, and/or text message record 218. In step 2706 the cellular telephone 114 accepts an alert time from the programmer which indicates at which time the cellular telephone 114 is to render the selected alert. The cellular telephone 114 proceeds from step 2706 to step 2708 to access the date/time circuit 162 and in step 1610 to determine whether the alert time has passed. When the cellular telephone 114 determines in step 2710 that the alert time has occurred, the cellular telephone 114 proceeds on to step 712 and renders the selected alarm, wherein such rendering may include an excitation of, for example, the vibration module 166, a sound generated from ringtone record 212, alarm tone record 214, and/or audio message record 216 by means of the audio output module 152, and/or text message record 218 by means of the display device 156. The cellular telephone 114 proceeds from either step 2710 or step 2712 to determine whether to cease the alert cycle in step 2714. When the cellular telephone 114 determines in step 2714 to cease the alert cycle of steps 2708 and 2710, the cellular telephone 114 proceeds on to step 2716 and performs additional or alternate computational operations, which may include a return to step 2702 at a later time. When the cellular telephone 114 determines in step 2714 to continue to execute the alert cycle of steps 2708 through 2714, the cellular telephone 114 proceeds on to step 2718 and performs additional or alternate computational operations before performing another comparison of the programmed alert time of step 2710 with the real time as indicated by a current output of the date/time circuit 162 execution of step 2708.


It is understood that the alert rendered in step 2710 may encourage the patient to inhale a second medication 240 or to apply a topical medication 242 to a skin area 244 of the patient 88.


Referring now generally to the Figures and particularly to FIG. 28, FIG. 28 illustrates a still further alternate additional or alternate method, wherein the cellular phone 114 is programmed to remind the patient 88 to take, for example, ingest, inhale, insert or topically apply, etc., one or more medications 126. The phone 114 initializes a resting time variable TD to a current date and time reading received from the date/time circuit 162 in step 2802. The phone 114 then proceeds to step 2804 to perform alternate computational operations, and periodically returns to step 2806 to determine whether to query the accelerometer 170 to determine whether the accelerometer 170 has detected motion since the most recent execution of step 2802. When the phone 114 determines in step 2806 that the accelerometer 170 indicates motion of the phone 114 since the most recent execution of step 2802, the phone 114 proceeds on to step 2808 to determine whether the time elapsed between the current value of the resting time variable TD and a newer and actual date and time reading TA received from the date/time circuit 162 is greater than a sleep time value TS, for example, wherein the sleep time value is a value preferably between the time durations of four hours and eight hours. When the phone 114 determines in step 2808 that the accelerometer 170 has not detected motion for a period of time greater than the sleep time value TS, the phone 114 proceeds on to step 2810 and to render an alert to encourage the patient 88 to take one or more medications, e.g., medicine 126, 240 and 242.


It is understood that the motion detector 23 of FIG. 1 may be, include, or be comprised within, an accelerometer 170, a GPS module 156, or a cellular telephone 114.


When the cellular telephone 114 determines in step 2808 that the alert time has occurred, the cellular telephone 114 proceeds on to step 2810 and renders the selected alarm, wherein such rendering may include, for example, an excitation of the vibration module 166, a sound generated from ringtone record 212, alarm tone record 214, and/or audio message record 216 by means of the audio output module 152, and/or text message record 218 by means of the display device 156.


The cellular telephone 114 proceeds from either step 2810 or step 2812 to determine whether to cease the alert cycle of steps 2800 through 2812. When the cellular telephone 114 determines in step 2812 to cease the alert cycle of steps 2800 through 2812, the cellular telephone 114 proceeds on to step 2814 and performs additional or alternate computational operations, which may include a return to step 2802 at a later time.


Referring now generally to the Figures and particularly FIG. 29, FIG. 29 is a schematic of a first exemplary patient record 232.A selected from a plurality of patient records 232.A.1-232.A.N that are stored in the patient DBMS 40 and/or the mobile DBMS 200 as stored in the cellular telephone 114, the DB computer 108, and/or the diagnostic system 110. The first exemplary patient record 232.A includes a patient identifier 232.A.1, a phone identifier 232.A.2, a biometric data field 232.A.3, an ingestion record 232.A.4, a patient reminder instructions data field 232.A.5, and a behavior data field 232.A.6. The patient identifier 232.A.1 uniquely identifies the patient 88 to the DBMS 178 and 206.The phone identifier 232.A.2 uniquely identifies the phone 114 to the DBMS 178 and 206. The biometric data field 232.A.3 includes biometric data received from the sensors 20-23 and 98-104 with associated time date stamps generated by the time/date circuit 162 wherein each date time stamp individually identifies the time of generation of an associated biometric datum. The ingestion record 232.A.4 includes data identifying medicines taken, for example, inhaled, applied, inserted, ingested, etc., with associated time date stamps generated by the time/date circuit 162 wherein each date time stamp individually identifies the time of generation of a comprising ingestion record. The patient reminder instructions data field 232.A.5 includes instructions directing the phone 114 to when and how to render an alert to encourage the patient 88 to perform a specified meditative practice, a relaxation practice, and/or a therapeutic behavior. The behavior data field 232.A.6 includes data noting a performance of a meditative practice, a relaxation practice, a therapeutic behavior, and/or other practice or behavior of the patient 88, with associated time date stamps generated by the time/date circuit 162 wherein each date time stamp individually identifies the time of the referenced performance or behavior.


Referring now generally to the Figures and particularly to FIG. 30, FIG. 30 illustrates an even additional or alternate method, wherein a patient record 232.A-232.N is applied by the phone 114 to record biometric data received from one or more sensors 20-23 and 98-104 and to send alerts to encourage the patient 88 to perform meditative exercises, relaxation exercises, or other therapeutic behaviors. In step 3002 the phone 114 receives notice of a taking of a medication, e.g., medicine 126, 240 or 242, and records the medicine application datum with an associated time date stamp in the ingestion records data field 232.A.4 of the exemplary first patient record 232.A. In step 3004 the phone 114 issues an alert to the patient in accordance with information stored in the reminder message instructions 232.A.5. In step 3006 the phone 114 receives a biometric datum received from one or more sensors 20-23 and 98-104, and records the received biometric datum with an associated time date stamp in the biometric data field 232.A.3. It is understood that the biometric datum might be (a.) a measure of blood pressure or hypertension generated by and received from the blood pressure sensor 90; (b.) a measure of heart rate generated by and received from the heart rate sensor 94; (c.) a measure of body temperature generated by and received from the temperature sensor 98; and/or (d.) a measure of respiration generated by and received from the respiration sensor 102.


In step 3008, the data stored in the exemplary first patient data record 232.A is visually presented to the patient 88 via the display screen 128 by the GUI driver 198 and optionally as described in reference to FIG. 18. This presentation of step 3008 is executed with the intent to provide feedback to the patient 88 of the effect that the behavior of the patient 88 is having on the physiological state of the patient 88, whereby the patient 88 is encouraged to follow the practices. e.g., making a pause, avoiding a situation, taking a pill, etc., to achieve a prescribed behavior, e.g., cool, calm, composed, etc., and behavior specified by the reminder message instructions 232.A.5.


The phone 114 determines in step 3010 whether to continue performing the cycle of steps 3000 through 3008, or to proceed on to alternate computational processes of step 3014. When the phone 114 determines in step 3010 to continue performing the cycle of steps 3000 through 3008, the phone proceeds on to step 3012 and to determine whether instructions to the patient 88 of a dosage of a medicine 126, 240 and 242, a schedule of taking a medicine 126, 240 and 242, or a recommended patient practice or behavior. When a therapeutic alteration is determined in step 3012, the phone 114 proceeds on to step 3016 and to alter information stored in the reminder message instructions 232.A.5. The phone 114 then proceeds from step 3016 on to step 3002.


It is understood that the biometric datum received in one or more executions of step 3006 may be received by (a.) wireless transmissions from the wireless comms system 120, and/or a wireless enabled sensor 20-23, 90, 94, 98 and 102; and/or (b.) a hardwired connection with the network 2. It is further understood that a notice of an ingestion of the composition device 122 may be received by the phone 114 as transmitted wirelessly from the IEMD 4 and/or the wireless comms system 120.


It is additionally understood that the alteration of information stored in the reminder message instructions 232.A.5 as performed in step 3016 may be directed and provided by a health care professional as input from the DB computer 108 and/or the diagnostic system 110.


Referring now generally to the Figures and particularly to FIG. 31, FIG. 31 describes another additional or alternate method, wherein high stress events that occur routinely in the life of the patient are identified and the phone 114 is programmed to encourage the patient 88 to follow or perform therapeutic or prescribed steps or instructions to reduce the harmful impact of the stress inducing events. In step 3102 a plurality of patient records 232.A-232.N are formed by observing and storing the readings of the sensors 20-23, 90, 94, 98 and 102. In step 3104 patient activity logs 168 are formed and populated with data, wherein the patient 88 records time and dates and descriptions of daily events experienced by the patient 88. The patient activity logs 168 may be populated from inputs by the patient 88 to the phone 114, the PDA 118, and/or the wireless computer 116. The diagnostician or other health care professional analyzes the plurality of patient logs 232A-232N in comparison with the patient records 232.A-232.N to isolate and find patterns between sensory indications of physiological stress experienced by the patient 88 and predictable events in the life of the patient, e.g., meetings with supervisors, subordinates, or family members. The diagnostician or health care professional then determines those events that can be anticipated and lead to high stress conditions for the patient 88 in step 3108. The diagnostician then programs the phone 114 to issue a message to the patient prior to one or more anticipated stress-inducing event. The diagnostician or health care professional programs the phone 114 in step 3110 via the diagnostic system 110 and the network 2. The diagnostician or health care professional determines in step 3112 whether to continue the loop of steps 3102 to 3112 or to proceed on to alternate processes of step 3114.



FIG. 29 is a schematic of an exemplary patient activity log 232A that includes the patient ID 232.A.1, the phone ID 232.A.2, and a plurality of activity notes 232A.1-232A.N. Each activity note 232A.1-232A.N contains a notation by the patient 88 of the date, time and nature of an activity experienced by the patient 88, e.g., arrival at work, commuting experiences, physical exercise, social interactions, and work related behavior.


Referring now generally to the Figures and particularly to FIG. 32, FIG. 32 describes a yet additional or alternate method, wherein the diagnostician analyzes information about diagnostic test results, genetic test results, patient records 232.A-232.N, patient activity logs 232A-232N, and other information to develop and prescribe therapy. One or more diagnostic tests are performed in step 3202. The results of these diagnostic tests are stored in the diagnostic system 110 in step 3204 in one or more diagnostic test records 236.A-236.N. One or more genetic tests are performed in step 3206. The results of these genetic tests are stored in the diagnostic system 110 in step 3208 in one or more genetic test records 252.A-252.N. The diagnostician then analyzes the diagnostic test records 236.A-236.N, the genetic test records 252.A-252.N, the patient records 232.A-232.N, the patient activity logs 232A-232N, and other information in step 3210 by means of the diagnostic system 110. The diagnostician then updates a therapeutic plan in step 3212, and programs the cell 114 to transmit alerts and alarms to the patient 88 in step 3314 that are designed to encourage the patient 88 to comply with the prescribed therapy of step 3312.


The diagnostician or health care professional determines in step 3316 whether to continue the loop of steps 3302 to 3316 or to proceed on to alternate processes of step 3318.



FIG. 34 is a schematic of an exemplary first diagnostic test record 236.A that includes the patient ID 232.A.1, the phone ID 232.A.2, and a plurality of diagnostic test notes 236.A.1-236.A.N. Each diagnostic test note 236.A.1-236.N contains information identifying a diagnostic test, a time and date of the diagnostic test, and the results of the diagnostic test.



FIG. 35 is a schematic of an exemplary first genetic test record 238.A that includes the patient ID 232.A.1, the phone ID 232.A.2, and a plurality of genetic test notes 238.A.1-238.A.N. Each genetic test note 238.A.1-238.N contains information identifying a genetic test, a time and date of a performance of the genetic test, and the results of the genetic test.



FIG. 36 is a schematic illustrating the diagnostic system software 222 as containing the patient records 232.A-232.N, the patient activity logs 234.A-234.N, the diagnostic records 236.A-236.N and the genetic records 238.A-238.N.



FIG. 37 is a schematic of the patient 88 being monitored by additional sensors 240 and 242. An impedance sensor 240 is in contact with a second skin area 244 of the patient. The impedance sensor 240 is configured and positioned to detect variations in dermal impedance of the patient 88 that are generally determined by sweat forming on the second skin area 244. An electrocardiograph sensor 242 (or “ECG sensor” 242) is configured and positioned relative to the patient 88 to measure the electrical activity of the heart 246 of the patient 88.



FIG. 38 is a schematic diagram of the exemplary heart rate sensor 94. The heart rate sensor 94 includes a biometric detector 94A, a logic circuit 94B, a wireless interface 94C, a signal emitter 94D, and a battery 94E that are all mounted onto a flexible band 94F. The biometric sensor 94A monitors and measures the heart rate of the patient 88 and communicates the heart rate measurement to the logic circuit 94B. The logic circuit 94B formats and populates a biometric data message and directs the wireless interface 94C to transmit the biometric message in a wireless transmission via the emitter 94D. It is understood that the emitter 94D may be a radio wave antenna or a light pulse emitter. The emitter 94D is configured to transmit the biometric message for successful reception by the phone 114, the wireless computer 116, the PDA 118 and/or the wireless comms system 120. The battery 94E provides electrical power to the biometric detector 94A, the logic circuit 94B, the wireless interface 94C and the signal emitter 94D.


A first strap 94G and a second strap 94H are each separately coupled with the flexible band and enable the heart rate sensor to be detachably coupled to the patient 88. A first hook and loop fabric strip 941 and a second hook and loop fabric strip are positioned to detachably engage and hold the flexible band 94E against a skin area 163 and 176 of the patient 88. Alternatively or additionally an adhesive strip 94L of the flexible band 94F is configured and positioned to enable detachable placement of the flexible band against a skin area 163 and 164 of the patient 88.


It is understood that the illustration of the heart sensor 94 of FIG. 37 is exemplary and is descriptive in part of other sensors 20-23, 94, 98, 102, 240 and 242.


Referring now generally to the Figures and particularly to FIG. 39, FIG. 39 illustrates another still additional or alternate method, wherein the diagnostician receives and analyzes information and advises the patient 88 with therapeutic guidance. In step 3902 the phone 114 receives accelerometer data from the accelerometer 170. The phone 114 transmits the received accelerometer data to the diagnostic system 110 in step 3904, wherein the accelerometer data is stored in a movement record 248.A-248.N. The diagnostic system 110 calculates a walking gait of the patient 88 by analyzing a plurality of movement records 248.A-248.N and stores the gait calculation in step 3906. The phone 114 receives skin impedance data from the impedance sensor 240 and transmits the received impedance data to the diagnostic system 110 in step 3908. The phone 114 receives electrocardiograph data from the ECG sensor 242 and transmits the received electrocardiograph data to the diagnostic system 110 in step 3910. The phone 114 receives body temperature data from the temperature sensor 98 and transmits the received body temperature data to the diagnostic system 110 in step 3912.


The diagnostic system 110 displays the gait calculated and the data received in steps 3904, and 3908-3912 to the diagnostician in step 3914 on the display screen 128 as rendered by the GUI driver 176. The diagnostician analyzes the displayed information and communicates diagnostic information, prognostic information, and therapeutic guidance to the patient in step 3916 via the network 2.


The diagnostician determines in step 3918 whether to continue the loop of steps 3902 through 3918 or to proceed on to alternate activities of step 3920.


Referring now generally to the Figures and particularly to FIGS. 22 and 40, FIG. 40 illustrates another even additional aspect of a method, wherein the patient is encouraged by yet other engagement modalities to adhere to a prescribed ingestion of the medicine 126. In step 4002 the phone 114 determines whether the IEMD 4 has emitted an ingestion signal. When the phone 114 determines in step 4002 that the IEMD 4 has emitted an ingestion signal, the phone 114 informs the DB computer 108 via the network 2 in step 4004 an ingestion signal has been received. The DB computer 108 then updates a virtual pet status in step 4006 in accordance with the information transmitted in step 4004. The virtual pet status is an aspect of a virtual pet personality software 254 is maintained by a virtual world web service 256 that is hosted on a virtual world services server 258. The virtual world services server 258 is accessible to the phone 114 through the network 2, and the virtual pet personality software 254 maintains status and conditions on the basis of instructions from the virtual world web service 256 and from the patient 88 and the DB computer 108 as delivered via the network 2 to the virtual world services server 256.


The DB computer 108 further determines in step 4008 whether with the information transmitted in step 4004 in combination with additional information related to the patient and stored in the patient data base 40 indicates that the patient 88 has earned a reward or achieved a new reward state or level. When the DB computer 108 determines in step 4008 that the patient 88 has earned a reward, the reward is issued in step 4010. The reward of step 4010 may be as modest as directing the phone 114 to vibrate, visually display a congratulations message, and/or render a pleasant audible tone or musical tune. The reward of step 4010 may also include making provisions for delivery of a physical coin, medallion, or crystal. The reward of step 4010 may alternatively or additionally include (a.) providing the patient 88 with a ringtone data or file; (b.) rewarding the patient 88 with a music download service at no extra charge; and/or (c.) a delivery of a hard copy note of congratulations. In various aspects, the rewards may be provided by, or otherwise associated with, one or more reward/incentive sources. Such sources may include, for example, proprietary reward systems, e.g., developed in conjunction with or for aspects of the invention, and existing reward systems, e.g., commercial incentive or reward systems such as point systems, coupon systems, etc., associated with one or more independent providers.


In optional step 4012 the DB computer 108 informs an online community of the achievement and/or status of the patient 88 via the network 2. The DB computer 108 in step 4014 whether to continue the loop of steps 4002 through 4014 or to proceed on to perform alternate computational activities of step 4016.


Referring now generally to the Figures and particularly to FIG. 41, FIG. 41 illustrates another even additional process wherein the patch receiver 122 is attached or coupled to the patient 88, or clothing or personal equipment of the patient 88 in step 4102. The biometric data received by the patch receiver 122 is monitored during a first time period T1 in step 4104. The biometric data received in step 4104 is stored in the patient database 40 in step 4106. The biometric data received by the receiver patch 122 is then monitored during a second time period T2 in step 4108. In step 4110 the biometric data received by the path receiver 122 e.g., from the one or more IEMD 4, during the first time period T1 and second time period T2 is compared by a diagnostician and/or the activity monitor logic 223. The diagnostician and/or the activity monitor logic 223 then determines in step 4112 whether a predetermined action shall be taken at least partly on the basis of the comparison of step 4112 of the behavior of the one or more IEMD 4 that transmit an ingestible event marker datum IEM M during the first time period T1 and the second time period T2. The predetermined action, such as transmitting an alert to the patient 88 via the cellular telephone 114 or informing a healthcare provider of the state of the patient 88, is affected in step 4114.


In various aspects, a system is provided, for example and as illustrated in FIG. 42, a system 4200 may include a biometric information module 4202 to receive biometric information associated with an ingestible event marker datum IEM M; an analysis module 4204 to analyze the biometric information; and a determination module 4206 to determine a therapeutic recommendation at least partly on the basis of the analysis. Biometric information includes any data and/or information associated with living being, e.g., physiologic information such as heart rate, blood pressure, etc.; subA skilled artisan will recognize that the modules may be standalone or integrated in various combinations. Further, one or more modules may be implemented as software modules, as hardware, as circuitry, etc.



FIG. 43 illustrates a unified system 4300 to facilitate adherence to a treatment plan which may include a biometric information module 4202 to receive biometric information associated or contained within an ingestible event marker datum IEM M; an analysis module 4204 to analyze the biometric information; and the determination module 4206 to determine a therapeutic recommendation at least partly on the basis of the analysis. The patient management data system 10 is optionally comprised within the unified system 4300 and may be communicatively coupled with all other parts of the unified system 4300 via a communications bus 4302. Further, one or more modules 4202, 4204, 4206 and PMDS 10 may be implemented as software modules, as hardware, as circuitry, etc. Referring now to FIG. 2, in certain alternate configurations, the unified system 4300 may be, in whole or in part, comprised within the PMDS 10.


In addition, one or more modules may be associated with one or more devices. To illustrate, a receiver or computer may be associated with the biometric information module 4202 of the unified system 4300. One or more modules 4202, 4202, 4206 and PMDS 10 may be associated with a computer, a network, the internet 2B, the telephony network 2A, a database computer 108, a database 40, an ingestible event device IEMD 4, an ingestible event marker datum IEM M, a receiver, e.g., a receiver associated with an IEMD 4 or other device, a wireless computer 116; a temperature sensor, a respiration sensor, a pressure sensor, a heart sensor, and/or other devices and systems.


While the present invention has been described with reference to specific methods, devices and systems, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.


The foregoing disclosures and statements are illustrative only of the present invention, and are not intended to limit or define the scope of the present invention. The above description is intended to be illustrative, and not restrictive. Although the examples given include many specificities, they are intended as illustrative and not limiting. Those skilled in the art will appreciate that various adaptations and modifications of the just-described systems and methods can be configured without departing from the scope and spirit of the present invention. Therefore, it is to be understood that the present invention may be practiced other than as specifically described herein. The scope of the present invention as disclosed and claimed should, therefore, be determined with reference to the knowledge of one skilled in the art and in light of the disclosures presented above.

Claims
  • 1. A system, comprising: an ingestible event marker (IEM) configured to generate ingestion information and to emit the ingestion information conductively via an in-body data transmission upon contact with bodily fluid at a target physiological site, the IEM comprising: first and second electrodes formed of dissimilar materials configured to generate a voltage to energize the IEM when the first and second electrodes contact the bodily fluid;a first sensor configured to be coupled to a body of a patient and to detect first vital parameter data from the body of the patient;a second sensor positionable remotely from the body of the patient, wherein the second sensor is configured to detect second vital parameter data by sensing environmental information associated with the body of the patient;a receiver configured to be electrically coupled to an exterior surface of the body of the patient, wherein the receiver comprises a transceiver to receive the ingestion information conductively via the in-body data transmission from the IEM, the first vital parameter data from the first sensor, and the second vital parameter data from the second sensor; anda patient management data system (PMDS) communicatively coupled to the transceiver, wherein the PMDS comprises: a patient database, comprising: a patient record associated with the patient, wherein the patient record indicates: patient activity data, comprising: expected activities reported by the patient, wherein each of the expected activities is associated with an expected time to engage in the respective expected activities; andpatient history data, comprising: detected first vital parameter data received via the transceiver from the first sensor; and detected second vital parameter data received via the transceiver from the second sensor; andan analysis module, configured to: compare at least one of: the detected first vital parameter data to a first range of healthy values associated with the first vital parameter to identify an unhealthy first vital parameter value; orthe detected second vital parameter data to a second range of healthy values associated with the second vital parameter to identify an unhealthy second vital parameter value;correlate at least one of an identified unhealthy first vital parameter value or an identified unhealthy second vital parameter value to an expected activity of the patient activity data; andselect a therapeutic recommendation to at least one of: bring the identified unhealthy first vital parameter value within the first range of healthy values; orbring the identified unhealthy second vital parameter value within the second range of healthy values;wherein the PMDS is further configured to: transmit the selected therapeutic recommendation to the patient, via the transceiver, at a prospective expected time associated with the correlated expected activity.
  • 2. The system of claim 1, wherein the patient record further indicates prescription information including a medication prescribed to the patient, wherein the prescribed medication is associated with a medication schedule including prescribed times to administer the medication; wherein the patient history data further comprises: ingestion information received via the transceiver from one or more than one IEM ingested by the patient, wherein the one or more than one IEM ingested by the patient comprise the medication; andattestation information reported by the patient, wherein the attestation information comprises an attestation associated with at least one administered medication; andwherein the analysis module is further configured to: determine, based on at least one of the ingestion information or the attestation information, that the prescribed medication has not been administered at a prescribed time of the medication schedule that has passed; andtransmit to the transceiver, after a designated time period since the passed prescribed time, a message to remind the patient to administer the prescribed medication.
  • 3. The system of claim 1, wherein the patient record further indicates prescription information including a behavior prescribed to the patient, wherein the prescribed behavior is associated with a behavior schedule including prescribed times to perform or to avoid the behavior; wherein the patient history data further comprises: attestation information reported by the patient, wherein the attestation information comprises an attestation associated with at least one of a behavior performed or a behavior avoided; andwherein the analysis module is further configured to: determine, based on the attestation information, that the prescribed behavior has not been attested to at a prescribed time of the behavior schedule that has passed; andtransmit to the transceiver, after a designated time period since the passed prescribed time, a message to remind the patient to perform or to avoid the prescribed behavior.
  • 4. The system of claim 1, wherein the receiver comprises a communication device to communicate the selected therapeutic recommendation to the patient.
  • 5. The system of claim 4, wherein the communication device is selected from the group consisting essentially of a telephone, a cellular telephone, a computer, a personal digital assistant, and a network appliance.
  • 6. The system of claim 1, wherein the therapeutic recommendation is further selected based at least partly on genetic information descriptive of the patient.
  • 7. The system of claim 1, wherein the therapeutic recommendation is further selected based at least partly on biometric information in view of additional patient information.
  • 8. The system of claim 7, wherein the additional patient information is selected from the group consisting essentially of lifestyle data, patient adherence information, behavioral information, emotional information and diagnostic test information.
  • 9. The system of claim 1, wherein the therapeutic recommendation is selected from the group consisting essentially of a medicine prescription adjustment, a meditation practice, a relaxation practice, a physical exercise, a period of sleep, a procedural change, a therapy change and a dietary adjustment.
  • 10. The system of claim 1, further comprising a motion detector configured to be coupled to the patient and to generate a patient motion datum, and wherein the therapeutic recommendation is further selected based at least partly on the patient motion datum.
  • 11. The system of claim 10, wherein the motion detector is selected from the group consisting essentially of a cellular telephone, an accelerometer and a global positioning signal device.
  • 12. The system of claim 1, further comprising: a vital parameter monitor to monitor a health parameter of the patient, wherein the vital parameter monitor is communicatively coupled with the PMDS.
  • 13. The system of claim 12, wherein the vital parameter monitor is selected from the group consisting essentially of a heart rate monitor, a blood pressure monitor, a respiration monitor, and a patient skin electrical current conductivity monitor.
  • 14. The system of claim 1, further comprising a patient data input module to receive information from the patient, wherein the patient data input module is communicatively coupled with the PMDS.
  • 15. The system of claim 14, wherein the patient data input module is bi-directionally communicatively coupled with the PMDS.
  • 16. The system of claim 14, wherein the patient data input module is selected from the group consisting essentially of a telephone, a cellular telephone, a computer, a personal digital assistant, a network appliance, and an audio recorder.
  • 17. The system of claim 1, wherein the PMDS stores at least one selectable therapeutic recommendation.
  • 18. The system of claim 1, further comprising a motion detector to detect and to report movement of the patient to the PMDS.
  • 19. The system of claim 1, wherein the PMDS is communicatively coupled with an electronic communications network, and wherein the selected therapeutic recommendation is transmitted via the electronic communications network.
  • 20. The system of claim 1, wherein the target physiological site is a digestive tract internal target site.
  • 21. The system of claim 1, wherein the environmental information associated with the body of the patient comprises sound detection information, air pressure variation information, light energy reflection information, heat detection information, or any combination thereof.
  • 22. The system of claim 1, wherein the first vital parameter data comprises at least one of a heart rate, a blood pressure, a respiration rate, a respiration intensity, or electrical skin conductivity.
  • 23. The system of claim 22, wherein the second vital parameter data comprises at least one of a heart rate, a blood pressure, a respiration rate, a respiration intensity, or electrical skin conductivity.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a U.S. national phase application filed under 35 U.S.C. § 371 of International Patent Application No. PCT/US2010/020269, entitled “INGESTION-RELATED BIOFEEDBACK AND PERSONALIZED MEDICAL THERAPY METHOD AND SYSTEM,” filed Jan. 6, 2010, which application claims the benefit of both U.S. Provisional Patent Application No. 61/142,869, filed on Jan. 6, 2009, titled “INGESTION-RELATED BIOFEEDBACK METHOD AND SYSTEM”; and U.S. Provisional Patent Application No. 61/260,325, filed on Nov. 11, 2009, titled “METHOD AND SYSTEM FOR PERSONALIZED MEDICAL THERAPY”, the entire disclosures of which are hereby incorporated by reference herein.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2010/020269 1/6/2010 WO 00 6/20/2011
Publishing Document Publishing Date Country Kind
WO2010/080843 7/15/2010 WO A
US Referenced Citations (1072)
Number Name Date Kind
3345989 Reynolds Oct 1967 A
3409721 Applezweig Nov 1968 A
3419736 Walsh Dec 1968 A
3589943 Grubb et al. Jun 1971 A
3607788 Adolph Sep 1971 A
3628669 McKinnis et al. Dec 1971 A
3642008 Bolduc Feb 1972 A
3679480 Brown et al. Jul 1972 A
3682160 Murata Aug 1972 A
3719183 Schwartz Mar 1973 A
3727616 Lenzkes Apr 1973 A
3799802 Schneble, Jr. et al. Mar 1974 A
3825016 Lale et al. Jul 1974 A
3828766 Krasnow Aug 1974 A
3837339 Aisenberg et al. Sep 1974 A
3893111 Cotter Jul 1975 A
3944064 Bashaw et al. Mar 1976 A
3967202 Batz Jun 1976 A
3989050 Buchalter Nov 1976 A
4017856 Wiegand Apr 1977 A
4055178 Harrigan Oct 1977 A
4062750 Butler Dec 1977 A
4077397 Ellis Mar 1978 A
4077398 Ellis Mar 1978 A
4082087 Howson Apr 1978 A
4090752 Long May 1978 A
4105023 Merchese et al. Aug 1978 A
4106348 Auphan Aug 1978 A
4129125 Lester Dec 1978 A
4133730 DuBois et al. Jan 1979 A
4141349 Ory et al. Feb 1979 A
4166453 McClelland Sep 1979 A
4239046 Ong Dec 1980 A
4251795 Shibasaki et al. Feb 1981 A
4269189 Abraham May 1981 A
4281664 Duggan Aug 1981 A
4331654 Morris May 1982 A
4345588 Widder et al. Aug 1982 A
4418697 Tama Dec 1983 A
4425117 Hugemann Jan 1984 A
4439196 Higuchi Mar 1984 A
4494950 Fischell Jan 1985 A
4526474 Simon Jul 1985 A
4547391 Jenkins Oct 1985 A
4559950 Vaughan Dec 1985 A
4564363 Bagnall et al. Jan 1986 A
4578061 Lemelson Mar 1986 A
4618533 Steuck Oct 1986 A
4635641 Hoffman Jan 1987 A
4654165 Eisenber Mar 1987 A
4663250 Ong et al. May 1987 A
4669479 Dunseath Jun 1987 A
4681111 Silvian Jul 1987 A
4687660 Baker et al. Aug 1987 A
4725997 Urquhart et al. Feb 1988 A
4749575 Rotman et al. Jun 1988 A
4763659 Dunseath Aug 1988 A
4767627 Caldwell et al. Aug 1988 A
4784162 Ricks Nov 1988 A
4793825 Benjamin et al. Dec 1988 A
4809705 Ascher Mar 1989 A
4835373 Adams et al. May 1989 A
4844076 Lesho Jul 1989 A
4871974 Davis et al. Oct 1989 A
4876093 Theeuwes et al. Oct 1989 A
4896261 Nolan Jan 1990 A
4975230 Pinkhasov Dec 1990 A
4987897 Funke Jan 1991 A
5000997 Eckenhoff et al. Mar 1991 A
5016634 Vock et al. May 1991 A
5079006 Urguhart Jan 1992 A
5167626 Casper Dec 1992 A
5176626 Soehendra Jan 1993 A
5179578 Ishizu Jan 1993 A
5245332 Katzenstein et al. Sep 1993 A
5261402 DiSabito Nov 1993 A
5263481 Axelgaard et al. Nov 1993 A
5276710 Iwasaki Jan 1994 A
5279607 Schentag et al. Jan 1994 A
5281287 Lloyd Jan 1994 A
5283136 Peled et al. Feb 1994 A
5305745 Zacouto Apr 1994 A
5318557 Gross Jun 1994 A
5394882 Mawhinney Mar 1995 A
5395366 D'Andrea et al. Mar 1995 A
5411535 Fujii et al. May 1995 A
5412372 Parkhurst et al. May 1995 A
5428961 Sakakibara Jul 1995 A
5436091 Shackle et al. Jul 1995 A
5443461 Atkinson et al. Aug 1995 A
5443843 Curatolo et al. Aug 1995 A
5458141 Neil et al. Oct 1995 A
5468222 Altchuler Nov 1995 A
5485841 Watkin et al. Jan 1996 A
5511548 Riazzi et al. Apr 1996 A
5551953 Lattin et al. Sep 1996 A
5567210 Bates et al. Oct 1996 A
5596302 Mastrocola et al. Jan 1997 A
D377983 Sabri et al. Feb 1997 S
5600548 Nguyen et al. Feb 1997 A
5634466 Gruner Jun 1997 A
5634468 Platt Jun 1997 A
5638406 Sogabe Jun 1997 A
5645063 Straka et al. Jul 1997 A
5705189 Lehmann et al. Jan 1998 A
5720771 Snell Feb 1998 A
5738708 Peachey et al. Apr 1998 A
5740811 Hedberg Apr 1998 A
5757326 Koyama et al. May 1998 A
5792048 Schaefer Aug 1998 A
5802467 Salazar Sep 1998 A
5833716 Bar-Or Nov 1998 A
5836474 Wessberg Nov 1998 A
5845265 Woolston Dec 1998 A
5862803 Besson Jan 1999 A
5862808 Albarello Jan 1999 A
5868136 Fox Feb 1999 A
5917346 Gord Jun 1999 A
5921925 Cartmell et al. Jul 1999 A
5925030 Gross et al. Jul 1999 A
5925066 Kroll et al. Jul 1999 A
5957854 Besson et al. Sep 1999 A
5963132 Yoakum et al. Oct 1999 A
5965629 Jung et al. Oct 1999 A
5974124 Schlueter, Jr. et al. Oct 1999 A
5981166 Mandecki Nov 1999 A
5999846 Pardey et al. Dec 1999 A
6009350 Renken Dec 1999 A
6023631 Cartmell et al. Feb 2000 A
6038464 Axelgaard et al. Mar 2000 A
6042710 Dubrow Mar 2000 A
6047203 Sackner Apr 2000 A
6076016 Feierbach et al. Jun 2000 A
6081734 Batz Jun 2000 A
6083248 Thompson Jul 2000 A
6090489 Hayakawa et al. Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6095985 Raymond et al. Aug 2000 A
6099482 Brune et al. Aug 2000 A
6115636 Ryan Sep 2000 A
6117077 Del Mar et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6141592 Pauly Oct 2000 A
6149940 Maggi et al. Nov 2000 A
6200265 Walsh et al. Mar 2001 B1
6204764 Maloney Mar 2001 B1
6206702 Hayden et al. Mar 2001 B1
6217744 Crosby Mar 2001 B1
6231593 Meserol May 2001 B1
6245057 Sieben et al. Jun 2001 B1
6269058 Yamanoi et al. Jul 2001 B1
6275476 Wood Aug 2001 B1
6285897 Kilcoyne et al. Sep 2001 B1
6287252 Lugo Sep 2001 B1
6288629 Cofino et al. Sep 2001 B1
6289238 Besson et al. Sep 2001 B1
6315719 Rode et al. Nov 2001 B1
6342774 Kreisinger et al. Jan 2002 B1
6344824 Takasugi et al. Feb 2002 B1
6358202 Arent Mar 2002 B1
6364834 Reuss Apr 2002 B1
6366206 Ishikawa et al. Apr 2002 B1
6368190 Easter et al. Apr 2002 B1
6371927 Brune Apr 2002 B1
6374670 Spelman Apr 2002 B1
6380858 Yarin et al. Apr 2002 B1
6390088 Noehl et al. May 2002 B1
6394953 Devlin et al. May 2002 B1
6394997 Lemelson May 2002 B1
6409674 Brockway et al. Jun 2002 B1
6411567 Niemiec et al. Jun 2002 B1
6426863 Munshi Jul 2002 B1
6432292 Pinto et al. Aug 2002 B1
6440069 Raymond et al. Aug 2002 B1
6441747 Khair Aug 2002 B1
6453199 Kobozev Sep 2002 B1
6477424 Thompson et al. Nov 2002 B1
6482156 Lliff Nov 2002 B2
6494829 New et al. Dec 2002 B1
6496705 Ng et al. Dec 2002 B1
6505077 Kast et al. Jan 2003 B1
6525996 Miyazawa Feb 2003 B1
6526315 Inagawa Feb 2003 B1
6531026 Takeichi et al. Mar 2003 B1
6540699 Smith Apr 2003 B1
6544174 West Apr 2003 B2
6564079 Cory May 2003 B1
6572636 Hagen et al. Jun 2003 B1
6574425 Weiss et al. Jun 2003 B1
6577893 Besson et al. Jun 2003 B1
6579231 Phipps Jun 2003 B1
6595929 Stivoric Jul 2003 B2
6599284 Faour et al. Jul 2003 B2
6605038 Teller Aug 2003 B1
6605046 Del Mar Aug 2003 B1
6609018 Cory Aug 2003 B2
6612984 Kerr Sep 2003 B1
6632175 Marshall Oct 2003 B1
6632216 Houzego et al. Oct 2003 B2
6635279 Kolter et al. Oct 2003 B2
6638231 Govari et al. Oct 2003 B2
6643541 Mok et al. Nov 2003 B2
6650718 Fujimura et al. Nov 2003 B1
6654638 Sweeney Nov 2003 B1
6663846 McCombs Dec 2003 B1
6673474 Yamamoto Jan 2004 B2
6679830 Kolarovic et al. Jan 2004 B2
6680923 Leon Jan 2004 B1
6683493 Fujimora et al. Jan 2004 B1
6689117 Sweeney et al. Feb 2004 B2
6694161 Mehrotra Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6720923 Hayward et al. Apr 2004 B1
6738671 Christophersom et al. May 2004 B2
6740033 Olejniczak et al. May 2004 B1
6745082 Axelgaard et al. Jun 2004 B2
6755783 Cosentino Jun 2004 B2
6757523 Fry Jun 2004 B2
6759968 Zierolf Jul 2004 B2
6771174 Broas Aug 2004 B2
6773429 Sheppard et al. Aug 2004 B2
6800060 Marshall Oct 2004 B2
6801137 Eggers et al. Oct 2004 B2
6804558 Haller et al. Oct 2004 B2
6814706 Barton et al. Nov 2004 B2
6822554 Vrijens et al. Nov 2004 B2
6836862 Erekson et al. Dec 2004 B1
6839659 Tarassenko et al. Jan 2005 B2
6840904 Goldberg Jan 2005 B2
6842636 Perrault Jan 2005 B2
6845272 Thomsen Jan 2005 B1
6864780 Doi Mar 2005 B2
6879810 Bouet Apr 2005 B2
6882881 Lesser et al. Apr 2005 B1
6897788 Khair et al. May 2005 B2
6909878 Haller Jun 2005 B2
6922592 Thompson et al. Jul 2005 B2
6928370 Anuzis et al. Aug 2005 B2
6929636 Von Alten Aug 2005 B1
6937150 Medema Aug 2005 B2
6939292 Mizuno Sep 2005 B2
6942616 Kerr Sep 2005 B2
6951536 Yokoi Oct 2005 B2
6957107 Rogers et al. Oct 2005 B2
6959929 Pugnet et al. Nov 2005 B2
6968153 Heinonen Nov 2005 B1
6987965 Ng et al. Jan 2006 B2
6990082 Zehavi et al. Jan 2006 B1
7002476 Rapchak Feb 2006 B2
7004395 Koenck Feb 2006 B2
7009634 Iddan et al. Mar 2006 B2
7009946 Kardach Mar 2006 B1
7013162 Gorsuch Mar 2006 B2
7016648 Haller Mar 2006 B2
7020508 Stivoric Mar 2006 B2
7023940 Nakamura et al. Apr 2006 B2
7024248 Penner et al. Apr 2006 B2
7031745 Shen Apr 2006 B2
7031857 Tarassenko et al. Apr 2006 B2
7039453 Mullick May 2006 B2
7044911 Drinan et al. May 2006 B2
7046649 Awater et al. May 2006 B2
7050419 Azenkot et al. May 2006 B2
7062308 Jackson Jun 2006 B1
7076437 Levy Jul 2006 B1
7081693 Hamel et al. Jul 2006 B2
7118531 Krill Oct 2006 B2
7125382 Zhou et al. Oct 2006 B2
7127300 Mazar et al. Oct 2006 B2
7146228 Nielsen Dec 2006 B2
7146449 Do et al. Dec 2006 B2
7149581 Goedeke et al. Dec 2006 B2
7154071 Sattler et al. Dec 2006 B2
7155232 Godfrey et al. Dec 2006 B2
7160258 Imran Jan 2007 B2
7161484 Tsoukalis Jan 2007 B2
7164942 Avrahami Jan 2007 B2
7171166 Ng et al. Jan 2007 B2
7171177 Park et al. Jan 2007 B2
7171259 Rytky Jan 2007 B2
7176784 Gilbert et al. Feb 2007 B2
7187960 Abreu Mar 2007 B2
7188767 Penuela Mar 2007 B2
7194038 Inkinen Mar 2007 B1
7206630 Tarler Apr 2007 B1
7209790 Thompson et al. Apr 2007 B2
7215660 Perlman May 2007 B2
7215991 Besson May 2007 B2
7218967 Bergelson May 2007 B2
7231451 Law Jun 2007 B2
7243118 Lou Jul 2007 B2
7246521 Kim Jul 2007 B2
7249212 Do Jul 2007 B2
7252792 Perrault Aug 2007 B2
7253716 Lovoi et al. Aug 2007 B2
7261690 Teller Aug 2007 B2
7270633 Goscha Sep 2007 B1
7273454 Raymond et al. Sep 2007 B2
7285090 Stivoric et al. Oct 2007 B2
7289855 Nghiem Oct 2007 B2
7291497 Holmes Nov 2007 B2
7292139 Mazar et al. Nov 2007 B2
7294105 Islam Nov 2007 B1
7295877 Govari Nov 2007 B2
7311665 Hawthorne Dec 2007 B2
7313163 Liu Dec 2007 B2
7317378 Jarvis et al. Jan 2008 B2
7318808 Tarassenko et al. Jan 2008 B2
7336732 Wiss Feb 2008 B1
7336929 Yasuda Feb 2008 B2
7342895 Serpa Mar 2008 B2
7346380 Axelgaard et al. Mar 2008 B2
7349722 Witkowski et al. Mar 2008 B2
7352998 Palin Apr 2008 B2
7353258 Washburn Apr 2008 B2
7357891 Yang et al. Apr 2008 B2
7359674 Markki Apr 2008 B2
7366558 Virtanen et al. Apr 2008 B2
7366675 Walker et al. Apr 2008 B1
7368190 Heller et al. May 2008 B2
7368191 Andelman et al. May 2008 B2
7373196 Ryu et al. May 2008 B2
7375739 Robbins May 2008 B2
7376435 McGowan May 2008 B2
7382247 Welch et al. Jun 2008 B2
7382263 Danowski et al. Jun 2008 B2
7387607 Holt Jun 2008 B2
7388903 Godfrey et al. Jun 2008 B2
7389088 Kim Jun 2008 B2
7392015 Farlow Jun 2008 B1
7395106 Ryu et al. Jul 2008 B2
7396330 Banet Jul 2008 B2
7404968 Abrams et al. Jul 2008 B2
7413544 Kerr Aug 2008 B2
7414534 Kroll et al. Aug 2008 B1
7414543 Rye et al. Aug 2008 B2
7415242 Ngan Aug 2008 B1
7419468 Shimizu et al. Sep 2008 B2
7424268 Diener Sep 2008 B2
7424319 Muehlsteff Sep 2008 B2
7427266 Ayer et al. Sep 2008 B2
7433731 Matsumura et al. Oct 2008 B2
7471665 Perlman Dec 2008 B2
7485095 Shusterman Feb 2009 B2
7499674 Salokannel Mar 2009 B2
7502643 Farringdon et al. Mar 2009 B2
7505795 Lim et al. Mar 2009 B1
7508248 Yoshida Mar 2009 B2
7510121 Koenck Mar 2009 B2
7512448 Malick Mar 2009 B2
7512860 Miyazaki et al. Mar 2009 B2
7515043 Welch Apr 2009 B2
7519416 Sula et al. Apr 2009 B2
7523756 Minai Apr 2009 B2
7525426 Edelstein Apr 2009 B2
7539533 Tran May 2009 B2
7542878 Nanikashvili Jun 2009 B2
7547278 Miyazaki et al. Jun 2009 B2
7551590 Haller Jun 2009 B2
7554452 Cole Jun 2009 B2
7558620 Ishibashi Jul 2009 B2
7558965 Wheeler et al. Jul 2009 B2
7575005 Mumford Aug 2009 B2
7616111 Covannon Nov 2009 B2
7616710 Kim et al. Nov 2009 B2
7617001 Penner et al. Nov 2009 B2
7639473 Hsu et al. Dec 2009 B2
7640802 King et al. Jan 2010 B2
7647112 Tracey Jan 2010 B2
7647185 Tarassenko et al. Jan 2010 B2
7653031 Godfrey et al. Jan 2010 B2
7668437 Yamada et al. Feb 2010 B1
7672703 Yeo et al. Mar 2010 B2
7672714 Kuo Mar 2010 B2
7673679 Harrison et al. Mar 2010 B2
7678043 Gilad Mar 2010 B2
7689437 Teller et al. Mar 2010 B1
7689833 Lange Mar 2010 B2
7697994 VanDanacker et al. Apr 2010 B2
7712288 Ramasubramanian et al. May 2010 B2
7720036 Sadri May 2010 B2
7729776 Von Arx et al. Jun 2010 B2
7733224 Tran Jun 2010 B2
7736318 Costentino Jun 2010 B2
7747454 Bartfeld et al. Jun 2010 B2
7756587 Penner et al. Jul 2010 B2
7764996 Zhang et al. Jul 2010 B2
7779614 McGonagle et al. Aug 2010 B1
7796043 Euliano et al. Sep 2010 B2
7797033 D'Andrea et al. Sep 2010 B2
7806852 Jursen Oct 2010 B1
7809399 Lu Oct 2010 B2
7844341 Von Arx et al. Nov 2010 B2
7857766 Lasater et al. Dec 2010 B2
7860731 Jackson et al. Dec 2010 B2
7899526 Benditt et al. Mar 2011 B2
7904133 Gehman et al. Mar 2011 B2
D639437 Bishay et al. Jun 2011 S
8025149 Sterry et al. Sep 2011 B2
8036731 Kimchy et al. Oct 2011 B2
8036748 Zdeblick et al. Oct 2011 B2
8060249 Bear et al. Nov 2011 B2
8073707 Teller et al. Dec 2011 B2
8083128 Dembo et al. Dec 2011 B2
8123576 Kim Feb 2012 B2
8135596 Jung et al. Mar 2012 B2
8180425 Selvitelli et al. May 2012 B2
8185191 Shapiro et al. May 2012 B1
8185646 Headley May 2012 B2
8200320 Kovacs Jun 2012 B2
8209018 Osorio et al. Jun 2012 B2
8214007 Baker et al. Jul 2012 B2
8224667 Miller et al. Jul 2012 B1
8238998 Park Aug 2012 B2
8249686 Libbus et al. Aug 2012 B2
8254853 Rofougaran Aug 2012 B2
8258962 Robertson et al. Sep 2012 B2
8262394 Walker et al. Sep 2012 B2
8271106 Wehba et al. Sep 2012 B2
8285356 Bly et al. Oct 2012 B2
8290574 Felid et al. Oct 2012 B2
8301232 Albert et al. Oct 2012 B2
8308640 Baldus et al. Nov 2012 B2
8314619 Takiguchi Nov 2012 B2
8315687 Cross et al. Nov 2012 B2
8343068 Najafi et al. Jan 2013 B2
8369936 Farringdon et al. Feb 2013 B2
8386009 Lindberg et al. Feb 2013 B2
8389003 Mintchev et al. Mar 2013 B2
8404275 Habboushe Mar 2013 B2
8440274 Wang May 2013 B2
8454528 Yuen et al. Jun 2013 B2
8454561 Uber, III et al. Jun 2013 B2
8514086 Harper et al. Aug 2013 B2
8542123 Robertson Sep 2013 B2
8564432 Covannon et al. Oct 2013 B2
8564627 Suzuki et al. Oct 2013 B2
8583227 Savage et al. Nov 2013 B2
8597186 Hafezi et al. Dec 2013 B2
8634838 Hellwig et al. Jan 2014 B2
8660645 Stevenson et al. Feb 2014 B2
8668280 Heller et al. Mar 2014 B2
8718193 Arne et al. May 2014 B2
8722085 McKinney et al. May 2014 B2
8762733 Derchak et al. Jun 2014 B2
8771183 Sloan Jul 2014 B2
8810260 Zhou Aug 2014 B1
8823510 Downey et al. Sep 2014 B2
8836513 Hafezi et al. Sep 2014 B2
8838217 Myr Sep 2014 B2
8868453 Zdeblick Oct 2014 B2
8908943 Berry et al. Dec 2014 B2
8926509 Magar et al. Jan 2015 B2
8932221 Colliou et al. Jan 2015 B2
8945005 Hafezi et al. Feb 2015 B2
8956287 Zdeblick et al. Feb 2015 B2
8966973 Milone Mar 2015 B1
8989837 Weinstein et al. Mar 2015 B2
9031658 Chiao et al. May 2015 B2
9047746 Euliano et al. Jun 2015 B1
9060708 Robertson et al. Jun 2015 B2
9083589 Arne et al. Jul 2015 B2
9125868 McKinney et al. Sep 2015 B2
9189941 Eschelman et al. Nov 2015 B2
9226663 Fei Jan 2016 B2
9226679 Balda Jan 2016 B2
9235683 Robertson et al. Jan 2016 B2
9258035 Robertson et al. Feb 2016 B2
9270025 Robertson et al. Feb 2016 B2
9277864 Yang et al. Mar 2016 B2
9278177 Edwards et al. Mar 2016 B2
9433371 Hafezi et al. Sep 2016 B2
9439582 Berkman et al. Sep 2016 B2
9439599 Thompson et al. Sep 2016 B2
9517012 Lane et al. Dec 2016 B2
9603550 Behzadi Mar 2017 B2
20010027331 Thompson Oct 2001 A1
20010031071 Nichols et al. Oct 2001 A1
20010039503 Chan et al. Nov 2001 A1
20010044588 Mault Nov 2001 A1
20010051766 Gazdinski Dec 2001 A1
20010056262 Cabiri et al. Dec 2001 A1
20020002326 Causey et al. Jan 2002 A1
20020019586 Teller et al. Feb 2002 A1
20020026111 Ackerman Feb 2002 A1
20020032384 Raymond et al. Mar 2002 A1
20020032385 Raymond et al. Mar 2002 A1
20020040278 Anuzis et al. Apr 2002 A1
20020067270 Yarin et al. Jun 2002 A1
20020077620 Sweeney et al. Jun 2002 A1
20020132226 Nair Sep 2002 A1
20020138009 Brockway et al. Sep 2002 A1
20020173696 Kolarovic Nov 2002 A1
20020184415 Naghavi et al. Dec 2002 A1
20020192159 Reitberg Dec 2002 A1
20020193669 Glukhovsky Dec 2002 A1
20020193846 Pool et al. Dec 2002 A1
20020198470 Imran et al. Dec 2002 A1
20030017826 Fishman Jan 2003 A1
20030023150 Yokoi et al. Jan 2003 A1
20030028226 Thompson Feb 2003 A1
20030037063 Schwartz Feb 2003 A1
20030063522 Sagar Apr 2003 A1
20030065536 Hansen Apr 2003 A1
20030076179 Branch et al. Apr 2003 A1
20030083559 Thompson May 2003 A1
20030126593 Mault Jul 2003 A1
20030130714 Nielsen et al. Jul 2003 A1
20030135128 Suffin et al. Jul 2003 A1
20030135392 Vrijens et al. Jul 2003 A1
20030152622 Louie-Helm et al. Aug 2003 A1
20030158466 Lynn et al. Aug 2003 A1
20030158756 Abramson Aug 2003 A1
20030162556 Libes Aug 2003 A1
20030164401 Andreasson et al. Sep 2003 A1
20030167000 Mullick et al. Sep 2003 A1
20030171791 KenKnight Sep 2003 A1
20030171898 Tarassenko et al. Sep 2003 A1
20030181788 Yokoi et al. Sep 2003 A1
20030181815 Ebner et al. Sep 2003 A1
20030185286 Yuen Oct 2003 A1
20030187337 Tarassenko et al. Oct 2003 A1
20030187338 Say et al. Oct 2003 A1
20030195403 Berner et al. Oct 2003 A1
20030198619 Dong et al. Oct 2003 A1
20030213495 Fujita et al. Nov 2003 A1
20030214579 Iddan Nov 2003 A1
20030216622 Meron et al. Nov 2003 A1
20030216625 Phipps Nov 2003 A1
20030216666 Ericson et al. Nov 2003 A1
20030216729 Marchitto Nov 2003 A1
20030216793 Karlsson et al. Nov 2003 A1
20030229382 Sun et al. Dec 2003 A1
20030232895 Omidian et al. Dec 2003 A1
20040008123 Carrender et al. Jan 2004 A1
20040018476 LaDue Jan 2004 A1
20040019172 Yang et al. Jan 2004 A1
20040034295 Salganicoff Feb 2004 A1
20040049245 Gass Mar 2004 A1
20040073095 Causey et al. Apr 2004 A1
20040073454 Urquhart et al. Apr 2004 A1
20040077995 Ferek-Petric Apr 2004 A1
20040082982 Gord et al. Apr 2004 A1
20040087839 Raymond et al. May 2004 A1
20040092801 Drakulic May 2004 A1
20040106859 Say et al. Jun 2004 A1
20040111011 Uchiyama et al. Jun 2004 A1
20040115507 Potter et al. Jun 2004 A1
20040115517 Fukada et al. Jun 2004 A1
20040121015 Chidlaw et al. Jun 2004 A1
20040122296 Hatlestad Jun 2004 A1
20040122297 Stahmann et al. Jun 2004 A1
20040138558 Dunki-Jacobs et al. Jul 2004 A1
20040147326 Stiles Jul 2004 A1
20040148140 Tarassenko et al. Jul 2004 A1
20040153007 Harris Aug 2004 A1
20040167226 Serafini Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171914 Avni Sep 2004 A1
20040181155 Glukhovsky Sep 2004 A1
20040193020 Chiba Sep 2004 A1
20040193029 Gluhovsky Sep 2004 A1
20040193446 Mayer et al. Sep 2004 A1
20040199222 Sun et al. Oct 2004 A1
20041215084 Shimizu et al. Oct 2004
20040218683 Batra Nov 2004 A1
20040220643 Schmidt Nov 2004 A1
20040224644 Wu Nov 2004 A1
20040225199 Evanyk Nov 2004 A1
20040253304 Gross et al. Dec 2004 A1
20040258571 Lee et al. Dec 2004 A1
20040260154 Sidelnik Dec 2004 A1
20040267240 Gross et al. Dec 2004 A1
20050017841 Doi Jan 2005 A1
20050020887 Goldberg Jan 2005 A1
20050021103 DiLorenzo Jan 2005 A1
20050021370 Riff Jan 2005 A1
20050021372 Mikkelsen Jan 2005 A1
20050024198 Ward Feb 2005 A1
20050027175 Yang Feb 2005 A1
20050027205 Tarassenko et al. Feb 2005 A1
20050038321 Fujita et al. Feb 2005 A1
20050043634 Yokoi et al. Feb 2005 A1
20050043894 Fernandez Feb 2005 A1
20050054897 Hashimoto et al. Mar 2005 A1
20050055014 Coppeta et al. Mar 2005 A1
20050062644 Leci Mar 2005 A1
20050065407 Nakamura et al. Mar 2005 A1
20050070778 Lackey Mar 2005 A1
20050075145 Dvorak et al. Apr 2005 A1
20050090753 Goor et al. Apr 2005 A1
20050092108 Andermo May 2005 A1
20050096514 Starkebaum May 2005 A1
20050096562 Delalic et al. May 2005 A1
20050101843 Quinn May 2005 A1
20050101872 Sattler May 2005 A1
20050115561 Stahmann et al. Jun 2005 A1
20050116820 Goldreich Jun 2005 A1
20050117389 Worledge Jun 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131281 Ayer et al. Jun 2005 A1
20050137480 Alt et al. Jun 2005 A1
20050143623 Kojima Jun 2005 A1
20050146594 Nakatani et al. Jul 2005 A1
20050148883 Boesen Jul 2005 A1
20050151625 Lai Jul 2005 A1
20050154277 Tang et al. Jul 2005 A1
20050154428 Bruinsma Jul 2005 A1
20050156709 Gilbert et al. Jul 2005 A1
20050165323 Montgomery Jul 2005 A1
20050177069 Takizawa Aug 2005 A1
20050182389 LaPorte Aug 2005 A1
20050187789 Hatlestad et al. Aug 2005 A1
20050192489 Marshall Sep 2005 A1
20050197680 DelMain et al. Sep 2005 A1
20050228268 Cole Oct 2005 A1
20050234307 Heinonen Oct 2005 A1
20050240305 Bogash et al. Oct 2005 A1
20050245794 Dinsmoor Nov 2005 A1
20050245839 Stivoric et al. Nov 2005 A1
20050259768 Yang et al. Nov 2005 A1
20050261559 Mumford Nov 2005 A1
20050267550 Hess et al. Dec 2005 A1
20050267556 Shuros et al. Dec 2005 A1
20050267756 Schultz et al. Dec 2005 A1
20050277912 John Dec 2005 A1
20050277999 Strother et al. Dec 2005 A1
20050280539 Pettus Dec 2005 A1
20050285732 Sengupta et al. Dec 2005 A1
20050285746 Sengupta Dec 2005 A1
20050288594 Lewkowicz et al. Dec 2005 A1
20060001496 Abrosimov et al. Jan 2006 A1
20060028727 Moon et al. Feb 2006 A1
20060036134 Tarassenko et al. Feb 2006 A1
20060058602 Kwiatkowski et al. Mar 2006 A1
20060061472 Lovoi et al. Mar 2006 A1
20060065713 Kingery Mar 2006 A1
20060068006 Begleiter Mar 2006 A1
20060074283 Henderson Apr 2006 A1
20060074319 Barnes et al. Apr 2006 A1
20060078765 Yang et al. Apr 2006 A1
20060089858 Ling Apr 2006 A1
20060095091 Drew May 2006 A1
20060095093 Bettesh et al. May 2006 A1
20060100533 Han May 2006 A1
20060109058 Keating May 2006 A1
20060110962 Powell May 2006 A1
20060122474 Teller et al. Jun 2006 A1
20060122667 Chavan et al. Jun 2006 A1
20060129060 Lee et al. Jun 2006 A1
20060136266 Tarassenko et al. Jun 2006 A1
20060142648 Banet Jun 2006 A1
20060145876 Kimura Jul 2006 A1
20060148254 McLean Jul 2006 A1
20060149339 Burnes Jul 2006 A1
20060155174 Glukhovsky et al. Jul 2006 A1
20060155183 Kroecker Jul 2006 A1
20060158820 Takiguchi Jul 2006 A1
20060161225 Sormann et al. Jul 2006 A1
20060179949 Kim Aug 2006 A1
20060183992 Kawashima Aug 2006 A1
20060183993 Horn Aug 2006 A1
20060184092 Atanasoska et al. Aug 2006 A1
20060204738 Dubrow et al. Sep 2006 A1
20060210626 Spaeder Sep 2006 A1
20060216603 Choi Sep 2006 A1
20060218011 Walker Sep 2006 A1
20060229053 Sivard Oct 2006 A1
20060235489 Drew Oct 2006 A1
20060243288 Kim et al. Nov 2006 A1
20060247505 Siddiqui Nov 2006 A1
20060253004 Frisch et al. Nov 2006 A1
20060253005 Drinan Nov 2006 A1
20060255064 Donaldson Nov 2006 A1
20060265246 Hoag Nov 2006 A1
20060267774 Feinberg et al. Nov 2006 A1
20060270346 Ibrahim Nov 2006 A1
20060273882 Posamentier Dec 2006 A1
20060276702 McGinnis Dec 2006 A1
20060280227 Pinkney Dec 2006 A1
20060282001 Noel Dec 2006 A1
20060285607 Strodtbeck et al. Dec 2006 A1
20060287693 Kraft et al. Dec 2006 A1
20060289640 Mercure Dec 2006 A1
20060293607 Alt Dec 2006 A1
20070000776 Karube et al. Jan 2007 A1
20070002038 Suzuki Jan 2007 A1
20070006636 King et al. Jan 2007 A1
20070008113 Spoonhower et al. Jan 2007 A1
20070016089 Fischell et al. Jan 2007 A1
20070027386 Such Feb 2007 A1
20070027388 Chou Feb 2007 A1
20070038054 Zhou Feb 2007 A1
20070049339 Barak et al. Mar 2007 A1
20070055098 Shimizu et al. Mar 2007 A1
20070060797 Ball Mar 2007 A1
20070060800 Drinan et al. Mar 2007 A1
20070066929 Ferren et al. Mar 2007 A1
20070072156 Kaufman et al. Mar 2007 A1
20070073353 Rooney et al. Mar 2007 A1
20070088194 Tahar Apr 2007 A1
20070096765 Kagan May 2007 A1
20070106346 Bergelson May 2007 A1
20070123772 Euliano May 2007 A1
20070129622 Bourget Jun 2007 A1
20070130287 Kumar Jun 2007 A1
20070135691 Zingelewicz et al. Jun 2007 A1
20070135803 Belson Jun 2007 A1
20070142721 Berner et al. Jun 2007 A1
20070156016 Betesh Jul 2007 A1
20070160789 Merical Jul 2007 A1
20070162089 Mosesov Jul 2007 A1
20070162090 Penner Jul 2007 A1
20070167495 Brown et al. Jul 2007 A1
20070167848 Kuo et al. Jul 2007 A1
20070173701 Al-Ali Jul 2007 A1
20070179347 Tarassenko et al. Aug 2007 A1
20070179371 Peyser et al. Aug 2007 A1
20070180047 Dong et al. Aug 2007 A1
20070185393 Zhou Aug 2007 A1
20070191002 Ge Aug 2007 A1
20070196456 Stevens Aug 2007 A1
20070207793 Myer Sep 2007 A1
20070207858 Breving Sep 2007 A1
20070208233 Kovacs Sep 2007 A1
20070213659 Trovato et al. Sep 2007 A1
20070237719 Jones Oct 2007 A1
20070244370 Kuo et al. Oct 2007 A1
20070244810 Rudolph Oct 2007 A1
20070249946 Kumar et al. Oct 2007 A1
20070255198 Leong et al. Nov 2007 A1
20070255330 Lee Nov 2007 A1
20070270672 Hayter Nov 2007 A1
20070279217 Venkatraman Dec 2007 A1
20070282174 Sabatino Dec 2007 A1
20070282177 Pilz Dec 2007 A1
20070291715 Laroia et al. Dec 2007 A1
20070299480 Hill Dec 2007 A1
20080004503 Nisani et al. Jan 2008 A1
20080014866 Lipowshi Jan 2008 A1
20080015421 Penner Jan 2008 A1
20080015494 Santini et al. Jan 2008 A1
20080015893 Miller et al. Jan 2008 A1
20080020037 Robertson et al. Jan 2008 A1
20080021519 DeGeest Jan 2008 A1
20080021521 Shah Jan 2008 A1
20080027679 Shklarski Jan 2008 A1
20080033273 Zhou Feb 2008 A1
20080033301 Dellavecchia et al. Feb 2008 A1
20080038588 Lee Feb 2008 A1
20080039700 Drinan et al. Feb 2008 A1
20080045843 Tsuji et al. Feb 2008 A1
20080046038 Hill Feb 2008 A1
20080051647 Wu et al. Feb 2008 A1
20080051667 Goldreich Feb 2008 A1
20080051767 Rossing et al. Feb 2008 A1
20080058614 Banet Mar 2008 A1
20080062856 Feher Mar 2008 A1
20080065168 Bitton et al. Mar 2008 A1
20080074307 Boric-Lubecke Mar 2008 A1
20080077015 Botic-Lubecke Mar 2008 A1
20080077028 Schaldach et al. Mar 2008 A1
20080077188 Denker et al. Mar 2008 A1
20080077430 Singer et al. Mar 2008 A1
20080091089 Guillory et al. Apr 2008 A1
20080091114 Min Apr 2008 A1
20080097549 Colbaugh Apr 2008 A1
20080097917 Dicks Apr 2008 A1
20080099366 Niemic et al. May 2008 A1
20080103440 Ferren et al. May 2008 A1
20080112885 Okunev et al. May 2008 A1
20080114224 Bandy et al. May 2008 A1
20080119705 Patel May 2008 A1
20080119716 Boric-Lubecke May 2008 A1
20080121825 Trovato et al. May 2008 A1
20080137566 Marholev Jun 2008 A1
20080139907 Rao et al. Jun 2008 A1
20080140403 Hughes et al. Jun 2008 A1
20080146871 Arneson et al. Jun 2008 A1
20080146889 Young Jun 2008 A1
20080146892 LeBeouf Jun 2008 A1
20080154104 Lamego Jun 2008 A1
20080166992 Ricordi Jul 2008 A1
20080175898 Jones et al. Jul 2008 A1
20080183245 Van Oort Jul 2008 A1
20080188763 John et al. Aug 2008 A1
20080188837 Belsky et al. Aug 2008 A1
20080194912 Trovato et al. Aug 2008 A1
20080208009 Shklarski Aug 2008 A1
20080214901 Gehman Sep 2008 A1
20080214903 Orbach Sep 2008 A1
20080214985 Yanaki Sep 2008 A1
20080223936 Mickle et al. Sep 2008 A1
20080243020 Chou Oct 2008 A1
20080249360 Li Oct 2008 A1
20080262320 Schaefer et al. Oct 2008 A1
20080262336 Ryu Oct 2008 A1
20080269664 Trovato et al. Oct 2008 A1
20080275312 Mosesov Nov 2008 A1
20080281636 Jung et al. Nov 2008 A1
20080284599 Zdeblick et al. Nov 2008 A1
20080288026 Cross et al. Nov 2008 A1
20080288027 Kroll Nov 2008 A1
20080294020 Sapounas Nov 2008 A1
20080299197 Toneguzzo et al. Dec 2008 A1
20080300572 Rankers Dec 2008 A1
20080303638 Nguyen Dec 2008 A1
20080303665 Naik et al. Dec 2008 A1
20080306357 Korman Dec 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20080306360 Robertson et al. Dec 2008 A1
20080306362 Davis Dec 2008 A1
20080311852 Hansen Dec 2008 A1
20080312522 Rowlandson Dec 2008 A1
20080316020 Robertson Dec 2008 A1
20090006133 Weinert Jan 2009 A1
20090009330 Sakama et al. Jan 2009 A1
20090009332 Nunez et al. Jan 2009 A1
20090024045 Prakash Jan 2009 A1
20090024112 Edwards et al. Jan 2009 A1
20090030293 Cooper et al. Jan 2009 A1
20090030297 Miller Jan 2009 A1
20090034209 Joo Feb 2009 A1
20090043171 Rule Feb 2009 A1
20090048498 Riskey Feb 2009 A1
20090062634 Say et al. Mar 2009 A1
20090062670 Sterling Mar 2009 A1
20090062730 Woo Mar 2009 A1
20090069642 Gao Mar 2009 A1
20090069655 Say et al. Mar 2009 A1
20090069656 Say et al. Mar 2009 A1
20090069657 Say et al. Mar 2009 A1
20090069658 Say et al. Mar 2009 A1
20090076340 Libbus et al. Mar 2009 A1
20090076343 James Mar 2009 A1
20090076350 Bly et al. Mar 2009 A1
20090076397 Libbus et al. Mar 2009 A1
20090082645 Hafezi Mar 2009 A1
20090087483 Sison Apr 2009 A1
20090088618 Ameson Apr 2009 A1
20090099435 Say et al. Apr 2009 A1
20090105561 Boydon et al. Apr 2009 A1
20090110148 Zhang Apr 2009 A1
20090112626 Talbot Apr 2009 A1
20090124871 Arshak May 2009 A1
20090131774 Sweitzer May 2009 A1
20090134181 Wachman et al. May 2009 A1
20090135886 Robertson et al. May 2009 A1
20090142853 Warrington et al. Jun 2009 A1
20090149708 Hyde et al. Jun 2009 A1
20090149839 Hyde et al. Jun 2009 A1
20090157113 Marcotte Jun 2009 A1
20090157358 Kim Jun 2009 A1
20090161602 Matsumoto Jun 2009 A1
20090163789 Say et al. Jun 2009 A1
20090171180 Pering Jul 2009 A1
20090173628 Say et al. Jul 2009 A1
20090177055 Say et al. Jul 2009 A1
20090177056 Say et al. Jul 2009 A1
20090177057 Say et al. Jul 2009 A1
20090177058 Say et al. Jul 2009 A1
20090177059 Say et al. Jul 2009 A1
20090177060 Say et al. Jul 2009 A1
20090177061 Say et al. Jul 2009 A1
20090177062 Say et al. Jul 2009 A1
20090177063 Say et al. Jul 2009 A1
20090177064 Say et al. Jul 2009 A1
20090177065 Say et al. Jul 2009 A1
20090177066 Say et al. Jul 2009 A1
20090182206 Najafi Jul 2009 A1
20090182207 Riskey Jul 2009 A1
20090182212 Say et al. Jul 2009 A1
20090182213 Say et al. Jul 2009 A1
20090182214 Say et al. Jul 2009 A1
20090182215 Say et al. Jul 2009 A1
20090182388 Von Arx Jul 2009 A1
20090187088 Say et al. Jul 2009 A1
20090187089 Say et al. Jul 2009 A1
20090187090 Say et al. Jul 2009 A1
20090187091 Say et al. Jul 2009 A1
20090187092 Say et al. Jul 2009 A1
20090187093 Say et al. Jul 2009 A1
20090187094 Say et al. Jul 2009 A1
20090187095 Say et al. Jul 2009 A1
20090187381 King et al. Jul 2009 A1
20090192351 Nishino Jul 2009 A1
20090192368 Say et al. Jul 2009 A1
20090192369 Say et al. Jul 2009 A1
20090192370 Say et al. Jul 2009 A1
20090192371 Say et al. Jul 2009 A1
20090192372 Say et al. Jul 2009 A1
20090192373 Say et al. Jul 2009 A1
20090192374 Say et al. Jul 2009 A1
20090192375 Say et al. Jul 2009 A1
20090192376 Say et al. Jul 2009 A1
20090192377 Say et al. Jul 2009 A1
20090192378 Say et al. Jul 2009 A1
20090192379 Say et al. Jul 2009 A1
20090198115 Say et al. Aug 2009 A1
20090198116 Say et al. Aug 2009 A1
20090198175 Say et al. Aug 2009 A1
20090203964 Shimizu et al. Aug 2009 A1
20090203971 Sciarappa Aug 2009 A1
20090203972 Heneghan Aug 2009 A1
20090203978 Say et al. Aug 2009 A1
20090204265 Hackett Aug 2009 A1
20090210164 Say et al. Aug 2009 A1
20090216101 Say et al. Aug 2009 A1
20090216102 Say et al. Aug 2009 A1
20090227204 Robertson et al. Sep 2009 A1
20090227876 Tran Sep 2009 A1
20090227940 Say et al. Sep 2009 A1
20090227941 Say et al. Sep 2009 A1
20090227988 Wood et al. Sep 2009 A1
20090228214 Say et al. Sep 2009 A1
20090231125 Baldus Sep 2009 A1
20090234200 Husheer Sep 2009 A1
20090243833 Huang Oct 2009 A1
20090247836 Cole et al. Oct 2009 A1
20090253960 Takenaka et al. Oct 2009 A1
20090256702 Robertson Oct 2009 A1
20090264714 Chou Oct 2009 A1
20090264964 Abrahamson Oct 2009 A1
20090265186 Tarassenko et al. Oct 2009 A1
20090273467 Elixmann Nov 2009 A1
20090277815 Kohl et al. Nov 2009 A1
20090281539 Selig Nov 2009 A1
20090287109 Ferren et al. Nov 2009 A1
20090292194 Libbus et al. Nov 2009 A1
20090295548 Ronkka Dec 2009 A1
20090296677 Mahany Dec 2009 A1
20090301925 Alloro et al. Dec 2009 A1
20090303920 Mahany Dec 2009 A1
20090306633 Trovato et al. Dec 2009 A1
20090312619 Say et al. Dec 2009 A1
20090318303 Delamarche et al. Dec 2009 A1
20090318761 Rabinovitz Dec 2009 A1
20090318779 Tran Dec 2009 A1
20090318783 Rohde Dec 2009 A1
20090318793 Datta Dec 2009 A1
20100001841 Cardullo Jan 2010 A1
20100006585 Flowers et al. Jan 2010 A1
20100010330 Rankers Jan 2010 A1
20100015584 Singer et al. Jan 2010 A1
20100033324 Shimizu et al. Feb 2010 A1
20100036269 Ferren et al. Feb 2010 A1
20100049004 Edman et al. Feb 2010 A1
20100049006 Magar Feb 2010 A1
20100049012 Dijksman et al. Feb 2010 A1
20100049069 Tarassenko et al. Feb 2010 A1
20100056878 Partin Mar 2010 A1
20100056891 Say et al. Mar 2010 A1
20100056939 Tarassenko et al. Mar 2010 A1
20100057041 Hayter Mar 2010 A1
20100062709 Kato Mar 2010 A1
20100063438 Bengtsson Mar 2010 A1
20100063841 D'Ambrosia et al. Mar 2010 A1
20100069002 Rong Mar 2010 A1
20100069717 Hafezi et al. Mar 2010 A1
20100081894 Zdeblick et al. Apr 2010 A1
20100082367 Hains et al. Apr 2010 A1
20100099967 Say et al. Apr 2010 A1
20100099968 Say et al. Apr 2010 A1
20100099969 Say et al. Apr 2010 A1
20100100077 Rush Apr 2010 A1
20100100078 Say et al. Apr 2010 A1
20100100237 Ratnakar Apr 2010 A1
20100106001 Say et al. Apr 2010 A1
20100118853 Godfrey May 2010 A1
20100131434 Magent et al. May 2010 A1
20100139672 Kroll et al. Jun 2010 A1
20100160742 Seidl et al. Jun 2010 A1
20100168659 Say et al. Jul 2010 A1
20100179398 Say et al. Jul 2010 A1
20100183199 Smith et al. Jul 2010 A1
20100185055 Robertson Jul 2010 A1
20100191073 Tarassenko et al. Jul 2010 A1
20100203394 Bae et al. Aug 2010 A1
20100210299 Gorbachov Aug 2010 A1
20100217100 LeBoeuf et al. Aug 2010 A1
20100222652 Cho Sep 2010 A1
20100228113 Solosko Sep 2010 A1
20100233026 Ismagliov et al. Sep 2010 A1
20100234706 Gilland Sep 2010 A1
20100234715 Shin Sep 2010 A1
20100234914 Shen Sep 2010 A1
20100245091 Singh Sep 2010 A1
20100249541 Geva et al. Sep 2010 A1
20100249881 Corndorf Sep 2010 A1
20100256461 Mohamedali Oct 2010 A1
20100259543 Tarassenko et al. Oct 2010 A1
20100268048 Say et al. Oct 2010 A1
20100268049 Say et al. Oct 2010 A1
20100268050 Say et al. Oct 2010 A1
20100268288 Hunter et al. Oct 2010 A1
20100274111 Say et al. Oct 2010 A1
20100280345 Say et al. Nov 2010 A1
20100280346 Say et al. Nov 2010 A1
20100295694 Kauffman et al. Nov 2010 A1
20100298668 Hafezi et al. Nov 2010 A1
20100298730 Tarassenko et al. Nov 2010 A1
20100299155 Findlay et al. Nov 2010 A1
20100312188 Robertson et al. Dec 2010 A1
20100312577 Goodnow et al. Dec 2010 A1
20100312580 Tarassenko et al. Dec 2010 A1
20100332443 Gartenberg Dec 2010 A1
20110004079 Al Ali et al. Jan 2011 A1
20110009715 O'Reilly et al. Jan 2011 A1
20110021983 Jurson Jan 2011 A1
20110029622 Walker et al. Feb 2011 A1
20110040203 Savage et al. Feb 2011 A1
20110050431 Hood et al. Mar 2011 A1
20110054265 Hafezi et al. Mar 2011 A1
20110065983 Hafezi et al. Mar 2011 A1
20110077660 Janik et al. Mar 2011 A1
20110081860 Brown et al. Apr 2011 A1
20110105864 Robertson et al. May 2011 A1
20110112686 Nolan et al. May 2011 A1
20110124983 Kroll et al. May 2011 A1
20110144470 Mazar et al. Jun 2011 A1
20110160549 Saroka et al. Jun 2011 A1
20110224912 Bhavaraju et al. Sep 2011 A1
20110230732 Edman et al. Sep 2011 A1
20110237924 McGusty et al. Sep 2011 A1
20110270112 Manera et al. Nov 2011 A1
20110270135 Dooley et al. Nov 2011 A1
20110279963 Kumar et al. Nov 2011 A1
20120029309 Paquet et al. Feb 2012 A1
20120062371 Radivojevic et al. Mar 2012 A1
20120071743 Todorov et al. Mar 2012 A1
20120024889 Robertson et al. Apr 2012 A1
20120083715 Yuen et al. Apr 2012 A1
20120089000 Bishay et al. Apr 2012 A1
20120101396 Solosko et al. Apr 2012 A1
20120116184 Shieh May 2012 A1
20120179004 Roesicke et al. Jul 2012 A1
20120197144 Christ et al. Aug 2012 A1
20120214140 Brynelson et al. Aug 2012 A1
20120265544 Hwang et al. Oct 2012 A1
20120299723 Hafezi et al. Nov 2012 A1
20120310070 Kumar et al. Dec 2012 A1
20120316413 Liu et al. Dec 2012 A1
20130030259 Thomsen et al. Jan 2013 A1
20130057385 Murakami et al. Mar 2013 A1
20130060115 Gehman et al. Mar 2013 A1
20130171596 French Jul 2013 A1
20130196012 Dill Aug 2013 A1
20140039445 Austin et al. Feb 2014 A1
20140280125 Bhardwaj et al. Sep 2014 A1
20140308930 Tran Oct 2014 A1
20140315170 Ionescu et al. Oct 2014 A1
20140349256 Connor Nov 2014 A1
20140374276 Guthrie et al. Dec 2014 A1
20150051465 Robertson et al. Feb 2015 A1
20150080677 Thompson et al. Mar 2015 A1
20150080678 Frank et al. Mar 2015 A1
20150080679 Frank et al. Mar 2015 A1
20150080680 Zdeblick et al. Mar 2015 A1
20150080681 Hafezi et al. Mar 2015 A1
20150127737 Thompson et al. May 2015 A1
20150127738 Thompson et al. May 2015 A1
20150149375 Thompson et al. May 2015 A1
20150165313 Thompson et al. Jun 2015 A1
20150171924 Zdeblick Jun 2015 A1
20150182463 Hafezi et al. Jul 2015 A1
20150193593 Zdeblick et al. Jul 2015 A1
20150230728 Hafezi et al. Aug 2015 A1
20150365115 Arne et al. Dec 2015 A1
20160106339 Behzadi et al. Apr 2016 A1
20160155316 Hafezi et al. Jun 2016 A1
20170000180 Arne et al. Jan 2017 A1
20170215761 Zdeblick Aug 2017 A1
Foreign Referenced Citations (238)
Number Date Country
1588649 Mar 2005 CN
2748032 Dec 2005 CN
1991868 Jul 2007 CN
101005470 Jul 2007 CN
201076456 Jun 2008 CN
101524267 Sep 2009 CN
10313005 Oct 2004 DE
0344939 Dec 1989 EP
0526166 Feb 1993 EP
1199670 Apr 2002 EP
1246356 Oct 2002 EP
1342447 Sep 2003 EP
1534054 May 2005 EP
1702553 Sep 2006 EP
1098591 Jan 2007 EP
2143369 Jan 2010 EP
775071 May 1957 GB
2432862 Jun 2007 GB
172917 Jun 2010 IL
61017949 Jan 1986 JP
61072712 Apr 1986 JP
S63280393 Nov 1988 JP
H01285247 Nov 1989 JP
05-228128 Sep 1993 JP
H0646539 Feb 1994 JP
H0884779 Apr 1996 JP
09-330159 Dec 1997 JP
10-14898 Jan 1998 JP
H11195415 Jul 1999 JP
2000-506410 May 2000 JP
2001078974 Mar 2001 JP
2002-224053 Aug 2002 JP
2002263185 Sep 2002 JP
2002282218 Oct 2002 JP
2002282219 Oct 2002 JP
2002291684 Oct 2002 JP
2003210395 Jul 2003 JP
2003325440 Nov 2003 JP
2004-7187 Jan 2004 JP
2004507188 Mar 2004 JP
2004134384 Apr 2004 JP
2004-313242 Nov 2004 JP
2004318534 Nov 2004 JP
2004364016 Dec 2004 JP
2005-073886 Mar 2005 JP
2005-087552 Apr 2005 JP
2005-304880 Apr 2005 JP
2005124708 May 2005 JP
2005148021 Jun 2005 JP
2005152037 Jun 2005 JP
2005287691 Oct 2005 JP
2005-532841 Nov 2005 JP
2005-532849 Nov 2005 JP
2005343515 Dec 2005 JP
2006006377 Jan 2006 JP
2006509574 Mar 2006 JP
2006-177699 Jul 2006 JP
2006-187611 Jul 2006 JP
2006278091 Oct 2006 JP
2006346000 Dec 2006 JP
3876573 Jan 2007 JP
2007151809 Jun 2007 JP
2007159631 Jun 2007 JP
2007-313340 Dec 2007 JP
2007330677 Dec 2007 JP
2008011865 Jan 2008 JP
2008501415 Jan 2008 JP
2008191955 Aug 2008 JP
2008289724 Dec 2008 JP
2009034345 Feb 2009 JP
2009-061236 Mar 2009 JP
2009050541 Mar 2009 JP
2011519583 Jul 2011 JP
20020015907 Mar 2002 KR
20020061744 Jul 2002 KR
200609977523 Jul 2006 KR
927471 Nov 2009 KR
20110137001 Dec 2011 KR
10-2012-09995 Sep 2012 KR
200301864 Jul 2003 TW
553735 Sep 2003 TW
200724094 Jul 2007 TW
200812556 Mar 2008 TW
201120673 Jun 2011 TW
WO1988002237 Apr 1988 WO
WO1992021307 Dec 1992 WO
WO1993008734 May 1993 WO
WO1993019667 Oct 1993 WO
WO1994001165 Jan 1994 WO
WO9516393 Jun 1995 WO
WO1997014112 Apr 1997 WO
WO1997039963 Oct 1997 WO
WO1998043537 Oct 1998 WO
WO1999037290 Jul 1999 WO
WO1999059465 Nov 1999 WO
WO2000033246 Jun 2000 WO
WO2001000085 Jan 2001 WO
WO2001047466 Jul 2001 WO
WO2001049364 Jul 2001 WO
WO2001074011 Oct 2001 WO
WO2001080731 Nov 2001 WO
WO0235997 May 2002 WO
WO2002045489 Jun 2002 WO
WO2002058330 Jul 2002 WO
WO2002062276 Aug 2002 WO
WO2002087681 Nov 2002 WO
WO2002095351 Nov 2002 WO
WO2003005877 Jan 2003 WO
WO2003050643 Jun 2003 WO
WO2003068061 Aug 2003 WO
WO2004014225 Feb 2004 WO
WO2004019172 Mar 2004 WO
WO2004039256 May 2004 WO
WO2004059551 Jul 2004 WO
WO2004066833 Aug 2004 WO
WO2004066834 Aug 2004 WO
WO2004066903 Aug 2004 WO
WO2004068748 Aug 2004 WO
WO2004068881 Aug 2004 WO
WO2004075751 Sep 2004 WO
WO2004109316 Dec 2004 WO
WO2004110555 Dec 2004 WO
WO2005011237 Feb 2005 WO
WO2005020023 Mar 2005 WO
WO2005024687 Mar 2005 WO
WO2005041767 May 2005 WO
WO2005047837 May 2005 WO
WO2005051166 Jun 2005 WO
WO2005053517 Jun 2005 WO
WO2005069887 Aug 2005 WO
WO2005082436 Sep 2005 WO
WO2005083621 Sep 2005 WO
WO2005110238 Nov 2005 WO
WO2005117697 Dec 2005 WO
WO2006009404 Jan 2006 WO
WO2006016370 Feb 2006 WO
WO2006021932 Mar 2006 WO
WO2006027586 Mar 2006 WO
WO2006028347 Mar 2006 WO
WO2006035351 Apr 2006 WO
WO2006037802 Apr 2006 WO
WO2006046648 May 2006 WO
WO2006055892 May 2006 WO
WO2006055956 May 2006 WO
WO2006059338 Jun 2006 WO
WO2006075016 Jul 2006 WO
WO2006100620 Sep 2006 WO
WO 2006109072 Oct 2006 WO
WO2006123346 Nov 2006 WO
WO2006116718 Nov 2006 WO
WO2006119345 Nov 2006 WO
WO2006127355 Nov 2006 WO
WO2007001724 Jan 2007 WO
WO2007001742 Jan 2007 WO
WO2007013952 Feb 2007 WO
WO2007014084 Feb 2007 WO
WO2007014527 Feb 2007 WO
WO2007021496 Feb 2007 WO
WO2007027660 Mar 2007 WO
WO2007028035 Mar 2007 WO
WO2007036687 Apr 2007 WO
WO2007036741 Apr 2007 WO
WO2007036746 Apr 2007 WO
WO2007040878 Apr 2007 WO
WO2007067054 Jun 2007 WO
WO2007071180 Jun 2007 WO
WO2007096810 Aug 2007 WO
WO2007101141 Sep 2007 WO
WO2007115087 Oct 2007 WO
WO2007120946 Oct 2007 WO
WO2007123923 Nov 2007 WO
WO2007127316 Nov 2007 WO
WO2007127879 Nov 2007 WO
WO2007127945 Nov 2007 WO
WO2007128165 Nov 2007 WO
WO2007130491 Nov 2007 WO
WO2007133526 Nov 2007 WO
WO2007143535 Dec 2007 WO
WO2007149546 Dec 2007 WO
WO2006104843 Jan 2008 WO
WO2008008281 Jan 2008 WO
WO2008012700 Jan 2008 WO
WO2008030482 Mar 2008 WO
WO2008039030 Apr 2008 WO
WO2008052136 May 2008 WO
WO2008061138 May 2008 WO
WO2008063626 May 2008 WO
WO2008066617 Jun 2008 WO
WO2008076464 Jun 2008 WO
WO2008085131 Jul 2008 WO
WO2008089232 Jul 2008 WO
WO2008091683 Jul 2008 WO
WO2008095183 Aug 2008 WO
WO2008097652 Aug 2008 WO
WO2008101107 Aug 2008 WO
WO2008112577 Sep 2008 WO
WO2008112578 Sep 2008 WO
WO2008120156 Oct 2008 WO
WO2008133394 Nov 2008 WO
WO2008134185 Nov 2008 WO
WO2008150633 Dec 2008 WO
WO2009001108 Dec 2008 WO
WO2009005759 Jan 2009 WO
WO2009006615 Jan 2009 WO
WO2009022343 Feb 2009 WO
WO2009029453 Mar 2009 WO
WO2009032381 Mar 2009 WO
WO2009036334 Mar 2009 WO
WO2009051829 Apr 2009 WO
WO2009051830 Apr 2009 WO
WO2009063377 May 2009 WO
WO2009081348 Jul 2009 WO
WO2009111664 Sep 2009 WO
WO2009146082 Dec 2009 WO
WO2010000085 Jan 2010 WO
WO2010009100 Jan 2010 WO
WO2010011833 Jan 2010 WO
WO2010019778 Feb 2010 WO
WO2010057049 May 2010 WO
WO2010075115 Jul 2010 WO
WO2010080765 Jul 2010 WO
WO2010080843 Jul 2010 WO
WO2010107563 Sep 2010 WO
WO2010107980 Sep 2010 WO
WO2010115194 Oct 2010 WO
WO2010132331 Nov 2010 WO
WO2010135516 Nov 2010 WO
WO2011024560 Mar 2011 WO
WO2011068963 Jun 2011 WO
WO2011133799 Oct 2011 WO
WO2011159336 Dec 2011 WO
WO2011159337 Dec 2011 WO
WO2011159338 Dec 2011 WO
WO2011159339 Dec 2011 WO
WO2012104657 Aug 2012 WO
WO2012158190 Nov 2012 WO
WO2013012869 Jan 2013 WO
WO2015112603 Jul 2015 WO
Non-Patent Literature Citations (104)
Entry
AADE, “AADE 37th Annual Meeting San Antonio Aug. 4-7, 2010” American Association of Diabetes Educators Aug. 2010; http://www.diabeteseducator.org/annualmeeting/2010/index.html; 2 pp.
Arshak et al., A Review and Adaptation of Methods of Object Tracking to Telemetry Capsules IC-Med; Jan. 2007 vol. 1, No. 1, Issue 1, 12pp.
“ASGE Technology Status Evaluation Report: wireless capsule endoscopy” American Soc. for Gastrointestinal Endoscopy; Apr. 2006 vol. 63, No. 4; 7 pp.
Aydin et al., “Design and implementation considerations for an advanced wireless interface in miniaturized integrated sensor Microsystems” Sch. of Eng. & Electron., Edinburgh Univ., UK; Sep. 2003; Abstract Only.
Barrie, Heidelberg pH capsule gastric analysis. Texbook of Natural Medicine, (1992), Pizzorno, Murray & Barrie.
Bohidar et al., “Dielectric Behavior of Gelatin Solutions and Gels” Colloid Polym Sci (1998) 276:81-86.
Brock, “Smart Medicine: The Application of Auto-ID Technology to Healthcare” Auto-ID Labs (2002) http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-010.pdf.
Carlson et al., “Evaluation of a non-invasive respiratory monitoring system for sleeping subjects” Physiological Measurement (1999) 20(1): 53.
Coury, L. “Conductance Measurement Part 1: Theory”; Current Separations, 18:3 (1999) p. 91-96.
Delvaux et al., “Capsule endoscopy: Technique and indications” Clinical Gastoenterology; Oct. 2008 vol. 22, Issue 5, 1pp. (Abstract Only).
Dhar et al., “Electroless nickel plated contacts on porous silicon” Appl. Phys. Lett. 68 (10) pp. 1392-1393 (1996).
Eldek A., “Design of double dipole antenna with enhanced usable bandwidth for wideband phased array applications” Progress in Electromagnetics Research PIER 59, 1-15 (2006).
Fawaz et al., “Enhanced Telemetry System using CP-QPSK Band-Pass Modulation Technique Suitable for Smart Pill Medical Application” IFIP IEEE Dubai Conference Apr. 2008; http://www.asic.fh-offenburg.de/downloads/ePille/IFIP—IEEE—Dubai—Conference.pdf.
Ferguson et al., “Dialectric Constant Studies III Aqueous Gelatin Solutions” J. Chem. Phys. 2, 94 (1934) p. 94-98.
Furse C. M., “Dipole Antennas” J. Webster (ed). Wiley Encyclopedia of Electrical and Electronics Engineering (1999) p. 575-581.
Gaglani S. “Put Your Phone, or Skin, on Vibrate” MedGadget; Mar. 2012 http://medgadget.com/2012/03/put-your-phone-or-skin-on-vibrate.html 8pp.
Gilson, D.R. “Molecular dynamics simulation of dipole interactions”, Department of Physics, Hull University, Dec. 2002, p. 1-43.
Given Imaging, “Agile Patency Brochure” (2006) http://www.inclino.no/documents/AgilePatencyBrochure—Global—GMB-0118-01.pdf; 4pp.
Gonzalez-Guillaumin et al., “Ingestible capsule for impedance and pH monitoring in the esophagus” IEEE Trans Biomed Eng; Dec. 2007 54(12) 1pp. (Abstract Only).
Greene, “Edible RFID microchip monitor can tell if you take your medicine” Bloomberg Businessweek; Mar. 2010 2 pp.; http://www.businessweek.com/idg/2010-03-31/edible-rfid-microchip-monitor-can-tell-if-you-take-your-medicine.html.
Halthion Medical Technologies “Providing Ambulatory Medical Devices Which Monitor, Measure and Record” webpage. Online website: http://www.halthion.com/; downloaded May 30, 2012.
Heydari et al., “Analysis of the PLL jitter due to power/ground and substrate noise”; IEEE Transactions on Circuits and Systems (2004) 51(12): 2404-16.
Hoeksma, J. “New ‘smart pill’ to track adherence” E-Health-lnsider May 2010 http://www.e-health-insider.com/news/5910/new—‘smart—pill’—monitors—medicines.
Hoover et al., “Rx for health: Engineers design pill that signals it has been swallowed” University of Florida News; Mar. 2010 2pp.; http://news.ufl.edu/2010/03/31/antenna-pill-2/.
ISFET—Ion Sensitive Field-Effect Transistor; Microsens S.A. pdf document. Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345; 4pp.
Intromedic, MicroCam Innovative Capsule Endoscope Pamphlet. (2006) 8 pp (http://www.intromedic.com/en/product/productinfo.asp).
Juvenile Diabetes Research Foundation International (JDRF), “Artificial Pancreas Project” Jun. 2010; http://www.artificialpancreasproject.com/; 3 pp.
Kamada K., “Electrophoretic deposition assisted by soluble anode” Materials Letters 57 (2003) 2348-2351.
Li, P-Y, et al. “An electrochemical intraocular drug delivery device”, Sensors and Actuators A 143; p. 41-48.; Jul. 2007.
Lifescan, “OneTouch UltraLink™” http://www.lifescan.com/products/meters/ultralink; Jul. 2010 2 pp.
MacKay et al., “Radio Telemetering from within the Body” Inside Information is Revealed by Tiny Transmitters that can be Swallowed or Implanted in Man or Animal Science (1991) 1196-1202; 134; American Association for the Advancement of Science, Washington D.C.
MacKay et al., “Endoradiosonde” Nature, (1957) 1239-1240, 179 Nature Publishing Group.
McKenzie et al., “Validation of a new telemetric core temperature monitor” J. Therm. Biol. (2004) 29(7-8):605-11.
Medtronic, “CareLink Therapy Management Software for Diabetes” Jul. 2010; https://carelink.minimed.com/patient/entry.jsp?bhcp=1; 1 pp.
Medtronic, “Carelink™ USB” (2008) http://www.medtronicdiabetes.com/pdf/carelink—usb—factsheet.pdf 2pp.
Medtronic “The New MiniMed Paradigm® Real-Time Revel™ System” Aug. 2010 http://www.medtronicdiabetes.com/products/index.html; 2 pp.
Medtronic, “Mini Med Paradigm® Revel™ Insulin Pump” Jul. 2010 http://www.medtronicdiabetes.com/products/insulinpumps/index.html; 2 pp.
Medtronic, Mini Med Paradigm™ Veo™ System: Factsheet (2010). http://www.medtronic-diabetes.com.au/downloads/Paradigm%20Veo%20Factsheet.pdf ; 4 pp.
Melanson, “Walkers swallow RFID pills for science” Engadget; Jul. 2008; http://www.engadget.com/2008/07/29/walkers-swallow-rfid-pills-for-science/.
Minimitter Co. Inc. “Actiheart” Traditional 510(k) Summary. Sep. 27, 2005.
Minimitter Co. Inc. Noninvasive technology to help your studies succeed. Mini Mitter.com Mar. 31, 2009.
Mini Mitter Co, Inc. 510(k) Premarket Notification Mini-Logger for Diagnostic Spirometer. 9-21 (1999).
Mini Mitter Co, Inc. 510(k) Premarket Notification for VitalSense. Apr. 22, 2004.
Minimitter Co. Inc. VitalSense Integrated Physiological Monitoring System. Product Description. Jul. 2005.
Minimitter Co. Inc. VitalSense Wireless Vital Signs Monitoring. Temperatures.com Mar. 31, 2009.
Mojaverian et al., “Estimation of gastric residence time of the Heidelberg capsule in humans: effect of varying food composition” Gastroenterology (1985) 89:(2): 392-7.
NPL—AntennaBasics.pdf, Radio Antennae, http://www.erikdeman.de/html/sail018h.htm; (2008) 3pp.
O'Brien et al., “The Production and Characterization of Chemically Reactive Porous Coatings of Zirconium Via Unbalanced Magnetron Sputtering” Surface and Coatings Technology (1996) 86-87; 200-206.
Park, “Medtronic to Buy MiniMed for $3.7 Billion” (2001) HomeCare; http://homecaremag.com/mag/medical—medtronic—buy—minimed/; 2 pp.
“RFID “pill” monitors marchers” RFID News; Jul. 2008 http://www.rfidnews.org/2008/07/23/rfid-pill-monitors-marchers/.
Rolison et al., “Electrically conductive oxide aerogels: new materials in electrochemistry” J. Mater. Chem. (2001) 1, 963-980.
Roulstone, et al., “Studies on Polymer Latex Films: I. A study of latex film morphology” Polymer International 24 (1991) pp. 87-94.
Sanduleanu et al., “Octave tunable, highly linear, RC-ring oscillator with differential fine-coarse tuning, quadrature outputs and amplitude control for fiber optic transceivers” (2002) IEEE MTT-S International Microwave Symposium Digest 545-8.
Santini, J.T. et al, “Microchips as controlled drug delivery-devices”, Agnew. Chem. Int. Ed. (2000), vol. 39, p. 2396-2407.
“SensiVida minimally invasive clinical systems” Investor Presentation Oct. 2009 28pp; http://www.sensividamedtech.com/SensiVidaGeneralOctober09.pdf.
Shawgo, R.S. et al. “BioMEMS from drug delivery”, Current Opinion in Solid State and Material Science 6; May 2002, p. 329-334.
Shin et al., “A Simple Route to Metal Nanodots and Nanoporous Metal Films”; Nano Letters, vol. 2, No. 9 (2002) pp. 933-936.
Shrivas et al., “A New Platform for Bioelectronics—Electronic Pill”, Cummins College, (2010).; http://www.cumminscollege.org/downloads/electronics—and—telecommunication/Newsletters/Current%20Newsletters.pdf; First cited in third party client search conducted by Patent Eagle Search May 18, 2010 (2010).
“Smartlife awarded patent for knitted transducer” Innovation in Textiles News: http://www.innovationintextiles.com/articles/208.php; 2pp. Aug. 2009.
“The SmartPill Wireless Motility Capsule” Smartpill, The Measure of GI Health; May 2010 http://www.smartpillcorp.com/index.cfm?pagepath=Products/The—SmartPill—Capsule&id=17814.
Solanas et al., “RFID Technology for the Health Care Sector” Recent Patents on Electrical Engineering (2008) 1, 22-31.
Soper, S.A. et al. “Bio-Mems Technologies and Applications”, Chapter 12, “MEMS for Drug Delivery”, p. 325-346 (2007).
Swedberg, “University Team Sees Ingestible RFID Tag as a Boon to Clinical Trials” RFID Journal Apr. 27, 2010; http://www.rfidjournal.com/article/view/7560/1 3pp.
Tajalli et al., “Improving the power-delay performance in subthreshold source-coupled logic circuits” Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Stimulation, Springer Berlin Heidelberg (2008) 21-30.
Tatbul et al., “Confidence-based data management for personal area sensor networks” ACM International Conference Proceeding Series (2004) 72.
Tierney, M.J. et al “Electroreleasing Composite Membranes for Delivery of Insulin and other Biomacromolecules”, J. Electrochem. Soc., vol. 137, No. 6, Jun. 1990, p. 2005-2006.
U.S. Appl. No. 12/238,345, filed Sep. 25, 2008, Hooman et al., Non-Final Office Action dated Jun. 13, 2011 22pp.
Walkey, “MOSFET Structure and Processing”; 97.398* Physical Electronics Lecture 20; Office Action dated Jun. 13, 2011 for U.S. Appl. No. 12/238,345; 24 pp.
Watson, et al., “Determination of the relationship between the pH and conductivity of gastric juice” Physiol Meas. 17 (1996) pp. 21-27.
Wongmanerod et al., “Determination of pore size distribution and surface area of thin porous silicon layers by spectroscopic ellipsometry” Applied Surface Science 172 (2001) 117-125.
Xiaoming et al., “A telemedicine system for wireless home healthcare based on bluetooth and the internet” Telemedicine Journal and e-health (2004) 10(S2): S110-6.
Yang et al., “Fast-switching frequency synthesizer with a discriminator-aided phase detector” IEEE Journal of Solid-State Circuits (2000) 35(10): 1445-52.
Yao et al., “Low Power Digital Communication in Implantable Devices Using Volume Conduction of Biological Tissues” Proceedings of the 28th IEEE, EMBS Annual International Conference, Aug. 30-Sep. 3, 2006.
Zimmerman, “Personal Area Networks: Near-field intrabody communication” IBM Systems Journal (1996) 35 (3-4):609-17.
Description of ePatch Technology Platform for ECG and EMG, located it http://www.madebydelta.com/imported/images/DELTA—Web/documents/ME/ePatch—ECG—EMG.pdf, Dated Sep. 2, 2010.
Zworkin, “A Radio Pill” Nature, (1957) 898, 179 Nature Publishing Group.
Jung, S. “Dissolvable ‘Transient Electronics’ Will Be Good for Your Body and the Environment” MedGadget; Oct. 1, 2012; Onlne website: http://medgadget.com/2012/10/dissolvable-transient-electronics-will-be-good-for-your-body-and-the-environment.html; downloaded Oct. 24, 2012; 4 pp.
Owano, N., “Study proposes smart sutures with sensors for wounds” phys.org. Aug. 2012. http://phys.org/news/2012-08-smart-sutures-sensors-wounds.html.
Platt, D., “Modulation and Deviation” AE6EO, Foothills Amateur Radio Society; Oct. 26, 2007; 61 pp.
“PALO Bluetooth Baseband” PALO Bluetooth Resource Center (2002) Retrieved from internet Dec. 12, 2012 at URL: http://palowireless.com/bluearticles/baseband.asp; first cited in Office Action dated Jan. 17, 2013 for EP08853901.0.
Trutag, Technologies, Inc., Spectral Microtags for Authentication and Anti-Counterfeiting; “Product Authentication and Brand Protection Solutions”; http://www.trutags.com/; downloaded Feb. 12, 2013; 1 pp.
Hotz “The Really Smart Phone” The Wall Street Journal, What They Know (2011); 6 pp.; http://online.wsj.com/article/SB10001424052748704547604576263261679848814.html?mod=djemTECH—t.
Winter, J. et al. “The material properties of gelatin gels”; USA Ballistic Research Laboratories, Mar. 1975, p. 1-157.
Lin et al., “Do Physiological Data Relate to Traditional Usability Indexes?” Proceedings of OZCHI 2005, Canberra, Australia(2005) 10 pp.
Mandryk et al., “A physiological approach for continuously modeling user emotion in interactive play environments” Proceedings of Measuring Behavior (2008) (Maastrichtm The Netherlandsm Aug. 26-29) 2 pp.
Mandryk et al., “Objectively Evaluating Entertainment Technology” Simon Fraser University; CHI (2004) ACM 1-58113-703-6/04/0004; 2 pp.
Baskiyar, S. “A Real-time Fault Tolerant Intra-body Network” Dept. of Comp. Sci & Soft Eng; Auburn University; Proceedings of the 27th Annual IEEE Conference; 0742-1303/02 (2002) IEEE; 6 pp.
Evanczuk, S., “PIC MCU software library uses human body for secure communications link” EDN Network; edn.com; Feb. 26, 2013 Retrieved from internet Jun. 19, 2013 at http://www.edn.com/electronics-products/other/4407842/PIC-MCU-software-library-uses-human-body-for-secure-communications-link; 5 pp.
Kim et al., “A Semi-Interpenetrating Network System for a Polymer Membrane”; Eur. Polym. J. vol. 33 No. 7; pp. 1009-1014 (1997).
Au-Yeung, K., et al., “A Networked System for Self-Management of Drug Therapy and Wellness”, Wireless Health '10, Oct. 5-7, 2010, San Diego, 9 pages.
Consolvo, Sunny et al., “Design Requirement for Technologies that Encourage Physical Activity,” CHI 2006 Proceedings, Designing for Tangible Interactions, Apr. 22, 2006, Montreal, Quebec, Canada, pp. 457-466.
Ferguson et al., “Wireless communication with implanted medical devices using the conductive properties of the body,” Expert Rev Med Devices, Jul. 2011, 8(4): 427-433.
Greene, “Medicaid Efforts to Incentivize Healthy Behaviours”, Center for Health Care Strategies, Inc., Resource Paper, Jul. 2007.
Kendle, Earl R. and Morris, Larry A., “Preliminary Studies in the Development of a Gastric Battery for Fish” (1964). Nebraska Game and Parks Commission White Papers, Conference Presentations, & Manuscripts. Paper 22. p. 1-6.
McDermott-Wells, P., “What is Bluetooth?”, IEEE Potentials, IEEE, New York, NY, vol. 23, No. 5, Dec. 1, 2004, pp. 33-35.
Sharma, et al., “The Future is Wireless: Advances in Wireless Diagnostic and Therapeutic Technologies in Gastoenterology,” Gastroenterology, Elesevier, Philadelphia, PA, vol. 137, No. 2, Aug. 1, 2009, pp. 434-439.
Aronson, J., “Meyer's Side Effects of Cardiovascular Drugs,” Elsevier, Mar. 2, 2009, Medical , 840 pages. (Not Attached).
Herbig, S.M., “Asymmetric-membrane tablet coatings for osmotic drug delivery”, Journal of Controlled Release 35 (1995) 127-136.
Lee, K. B.; “Two-step activation of paper batteries for high power generation: design and fabrication of biofluid- and wateractivated paper batteries”; J. Micromech. Microeng. 16 (2006) 2312-2317.
Lee, K. B.; “Urine-activated paper batteries for Biosystems”; J. Micromech. Microeng. 15 (2005) S21 O-S214.
Sammoura, F. et al., “Water-activated disposable and long shelf life microbatteries”, Sensors and Actuators A 111 (2004) 79-86.
vonStetten, F. et al., “Biofuel cells as power generation for implantable devices”, Pore. Eurosensors XX, (2006), pp. 22-225.
Chan, Adrian D.C., et al.,; “Wavelet Distance Measure for Person Identification Using Electrocardiograms,” IEEE Transactions on Instrumentation and Measurement, IEEE Service Center, Piscataway, NJ, US, vol. 57, No. 2, Feb. 1, 2008, pp. 248-253.
Zhang, Y-T. et al., “Wireless Biomedical Sensing,” Wiley Encyclopedia of Biomedical Engineering, 2006, pp. 1-9.
Related Publications (1)
Number Date Country
20110270052 A1 Nov 2011 US
Provisional Applications (2)
Number Date Country
61142869 Jan 2009 US
61260325 Nov 2009 US