The present disclosure generally relates to an ingredient or foodstuff package having distinct ingredient or foodstuff compartments, and in particular to an ingredient package which functions to package and dispense plural ingredients or foodstuffs therefrom.
Gasified candy, when exposed to moisture, tends to melt when in prolonged contact therewith. Given a sufficient amount of exposure to moisture (as for example, when exposed to one's mouth), the candy shells surrounding carbon dioxide gas bubbles essentially melt thereby releasing carbon dioxide gas, which action is often described as a popping sensation in one's mouth. The candy, to have its intended affect, should preferably be melted at the time of consumption and therefore separated from ingredients that may tend to otherwise prematurely melt the candy shells and release the popping gas. The candy, however, is often times enjoyed in conjunction with other food items or foodstuffs having significant moisture content such as pudding. In order to successfully serve both pudding and gasified candy for simultaneous consumption, it is necessary to separate the two ingredients prior to consumption. Packaging that enables the consumer to simultaneously and conveniently carry both ingredients in a single package for simultaneous consumption and enjoyment is therefore desirous.
Gasified candy and pudding are exemplary ingredients, however. Other foodstuffs or ingredients that may benefit from compartmentalized separation prior to consumption include any number of probiotic products and/or products containing active cultures such as yogurt or cottage cheese juxtaposed against other sugary ingredients or foodstuffs such as fruit, fruit-based ingredients, jams, and jellies. Some of the more pertinent prior art relating to packaging directed to compartmentalizing ingredients or constituent parts prior to active admixture and the like is described hereinafter.
U.S. Pat. No. 3,861,522 ('522 patent), which issued to Llewellyn et al., discloses a Compartmented Package having Variable Volume Compartments. The '522 patent teaches a compartmented package in which a longitudinal diaphragm, made of film, is sealed to the inner wall of a circular tubular member, also made of film, to form at least two continuous longitudinal linear junctures therebetween in a manner such that the volumes of the resulting compartments are variable. A two-compartment package having infinite relative volume variability in both compartments is stated to be the preferred embodiment.
U.S. Pat. No. 4,495,748 ('748 patent), which issued to Rowell, discloses certain Containers and Machine for Making Them. The '748 patent teaches a container preferably made from sheet plastics comprising a bag containing a tubular valve member, the bag being sealed with a seam at each end, the top seal having an opening therein for entry of an access tube into the valve member, and the valve member having a sealing seam which facilitates piercing of the access tube through the valve member into the bag. A second bag may be provided within the first bag. A machine for making the containers continuously from sheets of material is also disclosed.
U.S. Pat. No. 4,681,228 ('228 patent), which issued to Kerry et al., discloses a Package Filled with a Water Soluble Toxic Pulverulent or Granular Product. Kerry et al. note that some chemical products are so toxic that they must not come into contact with parts of the human body. The '228 patent teaches a package of such a construction that during filling and transport thereof and during the release of product therefrom, the risk of anyone coming into contact with the product is restricted to a minimum, is characterized in that the product is situated in a closed inner container consisting of a water-soluble flexible material, and that the filled inner container is placed inside a closed outer container consisting of a flexible material which is resistant to water, both the inner container and the outer container consisting of a flexible tube which is closed near the two ends by a transverse joint and the end strips of the inner container are connected to the joining strips of the outer container in a manner such that between the contents of the inner container and the said joining strips there is a certain distance, and that a tear line is made in an exposed part of one of the end strips of the inner container.
U.S. Pat. No. 6,935,086 ('086 patent), which issued to Benkus et al., discloses a double-bag package, and method for manufacturing the same, constructed by modification to existing Double Bag Package and Perforation Knife. The '086 patent teaches certain form and fill packaging machines and perforation knives. In a preferred embodiment thereof, the disclosure involves producing a double-bag package from a single sheet of packaging film by feeding a roll of film having graphics printed sideways rather than vertically into a vertical form, fill and seal packaging machine and using a novel perforating/cutting knife to alternately cut and perforate transverse seals. The perforating/cutting knife has teeth in the shape of oblique triangular pyramids, with each tooth having three cutting edges. The perforating/cutting knife produces self-correcting T-shaped perforation patterns capable of capturing and redirecting errant tears for fail-safe directional separation.
International Publication No. WO 94/27886, authored by Richter et al., discloses a Container with Multiple Chambers, to Package Components Separately Prior to Use in Admixture. The Richter et al. publication teaches a package for accommodating a product having at least two components, which package has at least two self-contained chambers in which the individual components of the product can be stored in such a manner that they are hermetically separated from one another. The individual chambers are connected together in such a manner that they can be separated from one another only by destroying at least one chamber wall. The end regions of the chamber walls are in the form of a common closure for the individual chambers such that the individual chambers can only be opened simultaneously. In the preferred embodiment, the package comprises at least one folded carton having essentially a front and a back wall, side walls, bottom flaps and top flaps, inside which carton are arranged in a fixed manner at least two tube-like inner sachets each of which accommodates one of the components directly and which represent the chambers for the individual components, and the top end regions of which that project out of the inside of the folded carton form the common closure after the inner sachets have been filled separately.
From a review of these publications and other prior art generally known in the relevant art, it will be seen that the prior art does not teach a package for coaxially aligning and compartmentalizing constituent ingredients of a final mixture. Further, the prior art does not teach certain methodology for finally serving foodstuffs or presenting ingredients by axial displacement relative to package assembly, whereby plural foodstuffs or ingredients are coaxially presented for mixture at the time of consumption. The prior art thus perceives a need for a package assembly and methodology associated therewith that provides consumers with a novel means for receiving and consuming multiple ingredients, the admixture of which has arguably greater delectable value than the sum of its parts.
Accordingly, an ingredient separating package is disclosed which functions to package and present plural ingredients which may, upon presentation, effect an opportune admixture. In one aspect, the package may comprise at least one inner tube or inner barrier, an outer tube or barrier, first and second package ends, and a longitudinal package axis extending intermediate the first and second package ends. The inner and outer tubes may optionally extend coaxially about the package axis. The inner tube receives an inner ingredient and the outer tube receives both the inner tube, laden with the inner ingredient, and an outer ingredient. The inner and outer tubes are sealed at the first and second package ends. The inner tube thereby prevents untimely ingredient inter-contact, the outer tube thereby seals the coaxial package from ambient matter such as air, debris, or other matter that may be considered problematic to effect a proper ingredient admixture.
The inner and outer tubes may be sealed to one another at the first and second package ends and may comprise certain manually enabled, end-opening structure as may be preferably defined by state of the art singular, paired, continuous, or skipped laser scoring. Thereby, the user may selectively unseal or open a select package end (typically the top package end as directed by external graphical indicia) and coaxially dispense the inner and outer ingredients for further effect or action. Certain methodology is further presented as reflective of the disclosed structures in terms of coaxial ingredient presentation and foodstuff service.
Referring now to the drawings with more specificity, an embodiment of a coaxial ingredient or foodstuff package or coaxial package assembly 10 is generally illustrated and referenced in
Thus, the coaxial ingredient package assembly 10 may well function to package plural ingredients or foodstuffs in distinct coaxial compartments and preferably comprises at least one plastic, pliable, or pinchable inner foodstuff barrier or tube 11 as illustrated and referenced in
The inner ingredient or foodstuff barrier 11 is preferably formed by way of a first vertical form fill and seal (VFFS) assembly 15 as generally depicted in
The film composition of inner foodstuff barrier 11 generally depicted in
In this regard, it is noted that state of the art techniques for forming a preferred longitudinal lap seal may involve the use of metalized oriented polypropylene (OPP) or metalized polyethylene terephtalate (PET). Excellent results may be achieved by utilizing OPP or PET for the outside or outermost surface 16 of barrier 11 insofar as the same enables state of the art heat sealing of the longitudinal back seal (or transverse seal) of the film. Notably, there is no requirement for an ink layer for the inner ingredient or foodstuff barrier 11 as viewable graphics and the like may be considered superfluous, the same being otherwise hidden or blocked from view by the outer barrier 12.
With reference to
It is contemplated that inner foodstuff barrier 11 may preferably comprises a longitudinal lap seal 20 of the type generally described and depicted in
The outer foodstuff barrier 12 is preferably formed by way of a second vertical form fill and seal (VFFS) assembly 19 tandemly juxtaposed in inferior adjacency to assembly 15 as further generally depicted in
The film composition of outer foodstuff barrier 12 generally depicted in
In this last regard, it will be noted that a longitudinal fin seal 22 is to be preferred for longitudinally sealing the back of outer foodstuff barrier 12, which fin seal 22 is generally depicted in
The fin seal variation generally depicted also provides that the product to be placed in the formed package will be protected from the ink layer by the inside surface or layer 23. Again, the outside layer 24 does not normally contact any packaged foodstuff product. In the preferred embodiment depicted in
It should perhaps be reiterated that the packaging materials that are fed into the form, fill and seal machines shown in
As may be further seen from an inspection of
Finally, the first and second package ends 13 are preferably heat-pressure sealed to finally seal the package assembly 10. The sealed first and second package ends 13 effectively function to selectively prevent contact intermediate the inner and outer foodstuffs 26 and 28 and axially ambient matter or matter axially external to package assembly 10. In this last regard, the notion of selectively preventing contact intermediate the inner and outer foodstuffs 26 and 28 and axially ambient matter is meant to convey that the user may elect to enable contact therebetween, as for example, by opening the package assembly 10. It is thus contemplated that the coaxial foodstuff package or package assembly 10 may further preferably comprise certain manually-enabled, end-opening means for enabling a user to manually (in other words, with one's hand and/or fingers) open a select package end, the select package end being selected from the group consisting of the first and second package ends 13, but which may preferably be situated adjacent the top end as directed by implied by graphical indicia viewable via the outer package structures.
It is further contemplated that the end-opening means may be defined by certain select scoring as selected from the group comprising a singular score line 30 as generally depicted in
In this last regard, it is contemplated that the preferred opening technology take the form of or be defined by a laser score. The laser score will be both on the inner tube 11 and the outer tube 12. It is further contemplated that the laser score may be preferably applied while the packages are in the web configuration, prior to being formed into a tube. As heretofore stated, the score can be of many different designs; a solid score, a skip score (as shown by dotted lines), a double score where the scores are preferably about 1 mm apart making it easier to align the inner and outer scores for a clean removal of the select package end (i.e. the top) of each tube. By using a laser score the entire select package end (i.e. the top) of the tube can be removed, making the dispensing of the ingredients or inner and outer foodstuffs 26 and 28 inside much cleaner or with minimal axial obstruction(s).
Certain foodstuff service and/or presentation methodology is inherently taught by the structure(s) heretofore disclosed and described. For example, a certain foodstuff service method is contemplated whereby contact between plural foodstuffs may be prevented prior to final foodstuff service. In this regard, the method is contemplated as comprising certain steps including, aligning an inner foodstuff such as inner foodstuff 26 about a foodstuff axis such as package axis 100. The step of inner foodstuff alignment may be structurally achieved by bounding or packaging the inner foodstuff with a first foodstuff barrier such as inner foodstuff barrier 11 as generally depicted in
After the respective foodstuffs are axially aligned, the same may be sealed from ambient matter (such as air or debris) for stowing and/or transporting the ingredients or foodstuffs and the foodstuffs may be unsealed or opened to ambient matter (such as a plate or one's mouth) prior to final foodstuff service. After opening or unsealing the otherwise sealed foodstuffs, it is contemplated that the methodology may involve the step of finally serving the inner and outer foodstuffs to the foodstuff consumer, as for example, by setting the coaxially aligned foodstuffs in front of the foodstuff consumer or by dispensing the foodstuffs from coaxial alignment directly to the foodstuff consumer, as for example, by dispensing the contents directly into one's mouth as generally depicted in
Notably, the step(s) of foodstuff alignment and foodstuff sealing may be defined by the process of packaging the foodstuff in respective foodstuff sheathing such as inner and outer foodstuff barriers 11 and 12. Thus, the methodology here contemplated may further involve the step of preventing foodstuff contact during the step of coaxial foodstuff alignment. Further, the inner and outer foodstuffs may be simultaneously and axially displaced during final foodstuff service as for example, by squeezing, pinching (as at 37 in
In this last regard, it is contemplated that the user may elect to allow gravitational force to pull foodstuffs or other ingredient contents from the inner and outer chambers 38 and 39 as generically depicted in
Typically, after having been finally served the foodstuffs, the user may elect to mix the foodstuffs out of coaxial or concentric alignment. This may be achieved in any number of ways, not the least of which is via mouth-mixing the foodstuffs as implicitly shown in
It is contemplated that the process of presenting foodstuff(s) may differ somewhat from foodstuff service methodology heretofore set forth. The presentation method or method for coaxially presenting plural foodstuffs to a foodstuff consumer is believed to essentially comprise the steps of coaxially aligning a plurality of foodstuffs about a foodstuff axis. The process of coaxial foodstuff alignment is believed to set up the process of axial displacement of foodstuffs along the foodstuff axis, which process, in turn, sets up the process of coaxial presentation of foodstuffs to a foodstuff consumer. In other words, after axially displacing the coaxially aligned foodstuffs, the same may be presented to the foodstuff consumer. As before, the plural foodstuffs may be prevented from contacting one another during coaxial foodstuff alignment. Further, should the foodstuffs benefit from being sealed from ambient matter (as for example for stowage on a market shelf), it is further contemplated that the foodstuffs may be sealed from ambient matter and opened prior to axial foodstuff displacement, the displacement may be effectively achieved or effected by way of pinching action or other forceful means as heretofore contemplated.
While the above description contains much specificity, this specificity should not be construed as limitations on the scope of the invention, but rather as an exemplification of the invention. For example, the invention may be described as a coaxial foodstuff package having distinct coaxial compartments for housing distinct ingredients, the separation of which may be beneficial until to the actual time of consumption. The disclosed preferred embodiments have illustrated a two chamber foodstuff package. However, a coaxial foodstuff package comprising more than two distinct compartments according to the teachings set forth herein is contemplated. Should the manufacturer elect to form three or more coaxial compartments, it is contemplated that inner barriers should take the form of inner foodstuff barrier 11 and the outermost barrier should take the form of outer foodstuff barrier 12.
Further, a foodstuff or other ingredient package for packaging and presenting plural foodstuffs or ingredients is disclosed. The package essentially comprises at least one inner foodstuff or ingredient barrier (such as barrier 11), an outer foodstuff or ingredient barrier (such as barrier 12), first and second package ends, and at least one longitudinal package axis (such as axis 100). The inner foodstuff barrier extends intermediate the outer foodstuff barrier and the package axis for receiving an inner foodstuff and forming an inner food package or packages. The outer foodstuff barrier receives the inner food package(s) and an outer foodstuff, which essentially fills the interstitial cavity intermediate the outer barrier and the inner food package(s). The inner foodstuff barrier essentially functions to prevent contact intermediate the inner and outer foodstuffs, and the outer foodstuff barrier essentially functions to prevent contact intermediate the outer foodstuff and radially ambient matter.
The first and second package ends are sealed for selectively preventing contact intermediate the inner and outer foodstuffs and axially ambient matter. In this regard, it is contemplated that a multiaxial foodstuff package may be gleaned from the teachings set forth herein wherein the foodstuff package may comprises plural inner foodstuffs bound by certain inner foodstuff barriers and a single outer foodstuff which fills the interstitial space intermediate the inner foodstuff barrier(s) and the outer foodstuff barrier. Further, in terms of a foodstuff presentation method, the method for presenting plural foodstuffs to a foodstuff consumer may be said to comprise the steps of axially displacing axially aligned plural foodstuffs along the foodstuff axes for axially presenting plural foodstuffs to a foodstuff consumer; and presenting the axially aligned and axially displaced foodstuffs to the foodstuff consumer. This method may be preferably defined by coaxially aligning the plural foodstuffs or ingredients prior to axial displacement.
As a last point, it will be seen that the types of ingredients storable in the package do not necessarily have to be overtly reactionary with one another as would be the case with gasified candy and moisture-laden ingredients such as pudding. The package may well function to separate ingredient pairs and the like such as cottage cheese on the outside and a fruit sauce on the inside (similar to the ingredients of B
Turning now to the embodiment of
Although described by reference to a preferred embodiment and certain alternative embodiments, it is not intended that the novel assembly be limited thereby, but that modifications thereof are intended to be included as falling within the broad scope and spirit of the foregoing disclosure, the following claims and the appended drawings.