A variety of automotive lift systems have been made and used over the years in a variety of contexts. Some types of automotive lifts are installed in-ground while other types are installed above-ground. In some in-ground lifts, one or more posts are selectively retractable/extendable relative to the ground to raise/lower a vehicle relative to the ground. For instance, a single post may be positioned under the center of the vehicle. Alternatively, one post may be positioned at one side of the vehicle while another post is positioned at the opposite side of the vehicle. Such one or more posts may include superstructures that are capable of engaging the vehicle. Such superstructures may be mounted to the tops of the posts, such that the superstructure is raised/lowered relative to the ground as the one or more posts are retracted/extended relative to the ground. Such superstructures may include a yoke with one or more arms movably mounted thereto. For instance, a yoke may have a pair of arms that are movable relative to the yoke to selectively position the arms relative to the yoke. Each arm may have a member that is configured to engage the vehicle.
Examples of automotive lifts and associated components are disclosed in U.S. Pat. No. 5,740,886, entitled “Method of Retrofit of In-Ground Automotive Lift System,” issued Apr. 21, 1998, the disclosure of which is incorporated by reference herein; U.S. Pat. No. 6,571,919, entitled “Removable Cylinder Arrangement for Lift,” issued Jun. 3, 2003, the disclosure of which is incorporated by reference herein; and U.S. Pat. No. 6,814,187, entitled “System for Detecting Liquid in an Inground Lift,” issued Nov. 9, 2004, the disclosure of which is incorporated by reference herein.
While a variety of automotive lift systems have been made and used, it is believed that no one prior to the inventors has made or used an invention as described herein.
While the specification concludes with claims which particularly point out and distinctly claim the invention, it is believed the present invention will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:
The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the invention may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings incorporated in and forming a part of the specification illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention; it being understood, however, that this invention is not limited to the precise arrangements shown.
The following description of certain examples of the invention should not be used to limit the scope of the present invention. Other examples, features, aspects, embodiments, and advantages of the invention will become apparent to those skilled in the art from the following description, which is by way of illustration, one of the best modes contemplated for carrying out the invention. As will be realized, the invention is capable of other different and obvious aspects, all without departing from the invention. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
I. Overview
Arms (30) are configured to engage a vehicle, and may be selectively positioned to engage a particular vehicle at particular lift points associated with the particular vehicle. For instance, with posts (16) retracted in the ground, arms (30) may be initially positioned outward as shown in
II. Exemplary Arms
First segment (132) of the present example also includes a mounting portion (136). Mounting portion (136) provides a coupling with superstructure (300) as will be described in greater detail below. Mounting portion (136) includes a pair of aligned openings (138), which are configured to receive a pin (32) to provide pivoting coupling of first arm (130) with superstructure (300).
Second segment (134) is hollow and has an adapter pilot (400) slidingly disposed therein. As shown in
A flip-up adapter (600) is an exemplary accessory shown in
Referring back to
Upwardly extending outer sidewall (420) of adapter pilot (400) and slot (140) of first arm (130) are sized and configured such that accessory (500, 600) may be translated to various positions along the length of slot (140). Such translatability of adapter pilot (400) relative to the length of second segment (134) thus provides flexibility in placing accessory (500, 600) at a desired lift point under a vehicle. In other words, the translatability of adapter pilot (400) relative to the length of second segment (134) facilitates use of lift (10) with various types of vehicles that are of various sizes. In some versions, an adjusted position of adapter pilot (400) may be selectively locked relative to second segment (134). Various suitable ways in which such selective locking may be provided will be apparent to those of ordinary skill in the art in view of the teachings herein. In some versions, a locking mechanism or feature is omitted. For instance, in some versions, friction may substantially maintain an adjusted longitudinal positioning of adapter pilot (400) relative to second segment (134). In other words, the mass and/or other properties of adapter pilot (400) and second segment (134) may permit a user to slide adapter pilot (400) relative to second segment (134) to achieve an adjusted positioning; for the user to then release adapter pilot (400); and for adapter pilot (400) to substantially remain in the adjusted position until the user again manipulates adapter pilot (400) for further adjustment.
It should also be understood that the translatability of second segment (134) relative to first segment (132) may facilitate use of lift (10) with various types of vehicles that are of various sizes, as such translation of second segment (134) relative to first segment (132) provides even more available positions for accessory (500, 600) underneath a vehicle. Furthermore, the presence and configuration of slot (142) provides additional clearance for shaft (520, 620) of accessory (500, 600) in settings where second segment (134) is substantially retracted relative to first segment (132) (e.g., where a common vertical axis passes through both slots (140, 142), and where the proximal end of second segment (134) is protruding outwardly relative to proximal end (133) of first segment (132), etc.). In the absence of slot (142), the retractability of second segment (134) relative to first segment (132) may be relatively restricted to a greater degree, as first segment (132) would engage shaft (520, 620) of accessory (500, 600) relatively sooner as second segment (134) is retracted into first segment (132). In the present example, second segment (134) is longer than a conventional second segment yet has at least the same degree of extension and retraction as a conventional second segment.
First segment (234) also includes a mounting portion (236). Mounting portion (236) provides a coupling with superstructure (300) as will be described in greater detail below. Mounting portion (236) includes a pair of aligned openings (238), which are configured to receive a pin (32) to provide pivoting coupling of second arm (230) with superstructure (300).
Second segment (234) is hollow and has an adapter pilot (400) slidingly disposed therein. In the present example, adapter pilot (400) of second arm (230) is substantially identical to adapter pilot (400) of first arm (130) as described above. Second segment further (234) includes a slot (240). First segment (232) also includes a slot (242), which is substantially aligned with slot (240). Slots (240, 242) facilitate selective positioning of an adapter pilot (400) along the length of second arm (230). In the present example, when adapter pilot (400) is disposed in second arm (230), lower flange (410) is positioned within a hollow interior defined by second segment (234) while an accessory (500, 600) that is secured to adapter pilot (400) is positioned above the top surface of second segment (234), with shaft (520, 620) of accessory (500, 600) passing through slot (240). With accessory (500, 600) being exposed above second segment (234), accessory (500, 600) may be used to directly contact a vehicle for raising the vehicle. As noted above, adapter pilot (400) resides within second segment (234) in some versions and receives various types of accessories based on an operator's selection, without adapter pilot (400) having to necessarily be removed from second segment (234).
Upwardly extending outer sidewall (420) of adapter pilot (400) and slot (240) are sized and configured such that adapter pilot (400) may be translated to various positions along the length of slot (240). Such translatability of adapter pilot (400) relative to the length of second segment (234) thus provides flexibility in placing accessory (500, 600) at a desired lift point under a vehicle. In other words, the translatability of adapter pilot (400) relative to the length of second segment (234) facilitates use of lift (10) with various types of vehicles that are of various sizes. In some versions, an adjusted position of adapter pilot (400) may be selectively locked relative to second segment (234). Various suitable ways in which such selective locking may be provided will be apparent to those of ordinary skill in the art in view of the teachings herein. In some versions, a locking mechanism or feature is omitted. For instance, in some versions, friction may substantially maintain an adjusted longitudinal positioning of adapter pilot (400) relative to second segment (234). In other words, the mass and/or other properties of adapter pilot (400) and second segment (234) may permit a user to slide adapter pilot (400) relative to second segment (234) to achieve an adjusted positioning; for the user to then release adapter pilot (400); and for adapter pilot (400) to substantially remain in the adjusted position until the user again manipulates adapter pilot (400) for further adjustment.
It should also be understood that the translatability of second segment (234) relative to first segment (232) may facilitate use of lift (10) with various types of vehicles that are of various sizes, as such translation of second segment (234) relative to first segment (232) provides even more available positions for top plate (420) of adapter pilot (400) underneath a vehicle. Furthermore, the presence and configuration of slot (242) provides additional clearance for shaft (520, 620) of accessory (500, 600) in settings where second segment (234) is substantially retracted relative to first segment (232) (e.g., where a common vertical axis passes through both slots (240, 242), and where the proximal end of second segment (234) is protruding outwardly relative to proximal end (233) of first segment (232), etc.). In the absence of slot (242), the retractability of second segment (234) relative to first segment (232) may be relatively restricted to a greater degree, as first segment (232) would engage shaft (520, 620) of accessory (500, 600) relatively sooner as second segment (234) is retracted into first segment (232). In the present example, second segment (234) is longer than a conventional second segment yet has at least the same degree of extension and retraction as a conventional second segment.
It should be understood from the foregoing that, due to the presence of an adapter pilot (400) in each second segment (134, 234), and due to the translatability of adapter pilot (400) within each arm (130, 230), each arm (130, 230) may effectively provide adjustability comparable to that of a conventional three-stage/three-segment arm while only having two arm segments (132, 134 and 232, 234) in each arm (130, 230). In other words, each adapter pilot (400) and corresponding slots (140, 142 and 240, 242) may provide an additional degree of movement/adjustability like a third stage/segment in a three-stage/three-segment telescoping arm. In some versions, such functionality may make it relatively easy for a technician to fine tune the position of adapter pilot (400) without having to move second segment (134, 234) relative to first segment (132, 232). It should also be understood that the length of second segment (134, 234) and the length of slot (140, 240) may permit adapter pilot (400) to reach extended positions that would only be reachable in a conventional lift having three stages/segments, with such positions not being reachable in a conventional lift that has only two stages/segments. Furthermore, the configuration of slots (142, 242) may permit adapter pilot (400) to reach retracted positions that would only be reachable in a conventional lift having only two stages/segments, with such positions not being reachable in a conventional lift that has three stages/segments. The above described configuration of arms (130, 230) may also allow for reduction in mass of arms (130, 230), making fine adjustment of second segment (134, 234) relative to first segment (132, 232) relatively easier. Furthermore, the above described configuration of arms (130, 230) may also allow for a lower overall profile for arms (130, 230), making it relatively easier position arms (130, 230) under a low clearance vehicle while the wheels of the vehicle are still on the ground.
III. Exemplary Superstructure
Yoke portion (320) comprises a top plate (322) and a bottom plate (360). In the present example, and as will be described in greater detail below, bottom plate (360) also extends beneath base portion (310) of superstructure (300). Top plate (322) includes a first upper tongue portion (330) and a second upper tongue portion (334). First upper tongue portion (330) includes an opening (332) that is sized to receive a pin (32). Second upper tongue portion (334) also includes an opening (336) that is sized to receive a pin (32). A first lower tongue portion (340) is positioned directly below first upper tongue portion (330). Similarly, a second lower tongue portion (344) is positioned directly below second upper tongue portion (334). First lower tongue portion (340) includes an opening (342) that is substantially aligned with opening (332) and that is configured to receive pin (32). Second lower tongue portion (340) includes an opening (346) that is substantially aligned with opening (336) and that is configured to receive pin (32).
As noted above, mounting portions (136, 236) of arms (130, 230) may be coupled with superstructure (300). For instance, mounting portion (136) of first arm (130) may be positioned between tongue portions (334, 344), such that openings (138, 336, 346) are all substantially aligned. A pin (32) may then be inserted through openings (138, 336, 346), such that first arm (130) is pivotally secured to superstructure (300) by pin (32). In some other versions, tongue portions (334, 344) are positioned between a pair of mounting portions (136) of first arm (130) to substantially align openings (138, 336, 346) for receipt of a pin (32). Various other suitable ways in which first arm (130) may be coupled with superstructure (300) will be apparent to those of ordinary skill in the art in view of the teachings herein. In the present example, mounting portion (236) of second arm (230) may be positioned between tongue portions (330, 340), such that openings (238, 332, 342) are all substantially aligned. A pin (32) may then be inserted through openings (238, 332, 342), such that second arm (230) is pivotally secured to superstructure (300) by pin (32). Of course, tongue portions (330, 340) may instead be positioned between a pair of mounting portions (236) of second arm (230) to substantially align openings (238, 332, 342) for receipt of a pin (32). Various other suitable ways in which second arm (230) may be coupled with superstructure (300) will be apparent to those of ordinary skill in the art in view of the teachings herein. As one merely illustrative alternative, mounting portion (136) of first arm (130) may instead be coupled with tongue portions (330, 340); while second arm (230) is coupled with tongue portions (334, 344).
As can be seen in
As can be seen in
As can be seen in
Superstructure (300) may be formed of laser-cut plates having a thickness of ½ inch or less. Alternatively, superstructure (300) may be formed of any other suitable materials in any suitable fashion.
In some versions, where a lift (10) has a pair of superstructures (300), the distance between superstructures (300) may be greater than the distance that would otherwise be provided between conventional superstructures (300). It should be understood that such an increased distance between superstructures (300) may further provide better access for technicians to components underneath a vehicle.
While superstructure (300) and arms (130, 230) have been described above as being usable with a two-post in-ground lift system, it should be understood that superstructure (300) and/or arms (130, 230) may be used in a variety of other types of lift systems. For instance, superstructure (300) may be readily modified for use in a one-post in-ground lift system. As another merely illustrative example, superstructure (300) may be readily modified for use in a two-post above-ground lift system. For instance, a two-post above-ground lift system may include a carriage on each post with a hydraulic mechanism or other type of mechanism to selectively raise/lower the carriages along the posts, and a superstructure (300) may be secured to each such carriage, such that the carriage and the superstructure (300) together define a vehicle carrier (or such that the superstructure (300) may itself be secured to the post and be regarded itself as a vehicle carrier, etc.). As yet another merely illustrative example, the lift systems taught in any of the patents cited herein may be readily modified to include superstructure (300) and/or arms (130, 230). Various other suitable types of lift systems in which superstructure (300) and/or arms (130, 230) may be incorporated will be apparent to those of ordinary skill in the art in view of the teachings herein. Likewise, various suitable ways in which superstructure (300) and/or arms (130, 230) may be incorporated into various types of lift systems will be apparent to those of ordinary skill in the art in view of the teachings herein.
Having shown and described various embodiments of the present invention, further adaptations of the methods and systems described herein may be accomplished by appropriate modifications by one of ordinary skill in the art without departing from the scope of the present invention. Several of such potential modifications have been mentioned, and others will be apparent to those skilled in the art. For instance, the examples, embodiments, geometrics, materials, dimensions, ratios, steps, and the like discussed above are illustrative and are not required. Accordingly, the scope of the present invention should be considered in terms of any claims that may be presented and is understood not to be limited to the details of structure and operation shown and described in the specification and drawings.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/303,994, entitled “Superstructures and Arms for In-Ground Vehicle Lift,” filed Feb. 12, 2010, the disclosure of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
942755 | Schollmeyer | Dec 1909 | A |
1055099 | Sullivan | Mar 1913 | A |
1870128 | Lunati | Aug 1932 | A |
1889185 | Stukenborg | Nov 1932 | A |
1899534 | Steedman | Feb 1933 | A |
1915024 | Logette et al. | Jun 1933 | A |
1919156 | Banning, Jr. | Jul 1933 | A |
1985510 | Lunati | Dec 1934 | A |
2640977 | Parisi | Jun 1953 | A |
2844218 | Hott | Jul 1958 | A |
2956581 | Pearson | Oct 1960 | A |
3061044 | Shotmeyer | Oct 1962 | A |
3237723 | Halstead | Mar 1966 | A |
3279562 | Farrell | Oct 1966 | A |
3331470 | Hott | Jul 1967 | A |
3334706 | Dayson | Aug 1967 | A |
3415342 | Hott | Dec 1968 | A |
3489248 | Clarke | Jan 1970 | A |
3775026 | Hewlings | Nov 1973 | A |
3892292 | Takenoshita et al. | Jul 1975 | A |
3981619 | Mitter | Sep 1976 | A |
4022428 | Mantha | May 1977 | A |
4452340 | Hernick et al. | Jun 1984 | A |
4679660 | Suzuki | Jul 1987 | A |
4687078 | Wilson | Aug 1987 | A |
4700748 | Fossati et al. | Oct 1987 | A |
4726450 | Fossati et al. | Feb 1988 | A |
4763761 | McKinsey et al. | Aug 1988 | A |
4825977 | Isogai | May 1989 | A |
4830146 | Nakamura et al. | May 1989 | A |
4830147 | Kawada | May 1989 | A |
4848732 | Rossato | Jul 1989 | A |
5014824 | Fargo | May 1991 | A |
5050844 | Hawk | Sep 1991 | A |
5096159 | Fletcher | Mar 1992 | A |
5099956 | Curran | Mar 1992 | A |
5143179 | Hornstein | Sep 1992 | A |
5190122 | Fletcher et al. | Mar 1993 | A |
5199686 | Fletcher | Apr 1993 | A |
5259482 | Proulx et al. | Nov 1993 | A |
D343488 | Fletcher | Jan 1994 | S |
5299658 | Cox et al. | Apr 1994 | A |
5322143 | Curran | Jun 1994 | A |
5404968 | Fletcher | Apr 1995 | A |
5501296 | Fletcher | Mar 1996 | A |
5501299 | Holmes | Mar 1996 | A |
5518220 | Bertrand et al. | May 1996 | A |
5573083 | Fletcher et al. | Nov 1996 | A |
5678253 | Baker | Oct 1997 | A |
5709286 | Mead et al. | Jan 1998 | A |
5740886 | Fletcher | Apr 1998 | A |
5969619 | Niemiro et al. | Oct 1999 | A |
6244390 | Yeo et al. | Jun 2001 | B1 |
6571919 | Stewart | Jun 2003 | B1 |
6814187 | Brown et al. | Nov 2004 | B2 |
Number | Date | Country |
---|---|---|
1 209 268 | Jan 1966 | DE |
4 028 484 | Mar 1992 | DE |
1 279 190 | Dec 1961 | FR |
1 072 375 | Jun 1967 | GB |
WO 9631292 | Oct 1996 | WO |
Entry |
---|
International Search Report dated Apr. 6, 2011 for Application No. PCT/US2011/024494. |
Written Opinion dated Apr. 6, 2011 for Application No. PCT/US2011/024494. |
Number | Date | Country | |
---|---|---|---|
20110198156 A1 | Aug 2011 | US |
Number | Date | Country | |
---|---|---|---|
61303994 | Feb 2010 | US |