This invention relates to cable television (CATV) networks, and more particularly to a new and improved CATV network interface device which interconnects subscriber equipment at a subscriber's premises to the CATV network infrastructure. The present network interface device offers an improved capability for inhibiting the amount of undesirable ingress noise introduced from subscriber equipment to the CATV network without diminishing the information content of valid upstream signals and while achieving use compatibility with most CATV networks without regard to upstream communication protocols or unique equipment used in the CATV network.
CATV networks supply high frequency “downstream” signals from a main signal distribution facility, known as a “headend,” through the CATV network infrastructure to the homes and offices of subscribers to the CATV signal distribution services. The infrastructure of a typical CATV network includes interconnected coaxial cables, signal splitters and combiners, repeating amplifiers, filters, trunk lines, cable taps, drop lines and other signal-conducting devices. The downstream signals are supplied to the subscriber equipment, such as television sets, telephone sets and computers, to cause them to operate.
In addition, most CATV networks also transmit “upstream” signals from the subscriber equipment back to the headend of the CATV network. For example, a set top box allows the subscriber to select programs for display on the television set. Upstream signals are sent from the set top box to the headend signal-delivering equipment that then transmits the selected downstream signal to the subscriber. As another example, two-way communication is essential when using a personal computer connected through the CATV infrastructure to the public Internet. As a further example, voice over Internet protocol (VOIP) telephone sets use the CATV infrastructure and the public Internet as the medium for transmitting two-way telephone conversations. Such two-way signal transmission (upstream and downstream) is therefore an essential requirement for modern CATV networks.
To be effective, a CATV network must use filters and other components which reduce or eliminate unwanted signals that enter the CATV network from external sources. These undesirable external signals, known as “ingress noise,” have the effect of degrading valid signals, if measures are not taken to suppress or otherwise limit the amount of ingress noise in a CATV network.
The most intense frequency of undesirable ingress noise signals is in the frequency band of 0-15 megahertz (MHz). Valid upstream signals are within the frequency band of 5-42 MHz, which overlaps with the frequency band of the most intense ingress noise. It is therefore impossible or extremely difficult to filter undesirable ingress noise from valid upstream signals when the two electrical signals occupy the same frequency band and both signals may originate at approximately the same location at the subscriber premises. Valid downstream signals are within the frequency band of 54-1000 MHz, so the ingress noise, typically in the 0-15 MHz frequency band, is usually suppressed by filters in the downstream frequency band.
Even though the ingress noise is typically in a frequency band different from the downstream frequency band, ingress noise can still have adverse influence on both valid downstream and upstream signals. Ingress noise from individual subscribers tends to funnel together and accumulate as a substantial underlying level of base noise on the CATV network. Valid signals must be distinguished from this base level noise, usually by amplifying the valid signals above the base noise level. A high level of base noise may cause signal amplifiers to clip or distort both the valid downstream and upstream signals during amplification and retransmission of those signals, thereby reducing the information contained in those valid signals. A reduction in the information contained in the signals diminishes the quality of service experienced by the subscriber and may even inhibit the delivery of services to subscribers.
There are many potential sources of ingress noise in the environment of a typical CATV network. However, the typical CATV network has a relatively high immunity to ingress noise because the CATV network infrastructure is essentially constructed by professionals using high quality equipment and techniques. However, the situation is usually considerably different at the subscriber premises. The quality of the subscriber equipment, the type and integrity of the signal conductors within the consumer premises, the effectiveness and quality of the connections between the subscriber equipment and the signal conductors, and the presence of many other types of electrical devices which emit noise, such as electric motors, radios and consumer appliances, become sources of ingress noise at the subscriber premises over which the CATV service provider has no control.
Even though the CATV service provider may have little control over the sources of ingress noise at the subscriber premises, the CATV service provider is nevertheless responsible for the quality of service, at least from the perspective of subscribers. Therefore, different types of ingress noise inhibiting devices have been devised for use with CATV networks to attempt to suppress ingress noise entering the CATV network from the subscriber premises.
One type of known ingress noise inhibiting device relies on downstream signals generated at the headend in accordance with the communication protocol to close an electronic switch at predetermined times and under predetermined circumstances to establish an upstream communication path for valid upstream signals. Once the upstream communication is established, the subscriber equipment is permitted to transmit upstream signals in synchronization with the establishment of the path. The upstream signals from subscriber equipment can only be communicated at those times established by the communication protocol. At all other times, all upstream signals, including ingress noise, are blocked and prevented from entering the CATV network. The times when the electronic switch is closed are established by the communication protocol, and those time periods may not correspond with the times when the subscriber makes programming selections, desires to transmit upstream signals, or is talking during a telephone conversation, for example.
Protocol-responsive ingress noise inhibiting devices have the potential to delay the transmission of the upstream communications, and as a result, the response thereto, because the upstream communications path is only established during those predetermined times set by the communication protocol. The times set by the communication protocol do not usually correspond with the times when the user wishes to transmit valid upstream signals. The resulting delays are perceived by the subscriber as deficient responsiveness and a reduction in the quality of service. Furthermore, since the time intervals for transmitting upstream signals is preestablished by the communication protocol, the closed electronic switch permits ingress noise to enter the CATV network during those times when there are no subscriber upstream signals to transmit, thereby allowing ingress noise to enter the CATV network.
A further difficulty with such protocol-responsive ingress noise inhibiting devices is that they are specifically useful only in those types of CATV networks which require a specific communication protocol. Because not all CATV networks operate on the same basis, protocol-controlled ingress noise inhibiting devices do not have wide applicability to a variety of different types of CATV networks and CATV service providers. In addition, synchronizing the subscriber equipment to the CATV network protocol requires specialized equipment.
A related type of ingress noise inhibiting device permits upstream communications in only one or more narrow band pass frequencies, for example at 11 and/or 26 MHz. Filters are employed to block any ingress noise within the other ranges of the 5-42 MHz upstream frequency band and the 0-15 MHz typical ingress noise frequency band. Although such bandpass ingress noise inhibiting devices are effective in suppressing the ingress noise outside of the bandpass frequencies, ingress noise is still able to enter the CATV network at the selected bandpass upstream frequencies. Further, the use of such narrow frequency bandpass ingress noise inhibiting devices is applicable only to those types of CATV networks which limit the frequency of valid upstream signals to preselected frequency bands. The use of preselected upstream frequency bands for valid upstream signals is not universally applicable to a variety of different types of CATV networks and CATV service providers.
Another type of ingress noise inhibiting device is one which responds to an auxiliary out-of-band signal to close an electronic switch and establish an upstream communication path. For example, the auxiliary out-of-band signal may be a 1 MHz tone, which falls outside of the upstream frequency band. The subscriber equipment generates this out-of-band signal whenever it wishes to transmit an upstream communication. The ingress noise inhibiting device responds to the out-of-band signal and closes the electronic switch to establish the communication path for the upstream signal in the 5-42 MHz frequency band. Typically, the out-of-band signal remains present while the upstream signal is transmitted. When the out-of-band signal is not generated, the electronic switch opens to block the communication path, thereby preventing ingress noise from entering the CATV network. Such ingress noise inhibiting devices require the subscriber equipment and set-top boxes to have the additional functionality of generating, recognizing and responding to the out-of-band signal. Such equipment is not common, and adds to the cost and difficulty of the equipment support operations of the CATV service provider. Furthermore, the ingress noise inhibiting device also requires additional components to function in a frequency band different from the normal 5-42 MHz upstream frequency band in which other components operate. Lastly, ingress noise in the out-of-band frequency range can also cause the electronic switch to close and establish the upstream communication path when there is no valid upstream signal to transmit, thereby admitting ingress noise on to the CATV network.
Other types of ingress noise inhibiting devices attempt to distinguish ingress noise from valid upstream signals, on the basis of characteristic differences in the ingress noise signals and the valid upstream signals. Ingress noise is characterized by erratic amplitude and timing variations, while valid upstream signals are characterized by regular amplitude and consistent timing characteristics. Valid upstream signals are frequently transmitted in the form of packets, which are defined by the presence and absence of high-frequency pulses that constitute bits of a digital signal. The typical packet includes a preamble with a series of high-frequency pulses representing digital bits which define the start of the packet. Certain packet-responsive ingress noise inhibiting devices attempt to recognize the preamble, and in response, close an electronic switch to establish a pathway for the valid upstream signal. Distinguishing the preamble requires time to recognize its regular timing and amplitude characteristics. The amount of time available to perform such recognition may not always be adequate, particularly when the high-frequency pulses of the preamble are of low or moderate strength. Under those circumstances, the upstream communication path may not be established quickly enough to transmit the body of substantive information carried by the packet, thereby resulting in loss of some of the information and the perception of a diminished quality of service. Not all CATV networks operate on a digital packet communication protocol, so the applicability of packet-responsive ingress noise inhibiting devices is not universal.
Another difficulty arising from some known ingress noise inhibiting devices involves attempting to switch filters in and out of electrical connection to establish the upstream communication path and to suppress the ingress noise when the upstream communication path is not established. Switching filters in and out of circuit connection requires a finite amount of time for the energy storage inductors and capacitors of such filters to store the necessary energy and to achieve stabilized operability to perform filtering. Of course, the time required to store the energy, achieve stability and commence filtering the signals may also result in truncating or diminishing the information content of the upstream signals.
Still another type of ingress noise inhibiting device attempts to distinguish between spurious ingress noise and valid upstream signals on the basis of their energy content. Such devices function by integrating the power of the signals over time to arrive at an energy value. The assumption is that the power of valid upstream signals, when integrated, will represent an energy content sufficiently greater than the integrated power or energy of spurious ingress noise signals, because valid upstream signals have sustained energy while spurious noise signals have erratic low energy. The sustained length of valid upstream signals integrates to recognizable energy level, while the short and erratic length of ingress noise integrates to a much lesser energy level. After the time period required for integrating the power into energy, the energy level is compared to a predetermined threshold energy level which has been selected to represent a valid upstream signal. If the energy level exceeds the predetermined threshold energy level, an electronic switch is closed to establish the upstream communication path. If the integration of the power results in an energy level which is less than the predetermined threshold energy level, it is assumed that the signal is ingress noise, and the electronic switch remains open to prevent any signals from reaching the CATV network.
To integrate the power level of upstream signals into energy, a time delay is required before valid upstream signals can be transmitted to the CATV network. This delay in transmitting valid upstream signals presents the possibility that some of the valid upstream signal will be lost or truncated before the upstream communication path is established.
The CATV network interface device and method of this invention are effective in mitigating ingress noise over the entire 5-42 MHz upstream frequency band of a CATV network, and do so while transmitting valid upstream signals almost instantaneously to avoid loss of information content. The valid upstream signals are transmitted without requiring a time delay sufficient to determine energy content. Consequently, valid upstream signals are transmitted almost immediately to the CATV network after the subscriber equipment generates those signals. The almost instantaneous transmission of valid upstream signals avoids the risk of loss of information content. The present device and method is not limited in its applicability or use to any particular type of CATV network or any particular type of communication protocol used on a CATV network. The present ingress noise inhibiting network interface device and method do not require synchronization with CATV network communication protocol or require special functionality in subscriber equipment to synchronize valid upstream signals with the CATV network communication protocol. No out-of-band signaling or functionality is required to implement the present invention. Upon termination of the valid upstream signal, the present device and method quickly revert to a condition which effectively blocks ingress noise from the CATV network. No filters are switched into or out of electrical connection. When blocking ingress noise from the CATV network, the connections to the CATV network and to the subscriber equipment are terminated into characteristic impedances to minimize reflected signals that detract from valid signals.
In accordance with these and other features, one aspect of the present invention involves a network interface device which has an upstream noise mitigation circuit that mitigates the ingress of noise from subscriber equipment into a cable television (CATV) network. The CATV network transmits downstream signals in a first frequency band from a headend to the subscriber equipment and transmits upstream signals in a second different frequency band from the subscriber equipment to the headend. The ingress noise mitigation circuit comprises a downstream filter which filters downstream signals before delivery to the subscriber equipment, and an upstream filter which filters upstream signals before delivery to the CATV network. A detector determines an instantaneous level of power of the upstream signals. A threshold circuit establishes a predetermined threshold power level which distinguishes typical ingress noise from valid upstream signals. A comparator compares the instantaneous power level of the upstream signal with the threshold power level and asserts a trigger signal when the instantaneous power level exceeds the threshold power level. A switch is connected to the upstream filter and terminates the upstream filter in a characteristic impedance to block upstream signals and to prevent or minimize signal reflection when in a normal position. The switch conducts the upstream signals from the subscriber equipment to the CATV network when in an activated position. The switch assumes the activated position when the instantaneous power level exceeds the threshold power level, as represented by the assertion of the trigger signal, and assumes the normal position under usual circumstances and when the instantaneous power level is less than the threshold power level, represented by the de-assertion of the trigger signal. By activating the switch immediately after the instantaneous power content of the upstream signal exceeds the threshold power level, there is little possibility or opportunity for the information contained in the upstream signals to be lost, truncated or diminished.
Other aspects of the network interface device involve a timer which is operative to maintain the switch activated for a predetermined time period after the instantaneous power level exceeds the threshold power level and which is operative to return the switch to the normal position after expiration of a predetermined time period after the switch is activated. The predetermined time is sufficient to transmit a single valid maximum-length upstream signal. The continued presence of energy from multiple valid sequential upstream signals maintains the switch in the activated position to permit transmission of those signals. Should ingress noise have an instantaneous power level sufficient to exceed the threshold power level, the switch will quickly resume the normal position and prevent further transmission of the ingress noise after the ingress noise dissipates.
Additional aspects of the network interface device involve first and second upstream filters which filter the upstream signals before delivery to the CATV network, and first and second switches connected to the first and second upstream filters. The first and second switches assume activated positions in response to the instantaneous power content exceeding the threshold power level and assume normal positions in response to the instantaneous power content remaining below the threshold power level. In the normal positions, the two switches terminate the filters through characteristic impedances to prevent ingress noise from the subscriber equipment from reaching the CATV network. In the activated positions, the two switches conduct the upstream signals through the first and second upstream filters.
Another aspect of the present invention is a network interface device which includes a gas tube surge protection device. The gas tube surge protection device shunts high voltage and high current surges, such as those arising from lightning, from CATV network components and the subscriber equipment.
A method of mitigating upstream noise originating from subscriber equipment is a further aspect of the present invention. The method involves filtering upstream signals including upstream noise to confine the frequency of the upstream signals to an upstream frequency band, determining an instantaneous power content of the upstream signals, establishing a threshold power level which typically distinguishes ingress noise from valid upstream signals, comparing the instantaneous power content of the upstream signals to the threshold power level, blocking the filtered upstream signals from the CATV network when the instantaneous power content is less than the threshold power level, and conducting the filtered upstream signals to the CATV network when the instantaneous power content is at least equal to the threshold power level.
Other features of the method involve conducting upstream signals to the CATV network for a predetermined time period after the instantaneous power content exceeds the threshold power level. The instantaneous power content is integrated over a predetermined integration time to arrive at an integration value. If the integration value is less than a predetermined threshold energy level, thereby signifying ingress noise, the upstream communication path is blocked to prevent the ingress noise from reaching CATV network after the predetermined integration time has elapsed. If the integration value is greater than the predetermined threshold energy level, thereby signifying the presence of a valid upstream signal, the upstream communication path is maintained for the time duration of a single valid maximum-length upstream signal. If the integration value is greater than the predetermined threshold energy level, thereby signifying the presence of a valid upstream signal, and the instantaneous power of the valid upstream signal continues after the time duration of a maximum-length upstream signal, the valid upstream signal is constituted by a sequence of multiple valid upstream signals. In this circumstance, the upstream communication path is maintained for the time duration of the multiple valid upstream signals. In the respective cases of a single valid upstream signal or multiple sequential valid upstream signals, maintaining the upstream communication path for the duration of a single maximum-length upstream signal assures or for the duration of the multiple sequential valid upstream signals assures that the information contained in the valid upstream signals will be fully and accurately transmitted without truncation or other loss of information. After the time duration of a single valid maximum-length upstream signal or the time duration of a sequence of multiple valid upstream signals, the upstream communication path is terminated to block ingress noise from entering the CATV network.
Other features and aspects of the invention, and a more complete appreciation of the present invention, as well as the manner in which the present invention achieves the above and other improvements, can be obtained by reference to the following detailed description of presently preferred embodiments taken in connection with the accompanying drawings, which are briefly summarized below, and by reference to the appended claims.
A network interface device 10 which incorporates the present invention is shown in
The interface device 10 is connected to a conventional CATV network 20, which is shown in a typical topology in
The network interface device 10 receives the downstream signals 22 from the CATV network 20 at a network connection port 44. The downstream signals 22 are either passive or active. Passive downstream signals are those signals which are conducted through the interface device 10 without amplification, enhancement, modification or other substantial conditioning. The passive downstream signals are delivered from a passive port 45 to passive subscriber equipment, such as a voice modem 46 connected to a telephone set 48, or an embedded multimedia network interface device (EMTA, not shown), located at the subscriber premises 18. Active downstream signals are those signals which are amplified, filtered, modified, enhanced or otherwise conditioned by power-consuming active electronic circuit components within the interface device 10. The conditioned active downstream signals are divided into multiple copies and delivered from a plurality of active ports 50, 52, 54 and 56 to active subscriber equipment located at the subscriber premises 18, such as television (TV) sets and/or data modems 58, 60, 62 and 64. Other subscriber equipment, such as data processing devices or computers, is connected to the data modems.
The equipment at the subscriber premises 18 typically generates upstream signals 40 (
Electrical power for the network interface device 10 is supplied from a conventional DC power supply 66 connected to a dedicated power input port 68. Alternatively, electrical power can be supplied through a conventional power inserter (also shown at 58) that is connected to the port 50. The power inserter allows relatively low voltage DC power to be conducted through the same port 50 that also conducts high-frequency signals. Use of a conventional power inserter connected to one of the ports, e.g. port 50, eliminates the need for a separate dedicated power supply port 68, or provides an alternative port through which electrical power can also be applied. The power supply 66 or the power supplied from the port 50 is typically derived from a conventional wall outlet (not shown) within the subscriber premises 18.
The ports 44, 45, 50, 52, 54, 56 and 68 are each preferably formed by a conventional female coaxial cable connector which is mechanically connected to the housing 12 and which is electrically connected to internal components of the interface device 10. Coaxial cables from the subscriber equipment and the drop cables 38 (
The internal circuit components of one embodiment of the network interface device 10 are shown in
The active downstream signals 74 are conducted to active circuitry 78, where the active downstream signals 74 are amplified, filtered, modified, enhanced or otherwise conditioned before delivery through the active ports 50, 52, 54 and 56 to the subscriber equipment 58, 60, 62 and 64. Active upstream signals 80 are created by the subscriber equipment 58, 60, 62 and 64, and also pass through the active circuitry 78, where those signals are also conditioned or otherwise modified or enhanced before being combined at the signal splitter/combiner 70 to become network upstream signals 40 in the CATV network 20.
The circuit components of the active circuitry 78 receive power from the power supply 66 connected at port 68 or through the power inserter 58 (
The components of the active circuitry 78 which conduct the downstream active signals 74 include first and second analog downstream filters 84 and 86 that are connected in series by a linear amplifier 88. The downstream filters 84 and 86 filter the downstream signals 74 in the downstream 54-1000 MHz frequency band. The linear amplifier 88 amplifies, modifies or enhances the downstream signals 74, and in conjunction with the filters 84 and 86, conditions the downstream signals 74. The downstream signals 74 are thereafter connected through conventional signal splitter/combiners 90, 92 and 94 before those downstream signals 74 are delivered through the active ports 50, 52, 54 and 56 to the subscriber equipment 58, 60, 62 and 64.
The active upstream signals 80 created by the subscriber equipment 58, 60, 62 and 64 are conducted through the active ports 50, 52, 54 and 56 to an upstream noise mitigating circuit 100. The upstream noise mitigation circuit 100 transfers valid active upstream signals 80 from the subscriber equipment 58, 60, 62 and 64 through the network interface device 10 to the CATV network 20 as upstream signals 40. These functions are accomplished as described below.
Valid upstream signals from the subscriber equipment 58, 60, 62 and 64 are conducted through the signal splitter/combiners 92, 94 and 90 to become active upstream signals 80. The upstream signals 80 are applied to a first upstream signal bandpass filter 102. Because the downstream signal filter 86 passes signals only in the 54-1000 MHz band, valid upstream signals 80 in the frequency band of 5-42 MHz are blocked by the downstream signal filter 86 and diverted through the upstream signal filter 102. The first upstream signal filter 102 preferably passes signals in the valid upstream signal frequency range of 5-42 MHz. Typical ingress noise falls within most intensely within the frequency range of 0-15 MHz, so the first upstream filter 102 has the capability of removing ingress noise at the low frequencies in the range of 0-5 MHz. However, ingress noise in the range of 5-15 MHz will be conducted by the upstream signal filter 102.
To mitigate or prevent ingress noise upstream signals from entering the CATV network 20 from the network interface device 10, ingress noise signals conducted through the first upstream filter 102 are isolated by a first radio frequency (RF) single pole double throw (SPDT) electronic switch 104 and terminated to ground through a termination resistor 103. The termination resistor 103 is connected to one terminal of the first electronic switch 104. Signals from the first upstream signal filter 102 are conducted through a conventional directional coupler 105 to and through the switch 104 to the termination resistor 103 while the first electronic switch 104 is in a normal position, shown in
The first electronic switch 104 changes to an alternate activated position (not shown in
The signal 106 from the coupler 105 is conducted to an input terminal of a conventional log amplifier detector 108. The log amplifier detector 108 operates on an inverse logarithmic basis to convert the instantaneous magnitude of power of the signal 106 to a DC voltage output signal 110. By operating on an inverse logarithmic basis, the typical decibel power of the input signal 106 is converted into a linear DC voltage output signal 110 whose magnitude is inversely related to the instantaneous input power. This logarithmic conversion allows the log amplifier detector 108 to function as an instantaneous demodulating power detector whose output DC voltage signal is inversely proportional to the logarithm of the input power. A log amp detector 108 which is satisfactory for use in the present invention is part number AD 8319 available from Analog Devices of Norwood Mass., USA. The DC voltage output signal 110 therefore represents the inverse of the instantaneous power of the upstream signal 80 conducted through the directional coupler 105.
The DC voltage output signal 110 from the log amp detector 108 is applied to a negative input terminal of a comparator 112. A threshold signal 114 is applied to the positive input terminal of the comparator 112. The threshold signal 114 is derived from a resistor divider network such as a potentiometer 116 and a resistor 118 connected in series, or from another voltage source. Adjustment of the value of the potentiometer 116 adjusts the magnitude of the threshold signal 114. The adjustment of the threshold signal 114 establishes the level where an trigger signal 120 from the comparator 112 switches from a logic low level to a logic high level.
The magnitude of the DC voltage output signal 110 from the log amp detector 108 is inversely related to the magnitude of the instantaneous power of the upstream signal represented by signal 106. That is, when the magnitude of the upstream signal 106 is relatively large, the DC voltage output signal 110 from the log amp detector 108 is relatively small, and vice versa. Because of this inverse relationship, the DC voltage output signal 110 is applied to the negative input terminal of the comparator 112, and the threshold signal 114 is applied to the positive input terminal of the comparator 112. Applying the two input signals in this manner causes the comparator 112 to supply a logic high trigger signal 120 whenever the magnitude of the instantaneous power of the upstream signal exceeds a predetermined threshold power level representative of a valid upstream signal. Conversely, when the DC voltage output signal 110 is greater than the signal 114, the trigger signal 120 from the comparator 112 is at a logic low level. When the DC voltage output signal 110 is less than the signal 114, the trigger signal 120 from the comparator is at a logic high level. The logic high level of the signal 120 therefore represents the condition where the instantaneous power of the upstream signal exceeds the predetermined threshold power level established by the signal 114.
Upon sensing that the instantaneous power content of an upstream signal exceeds the level represented by the predetermined threshold power level, the upstream signal is immediately transmitted or passed to the CATV network 20 as a network upstream signal 40. Upstream signals which do not meet the threshold power level are considered ingress noise. Ingress noise signals are isolated from the CATV network 20 by the switches 104 and 130, while incident upstream signals 80 are simultaneously terminated to ground through the termination resistor 103. The functions of passing upstream signals to the CATV network and terminating upstream signals to ground are accomplished in response to the logic level of the trigger signal 120 from the comparator 112.
When instantaneous power content of an upstream signal exceeds the threshold power level, the resulting logic high signal 120 from the comparator 112 triggers a one-shot timer 122. Simultaneously, the logic high signal 120 is applied to an input terminal of an OR gate 124. The OR gate 124 responds by applying a logic high control signal 126 to the control terminals of the first SPDT RF electronic switch 104 and a second SPDT RF electronic switch 130. The electronic switches 104 and 130 normally occupy the positions shown in
The activated positions of the switches 104 and 130 conduct the upstream signal 80 from the first upstream signal filter 102 through the conductor 132 to a second upstream signal filter 134. Both filters 102 and 134 suppress frequencies other than those in the frequency band of 5-42 MHz. The valid upstream signal flows from the second upstream filter 134 through the signal splitter/combiner 70 into the cable network 20 as the network upstream signal 40. Terminating resistors 103 and 190 are connected to the filters 102 and 134 when the switches 104 and 130 are in their normal positions, and the filters 102 and 134 are connected together over the conductor 132 when the switches 104 and 130 are in their activated positions.
Valid upstream signals are conducted to the CATV network almost instantaneously when the instantaneous power level of the upstream signals exceeds the threshold power level. By responding almost instantaneously when the threshold power level is exceeded, the chances are minimized that the information contained in the valid upstream signal will be lost, as might be the case if the power of the upstream signal had to be integrated over a time period before a determination of a valid upstream signal could be made on the basis of energy content. Such integration raises the possibility that some of the information of the upstream signal will be lost and not transferred upstream. In contrast, no integration of the power of the upstream signal over a selected time period is required in the upstream noise mitigation circuit 100. By almost instantaneously transmitting upstream signals which have a power content that exceeds the predetermined threshold power level, the integrity of the information contained in the upstream signal is better preserved.
Once the switches 104 and 130 have been moved to the activated position which directly connects the first and second upstream signal filters 102 and 134 through the conductor 132, the switches 104 and 130 are maintained in this activated position for a time determined by the one-shot timer 122. When triggered by the logic high signal 120, the one-shot timer 122 immediately supplies a logic high output signal 136 to the OR gate 124. Either logic high signal 120 or 136 causes the OR gate 124 to supply the logic high control signal 126. If the power level of the upstream signal falls below the level of the threshold signal 114, the signal 120 immediately assumes a logic low level. However, the one-shot timer 122 will continue to deliver the logic high output signal 136 for the time duration of its internal time constant.
The internal time constant of the one-shot timer 122 is equal to the amount of time to transmit a single valid upstream signal packet of the maximum time duration permitted by the signaling protocol, plus a slight additional amount of time to account for inherent tolerances in the components and the timing of the one-shot timer 122. In this manner, the one-shot timer 122 ensures that the switches 104 and 130 assume their activated positions for a long enough time to conduct all single valid upstream signals, including a maximum-length valid upstream signal or packet.
The situation just described is illustrated by the waveform diagrams shown in
For multiple valid upstream signal packets which are consecutively transmitted without a substantial time interval separating the multiple sequential upstream packets, the one-shot timer 122 will time out before the valid upstream signal transmission terminates. However, the continuous instantaneous power of the multiple sequential valid upstream signal packets will continue to exceed the threshold power level for the duration of the multiple sequential signal packets, thereby causing the comparator 112 to continue to assert the logic high trigger signal 120 to the OR gate 124 for the duration of the multiple sequential signal packets. The continued application of the logic high signal 120 causes the OR gate 124 to assert the logic high control signal 126 beyond the time when the one-shot timer 122 times out. The two upstream signal filters 102 and 134 remain connected by the switches 104 and 130 in their activated positions, and thereby conduct the multiple sequential upstream signal packets to assure that the full information represented by the multiple sequential signal packets is not truncated or lost by premature termination of those signals. At the termination of such multiple upstream signal packets, the signal power no longer exceeds the threshold signal 114, and the switches 104 and 130 immediately assume their normal positions, thereby preventing any ingress noise from entering the CATV network 20 after the longer or multiple sequential valid upstream packets have been transmitted.
The situation just described is illustrated by the waveform diagrams shown in
If the instantaneous power of ingress noise exceeds the threshold power level, the electronic switches 104 and 130 assume their activated positions, as can be understood from
The response to ingress noise having instantaneous power that exceeds the threshold is illustrated by the waveform diagrams shown in
An alternative form 160 of the upstream noise mitigation circuit, shown in
In response to the instantaneous power of the ingress noise exceeding the threshold power level, represented by signal 114, the comparator 112 supplies the logic high trigger signal 120, in the manner previously described. The logic high trigger signal 120 is applied to a one-shot timer 162, to the input terminal of a SPDT RF electronic switch 164, to a second one-shot timer 168, and to the set terminal of a set-reset latch 172. In response to the logic high signal 120, the first one-shot timer 162 triggers and supplies an output signal 166. Simultaneously, the second one-shot timer 168 is triggered and supplies a signal 170. The latch 172 is immediately set in response to the logic high trigger signal 120 and supplies the control signal 126 to the RF electronic switches 104 and 130, causing them to switch to their activated positions and establish the upstream signal communication path for conducting upstream signals through the upstream signal filters 102 and 134. In this manner, the noise mitigation circuit 160 responds almost instantaneously to the instantaneous power of the upstream signal exceeding the threshold to immediately conduct the upstream signal to the CATV network without delay and without the risk of diminishing or losing some of the information contained in the upstream signal. In this regard, the upstream noise mitigation circuit 160 (
The rapid closure of the upstream communication path in response to ingress noise is accomplished by integrating the signal 120 for a predetermined time established by the time constant of the one-shot timer 162. The logic high trigger signal 120 represents the power of the ingress noise exceeding the predetermined threshold power level. Integrating the logic high trigger signal 120 results in a value which represents energy above the threshold power level for the time duration of integration. Integration occurs over the time that the signal 166 is asserted by the one-shot timer 162. If the amount of power integrated during this time, i.e. energy, is not sufficient to confirm a valid upstream signal with continuous sustained instantaneous power, the switches 104 and 130 are moved to their normal positions, thereby terminating the upstream communication path. Since ingress noise generally does not contain significant sustained energy even though an initial burst of the ingress noise may have sufficient instantaneous power to exceed the threshold, the upstream communication path is quickly closed in a typical ingress noise situation.
Integrating the power represented by the threshold power level is accomplished by an integration circuit 179. The integration circuit 179 includes an operational amplifier 176. The positive input terminal of the operational amplifier 176 is connected to ground reference. A capacitor 178 is connected between the negative input terminal and the output terminal of the operational amplifier 176. The negative input terminal of the operational amplifier 176 is the input point for signals to the integration circuit 179.
Prior to commencement of integration, the switch 164 is in its normal position shown in
In response to the control signal 166 moving the switch 164 from its normal position shown in
The logic high output signal 180 is applied to one input terminal of an AND gate 167. The control signal 166 is applied to another input terminal of the AND gate 167. The input terminal to which the control signal 166 is applied is an inverting input terminal, thereby causing the AND gate 167 to respond to the inverted logic level of the control signal 166. The signal 180 remains at a logic high level for a time period after integration ceases from the integration circuit 179, and the control signal 166 assumes the logic low level at the end of the integration time established by the one-shot timer 162. At that point, the AND gate 167 responds to two logic high signals (the logic low signal 166 is inverted at the input terminal), resulting in a logic high level signal 169 applied to an OR gate 182. The OR gate 182 supplies a logic high level signal 184 to a reset terminal of the latch 176. The latch 176 resets, and de-asserts the control signal 126 to the switches 104 and 130, thereby closing the upstream communication path through the upstream filters 102 and 134. Thus, soon after the initial instantaneous power of the ingress signal diminishes and the integration time set by the one-shot timer 162 expires, the upstream communication path is closed to the further conduction of upstream signals, thereby preventing any further ingress noise from entering the CATV network.
During the time and situation just described, another AND gate 185 has no effect on the functionality. The signal 170 supplied by the one-shot timer 168 is asserted for a considerably longer period of time than the one-shot timer 162 asserts the control signal 166. The time of assertion of the signal 170 is the length of time, plus a margin for component tolerances, of the longest single valid upstream packet or signal permitted under the signal communication protocol. The time of integration represented by the assertion of the control signal 166 is considerably less than the longest single valid upstream packet. During the integration of the instantaneous power of the ingress noise over the time duration of the control signal 166, the output signal 170 is at a logic high level, the control signal 126 is at a logic high level because the latch 172 will have been set by the trigger signal 120, before the signal 120 assumes a logic low level after the initial high instantaneous power of the ingress noise has dissipated. The input terminals of the AND gate 185 to which the signals 120 and 170 are applied are inverting. Thus, under these conditions, the AND gate 185 supplies an output signal 187 at a logic low level.
The situation of terminating the upstream communication path created by a burst of ingress noise before expiration of the time duration of a maximum-length valid upstream signal or packet is illustrated by the waveform diagrams shown in
If the integrated value indicates an upstream signal of unsustained instantaneous power, consistent with ingress noise that rapidly dissipates, the resulting logic high signal 180 from the integrator 179 is applied to the OR gate 182. The OR gate 182 supplies the logic high signal 180 at time point 188 which, when logically anded with the logical inversion of signal 166, causes the AND gate 167 to assert the signal 169. The OR gate 182 responds by asserting a logic high signal 184, which resets the latch 172, thereby de-asserting the control signal 126. The upstream communication path is terminated when the switches 104 and 130 assume their normal positions.
As is understood from
Whenever an upstream signal has sustained instantaneous power, the noise mitigation circuit 160 assures that the upstream signal will be conducted to the CATV network. Such circumstances indicate a valid upstream signal. As understood from
On the other hand, the time constant of the one-shot timer 168 is considerably longer than the time constant of the one-shot timer 162. The signal 170 from the timer 168 is asserted for the time duration of a single valid maximum-length upstream packet or signal. The logic high level of the signal 170 is inverted at the input terminal of the AND gate 185. At this time, the control signal 126 is at a logic high level because the latch 172 has been set. The continuous instantaneous power of the valid upstream signal is represented by a logic high level of the trigger signal 120. The logic high level of the signal 120 is inverted at the AND gate 185. The logic level of the signals applied to the AND gate 185 causes it to supply a logic low signal 187, which has no effect on the latch 172 during conditions of sustained instantaneous power from the valid upstream signal.
When the valid upstream signal terminates, the logic high level of the signal 120 changes to a logic low level. The logic low level signal 120 is inverted at its input terminal to the AND gate 185. The logic high signal 170 is still asserted by the one-shot timer 168, because the timer 168 times the duration of a single valid maximum-length upstream signal. Until the one-shot timer 168 de-asserts the signal 170, the AND gate 185 will not assert a logic high signal 187. However, when the signal 170 is de-asserted, the AND gate 185 applies the logic high signal 187 to the OR gate 182. The OR gate 182 asserts the signal 184 to reset the latch 172, and the control signal 126 is de-asserted. The switches 104 and 132 move to their normal positions and terminate the upstream communication path through the filters 102 and 134.
In response to sustained instantaneous power representative of a valid upstream signal, the noise mitigation circuit 160 assures that an upstream communication path will be established for the maximum time duration of a single valid upstream signal, provided that there is sufficient instantaneous energy in the upstream signal during the integration time established by the signal 166. In this manner, the circuit 160 is similar to the circuit 100 (
The situation of maintaining the upstream communication path in response to sustained instantaneous energy of an upstream signal during the integration time established by the time constant of the one-shot timer 162, to allow adequate time for a single valid upstream packet of maximum duration to be transmitted, is illustrated by the waveform diagrams shown in
During the time of integration, the instantaneous power of the single packet 106 continuously exceeds the threshold level. Consequently, the output signal 180 from the integration circuit 179 remains at a logic low level, and the inversion of the control signal 166 at the AND gate 167 maintains the output signal 169 in a logic low level. At time point 188 when the one-shot timer 162 times out, the control signal 166 assumes a logic low level, but the inversion of that logic low level at the input terminal to the AND gate 167, coupled with the continuous logic low level signal 180 continues to maintain the output signal 169 at a logic low level. The logic low signal 169 does not change for the duration of the situation shown in
During the time between points 148 and 188, the logic high control signal 126, the logic high trigger signal 120, which is inverted at its input terminal to the AND gate 185, and the logic high control signal 170, which is also inverted at its input terminal to the AND gate 185, cause the output signal 187 from the AND gate 185 to remain at a logic low level. Therefore, during this time between points 148 and 188, the signal 187 from the AND gate 185 has no effect on resetting the latch 172.
At time point 190 the packet 106 terminates. The instantaneous power associated with the packet 106 also terminates, causing the trigger signal 120 to achieve a logic low level. However, the one-shot timer 168 has not yet timed out, so its output signal 170 remains at a logic high level until time point 189. The logic low level trigger signal 120 does not change the state of the AND gate 185. Consequently, the latch with 172 remains set at time point 190.
When the one-shot timer 168 times out, at point 189, the control signal 170 assumes a low logic level. The low logic signal 170 is inverted at its input terminal to the AND gate 185. The trigger signal 120 previously assumed a logic low level at time point 190. The inversion of the signals 120 and 170 at the input terminals to the AND gate 185 results in three logic high input signals to the AND gate 185, causing the output signal 187 to assume a logic high level. The logic high signal 187 is applied to the OR gate 182, and the output signal 184 from the OR gate resets the latch 172. Upon reset, the latch 172 de-asserts the control signal 126 at time point 189, thereby closing the upstream communication path through the filters 102 and 134 as a result of the switches 104 and 130 assuming their normal positions.
Thus, as is understood from
The upstream signal communication path remains established during the time between the actual end of the valid upstream packet and the end of a maximum-length valid upstream packet, represented by the difference in time between points 190 and 189, but that amount of time is relatively short and maintenance of the upstream communication path during this time assures that a valid upstream signal packet of any length up to the maximum length will be transmitted without loss or truncation of any of its information.
In addition to the previously described advantages of quickly closing the upstream communication path after it was established by ingress noise and of establishing the upstream communication path for the maximum length of a valid upstream signal, the noise mitigation circuit 160 also has the capability of transmitting multiple sequential valid data packets, without loss or truncation of information. This situation can be understood by reference to
The first valid upstream packet of the multiple sequence of valid upstream packets, shown at 106 in
The instantaneous power of the sequence of multiple valid upstream packets remains above the threshold level and the trigger signal 120 remains asserted at a logic high level for the duration of that sequence of packets until time point 193, when the instantaneous power of the multiple sequential upstream packets terminates. The one-shot timer 168 does not time out until time point 189, at which point its output signal 170 assumes a logic low level at time point 189. The low logic level of the control signal 170 is inverted at its input terminal to the AND gate 185. However, at time point 189, the states of the input signals to the AND gate 185 result in the AND gate 185 supplying a logic low output signal 187. The logic low output signal 187 has no effect on the OR gate 182 and the latch 172 remains set.
At time point 193, the instantaneous power of the sequence of multiple valid upstream packets 106 falls below the threshold, causing the trigger signal 120 to assume a logic low level. The logic low level of the signal 120 at time point 193 is inverted at its input terminal to the AND gate 185, causing the AND gate to assert a logic high output signal 187. The logic high signal 187 causes the OR gate 182 to assert the signal 184, thereby resetting the latch 172 and de-asserting the signal 126. The switches 104 and 130 assume their normal positions, thereby terminating the communication path through the upstream signal filters 102 and 134.
In this manner, the upstream communication path is maintained for the duration of the multiple sequential packets, represented by the time between points 148 and 193. However, after the last packet in the multiple sequential series of valid upstream packets ends, the upstream communication path is closed to the further transmission of upstream signals, thereby preventing ingress noise from entering the CATV network.
As has been described in conjunction with
The benefit of the termination resistors 103 and 190 is their ability to avoid signal reflections, as understood from
The values of the termination resistors 103 and 190 are selected to equal the characteristic impedance of the coaxial cables which form the drop cables 38 (
A further significant feature is the incorporation of a gas tube surge protection device 192 in the network interface device 10, as shown in
The typical previous types of surge protectors are inductor-capacitor circuits, metal oxide varistors, and avalanche diodes. These devices may be made a part of a network interface device, or these devices are included in cable taps 36 (
Grounding blocks are another previous form of surge protection. Grounding blocks are devices used in cable taps 36 (
Incorporating the gas tube surge protection device 192 in the network interface device 10, as shown in
Locating the gas tube surge protection device 192 in the network interface device 10 provides the best level of protection against high voltage and high current surges arising within the CATV network infrastructure and arising from active and passive subscriber equipment connected to the network interface device 10. Downstream surges will be suppressed as they enter the network interface device 10 from the CATV network infrastructure. Even though it is unlikely that a surge condition will originate at the subscriber equipment connected to the interface device 10, the gas tube surge protection device 192 will provide protection for the other components within the CATV network 20 from upstream surges.
Incorporating the gas tube surge protection device 192 in the network interface device 10 also offers economic advantages, which are translated into a lower cost to the CATV service provider. The increased cost arising from incorporating the gas tube surge protection device 192 in the network interface device 10 is more than offset by avoiding the necessity to occasionally replace entire failed network interface devices and/or other components within the CATV network infrastructure. A gas tube surge protection device which is satisfactory for use in the network interface device is part number BAS230V supplied by CITEL INC, of Miami, Fla., USA.
As described above, there are numerous advantages and improvements available from the present invention. The upstream noise mitigation circuits (100 and 160,
In addition, the incorporation of the gas tube surge protection device within the network interface device itself offers substantial protective and economic advantages over the previous known uses of surge protection devices for CATV networks.
Many other advantages and improvements will be apparent upon gaining a complete appreciation for the present invention. The preferred embodiments of the invention and many of its improvements have been described with a degree of particularity. This detailed description is of preferred examples of implementing the invention and is not necessarily intended to limit the scope of the invention. The scope of the invention is defined by the following claims.
This application is a continuation of U.S. patent applications Ser. No. 15/587,555 filed May 5, 2017, which is a continuation of U.S. patent application Ser. No. 12/250,229 filed Oct. 13, 2008, both of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2662217 | Roberts | Dec 1953 | A |
3608542 | Pacela et al. | Sep 1971 | A |
3790909 | Le Fevre | Feb 1974 | A |
3939431 | Cohlman | Feb 1976 | A |
4027219 | Van Alphen et al. | May 1977 | A |
4306403 | Hubbard et al. | Dec 1981 | A |
4344499 | Van Der Lely et al. | Aug 1982 | A |
4418424 | Kawamoto et al. | Nov 1983 | A |
4512033 | Schrock | Apr 1985 | A |
4520508 | Reichert, Jr. | May 1985 | A |
4521920 | Forsberg et al. | Jun 1985 | A |
4648123 | Schrock | Mar 1987 | A |
4677390 | Wagner | Jun 1987 | A |
4715012 | Mueller, Jr. | Dec 1987 | A |
4961218 | Kiko | Oct 1990 | A |
4982440 | Dufresne et al. | Jan 1991 | A |
5010399 | Goodman et al. | Apr 1991 | A |
5073822 | Gumm et al. | Dec 1991 | A |
5126677 | Campbell | Jun 1992 | A |
5126686 | Tam | Jun 1992 | A |
5126840 | Dufresne et al. | Jun 1992 | A |
5214505 | Rabowsky et al. | May 1993 | A |
5231660 | West, Jr. | Jul 1993 | A |
5235612 | Stilwell et al. | Aug 1993 | A |
5245300 | Sasaki | Sep 1993 | A |
5345504 | West, Jr. | Sep 1994 | A |
5361394 | Shigihara | Nov 1994 | A |
5369642 | Shioka et al. | Nov 1994 | A |
5389882 | I'Anson et al. | Feb 1995 | A |
5485630 | Lee et al. | Jan 1996 | A |
5548255 | Spielman | Aug 1996 | A |
5557319 | Gurusami et al. | Sep 1996 | A |
5557510 | McIntyre et al. | Sep 1996 | A |
5719792 | Bush | Feb 1998 | A |
5740044 | Ehrenhardt et al. | Apr 1998 | A |
5742591 | Himayat et al. | Apr 1998 | A |
5745836 | Williams | Apr 1998 | A |
5745838 | Tresness et al. | Apr 1998 | A |
5815794 | Williams | Sep 1998 | A |
5818825 | Corrigan et al. | Oct 1998 | A |
5839052 | Dean et al. | Nov 1998 | A |
5893024 | Sanders et al. | Apr 1999 | A |
5937330 | Vince et al. | Aug 1999 | A |
5950111 | Georger et al. | Sep 1999 | A |
5956075 | Matsuo | Sep 1999 | A |
5970053 | Schick et al. | Oct 1999 | A |
6012271 | Wilkens et al. | Jan 2000 | A |
6014547 | Caporizzo et al. | Jan 2000 | A |
6049693 | Baran et al. | Apr 2000 | A |
6069960 | Mizukami et al. | May 2000 | A |
6094211 | Baran et al. | Jul 2000 | A |
6101932 | Wilkens | Aug 2000 | A |
H001858 | Ibelings | Sep 2000 | H |
6128040 | Shinbori et al. | Oct 2000 | A |
6129187 | Bellanger et al. | Oct 2000 | A |
6160572 | Matsuura | Dec 2000 | A |
6160990 | Kobayashi et al. | Dec 2000 | A |
6173225 | Stelzle et al. | Jan 2001 | B1 |
6185432 | Vembu | Feb 2001 | B1 |
6205138 | Nihal et al. | Mar 2001 | B1 |
6229375 | Koen | May 2001 | B1 |
6253077 | Burt et al. | Jun 2001 | B1 |
6321384 | Eldering | Nov 2001 | B1 |
6348837 | Ibelings | Feb 2002 | B1 |
6348955 | Tait | Feb 2002 | B1 |
6373349 | Gilbert | Apr 2002 | B2 |
6377316 | Mycynek et al. | Apr 2002 | B1 |
6388539 | Rice | May 2002 | B1 |
6425132 | Chappell | Jul 2002 | B1 |
6430904 | Coers et al. | Aug 2002 | B1 |
6495998 | Terreault | Dec 2002 | B1 |
6498925 | Tauchi | Dec 2002 | B1 |
6510152 | Gerszberg et al. | Jan 2003 | B1 |
6546705 | Scarlett et al. | Apr 2003 | B2 |
6550063 | Matsuura | Apr 2003 | B1 |
6560778 | Hasegawa | May 2003 | B1 |
6570914 | Ichihara | May 2003 | B1 |
6570928 | Shibata | May 2003 | B1 |
6587012 | Farmer et al. | Jul 2003 | B1 |
6622304 | Carhart | Sep 2003 | B1 |
6640338 | Shibata | Oct 2003 | B1 |
6678893 | Jung | Jan 2004 | B1 |
6683513 | Shamsaifar et al. | Jan 2004 | B2 |
6725462 | Kaplan | Apr 2004 | B1 |
6725463 | Birleson | Apr 2004 | B1 |
6728968 | Abe et al. | Apr 2004 | B1 |
6737935 | Shafer | May 2004 | B1 |
6757910 | Bianu | Jun 2004 | B1 |
6758292 | Shoemaker | Jul 2004 | B2 |
6785907 | Dan et al. | Aug 2004 | B1 |
6804828 | Shibata | Oct 2004 | B1 |
6843044 | Clauss | Jan 2005 | B2 |
6845232 | Darabi | Jan 2005 | B2 |
6868552 | Masuda et al. | Mar 2005 | B1 |
6877166 | Roeck et al. | Apr 2005 | B1 |
6880170 | Kauffman et al. | Apr 2005 | B1 |
6915530 | Kauffman et al. | Jul 2005 | B1 |
6920614 | Schindler et al. | Jul 2005 | B1 |
6928175 | Bader et al. | Aug 2005 | B1 |
6942595 | Hrazdera | Sep 2005 | B2 |
6973271 | Farmer et al. | Dec 2005 | B2 |
7003275 | Petrovic | Feb 2006 | B1 |
7029293 | Shapson et al. | Apr 2006 | B2 |
7039432 | Strater et al. | May 2006 | B2 |
7048106 | Hou | May 2006 | B2 |
7093054 | Goldman | Aug 2006 | B1 |
7127734 | Amit | Oct 2006 | B1 |
7130576 | Gurantz et al. | Oct 2006 | B1 |
7151575 | Landry et al. | Dec 2006 | B1 |
7154957 | Monk et al. | Dec 2006 | B1 |
7162731 | Reidhead et al. | Jan 2007 | B2 |
7167693 | Bachman et al. | Jan 2007 | B2 |
7251703 | Wu et al. | Jul 2007 | B1 |
7254827 | Terreault | Aug 2007 | B1 |
7283479 | Ljungdahl et al. | Oct 2007 | B2 |
7295518 | Monk et al. | Nov 2007 | B1 |
7399255 | Johnson et al. | Jul 2008 | B1 |
7404355 | Viaud et al. | Jul 2008 | B2 |
7416068 | Ray et al. | Aug 2008 | B2 |
7428222 | Wu et al. | Sep 2008 | B1 |
7428238 | El Wardani et al. | Sep 2008 | B2 |
7433543 | Hagiwara | Oct 2008 | B2 |
7454252 | El-Sayed | Nov 2008 | B2 |
7464526 | Coenen | Dec 2008 | B2 |
7477871 | Gurantz et al. | Jan 2009 | B1 |
7499397 | Monk et al. | Mar 2009 | B1 |
7505819 | El-Sayed | Mar 2009 | B2 |
7508284 | Shafer | Mar 2009 | B2 |
7530091 | Vaughan | May 2009 | B2 |
7592883 | Shafer | Sep 2009 | B2 |
7603693 | Masuda et al. | Oct 2009 | B2 |
7631337 | King et al. | Dec 2009 | B2 |
7675381 | Lin | Mar 2010 | B2 |
7707615 | Musser et al. | Apr 2010 | B2 |
7742777 | Strater et al. | Jun 2010 | B2 |
7748023 | Weinstein et al. | Jun 2010 | B2 |
7751718 | Sage | Jul 2010 | B2 |
8001579 | Olson et al. | Aug 2011 | B2 |
8213457 | Keima et al. | Jul 2012 | B2 |
8271235 | Czompo | Sep 2012 | B2 |
8286209 | Egan et al. | Oct 2012 | B2 |
8401387 | Biegert et al. | Mar 2013 | B2 |
8433195 | Biegert et al. | Apr 2013 | B2 |
8667550 | Wang | Mar 2014 | B2 |
8769597 | Wang | Jul 2014 | B2 |
20010016950 | Matsuura | Aug 2001 | A1 |
20020083476 | McNamara | Jun 2002 | A1 |
20020141347 | Harp | Oct 2002 | A1 |
20020141494 | Chappell | Oct 2002 | A1 |
20020144292 | Uemura et al. | Oct 2002 | A1 |
20020166124 | Gurantz et al. | Nov 2002 | A1 |
20020174435 | Weinstein et al. | Nov 2002 | A1 |
20030033608 | Chang | Feb 2003 | A1 |
20030084458 | Ljungdahl et al. | May 2003 | A1 |
20030106067 | Hoskins et al. | Jun 2003 | A1 |
20030121056 | Sorenson et al. | Jun 2003 | A1 |
20030131127 | King | Jul 2003 | A1 |
20030159084 | Murphy | Aug 2003 | A1 |
20040073953 | Xu et al. | Apr 2004 | A1 |
20040076192 | Zerbe et al. | Apr 2004 | A1 |
20040147243 | Morphy | Jul 2004 | A1 |
20040147273 | Morphy | Jul 2004 | A1 |
20040172659 | Ljungdahl et al. | Sep 2004 | A1 |
20040229561 | Cowley et al. | Nov 2004 | A1 |
20050034168 | Beveridge | Feb 2005 | A1 |
20050047051 | Marland | Mar 2005 | A1 |
20050097154 | Tsecouras | May 2005 | A1 |
20050144649 | Bertonis et al. | Jun 2005 | A1 |
20050155082 | Weinstein et al. | Jul 2005 | A1 |
20050183130 | Sadja et al. | Aug 2005 | A1 |
20050210977 | Yan | Sep 2005 | A1 |
20050283815 | Brooks et al. | Dec 2005 | A1 |
20050289632 | Brooks et al. | Dec 2005 | A1 |
20060015921 | Vaughan | Jan 2006 | A1 |
20060041918 | Currivan et al. | Feb 2006 | A9 |
20060148406 | Strater et al. | Jul 2006 | A1 |
20060191359 | Tarasinski et al. | Aug 2006 | A1 |
20060205442 | Phillips et al. | Sep 2006 | A1 |
20060241838 | Mongiardo et al. | Oct 2006 | A1 |
20060247273 | Kawaguchi | Nov 2006 | A1 |
20060282871 | Yo | Dec 2006 | A1 |
20070013356 | Qiu | Jan 2007 | A1 |
20070261094 | Urbanek | Nov 2007 | A1 |
20070288981 | Mitsuse et al. | Dec 2007 | A1 |
20070288982 | Donahue | Dec 2007 | A1 |
20080001645 | Kuroki | Jan 2008 | A1 |
20080022344 | Riggsby | Jan 2008 | A1 |
20080040764 | Weinstein et al. | Feb 2008 | A1 |
20080075012 | Zielinski et al. | Mar 2008 | A1 |
20080120667 | Zaltsman | May 2008 | A1 |
20080127287 | Alkan et al. | May 2008 | A1 |
20080157898 | Palinkas et al. | Jul 2008 | A1 |
20080168518 | Hsue et al. | Jul 2008 | A1 |
20080247401 | Bhal et al. | Oct 2008 | A1 |
20080247541 | Cholas et al. | Oct 2008 | A1 |
20080271094 | Kliger et al. | Oct 2008 | A1 |
20080313691 | Cholas et al. | Dec 2008 | A1 |
20090031391 | Urbanek | Jan 2009 | A1 |
20090047917 | Phillips et al. | Feb 2009 | A1 |
20090077608 | Romerein et al. | Mar 2009 | A1 |
20090098831 | Deng | Apr 2009 | A1 |
20090153263 | Lin | Jun 2009 | A1 |
20090154369 | Helvig et al. | Jun 2009 | A1 |
20090180782 | Bernard et al. | Jul 2009 | A1 |
20090217325 | Kliger et al. | Aug 2009 | A1 |
20090221304 | Pudney | Sep 2009 | A1 |
20090316608 | Singh et al. | Dec 2009 | A1 |
20090320085 | Wang | Dec 2009 | A1 |
20090320086 | Rijssemus et al. | Dec 2009 | A1 |
20100017842 | Wells | Jan 2010 | A1 |
20100095344 | Newby et al. | Apr 2010 | A1 |
20100100912 | Olson et al. | Apr 2010 | A1 |
20100100918 | Egan, Jr. et al. | Apr 2010 | A1 |
20100100921 | Olson et al. | Apr 2010 | A1 |
20100125877 | Wells et al. | May 2010 | A1 |
20100146564 | Halik et al. | Jun 2010 | A1 |
20100194489 | Kearns et al. | Aug 2010 | A1 |
20100225813 | Hirono et al. | Sep 2010 | A1 |
20100266000 | Froimovich et al. | Oct 2010 | A1 |
20110010749 | Alkan | Jan 2011 | A1 |
20110051014 | Wang et al. | Mar 2011 | A1 |
20110069740 | Cowley et al. | Mar 2011 | A1 |
20110072472 | Wells et al. | Mar 2011 | A1 |
20110085452 | Kelma et al. | Apr 2011 | A1 |
20110085480 | Keima et al. | Apr 2011 | A1 |
20110085586 | Kelma et al. | Apr 2011 | A1 |
20110088077 | Kelma et al. | Apr 2011 | A1 |
20120054805 | Shafer et al. | Mar 2012 | A1 |
20120054819 | Alkan et al. | Mar 2012 | A1 |
20120081190 | Rijssemus | Apr 2012 | A1 |
20140105221 | Bailey | Apr 2014 | A1 |
Number | Date | Country |
---|---|---|
55-080989 | Jun 1980 | JP |
55-132126 | Oct 1980 | JP |
57-091055 | Jun 1982 | JP |
58-101582 | Jun 1983 | JP |
58-99913 | Jul 1983 | JP |
59026709 | Aug 1984 | JP |
61-157035 | Jul 1986 | JP |
05-191416 | Jul 1993 | JP |
07-038580 | Feb 1995 | JP |
11-069334 | Mar 1999 | JP |
2001-177580 | Jun 2001 | JP |
2004080483 | Mar 2004 | JP |
2005005875 | Jan 2005 | JP |
2007-166109 | Jun 2007 | JP |
2007-166110 | Jun 2007 | JP |
0024124 | Apr 2000 | WO |
0172005 | Sep 2001 | WO |
0233969 | Apr 2002 | WO |
02091676 | Nov 2002 | WO |
Entry |
---|
International Search Report dated May 31, 2011, PCT Application No. PCT/US2010/049568, filed Sep. 21, 2010. |
Office Action dated Nov. 22, 2011, U.S. Appl. No. 12/255,008, filed Oct. 21, 2008. |
U.S. Appl. No. 13/167,497, filed Jun. 23, 2011. |
U.S. Appl. No. 13/245,510, filed Sep. 26, 2011. |
U.S. Appl. No. 13/333,060, filed Dec. 21, 2011. |
Jon-En Wang, “House Amplifier With Return Path Gating”, U.S. Appl. No. 12/487,367, filed Jun. 18, 2009. |
Jon-En Wang, “Service Provisioning Device With Integrated Cable Modem”, U.S. Appl. No. 13/229,493, filed Sep. 9, 2011. |
Kang Lin et al., “Return Path Noise Reducing Amplifier With Bypass Signal”, U.S. Appl. No. 14/181,636, filed Feb. 15, 2014. |
Jon-En Wang, “Amplifier With Noise Reduction”, U.S. Appl. No. 14/283,005, filed May 20, 2014. |
Krista Susan Jacobson, “Discrete Multi-Tone-Based Communications in the Reverse Channel of Hybrid Fiber-Coax Networks”, Thesis, Stanford University, Aug. 1996, pp. 1-161. |
Number | Date | Country | |
---|---|---|---|
20180270519 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15587555 | May 2017 | US |
Child | 15988537 | US | |
Parent | 12250229 | Oct 2008 | US |
Child | 15587555 | US |