In known embodiments, apparatus for administering by inhalation powdery dry substances, e.g. pharmaceutical preparations, are comprised of a generally approximately palm-size device in whose interior the active substances are located, for example, in a coiled blister strip of deep-drawn aluminum foil. For each administration, this strip is moved forward step by step by relative movement of different housing parts, for example, in the form of protective caps or by separate pivot levers, wherein the respective blister cavities that contain the substance are opened and thereby the active substances are released for inhalation.
Also, inhalers are known that employ two coiled blister strips for administration of two different dry substances, for example, of pharmaceutical preparations. Such inhalers are described, for example, in WO 03/061743 A1, in WO 2005/079727 A2, and in WO 2005/014089 A1.
In general, 30 or 60 individual doses are accommodated on such blister strips in order to be able to cover the monthly need of a patient in case of one or two inhalations per day. In case of a dual blister strip inhaler, two different active substances are administered at the same time. Opening of the blister cavities is realized, for example, by stepwise removal of a foil covering the cavities, wherein the cover foil as well as the emptied blister strip are wound up in the inhaler or must be stored in another way. This requires a usually rather complex mechanism and can be mounted only with great expenditure due to the pliable blister strip.
For dual blister strip inhalers, furthermore a complex mechanism with a large number of parts is required in order to be able to administer the active dry substance to the patient. An inhaler which is distributed under the name Ellipta® is comprised of 28 parts, for example.
Moreover, inhalers are known in which in place of the blister strip a generally approximately circular plastic disk with a number of deep-drawn cavities or bores for accommodating the powdery substances is used, wherein the closure of the cavities after their filling is realized by means of a cover foil that is sealed on. For each use of the device, the plastic disk is indexed by one step until all cavities are opened and emptied by inhalation of the powder. For inhalation, the cavities are opened in these devices by a removal element by means of a pushed-in tip and thereby the active substance is released for inhalation. Such an inhaler is disclosed in WO 2013/068579 A1.
Such inhalers contain however only one plastic disk so that they enable only the administration of one substance.
It is an object of the present invention to provide an inhaler that enables the simultaneous administration of two powdery dry substances and can be manufactured more easily than a conventional dual blister strip inhaler. In particular, the inhaler should comprise fewer parts than a conventional dual blister strip inhaler.
This object is solved by an inhaler for administration of powdery dry substances which comprises two substance carrier disks. Each substance carrier disk comprises cavities filled respectively with a powdery dry substance, preferably at least 30 cavities, respectively. The powdery dry substances can be in particular substances with a particle size in the range of 2 μm to 100 μm. The cavities of the first substance carrier disk are filled in particular with a different powdery dry substance than the cavities of the second substance carrier disk. The substance carrier disks are rotatably arranged about a common axis of rotation such that the cavities are respectively positioned opposite each other. The inhaler comprises moreover an air channel. The air channel comprises a piercing nozzle that is arranged between the substance carrier disks. This arrangement of the air channel, through which a mixture of air and a powdery dry substance can be guided to a mouthpiece of the inhaler, enables a similar spatial distance and a similar geometric position of a removal position from a cavity to be pierced relative to the mouthpiece as this is usually provided in an inhaler with a substance carrier disk. In this way, the same aerodynamic behavior of the dry substance particles in the air flow can be achieved so that similar inhalation parameters as in known inhalers with only one substance carrier disk can be achieved.
In that the powdery dry substance is not stored in blister strips but in substance carrier disks, it is possible to produce the inhaler according to the invention in a simple manner and by utilization of few parts. This leads to a significant cost reduction for the manufacture of the inhaler according to the invention since the parts of the inhaler usually are produced in an injection molding method from thermoplastic plastic materials and for each part to be manufactured a separate injection molding tool must be manufactured.
By rotation of the substance carrier disks, the cavities filled with the powdery dry substance can be brought to face sequentially the piercing nozzle arranged between the substance carrier disks in order to transport the dry substances into the air channel. In order to realize this rotational movement, it is preferred that each substance carrier disk comprises at its circumferential wall surface a cam groove in which a cam groove guide pin engages, respectively. Due to the movement of the respective cam groove guide pin, a rotational movement of a substance carrier disk can then be triggered.
Preferably, the cam grooves and the cam groove guide pins are configured to effect not only a rotational movement of the substance carrier disks but at the same time a linear displacement of the substance carrier disk along the axis of rotation. This can be realized by a suitable shape of the cam groove. A movement of the cam groove guide pins enables then to not only rotate the substance carrier disks to the respective next cavity but at the same time also move them toward the piercing nozzle in order to enable in this way piercing of the cavities by the piercing nozzle. Thus, two movements can be performed at the same time.
Preferably, the substance carrier disks can be rotated in only one direction, respectively. A return movement can be prevented in particular by a suitable shape of the cam grooves. In this manner, it is prevented that cavities that have already been emptied are again brought together with the piercing nozzle.
Furthermore, it is preferred that the cam grooves are configured to limit a number of rotations of their substance carrier disks. This can be realized in particular in that the cam grooves each have a discontinuity. When all cavities of the substance carrier disks have been emptied, it is prevented in this way that upon further rotation of the substance carrier disks it is attempted again to remove a powdery dry substance from a cavity that has already been emptied beforehand.
It is preferred that the inhaler comprises an actuation element which comprises the cam curve guiding pins. The actuation element enables a user of the inhaler to move the substance carrier disks and to thus rotate them farther to the next filled cavities and to pierce these cavities with the piercing nozzle. In that both cam groove guide pins are arranged at the same actuation element, a simultaneous actuation of both substance carrier disks is enabled.
Each cam groove guide pin is arranged preferably at a resilient end of the actuation element. This makes it possible that the cam groove guide pins return resiliently into an initial position after an actuation of the actuation element.
The cam groove guide pins are preferably arranged such to the actuation element that upon actuation of the actuation element they effect a synchronous movement of the two substance carrier disks. When both substance carrier disks rotate at the same time in the same direction and are moved at the same speed toward the piercing nozzle, it is ensured that the dry substances of the two substance carrier disks are mixed in the same manner in the air channel.
The cavities which are arranged in the substance carrier disks are preferably sealed by a cover foil, respectively. In order to enable a simple manufacture of the substance carrier disks, each substance carrier disk preferably has for this purpose a common cover foil that covers simultaneously all cavities of the substance carrier disk. In particular, the cover foil can be an aluminum foil. When the substance carrier disks are moved toward the piercing nozzle, the latter pierces the cover foils and enables thus the access to the dry substance which has been air-tightly sealed up to this point.
The cover foil comprises preferably a thickness in the range of 20 μm to 50 μm in order to enable a simple piercing by means of the piercing nozzle.
The piercing nozzle is preferably designed such that it comprises two hollow nozzles that each have a length of preferably at least 2 mm. Each of the two hollow nozzles is facing in this context one of the substance carrier disks. In this manner, one hollow nozzle can pierce a cavity of one of the substance carrier disks while the other hollow nozzle pierces a cavity of the other substance carrier disk. The dry substances of the two cavities are then transported through the two hollow nozzles, are mixed in the piercing nozzle, and further transported through the air channel.
In order to enable easy piercing of a cover foil, the hollow nozzles are preferably embodied with sharp edges.
Furthermore, the piercing nozzle comprises preferably a plurality of, in particular four, piercing elements. A respective hollow nozzle and a plurality of, in particular two, piercing elements are facing each substance carrier disk are. The piercing elements can pierce or cut further openings into the cover foil in order to enable an inflow of air into the cavities during an inhalation process. Due to the use of a plurality of piercing elements per hollow nozzle, the air guiding action can be realized such that a uniform and complete emptying of the cavities is ensured.
The air channel comprises preferably an outlet nozzle. The latter can be arranged at the end of the air channel positioned opposite to the outlet nozzle and connected with a mouthpiece of the inhaler. When the piercing nozzle has pierced a cavity of both substance carrier disks, respectively, and in this manner has produced a connection to the dry substances stored therein, a user of the inhaler can breathe in through the mouthpiece and in this way generate an air flow through the air channel. Due to this air flow, the dry substances are sucked as powder air mixture completely out of their cavities, are mixed in the piercing nozzle, and released from the outlet nozzle into the respiratory passages of the user.
At the side of a substance carrier disk or of both substance carrier disks facing away from the cavities, a cavity designation, in particular in the form of a numbering, can be provided. Upon rotation of the substance carrier disk, it is then visibly displayed to a user by the cavity designation which cavities are facing the piercing nozzle.
The substance carrier disks can be comprised in particular of a thermoplastic plastic material. The air channel and the piercing nozzle can also be comprised in particular of a thermoplastic plastic material. Particularly preferred, all parts of the inhaler are comprised of a thermoplastic plastic material, respectively. In this way, metal parts can be entirely dispensed with. The plastic parts can be produced, for example, by an injection molding process.
An embodiment of the invention is illustrated in the drawings and will be explained in more detail in the following description.
In the housing, a first substance carrier disk 2 and a second substance carrier disk 3 are arranged. They are arranged rotatably on a common axis of rotation about which also the cover 13 is pivotable. An air channel 4 that comprises a piercing nozzle 41 and an outlet nozzle 42 is arranged in the housing such that the piercing nozzle 41 is positioned between the cavities of the two substance carrier disks 2, 3. The outlet nozzle 42 which is arranged at the end of the air channel 4 facing away from the piercing nozzle 41 faces an opening in the housing. A mouthpiece 5 is attached to this opening.
An actuation element 6 is arranged in such a way in the inhaler that it is contacting both housing halves 11, 12. As illustrated in
The connection between cover 13 and the actuation element 6 is realized in this context such that the cover 13 in the rest position of the actuation element 6 covers the mouthpiece 5 and protects it in this way from contaminants.
As illustrated in
The cavities in
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2019/101106 | 12/18/2019 | WO |