Information
-
Patent Grant
-
6781500
-
Patent Number
6,781,500
-
Date Filed
Tuesday, May 7, 200222 years ago
-
Date Issued
Tuesday, August 24, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 336 92
- 336 90
- 336 96
- 336 198
- 336 208
-
International Classifications
-
Abstract
In a stick coil, there is disclosed an ignition coil for an internal combustion engine which can prevent a crack (a collar leak) from being generated due to a thermal stress. In this ignition coil, the structure is made such that a size (L) of a portion which is in parallel to an axial direction of a primary spool (121) in a projection portion (121b) is larger than a size (T) of a portion which is in parallel to an orthogonal direction to the axial direction of the primary spool (121). Accordingly, a frontal projected area of the projection portion (121b) as seen from a flowing direction of a resin becomes small, a resin flow is hard to get out of order at a time when the resin flows through a portion corresponding to the projection portion (121b) at the forming time, and a convoluted void and a weld are hard to be generated. Accordingly, since it is possible to prevent a mechanical strength in a root portion of the projection portion (121b) from being reduced, it is possible to previously prevent a crack from being generated in the root portion of the projection portion (the collar portion) (121b) due to a thermal stress so as to reduce an insulating property.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an ignition coil for an internal combustion engine (hereinafter, referred to as an ignition coil for short).
2. Description of the Prior Art
A structure of an ignition coil for a motor vehicle is, for example, as described in Japanese Unexamined Patent Publication No. 11-111545, constituted by a primary coil wound around a primary spool, a secondary coil wound around a secondary spool which are concentrically arranged in an outer peripheral side of a rod-like center core, a resin member (a potting member or a cast resin) charged into a gap between these plurality of parts, and the like.
However, since coefficients of linear expansion of the respective constituting parts are different from each other, a crack or the like may be generated between the constituting parts (particularly, in a root side of a collar portion in a spool around which a coil winding is arranged) due to a thermal stress. Further, each of the spools is frequently integrally formed by a resin, however, a flow of mold resin is deteriorated in some shapes thereof, so that a void or the like may be generated. Then, since the generation of the crack, the void or the like causes a dielectric breakdown by each of the spools, it is necessary to restrict and prevent them.
SUMMARY OF THE INVENTION
The present invention has been achieved by taking the conventional problems mentioned above, and an object of the present invention is to provide an ignition coil for an internal combustion engine which can prevent a crack, a void or the like from being generated, and can secure an insulating property between a primary side and a secondary side.
In order to achieve the object mentioned above, in accordance with the present invention, there is provided an ignition coil for an internal combustion engine comprising:
a resin spool
121
formed in a substantially cylindrical shape;
a coil
120
constituted by a coil winding wound around the spool
121
; and
a high electric voltage being supplied to an ignition apparatus in the internal combustion engine,
wherein a plurality of projection portions
121
b
protruding to an outer side in a diametrical direction from an outer peripheral surface of the spool
121
are integrally formed in an end portion in an axial direction on the outer peripheral surface of the spool
121
so as to line up in a circumferential direction, and a size L of a portion in the projection portion
121
b
which is in parallel to an axial direction of the spool
121
is larger than a size T of a portion in the projection portion
121
b
which is in parallel to a direction orthogonal to the axial direction of the spool
121
.
Accordingly, in comparison with the spool in accordance with a prior art mentioned below, a resin flow is hard to get out of order near a portion corresponding to the projection portion
121
b
at a time of forming, and a convoluted void and weld are hard to be generated.
Therefore, in accordance with the present invention, since it is possible to prevent a mechanical strength in a root portion of the projection portion
121
b
from being reduced, it is possible to previously prevent the crack from being generated in the root side of the projection portion
121
b.
In accordance with the present invention, there is provided an ignition coil for an internal combustion engine comprising:
a resin spool
121
formed in a substantially cylindrical shape;
a coil
120
constituted by a coil winding wound around the spool
121
; and
a high electric voltage being supplied to an ignition apparatus in the internal combustion engine,
wherein a projection portion
121
b
protruding to an outer side in a diametrical direction from an outer peripheral surface of the spool
121
and assembled in the spool
121
after being separately formed from the spool
121
is provided in an end portion in an axial direction on the outer peripheral surface of the spool
121
.
Accordingly, since it is possible to make a shape of the spool
121
simple, a resin flow is hard to get out of order at a time of forming the spool
121
. Therefore, it is possible to prevent the crack from being generated in the spool
121
.
In accordance with the present invention, there is provided an ignition coil for an internal combustion engine comprising:
a resin spool
121
formed in a substantially cylindrical shape;
a coil
120
constituted by a coil winding wound around the spool
121
;
a high electric voltage being supplied to an ignition apparatus in the internal combustion engine; and
a resin material having an electric insulating property being charged into a substantially cylindrical housing
172
receiving the coil
120
and the spool
121
, whereby the coil
120
and the spool
121
are molded and fixed,
wherein at least a portion corresponding to the coil
120
in the spool
121
has an inner tube portion
121
α and an outer tube portion
121
β so as to form a double cylinder structure, a projection portion
121
b
protruding to an outer side in a diametrical direction is formed in an end portion in an axial direction of the outer tube portion
121
β, and an adhesive strength between the resin material and the outer tube portion
121
β is smaller than an adhesive strength between the resin material and the inner tube portion
121
α.
Accordingly, since all of the coil windings in the coil
120
become in a state of being wound on the outer tube portion
121
β, a starting point of the crack is hard to be generated in the portion in which the coil winding of the coil
120
is wound. Therefore, it is possible to prevent the crack from being generated and made progress in the portion close to the coil
120
.
In accordance with the present invention, there is provided an ignition coil for an internal combustion engine comprising:
a resin spool
121
formed in a substantially cylindrical shape;
a coil
120
constituted by a coil winding wound around the spool
121
;
a high electric voltage being supplied to an ignition apparatus in the internal combustion engine; and
a resin material having an electric insulating property being charged into a substantially cylindrical housing
172
receiving the coil
120
and the spool
121
, whereby the coil
120
and the spool
121
are molded and fixed,
wherein an adhesion restraining film
122
which restrains an adhesion between an outer peripheral surface of the spool
121
and the coil winding by the resin material is provided between the outer peripheral surface of the spool
121
and the coil winding, and a distance r2 from the adhesion restraining film
122
in an end portion side in an axial direction of the spool
121
to a center axis of the spool
121
is larger than a distance r1 from the adhesion restraining film
122
in a substantially center portion in the axial direction of the spool
121
to the center axis of the spool
121
.
Accordingly, since a way (time) until the crack gets to a center portion becomes long, it is possible to prevent the spool
121
from being early broken.
In accordance with the present invention, there is provided an ignition coil for an internal combustion engine comprising:
a primary coil
120
and a secondary coil
120
which are coaxially arranged;
a center core inserted to axial core portions in both of the coils
120
and
130
;
an outer peripheral core
140
arranged in an outer peripheral side of both of the coils
120
and
130
;
a substantially cylindrical housing
172
receiving both of the coils
120
and
130
and both of the cores
110
and
140
; and
a resin material having an electric insulating property being charged into the housing
172
, whereby both of the coils
120
and
130
and both of the cores
110
and
140
are molded and fixed,
wherein a slit
141
dividing a part of the outer peripheral coil
140
and extending in a longitudinal direction is provided in the outer peripheral core
140
.
Accordingly, since a rigidity of the outer peripheral core
140
is reduced and the outer peripheral core
140
is deformed at a time when a thermal stress is applied, whereby it is possible to absorb the thermal stress, it is possible to prevent the crack from being generated in the spool
121
.
In accordance with the present invention, there is provided an ignition coil for an internal combustion engine comprising:
an integrally formed resin spool
121
and a coil
120
constituted by a coil winding wound around the spool
121
; and
a high electric voltage being supplied to an ignition apparatus in the internal combustion engine,
wherein the spool
121
is provided with a cylinder portion
121
d
around which the coil
120
is wound, a collar portion
121
b
protruding to an outer side in a diametrical direction from an end side outer peripheral surface of the outer portion
121
d
so as to form a circumferential shape, and a reinforcing portion
121
c
connected to the collar portion
121
b
, extending in an axial direction of the cylinder portion
121
d
and reinforcing the collar portion
121
b
, and
wherein a ratio of thickness t/t0 of a thickness t of the collar portion
121
b
and/or the reinforcing portion
121
c
with respect to a thickness t0 of the cylinder portion
121
d
is equal to or less than 1.5.
Further, the inventors of the present application have invented a spool shape in which the void or the like is not generated by setting the ratio of thickness t/t0 mentioned above to a predetermined range, even in the case that the collar portion
121
b
protruding from an end side of the cylinder portion is provided. Further, in this case, since the collar portion
121
b
and the reinforcing portion
121
c
are integrally formed, the structure is excellent in view of strength, and it is possible to restrain and prevent generation of the crack or the like.
It is more preferable that this ratio of thickness t/t0 is equal to or less than 1.2, and further equal to or less than 1. In particular, the smaller the thickness of the collar portion and/or the reinforcing portion is, the harder the void or the like is generated.
As a matter of fact, it is preferable that the ratio of thickness t/t0 mentioned above is equal to or more than 0.1, taking a strength, a formability and the like into consideration.
Further, various kinds of shapes can be considered for a shape between the collar portion
121
b
and the reinforcing portion
121
c
, however, it is possible to structure, for example, in a manner described in claim
8
or
9
.
That is, the reinforcing portion
121
c
may be extended from a substantially center of the collar portion
121
b
and form a substantially T shape with the collar portion
121
b
, or may be extended from both end sides of the collar portion
121
b
and form a substantially U shape with the collar portion
121
b.
In accordance with the present invention, there is provided an ignition coil for an internal combustion engine comprising:
a coil
120
around which a coil winding is wound;
a resin spool
121
having a cylinder portion
121
d
around which the coil winding of the coil
120
is wound, and a collar portion
121
b
protruding to an outer side in a diametrical direction from an outer peripheral surface of the cylinder portion
121
d
so as to form a circumferential shape and being capable of holding an end portion of the coil
120
; and
a high electric voltage being supplied to an ignition apparatus in the internal combustion engine,
wherein an elastic member
123
is provided at least in the coil winding side of the coil
120
connected to the collar portion
121
b
from the cylinder portion
121
d.
A thermal stress or the like can be applied to the cylinder portion
121
d
and the collar portion
121
b
which the coil
120
is in contact with and exists in, due to a difference of coefficients of linear expansion among the respective members. In particular, the thermal stress or the like is easily concentrated to the root portion of the collar portion
121
b
corresponding to the connecting portion thereof. In accordance with the present invention, since the elastic member
123
reducing the thermal stress or the like is provided therebetween, it is possible to restrain and prevent the generation of the crack or the like in the spool
121
accompanying with the thermal stress or the like.
The elastic member
123
may be, for example, constituted by an elastic film coated on the spool
121
. The elastic film can be formed by spraying or painting an elastic resin (for example, an urethane resin), a rubber or the like to the spool
121
, or dipping the spool
121
into them.
Further, the elastic member
123
may be constituted by an elastic film which is integrally formed with the spool
121
.
In this case, for example, it is possible to integrally form both of the spool
121
and the elastic resin, the rubber or the like by setting the spool
121
to a core and charging the elastic resin, the rubber or the like into a cavity generated in an outer periphery thereof. Further, the elastic film may be formed by winding an elastic film having a heat shrinkability around the spool
121
and thereafter heating this, thereby closely attaching the elastic film to the outer surface of the spool
121
.
In accordance with the present invention, there is provided an ignition coil for an internal combustion engine comprising:
a coil
120
in which a coil winding is wound around a substantially cylindrical spool
121
; and
a high electric voltage being supplied to an ignition apparatus in the internal combustion engine,
wherein the spool
121
has a cylinder portion
121
d
, and a collar portion
121
b
capable of holding an end portion of the coil
120
formed so as to protrude in an outer side in a diametrical direction from an outer peripheral surface of the cylinder portion
121
d
so as to form a circumferential shape by winding an elastic sheet
123
having linearly arranged projections
123
a
around the cylinder portion
121
d.
In this case, the collar portion
121
b
capable of holding the end portion of the coil
120
is not integrally provided with the spool
121
, but is formed by winding the elastic sheet
123
. Since the elastic sheet
123
is interposed between the coil
120
and the spool
121
, the thermal stress or the like applied to a portion between the cylinder portion
121
d
and the collar portion
121
b
is reduced, and the crack or the like generated in the root portion or the like of the collar portion
121
b
can be restrained and prevented.
Further, in the case of integrally forming the spool
121
by the resin, since it is not necessary to integrally form the collar portion
121
b
by the resin, a resin flow at a time of forming is improved, and it is possible to restrain the generation of void or the like. Further, since the collar portion
121
b
is formed by winding the elastic sheet
123
corresponding to a separate member from the spool
121
, a freedom of design can be increased without being affected by a limitation caused by the generation of the void or the like.
In accordance with the present invention, there is provided an ignition coil for an internal combustion engine comprising:
a coil
120
in which a coil winding is wound around a substantially cylindrical spool
121
; and
a high electric voltage being supplied to an ignition apparatus in the internal combustion engine,
wherein the spool
121
is constructed by inserting and fitting an outer tube portion
121
β constituted by an elastic member to an inner tube portion
121
α, the outer tube portion
121
β has a cylinder portion
121
d
around which a coil winding of the coil
120
is wound, and a collar portion
121
b
protruding to an outer side in a diametrical direction from an outer peripheral surface of the cylinder portion
121
d
so as to form a circumferential shape and capable of holding an end portion of the coil
120
.
Since the spool
121
is constructed by a double structure constituted by the inner tube portion
121
α and the outer tube portion
121
β, it is possible to easily form the spool
121
having no void or the like. Further, since the outer tube portion
121
β is constituted by the elastic member, the thermal stress or the like is reduced from the cylinder portion
121
d
toward the collar portion
121
b
, and it is possible to restrain and prevent the generation of the crack or the like on the basis thereof.
In accordance with the present invention, there is provided an ignition coil for an internal combustion engine comprising:
a spool formed in a substantially cylindrical shape and having a projection portion
121
b
arranged in one end portion in an axial direction of an outer peripheral surface;
a coil
120
annularly provided in the spool
121
and having one end constituted by a coil winding held by the projection portion
121
b;
an adhesion restraining film
122
interposed between the spool
121
and the coil winding and restraining an adhesion between the outer peripheral surface of the spool
121
and the coil winding; and
a high electric voltage being supplied to an ignition apparatus in the internal combustion engine,
wherein the ignition coil further has a post-provided collar portion
121
f
which is annularly provided in the adhesion restraining film
122
at another end portion in an axial direction of the outer peripheral surface of the spool
121
and holding another end of the coil
120
.
In conventional, the projection portion
121
b
and the flange portion
121
e
are integrally formed at both end portions in the axial direction of the spool
121
. Further, the adhesion restraining film
122
is annularly provided in the outer peripheral surface of the spool
121
between the projection portion
121
b
and the flange portion
121
e
. Further, the thermal stress applied to the diametrical direction of the ignition coil is shut off by the adhesion restraining film
122
.
However, the adhesion restraining film
122
can be annularly provided only between the projection portion
121
b
and the flange portion
121
e
. In other words, since the flange portion
121
e
gets in the way, it is impossible to extend the adhesion restraining film
122
close to the end side in the axial direction over the flange portion
121
e
of the spool
121
.
In this view, in accordance with the present invention, the post-provided collar portion
121
f
is arranged in place of the flange portion
121
e
. The post-provided collar portion
121
f
is annularly provided in the outer peripheral surface of the adhesion restraining film
122
after annularly attaching the adhesion restraining film
122
to the spool
121
. Therefore, in accordance with the invention described in claim
15
, it is possible to extend the adhesion restraining film
122
close to the end side in the axial direction over the post-provided collar portion
121
f
. Accordingly, a range in which the thermal stress can be shut off becomes wide, and it is possible to restrain and prevent the generation of the crack or the like.
In accordance with the present invention, there is provided an ignition coil for an internal combustion engine comprising:
a spool
121
formed in a substantially cylindrical shape and having a projection portion
121
b
arranged in one end portion in an axial direction of an outer peripheral surface;
a coil
120
annularly provided in the spool
121
and having one end constituted by a coil winding held by the projection portion
121
b;
an adhesion restraining film
122
interposed between the spool
121
and the coil winding and restraining an adhesion between the outer peripheral surface of the spool
121
and the coil winding; and
a high electric voltage being supplied to an ignition apparatus in the internal combustion engine,
wherein the coil winding is a self welding coil winding, and the coil
120
is a shape keeping coil
120
a
capable of keeping a shape by itself.
The shape keeping coil
120
a
is formed by the self welding coil winding. Accordingly, it is possible to keep the cylindrical shape by itself without holding both ends by the projection portion
121
b
and the flange portion
121
e
. Therefore, the flange portion
121
e
is not required.
In accordance with the present invention, since the flange portion
121
e
is not arranged, it is possible to extend the adhesion restraining film
122
to the end side in the axial direction. Accordingly, the range in which the thermal stress can be shut off becomes wide, and it is possible to restrain and prevent the generation of the crack or the like.
Here, in the case that the elastic film is provided in the collar portion
121
b
or the collar portion
121
b
itself is constituted by the elastic member as in the present invention, the shape of the collar portion
121
b
provides no problem. Accordingly, the collar portion
121
b
may be formed in a continuous ring shape, or may be formed in a discontinuous projection shape. As a matter of fact, taking into consideration a flow property of an epoxy resin or the like corresponding to a filler in the inner portion of the housing or the inner portion of the coil, it is preferable that the collar portion
121
b
is formed in the discontinuous projection shape.
Further, the various kinds of elastic members may employ a structure having a rigidity (Young's modulus) lower than that of the core member (the inner tube portion) of the spool
121
. In the case that the spool
121
is made of a thermosetting resin, for example, a rubber, an urethane resin or the like can be used as the elastic member. Further, the elastic member does not necessarily exist in a whole of the spool, but may partly exist in a range which is effective for reducing the stress such as the thermal stress or the like.
In this case, the spool mentioned above may be constituted by a primary spool and a secondary spool. Further, the projection portion
121
b
and the collar portion
121
b
correspond only to convenient appellations, and both of them become substantially the same properly. Further, reference numerals in parentheses indicated in claims and means for solving the problem mentioned above are used only for clarifying a corresponding relation to particular examples described in embodiments mentioned below so as to easily understand the present invention, and do not limit the scope of the present invention to the embodiments mentioned below.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a cross sectional view of an ignition coil in accordance with an embodiment of the present invention;
FIG. 2
is a cross sectional view along a line A—A in
FIG. 1
;
FIG. 3A
is a perspective view of a primary spool employed in an ignition coil in accordance with a first embodiment of the present invention;
FIG. 3B
is an enlarged view of a projection portion;
FIG. 4A
is a perspective view of a primary spool employed in an ignition coil in accordance with a second embodiment of the present invention;
FIG. 4B
is a partly perspective view of a modified embodiment of the embodiment in
FIG. 4A
;
FIG. 5
is a cross sectional view showing a feature of an ignition coil in accordance with a third embodiment of the present invention;
FIG. 6
is a cross sectional view showing a feature of an ignition coil in accordance with a fourth embodiment of the present invention;
FIGS. 7A and 7B
are cross sectional views showing a feature of an ignition coil in accordance with a fifth embodiment of the present invention, and respectively show two embodiments in which a shape of the feature portion is changed;
FIG. 8
is a perspective view showing a feature of an ignition coil in accordance with a sixth embodiment of the present invention;
FIG. 9
is a cross sectional view showing a feature of an ignition coil in accordance with a seventh embodiment of the present invention;
FIG. 10
is a cross sectional view showing a feature of an ignition coil in accordance with an eighth embodiment of the present invention;
FIG. 11
is a cross sectional view showing a feature of an ignition coil in accordance with a ninth embodiment of the present invention;
FIGS. 12A and 12B
are views showing a feature of an ignition coil in accordance with a tenth embodiment of the present invention, in which
FIG. 12A
is a partly cross sectional view of the ignition coil and
FIG. 12B
is a plan view of an elastic sheet used in the present embodiment;
FIG. 13
is a cross sectional view showing a feature of an ignition coil in accordance with an eleventh embodiment of the present invention;
FIG. 14A
is a perspective view of a primary spool employed in an ignition coil in accordance with a prior art;
FIG. 14B
is a front elevational view of the primary spool employed in the ignition coil in accordance with the prior art;
FIG. 15
is a perspective view of a primary spool of an ignition coil in accordance with a twelfth embodiment of the present invention;
FIG. 16
is a cross sectional view of the primary spool of the ignition coil in accordance with the twelfth embodiment of the present invention;
FIG. 17
is a perspective view of a primary spool of an ignition coil in accordance with a thirteenth embodiment of the present invention; and
FIG. 18
is a perspective view of a primary spool of an ignition coil in accordance with a fourteenth embodiment of the present invention.
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
(First Embodiment)
The present embodiment corresponds to a structure obtained by applying an ignition coil in accordance with the present invention to an ignition coil for a vehicle which supplies a high electric voltage (for example, 30 kV) to a spark plug (an ignition apparatus) in an engine (an internal combustion engine) for driving the vehicle.
FIG. 1
is a cross sectional view in an axial direction (a cross sectional view of a whole) of an ignition coil
100
in accordance with the present embodiment, and
FIG. 2
is a cross sectional view along a line A—A in FIG.
1
.
In this case, the ignition coil
100
in accordance with the present embodiment is integrally formed with a plug cap by being formed in a stick shape in an outer shape, and this ignition coil
100
is received within a plug hole formed in a cylinder head (not shown) at a time of being attached. In this case, the plug cap means a cap-like connector electrically connecting the spark plug to the ignition coil.
In
FIG. 1
, reference numeral
110
denotes a rod-like center core made of a magnetic material (a silicon steel in the present embodiment). The center core
110
is a lamination core constructed by laminating a plurality of thin band plates extending substantially in parallel to a direction of a magnetic field (a direction perpendicular to a paper surface), as shown in FIG.
2
. In this case, permanent magnets
112
and
113
(refer to
FIG. 1
) having a reverse polarity to that of a magnetic field induced by a primary coil
120
mentioned below are arranged in both end sides in a longitudinal direction of the center core
110
.
Further, a secondary coil (an inner periphery side coil)
130
electrically connected to a side of the spark plug is arranged in an outer periphery side of the center core
110
, and the primary coil (an outer periphery side coil)
120
to which a control signal from an igniter controlling a high electric voltage generated in the secondary coil
130
is input is arranged in an outer side of the secondary coil
130
.
In this case, since the ignition coil
100
is structured such that the electric voltage input to the primary coil
120
is increased so as to be output from the secondary coil
130
, a winding number of the secondary coil
130
is more than a winding number of the primary coil
120
, and since the secondary coil
130
is arranged in an inner side of the primary coil
120
, a wire diameter of the coil winding in the secondary coil
130
is set to be smaller than a wire diameter of the coil winding in the primary coil
120
.
Further, reference numeral
121
denotes a primary spool (an outer periphery side winding frame) for winding the coil winding in the primary coil
120
arranged between the secondary coil
130
and the primary coil
120
, and this primary spool
121
is formed in a substantially cylindrical shape by an electrical insulating material such as a resin (a PPE resin in the present embodiment) or the like.
Further, a thin film (an adhesion restraining film)
122
made of a polyethylene terephthalate (PET) is wound around the outer peripheral surface of the primary spool
121
(between the primary coil
120
and the primary spool
121
) so as to prevent the primary spool
121
and a resin for molding (a cast resin) mentioned below from being completely adhered, and as shown in
FIG. 3A
, a plurality of projection portions
121
b
protruding to an outer side in a diametrical direction from an outer peripheral surface
121
a
are integrally formed in one end side in an axial direction thereof (a right end side in
FIG. 3A and a
side of a high voltage terminal
183
mentioned below) so as to line up in a circumferential direction.
At this time, the projection portion
121
b
is structured in a root side thereof, as shown in
FIG. 3B
, such that a size L of a portion in parallel to the axial direction of the primary spool
121
in the projection portion
121
b
is larger than a size T of a portion in parallel to a direction orthogonal to the axial direction of the primary spool
121
, and a portion corresponding to one end side (a right end side in
FIG. 3B
) in the axial direction of the primary spool
121
in the projection portion
121
b
is formed in a taper shape so that a cross sectional area of the projection portion
121
b
is reduced toward a front end side thereof.
On the contrary, a ring-like flange portion
121
e
protruding to an outer side in the diametrical direction from the outer peripheral surface
121
a
all around a circumferential direction is integrally formed in another end side (a left end side in
FIG. 3A
, and a side of a bracket portion
162
mentioned below) in the axial direction of the primary spool
121
.
Further, in
FIGS. 1 and 2
, reference numeral
131
denotes a secondary spool (an inner periphery side winding frame) for winding the secondary coil
130
, the secondary spool being arranged between the secondary coil
130
and the center core
110
, and this secondary spool
131
is formed in a substantially cylindrical shape by the electrical insulating material such as the resin (the PPE resin in the present embodiment) or the like.
Further, a buffering member (a rubber tube in the present embodiment)
111
for preventing an edge portion (a corner portion) of the center core
110
from being directly in contact with the secondary spool
131
is arranged in an inner peripheral surface side of the secondary spool
131
(between the secondary spool
131
and the center core
110
).
In this case, the buffering member (a shrink tube)
111
is structured such that a diameter is reduced by being heated, and the buffering member (the shrink tube)
111
is closely attached to the center core
110
by heating the center core
110
in a state of inserting the center core
110
to the buffering member (the shrink tube)
111
.
A tubular outer peripheral core
140
made of a magnetic material (a silicon steel in the present embodiment) is arranged in an outer periphery side of the primary coil
120
, and this outer peripheral core
140
is constructed by coaxially laminating three pipe members.
In this case, reference numeral
160
denotes a connector portion to which a cable (not shown) transmitting a control signal is connected, reference numeral
161
denotes a terminal supplying the control signal to the primary coil
130
, and reference numeral
170
denotes a housing for the ignition coil
100
, the housing being made of the resin (the PPS resin in the present embodiment).
In this case, the housing
170
is constituted by three sections comprising a first housing portion
171
in which a bracket portion
162
for fixing the connector portion
160
and the ignition coil
100
to a cam cover (not shown) is integrally formed, a second housing portion
172
covering an outer peripheral side of the outer peripheral core
140
so as to protect an ignition coil main body portion (a portion in which the primary coil
120
, the secondary coil
130
and the like are received), and a third housing (a high voltage tower)
173
in which a first high voltage terminal
181
to which a leader line (not shown) provided in an end portion in an axial direction of the secondary coil is connected, a second high voltage terminal
183
electrically connecting (relaying) the first high voltage terminal to a spring
182
being in contact with a terminal of the spark plug and a conductive material, and the like are received.
Further, a cast resin (an epoxy resin in the present embodiment) having an electrical insulating property is charged within the housing
170
(particularly within the outer peripheral core
140
), whereby both of the coils
120
and
130
, and the other parts are mold fixed. In this case, in
FIGS. 1 and 2
, reference numeral
174
denotes a resin layer structured by the charged resin (the cast resin), and in
FIG. 1
, reference numeral
175
denotes a rubber packing which prevents the cast resin from leaking from a connection portion between the second housing
172
and the third housing
173
.
Next, a description will be given of a feature (an operation and effect) of the present embodiment.
FIG. 14A
is a perspective view of a primary spool
921
in accordance with a prior art. Projection portions
921
B are provided in one end side in an axial direction thereof (a side of the high voltage terminal
183
, that is, a right end side in FIG.
14
A). A collar portion
921
D expanding in a direction orthogonal to an axial direction of the primary spool
921
and constituted by a comparatively thick wall surface is formed in the projection portion
921
B, as shown in
FIGS. 14A and 14B
. A thickness t′ thereof is set to be about twice larger than a thickness t0 of the cylinder portion (that is, a ratio of thickness (t′/t0)≈2).
In this case, at a time of forming the primary spool
921
, the resin is injected to a portion corresponding to a substantially center portion in the axial direction of the primary spool
921
in a metal mold for forming the primary spool
921
from a film gate formed in a straight line in the axial direction or a link-like ring gate provided in a portion corresponding to one end side in the axial direction of the primary spool
921
.
At this time, the resin injected from both of the gates flows between the projection portions
921
B so as to flow in the axial direction as shown by an arrow in FIG.
14
A. However, in the primary spool
921
in accordance with the prior art, as shown in
FIG. 14B
, since the collar portions
921
D expanding in the direction orthogonal to the axial direction of the primary spool
921
and made of the comparatively thick wall surface are formed, a resin flow gets out of order in the portion corresponding to the projection portions
921
B at a time of forming, and the resin is charged together with a convoluted void (which is similar to a mold cavity and a fine bubble) and a weld (a linear resin interface), so that a mechanical strength of the resin (the primary spool
921
) is reduced in this portion.
As a result, the crack or the like may be generated in a root side of the collar portion
921
D and the projection portion
921
B in the primary spool
921
due to a thermal stress caused by a difference of coefficients of linear expansion (amounts of thermal expansion) between the respective constituting parts, at a time of using the ignition coil
100
.
On the contrary, in accordance with the present embodiment, since the size L of the portion which is in parallel to the axial direction of the primary spool
121
in the projection portion
121
b
is larger than the size T of the portion which is in parallel to the direction orthogonal to the axial direction of the primary spool
121
(L>T), a frontal projected area of the projection portion
121
b
as seen from a flowing direction of the resin becomes smaller than that of the primary spool
121
in accordance with the prior art, the resin flow is hard to get out of order at a time when the resin flows between the portions corresponding to the projection portions
121
b
at the forming time, and the convoluted void and the weld are hard to be generated.
Therefore, in accordance with the present embodiment, since it is possible to prevent the mechanical strength in the root portion of the projection portion
121
b
from being reduced, it is possible to previously prevent the crack from being generated in the root side of the projection portion
121
b
due to the thermal stress.
By extension, since it is possible to prevent the crack from being generated in the primary spool
121
, it is possible to stably secure an electrical insulation between the primary coil
120
and the secondary coil
130
, and it is possible to improve a durability of the ignition coil
100
.
(Second Embodiment)
The present embodiment is structured, in the same manner as that of the first embodiment, such as to improve the resin flow generated at a time of forming a primary spool
121
and restrain and prevent the generation of the void or the like, whereby a mechanical strength of a collar portion
121
b
and a reinforcing portion
121
c
is not reduced.
As shown in
FIG. 4A
, the end portion in the axial direction of the primary spool
121
has a plurality of projection portions formed in a substantially U shape by the discontinuous collar portions
121
b
protruding to an outer side in a radial direction from an outer peripheral surface of a cylinder portion
121
d
and the reinforcing portion
121
c
connected to the collar portion
121
b
and extending to the end portion side in the axial direction.
Here, in the present embodiment, a thickness t of the collar portion
121
b
and the reinforcing portion
121
c
, and a thickness t0 of the cylinder portion
121
d
are set to be equal. That is, a ratio of thickness (t/t0)=1 is set.
When determining a shape of the collar portion
121
b
or the reinforcing portion
121
c
so, a change of thickness in correspondence with a difference of position is reduced, a flow of resin at a time of forming becomes smooth, and it is possible to prevent the void or the like from being generated in the collar portion
121
b
or the reinforcing portion
121
c
. The inventors of the present application have confirmed this matter after trial and error through various tests.
Further, in accordance with the present embodiment, since the reinforcing portion
121
c
exist even when making the thickness of the collar portion
121
b
comparatively thin, it is possible to secure a sufficient mechanical strength.
FIG. 4B
shows a structure in which a shape of a projection portion constituted by the collar portion
121
b
and the reinforcing portion
121
c
is formed in a substantially T shape. In this case, the thickness of the collar portion
121
b
and the reinforcing portion
121
c
is made equal to the thickness t0 of the cylinder portion
121
d
(that is, the ratio of thickness (t/t0)=1).
Accordingly, in this case, it is possible to restrain and prevent the generation of the void or the like in the projection portion and a periphery thereof in the same manner, and an electrical insulating property can be maintained. Further, with the help of existence of the reinforcing portion
121
c
, it is possible to secure a sufficient mechanical strength.
(Third Embodiment)
The present embodiment also corresponds to a countermeasure against the matter that the mechanical strength of the projection portion
121
b
is reduced for the reason of the turbulence of the resin flow generated at a time forming the primary spool
121
, in the same manner as the first embodiment.
That is, in accordance with the present embodiment, as shown in
FIG. 5
, a ring disc-like (flange-like) projection portion
121
b
is independently formed from the primary spool
121
, and thereafter the independent projection portion
121
b
is assembled in the outer peripheral portion of the primary spool
121
. In this case, it is desirable that the projection portion
121
b
is pressure inserted to the primary spool
121
at a degree of a transition fit so that the projection portion
121
b
does not easily move at a time of winding a projecting coil winding around the primary spool
121
.
Next, a description will be given of a feature (an operation and effect) of the present embodiment.
The crack generated in correspondence to the thermal stress grows from a boundary portion between the thin film (the peeling tape)
122
and the resin layer formed by the cast resin wherein the thermal stress is easily concentrated, corresponding to a starting point so as to connect portions having a small mechanical strength, as shown in FIG.
5
. In the present embodiment, since the projection portion
121
b
is formed independently from the primary spool
121
, a shape of the primary spool
121
becomes a simple shape (a cylindrical shape in the present embodiment), so that the turbulence of the resin flow is hard to be generated at a time of forming the primary spool
121
.
Accordingly, the crack generated from the boundary portion between the thin film (the peeling tape)
122
and the resin layer formed by the cast resin corresponding to the starting point does not make progress toward the primary spool
121
main body (the secondary coil
130
), but makes progress along the interface (the adhesion surface) between the resin layer and the primary spool
121
and the interface (the adhesion surface) between the resin layer and the projection portion
121
b.
By extension, since it is possible to prevent the crack from being generated in the primary spool
121
, it is possible to stably secure the electrical insulation between the primary coil
120
and the secondary coil
130
, and it is possible to improve a durability of the ignition coil
100
.
(Fourth Embodiment)
The present embodiment is structured such that the thin film (the peeling tape)
122
is omitted, at least a portion corresponding to the coil
120
in the primary spool
121
is formed in a double cylinder structure having an inner tube portion
121
α and an outer tube portion
121
β, a projection portion
121
b
protruding to an outer side in a diametrical direction is integrally formed in an end portion in an axial direction of the outer tube
121
β, and an adhesive strength between the resin material (the cast resin) and the outer tube portion
121
β becomes smaller than an adhesive strength between the resin material (the cast resin) and the inner tube portion
121
α, as shown in FIG.
6
.
In this case, in the present embodiment, the outer tube portion
121
β is made of a polypropylene (PP), and the inner tube portion
121
α is made of a polyphenylene ether (PPE).
Next, a description will be given of a feature (an operation and effect) of the present embodiment.
Since the structure is made such that the adhesive strength between the resin material (the cast resin) and the outer tube portion
121
β becomes smaller than the adhesive strength between the resin material (the cast resin) and the inner tube portion
121
α, the outer tube portion
121
β serves as a functioning part for achieving the same function as that of the thin film
122
in the embodiment mentioned above.
Accordingly, in the same manner as the thin film
122
, the crack is generated from the boundary portion between the resin material (the cast resin) and the outer tube portion
121
β corresponding to the starting point. On the contrary, the generated crack grows in such a manner as to connect the portions having the small mechanical strength as mentioned above, however, in the portion in which the projection portion
121
b
is formed, since the mechanical strength is easily reduced due to the void or the weld generated at a time of forming, as mentioned above, the crack generated from the boundary portion corresponding to the starting point makes progress to the inner tube portion
121
α side having the simple shape with a low possibility.
Further, in the embodiment mentioned above, since the thin film
122
is not arranged all the area of the portion around which the coil winding of the primary coil
120
is wound (refer to FIG.
5
), the crack generated from the boundary portion between the thin film (the peeling tape)
122
and the resin layer corresponding to the starting point easily makes progress to the secondary coil
130
side via the root portion side of the projection portion
121
b
. However, in accordance with the present embodiment, since all of the coil winding of the primary coil
120
are wound on the outer tube portion
121
β serving the same function as that of the thin film
122
, the starting point of the crack is hard to be generated in the portion around which the coil winding of the primary coil
120
is wound.
Accordingly, it is possible to prevent the crack from being generated and making progress in the portion close to the primary coil
120
(the portion between the primary coil
120
and the secondary coil
130
immediately below the primary coil
120
). Further, it is possible to stably secure the electrical insulation between the primary coil
120
and the secondary coil
130
, and it is possible to improve a durability of the ignition coil
100
.
(Fifth Embodiment)
The present embodiment is structured, as shown in
FIG. 7
, such that a distance r2 from the thin film
122
in the end portion side in the axial direction of the primary spool
121
to the center axis of the primary spool
121
is set to be larger than a distance r1 from the thin film
122
in the substantially center portion in the axial direction of the primary spool
121
to the center axis of the primary spool
121
.
Next, a description will be given of a feature (an operation and effect) of the present embodiment.
The crack is generated from the boundary portion between the thin film
122
and the resin layer corresponding to the starting point and makes progress (grows), in the manner mentioned above, however, in accordance with the present embodiment, since the distance r2 from the thin film
122
in the end portion side in the axial direction of the primary spool
121
corresponding to the starting point for generating the crack to the center axis of the primary spool
121
is set to be larger than the distance r1 from the thin film
122
in the substantially center portion in the axial direction of the primary spool
121
to the center axis of the primary spool
121
, the way (the time) required until the crack gets to the center portion (the primary coil
130
) is increased.
Accordingly, it is possible to prevent the electrical insulation (the primary spool
121
) between the primary coil
120
and the second coil
130
from being early broken.
(Sixth Embodiment)
The present embodiment is structured, as shown in
FIG. 8
, such that a plurality of slits
141
which are formed by separating a part of the outer peripheral core
140
so as to extend in a longitudinal direction are provided in the outer peripheral core
140
.
Accordingly, since a rigidity of the outer peripheral core
140
is reduced in comparison with a simple cylindrical shape, the outer peripheral core
140
is deformed at a time when the thermal stress is applied, whereby it is possible to absorb the thermal stress. Therefore, it is possible to prevent the crack from being generated in the root portion or the like in the projection portion
121
b
of the primary spool
121
.
(Seventh Embodiment)
The present embodiment is structured, as shown in
FIG. 9
, such that a predetermined gap is provided between the coil winding and the projection portion
121
b
so that a force (a moment) is not applied to the projection portion
121
b
due to the tension force applied to the coil winding at a time of winding the coil winding of the primary coil
120
.
In this case, since the moment with respect to the root side of the projection portion
121
b
is increased in accordance that the number of steps (the number of layers) of the coil winding is in the upper steps, it is desirable that the gap between the coil winding and the projection portion
121
b
is provided at least after the second step (the second layer).
(Eighth Embodiment)
The present embodiment is structured, as shown in
FIG. 10
, such that a rubber-like elastic film
123
is sprayed and coated on the outer surface of the primary spool
121
in which the cylinder portion
121
d
and the collar portion
121
b
are integrally formed. The elastic film
123
constitutes a cushion member, the thermal stress applied to the portion between the coil winding of the primary coil
120
and the primary spool
121
, and the like is reduced, and it is possible to prevent the crack from being generated in the primary spool
121
.
(Ninth Embodiment)
The present embodiment is structured, as shown in
FIG. 11
, such that the rubber-like elastic film
123
is integrally formed on the outer surface of the primary spool
121
in which the cylinder portion
121
d
and the collar portion
121
b
are integrally formed. The elastic film
123
constitutes a cushion member, the thermal stress applied to the portion between the coil winding of the primary coil
120
and the primary spool
121
, and the like is reduced, and it is possible to prevent the crack from being generated in the primary spool
121
.
In this case, in the eighth embodiment mentioned above, a whole of the collar portion
121
b
is coated, however, in the ninth embodiment, in order to make the formation easy, only an upper surface side of the collar portion
121
b
(the coil winding side of the primary coil
120
) is coated. Further, both of these elastic films
123
can be substituted for the conventional peeling tape (the adhesion restraining film)
122
. Accordingly, it is possible to reduce a step of winding the thin film which conventionally requires a lot of steps.
(Tenth Embodiment)
The present embodiment is structured, as shown in
FIG. 12
, such that an elastic sheet
123
is wound around the outer surface of the cylinder portion (
121
d
) in the primary spool
121
. The elastic sheet
123
constitutes a cushion member, the thermal stress applied to the portion between the coil winding of the primary coil
120
and the primary spool
121
, and the like is reduced, and it is possible to prevent the crack from being generated in the primary spool
121
.
FIG. 12A
is a cross sectional view showing a state in which the elastic sheet
123
is wound around the primary spool
121
, and
FIG. 12B
is a plan view showing the elastic sheet
123
before being wound. As is apparent from both of the drawings, the elastic sheet
123
used in the present embodiment is obtained by press molding linear discontinuous projections
123
a
on a flat elastic sheet. When winding the elastic sheet
123
around the primary spool
121
, the projections
123
a
form an annular collar portion
121
b.
In this case, in the case of the present embodiment, an interior portion of the collar portion
121
b
forms a cavity
123
b
, however, the cavity
123
b
may be formed so as to be solid by using the elastic sheet
123
which is integrally formed by the rubber or the like. Further, in the present embodiment, the elastic sheet
123
corresponds to a substitute for the peeling tape
122
.
(Eleventh Embodiment)
The present embodiment is structured, as shown in
FIG. 13
, such that the primary spool
121
is formed as a double cylinder structure constituted by the inner tube portion
121
α and the outer tube portion
121
β.
The inner tube portion
121
α corresponds to a part of the integrally formed primary spool
121
, and the outer tube portion
121
β is pressure fitted to an outer peripheral surface side thereof.
The outer tube portion
121
β has the cylinder portion
121
d
around which the coil winding of the primary coil
120
is wound, and the collar portion
121
b
protruding to an outer side in the diametrical direction from an end in an axial direction of the cylinder portion
121
d
, and is integrally formed by the elastic member such as the rubber or the like. Further, the outer tube portion
121
β constitutes a cushion member, the thermal stress applied to the portion between the coil winding of the primary coil
120
and the primary spool
121
, and the like is reduced, and it is possible to prevent the crack from being generated in the primary spool
121
. In this case, in the present embodiment, the outer tube portion
121
β corresponds to a substitute for the peeling tape
122
.
(Twelfth Embodiment)
The present embodiment is structured such that a post-provided collar portion is arranged from an outer periphery side of the peeling tape in the primary spool.
FIG. 15
shows a perspective view of the primary spool in accordance with the present embodiment. Further,
FIG. 16
shows a cross sectional view in the axial direction of the primary spool in the present embodiment.
A projection portion
121
b
is integrally formed in one end portion in the axial direction of the outer peripheral surface in the primary spool
121
, that is, in an end portion in a high voltage terminal side. The projection portion
121
b
is formed in a flange shape. A peeling tape
122
(an adhesion restraining film) made of the PET is annularly provided in a center side in the axial direction of the projection portion
121
b
on the outer peripheral surface of the primary spool
121
. The peeling tape
122
extends to another end portion in the axial direction of the primary spool
121
, that is, an end portion in the connector portion side. The coil
120
is wound around the outer peripheral surface of the peeling tape
122
in a state in which the end in the high voltage terminal side is held in the projection portion
121
b
. The post-provided collar portion
121
f
is made of a resin such as an SPS, a PPE or the like, and is formed in an O shape. The post-provided collar portion
121
f
is arranged on the outer peripheral surface of the peeling tape, in the end portion in the connector portion side of the primary spool
121
. In other words, the peeling tape
122
extends to the end side in the connector portion side rather than the post-provided collar portion
121
f.
The assembly is executed by at first forming the primary spool
121
in which the projection portion
121
b
is arranged, next annularly providing the peeling tape
122
on the outer peripheral surface of the primary spool
121
, then winding the coil
120
around the middle portion in the axial direction on the outer peripheral surface of the peeling tape
122
and finally annularly providing the post-provided collar portion
121
f
in the axial direction from the end in the connector portion side on the outer peripheral surface of the peeling tape
122
.
In accordance with the present embodiment, the peeling tape
122
extends to the end side in the connector portion side rather than the post-provided collar portion
121
f
. Accordingly, even in the end portion in the connector portion side of the primary spool
121
, the thermal stress can be shut off.
(Thirteenth Embodiment)
A difference between the present embodiment and the twelfth embodiment exists in a point that the post-provided collar portion is formed in a C shape. Further, it also exists in a point that the peeling tape extends to an end edge in the connector portion side of the primary spool. Accordingly, a description will be given of only the differences.
FIG. 17
shows a perspective view of the primary spool in accordance with the present embodiment. As shown in the drawing, the post-provided collar portion
121
f
is formed in the C shape. Further, the peeling tape
122
extends to the end edge in the connector portion side of the primary spool
121
. At a time of assembling, the post-provided collar portion
121
f
is flexibly deformed from the diametrical direction not from the axial direction so as to be pressure inserted and annularly provided to the outer peripheral surface of the peeling tape
122
.
In accordance with the present embodiment, the peeling tape
122
extends to the end edge in the connector portion side of the primary spool
121
. Accordingly, it is possible to shut off the thermal stress in a wider range.
(Fourteenth Embodiment)
A difference between the present embodiment and the twelfth embodiment exists in a point in which the post-provided collar portion is not arranged. Further, it also exists in a point in which the coil annularly provided in the primary spool is a shape keeping coil constituted by a self welding coil winding. Accordingly, a description will be given of only the differences.
FIG. 18
shows a perspective view of the primary spool in accordance with the present embodiment. A shape keeping coil
120
a
is wound around the outer peripheral surface of the peeling tape
122
in a state in which the high voltage terminal side end is held in the projection portion
121
b
. The shape keeping coil
120
a
is formed by the self welding coil winding. The self welding coil winding is formed by double coating a conductor such as a Cu or the like with an insulative layer and a fusion layer. In particular, the shape keeping coil is manufactured by at first winding the self welding coil winding around a columnar mold and next applying an electric current to the self welding coil winding so as to fusion bonding the fusion layers with each other due to a Joule heat.
The shape keeping coil
120
a
can keep a cylindrical shape by itself. Therefore, in accordance with the present embodiment, the collar portion for holding the coil winding is not required. Accordingly, it is possible to extend the peeling tape
122
to the end portion in the connector portion side of the primary spool
121
without being disturbed by the collar portion. Therefore, even in the end portion in the connector portion side of the primary spool
121
, the thermal stress can be shut off.
(Other Embodiments)
In the embodiments mentioned above, the description is mainly given of the primary spool, however, it is possible to consider that the same matter is applied to the secondary spool. Further, the inner peripheral side is set to the secondary coil and the outer peripheral side is set to the primary coil, however, the present invention is not limited to this, and the structure may be made such that the outer peripheral side is set to the secondary coil and the inner peripheral side is set to the primary coil.
Further, the present invention is not limited to the structures shown in the embodiments mentioned above, and at least two of the embodiments mentioned above may be combined.
Claims
- 1. An ignition coil for an internal combustion engine comprising:a resin spool formed in a substantially cylindrical shape; a coil constituted by a coil winding wound around said spool; and a high electric voltage being supplied to an ignition apparatus in the internal combustion engine, wherein a plurality of projection portions protruding to an outer side in a diametrical direction from an outer peripheral surface of the spool are integrally formed in an end portion in an axial direction on the outer peripheral surface of said spool so as to line up in a circumferential direction, and a size (L) of a portion in said projection portion which is in parallel to an axial direction of said spool is larger than a size (T) of a portion in said projection portion which is in parallel to a direction orthogonal to the axial direction of said spool.
Priority Claims (4)
Number |
Date |
Country |
Kind |
2001-137824 |
May 2001 |
JP |
|
2001-321131 |
Oct 2001 |
JP |
|
2002-28064 |
Feb 2002 |
JP |
|
2002-105111 |
Apr 2002 |
JP |
|
US Referenced Citations (3)
Number |
Name |
Date |
Kind |
4639706 |
Shimizu |
Jan 1987 |
A |
6208231 |
Oosuka et al. |
Mar 2001 |
B1 |
6571784 |
Shimada et al. |
Jun 2003 |
B2 |
Foreign Referenced Citations (2)
Number |
Date |
Country |
9-30404 |
Apr 1999 |
JP |
11-111545 |
Apr 1999 |
JP |