Inhibitors of β-lactamase

Information

  • Patent Grant
  • 7514556
  • Patent Number
    7,514,556
  • Date Filed
    Monday, July 30, 2007
    17 years ago
  • Date Issued
    Tuesday, April 7, 2009
    15 years ago
Abstract
The intention relates to bacterial antibiotic resistance and, in particular, to compositions and methods for overcoming bacterial antibiotic resistance. The invention provides novel β-lactamase inhibitors, which are structurally unrelated to the natural product and semi-synthetic β-lactamase inhibitors presently available, and which do not require a β-lactam pharmacophore. The invention also provides pharmaceutical compositions and methods for inhibiting bacterial growth.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates to bacterial antibiotic resistance. More particularly, the invention relates to compositions and methods for overcoming bacterial antibiotic resistance


2. Brief Summary of the Related Art


Bacterial antibiotic resistance has become one of the most important threats to modern health care. Cohen, Science 257:1051-1055 (1992) discloses that infections caused by resistant bacteria frequently result in longer hospital stays, higher mortality and increased cost of treatment. Neu, Science 257:1064-1073 (1992) discloses that the need for new antibiotics will continue to escalate because bacteria have a remarkable ability to develop resistance to new agents rendering them quickly ineffective.


The present crisis has prompted various efforts to elucidate the mechanisms responsible for bacterial resistance. Coulton et al., Progress in Medicinal Chemistry 31:297-349 (1994) teaches that the widespread use of penicillins and cephalosporins has resulted in the emergence of β-lactamases, a family of bacterial enzymes that catalyze the hydrolysis of the β-lactam ring common to numerous presently used antibiotics. More recently, Dudley, Pharmacotherapy 15: 9S-14S (1995) has disclosed that resistance mediated by β-lactamases is a critical aspect at the core of the development of bacterial antibiotic resistance.


Attempts to address this problem through the development of β-lactamase inhibitors have had limited success. Sutherland, Trends Pharmacol. Sci. 12: 227-232 (1991) discusses the development of the first clinically useful β-lactamase inhibitor, clavulanic acid, which is a metabolite of Streptomyces clavuligerus. Coulton et al (supra) discloses two semi-synthetic inhibitors, sulbactam and tazobactam, presently available. Coulton et al. (supra) also teaches that in combination with β-lactamase-susceptible antibiotics, β-lactamase inhibitors prevent antibiotic inactivation by β-lactamase enzymes, thereby producing a synergistic effect against β-lactamase producing bacteria


Li et al., Bioorg. Med. Chem. 5 (9): 1783-1788 (1997), discloses that β-lactamase enzymes are inhibited by phosphonate monoesters. Li et al. teaches that better inhibitory activity is achieved by compounds with amido side-chains, but that such compounds suffer the disadvantage of hydrolytic instability. Li et al. discloses that benzylsulfonamidomethyl phosphonate monoesters exhibit better hydrolytic stability, but also significantly weaker potency against β-lactamase enzymes, than do the corresponding benzylamidomethyl phosphonate monoesters. Dryjanski and Pratt, Biochemistry 34:3569-3575 (1995) teaches that p-nitrophenyl[(dansylamido)methyl]phosphonate irreversibly inactivates the P99 β-lactamase enzyme, and describes its use as a mechanistic probe for studying the interaction of ligands with a second binding site of the enzyme.


The availability of only a few β-lactamase inhibitors, however, is insufficient to counter the constantly increasing diversity of β-lactamases, for which a variety of novel and distinct inhibitors has become a necessity. There is, therefore, a need for the ability to identify new β-lactamase inhibitors. The development of fully synthetic inhibitors would greatly facilitate meeting this need.


BRIEF SUMMARY OF THE INVENTION

The invention provides novel β-lactamase inhibitors, which are structurally unrelated to the natural product and semi-synthetic β-lactamase inhibitors presently available, and which do not require a β-lactam pharmacophore.


In a second aspect, the invention provides pharmaceutical compositions comprising a compound of the invention and a pharmaceutically acceptable carrier or diluent.


In a third aspect, the invention provides methods for inhibiting bacterial growth, such methods comprising administering to a bacterial cell culture, or to a bacterially infected cell culture, tissue, or organism, a β-lactamase inhibitor of the invention.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a graphical plot of the synergistic effect of β-lactamase inhibitors as a function of log P. Synergy is defined and methods for its determination are provided in the Examples.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention relates to bacterial antibiotic resistance. More particularly, the invention relates to compositions and methods for overcoming bacterial antibiotic resistance. The patents and publications identified in this specification indicate the knowledge in this field and are hereby incorporated by reference in their entirety. In the case of inconsistencies, the present disclosure will prevail.


The invention provides novel β-lactamase inhibitors, which are structurally unrelated to the natural product and semi-synthetic β-lactamase inhibitors presently available, and which do not require a β-lactam pharmacophore. Certain embodiments of these new inhibitors may also bind bacterial DD-peptidases, and thus may potentially act both as β-lactamase inhibitors and as antibiotic agents.


Li et al., Bioorg. Med. Chem. 5 (9):1783-1788 (1997), and Dryjanski and Pratt, Biochemistry 34:3569-3575 (1995), teach that β-lactamase enzymes are inactivated by 4-nitrophenyl N-(phenylmethylsulfonyl)aminomethylphosphonate and p-nitro-phenyl[(dansylamido)methyl]-posphonate, respectively. Despite the enzyme inhibitory activity of these compounds, however, neither compound is effective in producing a synergistic effect when co-administered with an antibiotic agent to a bacterially infected cell culture (see Table 1, compounds 1 and 72). By contrast, the present inventors have surprisingly discovered that aryl- and (heteroaryl)-sulfonamidomethylphosphonate monoesters both inhibit enzymatic activity in vitro and enhance the potency of antibiotic agents in cell culture.


For purposes of the present invention, the following definitions will be used:


As used herein, the term “β-lactamase inhibitor” is used to identify a compound having a structure as defined herein, which is capable of inhibiting β-lactamase activity. Inhibiting β-lactamase activity means inhibiting the activity of a class A, B, C, or D β-lactamase. Preferably, for antimicrobial applications such inhibition should be at a 50% inhibitory concentration below 100 micrograms/mL, more preferably below 30 micrograms/mL and most preferably below 10 micrograms/mL. The terms “class A”, “class B”, “class C”, and “class D” β-lactamases are understood by those skilled in the art and can be found described in Waley, The Chemistry of β-Lactamase, Page Ed., Chapman & Hall, London, (1992) 198-228


In some embodiments of the invention, the β-lactamase inhibitor may also be capable of acting as an antibiotic agent by inhibiting bacterial cell-wall cross-linking enzymes. Thus, the term β-lactamase inhibitor is intended to encompass such dual-acting inhibitors. In certain preferred embodiments, the β-lactamase inhibitor may be capable of inhibiting D-alanyl-D-alanine-carboxypeptidases/transpeptidases (hereinafter DD-peptidases). The term “DD-peptidase” is used in its usual sense to denote penicillin-binding proteins involved in bacterial cell wall biosynthesis (see, e.g., Ghysen, Prospect. Biotechnol. 128:67-95 (1987)). In certain particularly preferred embodiments, the D-alanyl-D-alanine-carboxypeptidase/transpeptidase, which may be inhibited is the Streptomyces R61 DD-peptidase. This enzyme has conservation of active site mechanism with bacterial signal peptidases (see, e.g., Black et al., Current Pharmaceutical Design 4:133-154 (1998); Dalbey et al., Protein Science 6:1129-1138 (1997)). It is, therefore, possible that the β-lactamase inhibitors of the invention may also be capable of inhibition of bacterial signal peptidases


As used herein, the term “β-lactamase” denotes a protein capable of inactivating a β-lactam antibiotic. In one preferred embodiment, the β-lactamase is an enzyme which catalyzes the hydrolysis of the β-lactam ring of a β-lactam antibiotic. In certain preferred embodiments, the β-lactamase is microbial. In certain other preferred embodiments, the β-lactamase is a serine β-lactamase. Examples of such preferred β-lactamases are well known and are disclosed in, e.g., Waley, The Chemistry of β-Lactamase, Page Ed., Chapman & Hall, London, (1992) 198-228. In particularly preferred embodiments, the β-lactamases is a class C β-lactamase of Enterobacter cloacae P99 (hereinafter P99 lactamase), or a class A β-lactamase of the TEM-2 plasmid (hereinafter TEM β-lactamase).


As used herein, the term “organism” refers to any multicellular organism. Preferably, the organism is an animal, more preferably a mammal, and most preferably a human


For simplicity, chemical moieties are defined and referred to throughout primarily as univalent chemical moieties (e.g., alkyl, aryl, etc.). Nevertheless, such terms are also used to convey corresponding multivalent moieties under the appropriate structural circumstances clear to those skilled in the art. For example, while an “alkyl” moiety generally refers to a monovalent radical (e.g. CH3—CH2—), in certain circumstances a bivalent linking moiety can be “alkyl,” in which case those skilled in the art will understand the alkyl to be a divalent radical (e.g., —CH2—CH2—), which is equivalent to the term “alkylene.” (Similarly, in circumstances in which a divalent moiety is required and is stated as being “aryl,” those skilled in the art will understand that the term “aryl” refers to the corresponding divalent moiety, arylene.) All atoms are understood to have their normal number of valences for bond formation (i.e., 4 for carbon, 3 for N, 2 for O, and 2, 4, or 6 for S, depending on the oxidation state of the S). On occasion a moiety may be defined, for example, as (A)a-B-, wherein a is 0 or 1. In such instances, when a is 0 the moiety is B- and when a is 1 the moiety is A-B-. Also, a number of moieties disclosed herein exist in multiple tautomeric forms, all of which are intended to be encompassed by any given tautomeric structure.


The term “alkyl” as employed herein refers to straight and branched chain aliphatic groups having from 1 to 12 carbon atoms, preferably 1-8 carbon atoms, more preferably 1-6 carbon atoms, which is optionally substituted with one, two or three substituents. Unless otherwise specified, the alkyl group may be saturated, unsaturated, or partially unsaturated. As used herein, therefore, the term “alkyl” is specifically intended to include alkenyl and alkynyl groups, as well as saturated alkyl groups. Preferred alkyl groups include, without limitation, methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, isobutyl, pentyl, hexyl, vinyl, allyl, isobutenyl; ethynyl, and propynyl.


As employed herein, a “substituted” alkyl, cycloalkyl, aryl, or heterocyclic group is one having between one and about four, preferably between one and about three, more preferably one or two, non-hydrogen substituents. Suitable substituents include, without limitation, halo, hydroxy, nitro, haloalkyl, alkyl, alkaryl, aryl, aralkyl, alkoxy, aryloxy, amino, acylamino, alkylcarbamoyl, arylcarbamoyl, aminoalkyl, alkoxycarbonyl, carboxy, hydroxyalkyl, alkanesulfonyl, arenesulfonyl, alkanesulfonamido, arenesulfonamido, aralkylsulfonamido, alkylcarbonyl, acyloxy, cyano, and ureido groups.


The term “cycloalkyl” as employed herein includes saturated and partially unsaturated cyclic hydrocarbon groups having 3 to 12, preferably 3 to 8 carbons, wherein the cycloalkyl group additionally is optionally substituted. Preferred cycloalkyl groups include, without limitation, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, and cyclooctyl


An “aryl” group is a C6-C14 aromatic moiety comprising one to three aromatic rings, which is optionally substituted. Preferably, the aryl group is a C6-C10 aryl group. Preferred aryl groups include, without limitation, phenyl, naphthyl, anthracenyl, and fluorenyl. An “aralkyl” or “arylalkyl” group comprises an aryl group covalently linked to an alkyl group, either of which may independently be optionally substituted or unsubstituted. Preferably, the aralkyl group is C1-6alk(C6-10)aryl, including, without limitation, benzyl, phenethyl, and naphthylmethyl. An “alkaryl” or “alkylaryl” group is an aryl group having one or more alkyl substituents. Examples of alkaryl groups include, without limitation, tolyl, xylyl, mesityl, ethylphenyl, tert-butylphenyl, and methylnaphthyl.


A “heterocyclic” group is a ring structure having from about 3 to about 8 atoms, wherein one or more atoms are selected from the group consisting of N, O, and S. The heterocyclic group is optionally substituted on carbon with oxo or with one of the substituents listed above. The heterocyclic group may also independently be substituted on nitrogen with alkyl, aryl, aralkyl, alkylcarbonyl, alkylsulfonyl, arylcarbonyl, arylsulfonyl, alkoxycarbonyl, aralkoxycarbonyl, or on sulfur with oxo or lower alkyl. Preferred heterocyclic groups include, without limitation, epoxy, aziridinyl, tetrahydrofuranyl, pyrrolidinyl, piperidinyl, piperazinyl, thiazolidinyl, oxazolidinyl, oxazolidinonyl, and morpholino.


In certain preferred embodiments, the heterocyclic group is a heteroaryl group. As used herein, the term “heteroaryl” refers to groups having 5 to 14 ring atoms, preferably 5, 6, 9, or 10 ring atoms; having 6, 10, or 14 n electrons shared in a cyclic array; and having, in addition to carbon atoms, between one and about three heteroatoms selected from the group consisting of N, O, and S. Preferred heteroaryl groups include, without limitation, thienyl, benzothienyl, furyl, benzofuryl, dibenzofuryl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyrazinyl, pyrimidinyl, indolyl, quinolyl, isoquinolyl, quinoxalinyl, tetrazolyl, oxazolyl, thiazolyl, and isoxazolyl.


In certain other preferred embodiments, the heterocyclic group is fused to an aryl or heteroaryl group. Examples of such fused heterocycles include, without limitation, tetrahydroquinolinyl and dihydrobenzofuranyl.


Additional preferred heterocyclyls and heteroaryls include, but are not limited to, acridinyl, azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazolinyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydroquinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, 1H-indazolyl, indolenyl, indolinyl, indolizinyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isothiazolyl, methylenedioxyphenyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, piperidonyl, 4-piperidonyl, piperonyl, pteridinyl, purinyl, pyranyl, pyrazolidinyl, pyrazolinyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, quinazolinyl, 4H-quinolizinyl, quinuclidinyl, tetrahydroisoquinolinyl, 6H-1,2,5-thiadiazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl, thianthrenyl, thienyl, thienothiazolyl, thienooxazolyl, thienoimidazolyl, thiophenyl, triazinyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,2,5-triazolyl, 1,3,4-triazolyl, and xanthenyl.


A moiety that is substituted is one in which one or more hydrogens have been independently replaced with another chemical substituent. As a nonlimiting example, substituted phenyls include 2-fluorophenyl, 3,4-dichlorophenyl, 3-chloro-4-fluoro-phenyl, 2-fluor-3-propylphenyl. As another non-limiting example, substituted n-octyls include 2,4 dimethyl-5-ethyl-octyl and 3-cyclopentyl-octyl. Included within this definition are methylenes (—CH2—) substituted with oxygen to form carbonyl-CO—).


Unless otherwise stated, as employed herein, when a moiety (e.g., cycloalkyl, hydrocarbyl, aryl, heteroaryl, heterocyclic, urea, etc.) is described as “optionally substituted” it is meant that the group optionally has from one to four, preferably from one to three, more preferably one or two, non-hydrogen substituents. Suitable substituents include, without limitation, halo, hydroxy, oxo (e.g., an annular-CH— substituted with oxo is —C(O)—) nitro, halohydrocarbyl, hydrocarbyl, aryl, aralkyl, alkoxy, aryloxy, amino, acylamino, alkylcarbamoyl, arylcarbamoyl, aminoalkyl, acyl, carboxy, hydroxyalkyl, alkanesulfonyl, arenesulfonyl, alkanesulfonamido, arenesulfonamido, aralkylsulfonamido, alkylcarbonyl, acyloxy, cyano, and ureido groups. Preferred substituents, which are themselves not further substituted (unless expressly stated otherwise) are:

    • (a) halo, cyano, oxo, carboxy, formyl, nitro, amino, amidino, guanidino,
    • (b) C1-C5 alkyl or alkenyl or arylalkyl imino, carbamoyl, azido, carboxamido, mercapto, hydroxy, hydroxyalkyl, alkylaryl, arylalkyl, C1-C8 alkyl, C1-C8 alkenyl, C1-C8 alkoxy, C1-C8 alkoxycarbonyl, aryloxycarbonyl, C2-C8 acyl, C2-C8 acylamino, C1-C8 alkylthio, arylalkylthio, arylthio, C1-C8 alkylsulfinyl, arylalkylsulfinyl, arylsulfinyl, C1-C8 alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl, C0-C6 N-alkyl carbamoyl, C2-C15 N,N-dialkylcarbamoyl, C3-C7 cycloalkyl, aroyl, aryloxy, arylalkyl ether, aryl, aryl fused to a cycloalkyl or heterocycle or another aryl ring, C3-C7 heterocycle, or any of these rings fused or spiro-fused to a cycloalkyl, heterocyclyl, or aryl, wherein each of the foregoing is further optionally substituted with one more moieties listed in (a), above; and
    • (c) —(CH2)S—NR30R31, wherein s is from 0 (in which case the nitrogen is directly bonded to the moiety that is substituted) to 6, and R30 and R31 are each independently hydrogen, cyano, oxo, carboxamido, amidino, C1-C8 hydroxyalkyl, C1-C3 alkylaryl, aryl-C1-C3 alkyl, C1-C8 alkyl, C1-C8 alkenyl, C1-C8 alkoxy, C1-C8 alkoxycarbonyl, aryloxycarbonyl, aryl-C1-C3 alkoxycarbonyl, C2-C8 acyl, C1-C8 alkylsulfonyl, arylalkylsulfonyl, arylsulfonyl, aroyl, aryl, cycloalkyl, heterocyclyl, or heteroaryl, wherein each of the foregoing is further optionally substituted with one more moieties listed in (a), above; or
      • R30 and R31 taken together with the N to which they are attached form a heterocyclyl or heteroaryl, each of which is optionally substituted with from 1 to 3 substituents from (a), above.


The term “halogen” or “halo” as employed herein refers to chlorine, bromine, fluorine, or iodine


As herein employed, the term “acyl” refers to an alkylcarbonyl or arylcarbonyl substituent.


The term “acylamino” refers to an amide group attached at the nitrogen atom. The term “carbamoyl” refers to an amide group attached at the carbonyl carbon atom. The nitrogen atom of an acylamino or carbamoyl substituent may be additionally substituted. The term “sulfonamido” refers to a sulfonamide substituent attached by either the sulfur or the nitrogen atom. The term “amino” is meant to include NH2, alkylamino, arylamino, and cyclic amino groups.


The term “ureido” as employed herein refers to a substituted or unsubstituted urea moiety.


The structure:




embedded image



represents —S—, —S(O)— or —S(O)2— when Z is S and n is 0, 1, or 2, respectively, —CH2— when Z is CH2 and n is 0, and —C(O)— when Z is C and n is 1.


Preferred embodiments of a particular genus of compounds of the invention include combinations of preferred embodiments. For example, preferred R2 substituents are given in paragraph [0046] and preferred R3 substituents are given in paragraph [0047]. Thus, preferred compounds according to the invention include those in which R2 is as described in paragraph [0046] and R3 is as described in paragraph [0047].


Compounds


[0037] In a first aspect, the invention provides novel β-lactamase inhibitors. In one embodiment of the invention, the novel β-lactamase inhibitor is a compound of Formula (I):




embedded image



or a pro-drug or pharmaceutically acceptable salt thereof, wherein

    • R1 is aryl or heteroaryl, wherein the aryl or heteroaryl group is optionally substituted;
    • Z is C, CH2, or S;
    • n is 0, 1, or 2 when Z is S, n is when Z is C, and n is 0 when Z is CH2;
    • L is C0-C3-alkyl, C1-C3-alkyl-O—, —C(O)—, or —C(═N—OCH3)—;
    • R2 is selected from the group consisting of hydrogen, alkyl, cycloalkyl, aralkyl, and aryl, any of which is optionally substituted;
    • R3 is selected from the group consisting of hydrogen, alkyl, cycloalkyl, aralkyl, aryl, heteroaryl, and (heteroaryl)alkyl, any of which groups is optionally substituted;
    • R4 is selected from the group consisting of OH, F, SR7, and N(R7)2; and
    • R5 is selected from the group consisting of F, OR6, SR7, and N(R7)2,
      • R6 is selected from the group consisting of —H, alkyl, cycloalkyl, C0-C3-alkyl-cycloalkyl, aryl, C0-C3-alkaryl, aralkyl, (heteroaryl)alkyl, heteroaryl, and C0-C3-alkyl-heteroaryl, wherein the aryl or heteroaryl portion of any such group is optionally substituted, and
      • R7 at each occurrence is independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, aralkyl, and aryl, each of which is optionally substituted;


        provided that R4 and R5 are not both F, and further provided that R1 is not 5-dimethylamino-1-naphthyl when R2 and R3 are both H, R4 is OH, and R5 is 4-nitrophenoxy.


In one preferred embodiment of the compound according to paragraph [0037], Z is S.


[0039] In another embodiment, the novel β-lactamase inhibitor is a compound of Formula (I):




embedded image



or a pro-drug or pharmaceutically acceptable salt thereof, wherein

    • R1 is aryl or heteroaryl, wherein the aryl or heteroaryl group is optionally substituted;
    • Z is C, CH2, or S;
    • n is 0, 1, or 2 when Z is S, n is 1 when Z is C, and n is 0 when Z is CH2;
    • L is C0-C3-alkyl, C1-C3-alkyl-O—, —C(O)—, or —C(═N—OCH3)—;
    • R2 is selected from the group consisting of hydrogen, alkyl, cycloalkyl, aralkyl, and aryl, wherein the aryl portion of any such group is optionally substituted;
    • R3 is selected from the group consisting of hydrogen, alkyl, cycloalkyl, aralkyl, aryl, heteroaryl, and (heteroaryl)alkyl, wherein the aryl or heteroaryl portion of any such group is optionally substituted;
    • R4 is OR8, where R8 is selected from the group consisting of phenyl substituted with at least one chloro, nitro, or fluoro substituent; heteroaryl; and substituted heteroaryl; and
    • R5 is OR6, where R6 is selected from the group consisting of H, alkyl, cycloalkyl, aryl, aralkyl, (heteroaryl)alkyl, and heteroaryl, wherein the aryl or heteroaryl portion of any such group is optionally substituted.


In one preferred embodiment of the compound according to paragraph [0039], Z is S.


In yet another embodiment, the novel β-lactamase inhibitor is a compound of Formula (II):




embedded image



or a pro-drug or pharmaceutically acceptable salt thereof, wherein

    • R1 is aryl or heteroaryl, wherein the aryl or heteroaryl group is optionally substituted;
    • Z is C, CH2, or S;
    • n is 0, 1, or 2 when Z is S, n is 1 when Z is C, and n is 0 when Z is CH2;
    • L is C0-C3-alkyl, C1-C3-alkyl-O—, —C(O)—, or —C(═NOCH3)—;
    • Y is 0, NR7, or S;
    • R2 is selected from the group consisting of hydrogen, alkyl, cycloalkyl, aralkyl, and aryl;
    • R4 and R5 are independently selected from the group consisting of OH, F, SR7, N(R7)2, and OR6,
      • where R6 is selected from the group consisting of alkyl, cycloalkyl, aryl, aralkyl, (heteroaryl)alkyl, and heteroaryl, wherein the aryl or heteroaryl portion of any such group is optionally substituted, and where R7 at each occurrence is independently selected from the group consisting of hydrogen, alkyl, cycloalkyl, aralkyl, and aryl;
    •  provided that R4 and R5 are not both F or both OH.


With respect to the compounds of Formula (I) or Formula (II), the following preferred values are applicable:


In certain preferred embodiments, R1 is C6-14aryl, more preferably C6-10aryl, most preferably phenyl or naphthyl, any of which may be substituted. In certain other preferred embodiments, R1 is heteroaryl or substituted heteroaryl. Preferably, the heteroaryl group is selected from the group consisting of thienyl, benzothienyl, furyl, benzofuryl, quinolyl, isoquinolyl, and thiazolyl. In certain particularly preferred embodiments, the heteroaryl group is thienyl or benzothienyl


Substituted aryl or heteroaryl groups have one or more, preferably between one and about three, more preferably one or two substituents, which are preferably selected from the group consisting of C1-6alkyl, preferably C1-4alkyl; halo, preferably Cl, Br, or F; haloalkyl, preferably (halo)1-5(C1-6)alkyl, more preferably (halo)1-5(C1-3)alkyl, and most preferably CF3; C1-6alkoxy, preferably methoxy, ethoxy, or benzyloxy; C6-10aryloxy, preferably phenoxy; C1-6-alkoxycarbonyl, preferably C1-3alkoxycarbonyl, most preferably carbomethoxy or carboethoxy; C6-10aryl, preferably phenyl; (C6-10)ar(C1-6)alkyl, preferably (C6-10)ar(C1-3)alkyl, more preferably benzyl, naphthylmethyl or phenethyl; hydroxy(C1-6)alkyl, preferably hydroxy(C1-3)alkyl, more preferably hydroxymethyl; amino(C1-6)alkyl, preferably amino(C1-3)alkyl, more preferably aminomethyl; (C1-6)alkylamino, preferably methylamino, ethylamino, or propylamino; di-(C1-6)alkylamino, preferably dimethylamino or diethylamino; (C1-6)alkylcarbamoyl, preferably methylcarbamoyl, dimethylcarbamoyl, or benzylcarbamoyl; (C6-10)arylcarbamoyl, preferably phenylcarbamoyl; (C1-6)alkaneacylamino, preferably acetylamino; (C6-10)areneacylamino, preferably benzoylamino; (C1-6)alkanesulfonyl, preferably methanesulfonyl; (C1-6)alkanesulfonamido, preferably methanesulfonamido; (C6-10)arenesulfonyl, preferably benzenesulfonyl or toluenesulfonyl; (C6-10)arenesulfonamido, preferably benzenesulfonyl or toluenesulfonyl; (C6-10)ar(C1-6)alkylsulfonamido, preferably benzylsulfonamido; C1-6alkylcarbonyl, preferably C1-6)alkylcarbonyl, more preferably acetyl; (C1-6)acyloxy, preferably acetoxy; cyano; amino; carboxy; hydroxy; ureido; and nitro.


Preferably, n is 1 or 2. More preferably n is 2.


[0046] R2 is preferably selected from the group consisting of H; C1-8alkyl, preferably C1-6alkyl, more preferably C1-4alkyl; C3-8cycloalkyl, preferably cyclopropyl, cyclopentyl, or cyclohexyl; (C6-10)ar(C1-6)alkyl, preferably (C6-10)ar(C1-3)alkyl, more preferably benzyl; and C6-10aryl, preferably phenyl; any of which groups is optionally substituted. More preferably, R2 is one of H, methyl, ethyl, propyl, cyclopropyl or benzyl. Most preferably, R2 is H.


[0047] R3 is preferably selected from the group consisting of H; C1-8alkyl, preferably C1-6alkyl, more preferably C1-4alkyl; C3-8cycloalkyl, preferably cyclopropyl, cyclopentyl, or cyclohexyl; (C6-10)ar(C1-6)alkyl, preferably (C6-10)ar(C1-3)alkyl, more preferably benzyl; heterocyclic having one or more, preferably between one and about three, more preferably one or two, ring atoms independently selected from the group consisting of N, O, and S; heterocyclic(C1-6)alkyl, preferably heterocyclic(C1-3)alkyl; and C6-10aryl, preferably phenyl; any of which groups may be optionally substituted. More preferably, R3 is one of H, methyl, ethyl, propyl, isopropyl, isobutyl, butyl, phenyl, or benzyl.


In certain other preferred embodiments, R2 and R3 are taken together with the carbon and nitrogen atoms to which they are attached to form a nitrogen-containing heterocyclic ring. Preferably, the heterocyclic ring is a to 7-membered ring, more preferably a 5- or 6-membered ring.


In certain preferred embodiments, R4 is preferably OH. In certain other preferred embodiments, R4 is preferably OR8, wherein R8 is preferably selected from the group consisting of phenyl or heteroaryl, either of which may be optionally substituted. Where R8 is phenyl, the phenyl group is preferably substituted with at least one ester, amide, chloro, nitro, or fluoro substituent; more preferably with at least one chloro, nitro, or fluoro substituent; and most preferably with at least one nitro substituent.


R5 is preferably selected from the group consisting of F, OR6SR7 and N(R7)2, where R6 and R7 are as defined below. More preferably, R5 is F or OR6. In certain particularly preferred embodiments, R5 is a good leaving group. Leaving group ability is understood by those skilled in the art, and is generally described in March, Advanced Organic Chemistry, Third Edition, John Wiley & Sons, 1985, pp 310-316. Compounds according to this embodiment of the invention are subject to attack by a nucleophilic residue such as serine on the enzyme, resulting in irreversible inactivation of the enzyme.


R6 is preferably selected from the group consisting of C1-8alkyl, preferably C1-6-alkyl, more preferably C1-4alkyl; C3-8cycloalkyl, preferably cyclopropyl, cyclopentyl, or cyclohexyl; (C6-10)ar(C1-6)alkyl, preferably (C6-10)ar(C1-3)alkyl, more preferably benzyl; heterocyclic having one or more, preferably between one and about three, more preferably one or two, ring atoms independently selected from the group consisting of N, O, and S; heterocyclic(C1-6)alkyl, preferably heterocyclic(C1-3)alkyl; and C6-10aryl, preferably phenyl; any of which groups may be optionally substituted. Preferably, the heterocyclic group is heteroaryl.


More preferably, R6 is C6-10aryl or heteroaryl, either of which is optionally substituted with between one and about three, more preferably one or two substituents, which are preferably selected from the group consisting of C1-6alkyl, preferably C1-4alkyl; halo, preferably Cl, Br, or F; haloalkyl, preferably (halo)1-5(C1-6)alkyl, more preferably (halo)1-5(C-3)alkyl, and most preferably CF3; C1-6alkoxy, preferably methoxy, ethoxy, or benzyloxy; C6-10aryloxy, preferably phenoxy; C1-6alkoxycarbonyl, preferably C1-3alkoxycarbonyl, most preferably carbomethoxy or carboethoxy; C6-10aryl, preferably phenyl; (C6-10)ar(C1-6)alkyl, preferably (C6-10)ar(C1-3)alkyl, more preferably benzyl, naphthylmethyl or phenethyl; hydroxy(C1-6)alkyl, preferably hydroxy(C1-3)alkyl, more preferably hydroxymethyl; amino(C1-6)alkyl, preferably amino(C1-3)alkyl, more preferably aminomethyl; (C1-6)alkanesulfonyl, preferably methanesulfonyl; (C1-6)alkanesulfonamido, preferably methanesulfonamido; (C6-10)arenesulfonyl, preferably benzenesulfonyl or toluenesulfonyl; (C6-10)arenesulfonamido, preferably benzenesulfonyl or toluenesulfonyl; (C6-10)ar(C1-6)alkylsulfonamido, preferably benzylsulfonamido; C1-6alkylcarbamoyl, preferably methylcarbamoyl, dimethylcarbamoyl, or benzylcarbamoyl; C6-10arylcarbamoyl, preferably benzylcarbamoyl; (C1-6)alkane-acylamino, preferably acetylamino; (C6-10)areneacylamino, preferably benzyolamino; C1-6alkylcarbonyl, preferably C1-3alkylcarbonyl, more preferably acetyl; cyano; amino; carboxy; hydroxy; and nitro.


Most preferably, R6 is an aryl or heteroaryl group substituted with one or more substituents selected from the group consisting of halo, preferably chloro or fluoro; haloalkyl, preferably trifluoromethyl; nitro; cyano; acyl; carboxy; and alkoxycarbonyl. More preferably, the aryl or heteroaryl group has one or more chloro, fluoro, or nitro substituents. Most preferably, R6 is selected from the group consisting of nitrophenyl, pentafluorophenyl, trifluorophenyl, pyridyl, chloropyridyl, isoquinolyl, and quinolyl.


R7 is preferably selected from the group consisting of H; C1-8alkyl, preferably C1-6alkyl, more preferably C1-4alkyl; C3-8cycloalkyl, preferably cyclopropyl, cyclopentyl, or cyclohexyl; (C6-10)ar(C1-6)alkyl, preferably (C6-10)ar(C1-3)alkyl, more preferably benzyl; and C6-10aryl, preferably phenyl; any of which groups may be optionally substituted.


With respect to the compounds of Formula (II), Y is O, NR7, or S. Preferably, Y is NR7, where R7 is as defined above. In certain particularly preferred embodiments, Y is NH.


[0056] In another preferred embodiment of the compound according to paragraph [0037], one or more of the following is true:

    • R1 is aryl (preferably phenyl) or thienyl, each of which is optionally substituted;
    • L is methyl, methoxy, —C(O)—, or —C(═N—OCH3)—;
    • Z is C and n is 1;
    • R2 is H;
    • R3 is H;
    • R4 is —OH;
    • R5 is F, —OR6, or —SR6; and/or
    • R6 is aryl or heteroaryl, each of which is optionally substituted.


[0057] In a preferred embodiment of the compound according to paragraph [0056], Z is C and n is 1; R2 is H; R3 is H; and R4 is —OH:




embedded image


[0058] In a preferred embodiment of the compound according to paragraph [0057 ],

    • R1 is phenyl or thien-2-yl, each optionally substituted;
    • L is a covalent bond, —CH2O—, —C(O)—, or —C(═N—OCH3)—; and
    • R5 is -halo or —OR10 wherein R10 is phenyl, pyridinyl, or quinolinyl, each optionally substituted,
    • provided that when L is —CH2O—, R5 is not —F or p-nitrophenoxy.


Preferred substituents on the compound according to paragraph [0058] are —NO2, —CO2H, and halo. Preferably R1 is unsubstituted in the compound according to paragraph [0058].


In a preferred embodiment of the compound according to paragraph [0058], R5 is selected from:




embedded image


In a preferred embodiment, the compounds according to paragraph [0058] are those in which the combination of R1-L and R5 are selected from the following (in which “PNP” is p-nitrophenoxy):













R1—L—
R5









embedded image


PNP







embedded image




embedded image









embedded image




embedded image









embedded image


PNP







embedded image




embedded image









embedded image




embedded image









embedded image




embedded image









embedded image


PNP







embedded image




embedded image









embedded image




embedded image









embedded image


PNP







embedded image




embedded image









embedded image




embedded image









embedded image




embedded image









embedded image




embedded image









embedded image




embedded image









embedded image




embedded image












and













embedded image


—OH









In another embodiment, the compounds of the invention are those in which the phosphonate moiety of the compound according to paragraph [0057] is replaced with a thiophosphonate moiety, provided, however, that when R1-L- is benzyloxy, R5 is not PNP.


[0063] In another preferred embodiment of the compound according to paragraph [0037], R1 is 4,7-dichlorobenzo[b]thiophen-2-yl; L is a covalent bond; Z is S; n is 2; R2 and R3 are —H; R4 is —OH; and R5 is —OR6:




embedded image




    • R3 is —H or —CO2R9, wherein R9 is —C1-C3-alkyl;

    • R6 is -L1-A-(L2-B)S, wherein
      • L1 is C0-C3-alkyl optionally mono- to per-halogenated;
      • A is C3-C6-cycloalkyl, aryl, or heteroaryl;
      • L2 is a covalent bond or (C0-C3-hydrocarbyl)-X1—(C0-C3-hydrocarbyl), wherein X1 is —C(O)—, —NH—, —NH—C(O)—, —C(O)—NH—, or heteroaryl;
      • B is —H, C3-C6-cycloalkyl, aryl, or heteroaryl; and
      • s is 0 or 1;
      • wherein when s is 0, (L2-B)S is —H or halo, and A and B are independently optionally substituted with 1-3 moieties independently selected from the group consisting of halo, —NO2, —CO2H, —CN, —C(O)—NH2, —SO2—NH2, or —C0-C3-hydrocarbyl-Y—C1-C3-hydrocarbyl) wherein Y is a covalent bond, —O—C(O)—, —C(O)—, —S—, —SO2—, —C(O)—NH—, or —NH—C(O; and
      • each alkyl moiety is optionally mono- to per-halogenated.





[0064] In a preferred embodiment of the compound according to paragraph [0063], R3 is H and R1 is




embedded image


[0065] In another preferred embodiment of the compound according to paragraph [0063], R3 is —CO2Et and R1 is




embedded image


[0066] In a preferred embodiment of the compound according to paragraph [0064], L1 is —O— and A is phenyl or pyridinyl (preferably pyridin-3-yl), each optionally substituted as stated in paragraph [0063].


In one preferred embodiment of the compound of paragraph [0066], s is 0.


In another preferred embodiment of the compound of paragraph [0066], s is 1 and L2 is —C(O)—, —C(O)NH—, —NH—, 1,2,4-oxadiazolyl, or 1,3,4-oxadiazolyl and B is phenyl, pyridinyl, cyclopropyl, or thienyl, wherein B is optionally substituted.


Preferred substituents on the A and B rings include —F, —Cl, —Br, —CO2H, —C(O)O—CH3, —CF3, —OCH3, —OCF3, —CH3, —CN, —C(O)NH2, —S—CF3, —SO2CH3, —NO2, —CF3CF3, —SO2CF3, —SO2CF3CF3, and —SO2NH2.


In a particularly preferred embodiment of the compound according to paragraph [0064] one or both of the following are true:


a. A is selected from phenyl and pyridinyl;


b. B is selected from phenyl, tetraazolyl, cyclopropyl, pyridinyl, and thienyl.


In one preferred embodiment according to paragraph [0065], R6 is phenyl or p-nitro phenyl.


[0072] In another particularly preferred embodiment of the compounds according to paragraph [0064], the compound is selected from those in which —O—R6 is;




embedded image


embedded image


embedded image


embedded image


embedded image


The present inventors have discovered a correlation between hydrophilicity of β-lactamase inhibitors (as measured by log P) and their biological efficacy (expressed as synergy as described in the Examples). The correlation (see FIG. 1) is described by a V-shaped curve, with its point intercepting the x-axis at a log P value of about −0.4 and its arms extending from −0.4 to +0.6. Based on this observed trend in structure-activity relationships, the β-lactamase inhibitors of the invention preferably have high negative or high positive log P values. Preferably, the log P for the inhibitor is ≦−0.6 or ≧0, more preferably ≦−1 or ≧0.2, still more preferably ≦−1.2 or ≧0.4, and most preferably ≦−1.4 or ≧0.6. Nikaido and Vaara, Microbiological Reviews 49, 1-32 (1985), and Livermore, Scad. J. Infect. Dis., Suppl. 74, 15-22 (1991), teach that hydrophilicity and cell permeability govern the behavior of antimicrobial agents


The compounds of Formula (I) are preferably monoacids (R4═OH). In certain preferred embodiments, the β-lactamase inhibitor is a salt of the compound of Formula (I), the salt preferably being formed by treating the compound of Formula (I) with a base so as to remove the phosphonate hydrogen atom. Non-limiting examples of bases which may be used to deprotonate the compound of Formula (I) include sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium bicarbonate, potassium bicarbonate, sodium carbonate, and potassium carbonate. Preferably, the counterion thereby introduced is a pharmaceutically acceptable counterion, including without limitation sodium, magnesium, calcium, or ammonium.


Generally, the compounds of the invention can be routinely synthesized using techniques known to those skilled in the art in conjunction with the teachings herein. The compounds of Formula (I) wherein R3═H can be prepared in certain preferred embodiments according to the general synthetic route depicted in Scheme 1. Thus, Arbusov reaction of bromomethylphthalimide with a phosphite such as triethylphosphite is preferably conducted at elevated temperature, e.g., 145° C., in a solvent such as xylenes to afford the phthalimidomethylphosphonate III. Treatment of III with a hydrazine such as methylhydrazine in an alcoholic solvent such as methanol effects phthalimide cleavage to afford the aminomethylphosphonate IV. Treatment of IV with a sulfonyl chloride, sulfinyl chloride, or sulfenyl chloride of the general formula V in an organic solvent such as methylene chloride, and in the presence of a base such as triethylamine, provides the N-sulfonyl-, N-sulfinyl-, or N-sulfenyl-aminomethylphosphonate VI. Treatment of VI with a silyl halide such as trimethylsilyl bromide at room temperature in a solvent such as methylene chloride effects cleavage of the phosphonate ester to provide the phosphonic acid VII. In situ activation of VII with trichloroacetonitrile in pyridine, followed by treatment at 100° C. with an aryl or heteroaryl alcohol, such as phenol or substituted phenol, affords an aryl or heteroaryl phosphonate. Treatment with an aqueous base such as sodium bicarbonate then provides the sodium salt VIII, which corresponds to the compound of Formula (I), wherein R2═R3═H.




embedded image


In certain other preferred embodiments, (sulfonamido)methylphosphonates of formula XIV may be prepared according to the procedures illustrated in Scheme 2. Thus, the sulfonyl chloride of formula IX is treated with ammonium hydroxide to produce the corresponding sulfonamide of formula X. Treatment of X with paraformaldehyde in the presence of a phosphite such as trimethyl phosphite affords the phosphonate diester of formula XI. Deprotection is effected by treatment of XI with a silyl halide such as trimethylsilyl bromide to produce XII, which may be converted to XIV by treatment with trichloroacetonitrile in pyridine, followed by treatment with an aryl or heteroaryl alcohol, as described above. Alternatively, treatment of XII with a chlorinating agent such as sulfuryl chloride or thionyl chloride, followed by treatment with an aryl or heteroaryl alcohol, affords the diester XIII, which is mono-deprotected by treatment with base to afford VIII.




embedded image


Compounds of Formula (I), wherein R3 is not hydrogen, are synthesized according to the synthetic route depicted in Scheme 3. Thus, treatment of a sulfonamide X with an aldehyde in the presence of acetyl chloride and a phosphite such as diethylphosphite affords the α-substituted (sulfonamido)methylphosphonate ester XV. The remaining steps are performed analogously to those described for the methods according to Schemes 1 and 2 above to afford the salt XVII, which corresponds to the compound of Formula (I), wherein R3 is not hydrogen.




embedded image


The compounds of Formula (I), wherein R4 is F, are prepared according to the synthetic route outlined in Scheme 4. Thus, the phosphonic acid VII is treated with a chlorinating agent such as sulfuryl chloride or thionyl chloride to produce the dichlorophosphine oxide XIX, which, without isolation, is then treated with tetrabutylammonium fluoride. Treatment with base then affords the salt XX, which corresponds to the compound of Formula (I), wherein R4 is F.




embedded image


The compounds of Formula (I), wherein R2 is not hydrogen, may be prepared according to the synthetic route depicted in Scheme 5. Thus, the N-sulfonyl-, N-sulfinyl-, or N-sulfenyl-aminomethylphosphonate VI is treated with an alkyl halide in the presence of a base such as cesium carbonate to afford the N-alkylated derivative XXI. Deprotection and monoesterification as described above then provide the N,N-disubstituted compound XXIII.




embedded image



Pharmaceutical Compositions


In a second aspect, the invention provides pharmaceutical compositions comprising a β-lactamase inhibitor of the invention (as described in paragraph [0037]-[0072]) and a pharmaceutically acceptable carrier or diluent.


As employed herein, the term “pro-drug” refers to pharmacologically acceptable derivatives, e.g., esters and amides, such that the resulting biotransformation product of the derivative is the active drug. Pro-drugs are known in the art and are described generally in, e.g., Goodman and Gilmans, “Biotransformation of Drugs”, In The Pharmacological Basis of Therapeutics, 8th Ed., McGraw Hill, Int. Ed. 1992, p. 13-15, which is hereby incorporated by reference in its entirety. Compounds of the invention may be formulated by any method well known in the art and may be prepared for administration by any route, including, without limitation, parenteral, oral, sublingual, transdermal, topical, intranasal, intratracheal, or intrarectal. In certain particularly preferred embodiments, compounds of the invention are administered intravenously in a hospital setting. In certain other embodiments, administration may be preferably by the oral route.


Accordingly, another aspect of the invention is a composition comprising a compound of the invention and a pharmaceutically acceptable carrier. The characteristics of the carrier will depend on the route of administration. As used herein, the term “pharmaceutically acceptable” means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The term “physiologically acceptable” refers to a non-toxic material that is compatible with a biological system such as a cell, cell culture, tissue, or organism. Thus, compositions and methods according to the invention may contain, in addition to the inhibitor, diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The pharmaceutical composition of the invention may also contain other active factors and/or agents which enhance the inhibition of β-lactamases and/or DD-peptidases.


Inhibition of Bacterial Growth


In a third aspect, the invention provides methods for inhibiting bacterial growth, such methods comprising administering to a bacterial cell culture, or to a bacterially infected cell culture, tissue, or organism, a β-lactamase inhibitor of Formula (I) or Formula (II) as defined for the first aspect of the invention (as described in paragraph [0037]-[0072]).


Preferably, the bacteria to be inhibited by administration of a β-lactamase inhibitor of the invention are bacteria that are resistant to β-lactam antibiotics. More preferably, the bacteria to be inhibited are β-lactamase positive strains that are highly resistant to β-lactam antibiotics. The terms “resistant” and “highly resistant” are well-understood by those of ordinary skill in the art (see, e.g., Payne et al., Antimicrobial Agents and Chemotherapy 38:767-772 (1994); Hanaki et al., Antimicrobial Agents and Cheemotherapy 30:1120-1126 (1995)). Preferably, “highly resistant” bacterial strains are those against which the MIC of methicillin is >100 μg/mL. Preferably, “slightly resistant” bacterial strains are those against which the MIC of methicillin is >25 μg/mL.


The methods according to this aspect of the invention are useful for inhibiting bacterial growth in a variety of contexts. In certain preferred embodiments, the compound of the invention is administered to an experimental cell culture in vitro to prevent the growth of β-lactam resistant bacteria. In certain other preferred embodiments the compound of the invention is administered to an animal, including a human, to prevent the growth of β-lactam resistant bacteria in vivo. The method according to this embodiment of the invention comprises administering a therapeutically effective amount of a β-lactamase inhibitor according to the invention for a therapeutically effective period of time to an animal, including a human. Preferably, the β-lactamase inhibitor is administered in the form of a pharmaceutical composition according to the second aspect of the invention.


The terms “therapeutically effective amount” and “therapeutically effective period of time” are used to denote known treatments at dosages and for periods of time effective to show a meaningful patient benefit, i.e., healing of conditions associated with bacterial infection, and/or bacterial drug resistance. Preferably, such administration should be parenteral, oral, sublingual, transdermal, topical, intranasal, intratracheal, or intrarectal. When administered systemically, the therapeutic composition is preferably administered at a sufficient dosage to attain a blood level of inhibitor of at least about 100 micrograms/mL, more preferably about 1 milligrams/mL, and still more preferably about 10 milligrams/mL. For localized administration, much lower concentrations than this may be effective, and much higher concentrations may be tolerated.


In certain preferred embodiments of the method according to this aspect of the invention, a β-lactamase inhibitor according to the invention is co-administered with an antibiotic. Preferably, such co-administration produces a synergistic effect. As employed herein, the terms “synergy” and “synergistic effect” indicate that the effect produced when two or more drugs are co-administered is greater than would be predicted based on the effect produced when the compounds are administered individually. While not wishing to be bound by theory, the present inventors believe that the β-lactamase inhibitors according to the invention act to prevent de-gradation of β-lactam antibiotics, thereby enhancing their efficacy and producing a synergistic effect. In particularly preferred embodiments of the invention, therefore, the co-administered antibiotic is a β-lactam antibiotic. For purposes of this invention, the term “co-administered” is used to denote simultaneous or sequential administration.


Synergy may be expressed as a ratio of the minimum inhibitory concentration (MIC) of an antibiotic tested in the absence of a β-lactamase inhibitor to the MIC of the same antibiotic tested in the presence of the β-lactamase inhibitor. A ratio of one (1) indicates that the β-lactamase inhibitor has no effect on antibiotic potency. A ratio greater than one (1) indicates that the β-lactamase inhibitor produces a synergistic effect when co-administered with the antibiotic agent. Preferably the β-lactamase inhibitor produces a synergy ratio of at least about 2, more preferably about 4, and still more preferably about 8. Most preferably, the β-lactamase inhibitor produces a synergy ratio of at least about 16.


In certain other preferred embodiments, the β-lactamase inhibitor according to the invention may itself have antibiotic activity, and thus potentially can be administered alone or can be co-administered with a β-lactam antibiotic or any other type of antibiotic.


The term “antibiotic” is used herein to describe a compound or composition which decreases the viability of a microorganism, or which inhibits the growth or reproduction of a microorganism. “Inhibits the growth or reproduction” means increasing the generation cycle time by at least 2-fold, preferably at least 10-fold, more preferably at least 100-fold, and most preferably indefinitely, as in total cell death. As used in this disclosure, an antibiotic is further intended to include an antimicrobial, bacteriostatic, or bactericidal agent. Non-limiting examples of antibiotics useful according to this aspect of the invention include penicillins, cephalosporins, aminoglycosides, sulfonamides, macrolides, tetracyclins, lincosides, quinolones, chloramphenicol, vancomycin, metronidazole, rifampin, isoniazid, spectinomycin, trimethoprim, sulfamethoxazole, and others. The term “β-lactam antibiotic” is used to designate compounds with antibiotic properties containing a β-lactam functionality. Non-limiting examples of β-lactam antibiotics useful according to this aspect of the invention include penicillins, cephalosporins, penems, carbapenems, and monobactams.


The following examples are intended to further illustrate certain preferred embodiments of the invention, and are not intended to limit the scope of the invention.


EXAMPLE 1
[(4-fluorobenzenesulfonylamino)methyl]-phosphonic acid mono-(2-chloropyridin-3-yl)ester sodium salt (30)



embedded image



Step 1. Dimethyl (phthalimidomethyl)phosphonate (ii).


A mixture of N-(bromomethyl)phthalimide (i) (10.43 g, 43.46 mmol) and trimethyl phosphite (5.93 g, 47.80 mmol) was heated at reflux in xylene (20 mL) for 6 h. The reaction mixture was then cooled to room temperature and concentrated. Crystallization from CHCl3hexane gave (ii) (7.60 g, 65%) as a white solid: 1H NMR (300 MHz, CHCl3) δH 3.84 (d, JH,P=10.8 Hz, 6H), 4.12 (d, J=11.4 Hz, 2H), 7.76 (m, 2H), 7.87 (m, 2H).


Step 2. [(4-fluorobenzenesulfonylamino)methyl]-phosphonic acid dimethyl ester (35).


A solution of phthalimide (ii) (1.50 g, 5.66 mmol) in anhydrous CH3OH (15 mL) was treated with hydrazide monohydrate (0.29 mL, 6.0 mmol) and stirred at room temperature for 3.5 days. The white phthalyl hydrazide precipitate was filtered off and the filtrate was concentrated at temperature below 20° C. to give dimethyl aminomethyl phosphonate (iii) as a pale yellow oil. Without purification, compound (iii) was dissolved in CH2Cl2 (20 mL), cooled to 0° C., and treated with N-methylmorpholine (0.84 mL, 7.36 mmol) and p-fluorobenzenesulfonyl chloride (1.43 g, 7.36 mmol). The mixture was warmed to room temperature over 2 hours, and stirred for 16 hours. The reaction mixture was then diluted with CH2Cl2, (50 mL) washed with 1 N HCl (2×25 mL), dried (MgSO4), filtered, and concentrated. Purification by flash chromotography (silica gel; elution with 4% CH3OH in EtOAc) gave 35 (0.58 g, 35%) as a white solid: 1H NMR (300 MHz, CDCl3) δH 3.29 (d, J=13.2 Hz 2 H), 3.78 (d, JH,P=11.1 Hz, 6H), 6.50 (br s, 1H), 7.20 (m, 2H), 7.90 (m, 2H).


Step 3. [(4-fluorobenzenesulfonylamino)methyl]-phosphonic acid (iv).


A solution of diester 35 (0.58 g, 1.95 mmol) in dry CH2Cl2 (10 mL) and bromotrimethylsilane (1.5 mL, 11.7 mmol) was stirred at room temperature for 5 hours and then concentrated. The resulting residue was dissolved in anhydrous CH3OH (10 mL) and stirred at room temperature for 20 minutes. Insolubles were filtered, and the filtrate was concentrated. Purification by trituration with CH2Cl2 gave the phosphonic acid (iv) (0.51 g, 97%) as a white solid: 1H NMR (300 MHz, CD3OD) δH 3.17 (d, J=13.5 Hz, 2H), 7.35 (m, 2H), 7.97 (m, 2H).


Step 4. [(4-fluorobenzenesulfonylamino)methyl]-phosphonic acid mono-(2-chloropyridin-3-yl)ester sodium salt (30).


A mixture of compound (iv) (52.6 mg, 0.20 mmol), 2-chloro-3-hydroxypyridine (28.5 mg, 0.22 mmol), and CCl3CN (100 μl, 1.00 mmol) was heated at 105° C. in pyridine. After 6 h, the reaction mixture was cooled to room temperature and then concentrated. The residue was dissolved in H2O (10 mL) containing 1 N NaHCO3 (0.6 mL), washed with EtOAc (5 mL×2) and the water layer was lyophilized. Purification by reverse-phase preparative TLC (C18-silica gel, 20% CH3CN in H2O) gave sodium monophosphonate salt 30 (30 mg, 38%) as a white fluffy solid: 1H NMR (300 MHz, D2O) δH 3.17 (d, J=12.6 Hz, 2H), 7.16 (m, 2H), 7.24 (dd, J=4.8, 8.1 Hz, 1H), 7.57 (m, 1H), 7.77 (m, 2H), 7.98 (m, 1H); 31P NMR (121 MHz, CD3OD) δP 13.4.


EXAMPLE 2
[(Benzylsulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl)ester sodium salt (1)

Following procedures analogous to those described in Example 1, substituting benzylsulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O), δH 3.23 (d, J=11.7 Hz, 2H), 4.40 (s, 2H), 7.18 (d, J=9.3 Hz, 2H), 7.31 (m, 5H), 8.13 (d, J=9.3 Hz, 2H); 31P NMR (121 MHz, D2O) δP 14.8.


EXAMPLE 3
[(4-Fluorobenzenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl)ester sodium salt (2)

Following procedures analogous to those described in Example 1, substituting 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, CD3OD) δH 3.15 (d, J=13.5 Hz, 2H), 7.31 (m, 2H), 7.40 (d, J=9.3 Hz, 2H), 7.95 (m, 2H), 8.21 (d, J=9.3 Hz, 2H); 31P NMR (121 MHz, CD3OD) δP 12.4; 13C NMR (75.4 MHz, CD3OD) δC 40.8 (d, JC,P=153 HZ), 117.2 (d, J=22.69 Hz), 122.4 (d, J=4.6 Hz), 126.2, 131.2 (d, J=9.4 Hz), 137.1 (d, J=3.2 Hz), 144.8, 159.4 (d, J=7.7 Hz), 166.5 (d, JC,F=252 Hz).


EXAMPLE 4
[(4-Chlorobenzenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl)ester sodium salt (3)

Following procedures analogous to those described in Example 1, substituting 4-chlorobenzenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.06 (d, J=9.3 Hz, 2H), 7.66 (d, J=9.0 Hz, 2H), 7.40 (d, J=9.0 Hz, 2H), 7.04 (d, J=9.3 Hz, 2H), 3.14 (d, J=12.6 Hz, 2H); 31P NMR (121 MHz, D2O) δP 14.1.


EXAMPLE 5
[(2-naphthylsulfonylamino)methyl]-phosphonic acid mono-(4-nitro phenyl) ester sodium salt (4)

Following procedures analogous to those described in Example 1, substituting 2-naphthylsulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.19 (br s, 1H), 7.61 (d, J=9.3 Hz, 2H), 7.41-7.82 (m, 6H), 6.73 (d, J=9.3 Hz, 2H), 3.22 (d, J=12.6 Hz, 2H); 31P NMR (121 MHz, D2O) δP 13.4.


EXAMPLE 6
[(4-Methoxybenzenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl)ester sodium salt (5)

Following procedures analogous to those described in Example 1, substituting-4-methoxybenzenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.0 (d, J=9 Hz, 2H, Ar—H), 7.6 (d, J=9 Hz, 2H, Ar—H), 7.0 (d, J=9 Hz, 0.2H, Ar—H), 6.8 (d, J=9 Hz, 2H, Ar—H), 3.8 (s, 3H, CH3), 3.2 (d, J=13 Hz, 2H, CH2).


EXAMPLE 7
[(4-Toluylsulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl)ester sodium salt (6)

Following procedures analogous to those described in Example 1, substituting 4-toluysulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δ 8.1 (d, J=9 Hz, 2H, Ar—H), 7.6 (d, J=9 Hz, 2H, Ar—H), 7.2 (d, J=9 Hz, 2H, Ar—H), 7.0 (d, J=9 Hz, 2H, Ar—H), 3.2 (d, J=13 Hz, 2H, CH2); 2.2 (s, 3H, CH3).


EXAMPLE 8
(Benzenesulfonylamino)methyl]-phosphonic acid mono-(4-nitro-phenyl)ester sodium salt (7)

Following procedures analogous to those described in Example 1, substituting benzenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.1 (d, J=9 Hz, 2H, Ar—H), 7.4-7.8 (m, 5H, Ar—H), 7.0 (d, J=9 Hz, 2H, Ar—H), 3.2 (d, J=13 Hz, 2H, CH2).


EXAMPLE 9
[(4-Fluorobenzenesulfonylamino)methyl]-phosphonic acid mono-(3-pyridyl) ester sodium salt (8)

Following procedures analogous to those described in Example 1, substituting 3-hydroxypyridine for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 7.10-8.18 (m, 8H), 3.08 (d, J=12.6 Hz, 2H); 31P NMR (121 MHz, D2O) δP 14.7.


EXAMPLE 10
[(3,4-Dichlorobenzenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl)ester sodium salt (9)

Following procedures analogous to those described in Example 1, substituting 3,4-dichlorobenzenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.24 (d, J=9.3 Hz, 2H), 8.01 (d, J=2.1 Hz, 1H), 7.74 (d, J=2.1 Hz, 1H), 7.69 (s, 1H), 7.21 (d, J=9.3 Hz, 2H), 3.39 (d, J=12.3 Hz, 2H); 31P NMR (121 MHz, D2O) δP 14.2.


EXAMPLE 11
[(1-Naphthylsulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt (10)

Following procedures analogous to those described in Example 1, substituting 1-napthylsulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.4 (d, 1H, Ar—H), 8.2 (d, 1H, Ar—H), 8.1 (d, 1H, Ar—H), 7.8 (d, J=9 Hz, 2 H. Ar—H), 7.4-7.6 (m, 3H, Ar—H), 6.6 (d, J=9 Hz, 2H, Ar—H), 3.2 (d, J=13 Hz, 2H, CH2); 31P NMR (121 MHz, D2O) δP 16.5 (t, 1 P).


EXAMPLE 12
[(4-Fluorobenzenesulfonylamino)methyl]-phosphonic acid mono-(8-quinolinyl) ester sodium salt (11)

Following procedures analogous to those described in Example 1, substituting 8-hydroxyquinoline for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.69 (m, 1H), 8.22 (m, 1H), 6.90-7.89 (m, 8H), 3.10 (d, J=13.8 Hz, 2H).


EXAMPLE 13
[(4-Nitrobenzenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt (12)

Following procedures analogous to those described in Example 1, substituting 4-nitrobenzenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δ 8.6 (d, 2H, Ar—H), 8.4 (d, J=9 Hz, 2H, Ar—H), 8.0 (d, 2H, Ar—H), 7.4 (d, J=9 Hz, 2H, Ar—H), 3.2 (d, J=13 Hz, 2H, CH2); 31P NMR (121 MHz, D2O) δP, 17.5 (t, 1 P).


EXAMPLE 14
[(2-Nitrobenzenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt (13)

Following procedures analogous to those described in Example 1, substituting 2-nitrobenzenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.0 (d, J=9 Hz, 2H, Ar—H), 7.8 (s, 1H, Ar—H), 7.6 (s, 1H, Ar—H), 7.6 (d, 2H, Ar—H), 7.1 (d, J=9 Hz, 2H, Ar—H), 3.2 (d, J=13 Hz, 2H); 31P NMR (121 MHz, D2O) δP, 17.5 (t, 1 P).


EXAMPLE 15
[(2,5-Dichlorobenzenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt (14)

Following procedures analogous to those described in Example 1, substituting 2,5-dichlorobenzenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.1 (d, J=9 Hz, 2H, Ar—H), 7.8 (s, 1H, Ar—H), 7.4 (s, 2H, Ar—H), 7.1 (d, J=9 Hz, Ar—H), 3.2 (d, J=13 Hz, 2H, CH2); 31P NMR (121 MHz, D2O) δP 17.5 (t, 1 P).


EXAMPLE 16
[(Thiophene-2-sulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt (15)

Following procedures analogous to those described in Example 1, substituting 2-thiophenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.09 (d, J=9.6 Hz, 2H), 7.69 (dd, J=5.1; 1.5 Hz, 1H), 7.57 (dd, J=3.6; 1.2 Hz, 1H), 7.12 (d, J=9.6 Hz, 2H), 7.05 (dd, J=5.1; 3.6 Hz, 1H), 3.16 (d, J=12.9 Hz, 2H).


EXAMPLE 17
[(4-tert-Butylbenzenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt (16)

Following procedures analogous to those described in Example 1, substituting 4-tert-butylbenzenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.2 (d, J=9 Hz, 2H, Ar—H), 7.8 (m, 2H, Ar—H), 7.6 (m, 2H, Ar—H), 7.1 (d, J=9 Hz, 2H, Ar—H), 3.2 (d, J=13 Hz, 2H, CH2), 1.2 (s, 9H, t-Bu); 31P NMR (121 MHz, D2O) δP 18 (t, 1P).


EXAMPLE 18
[(4-Trifluoromethylbenzenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt (17)

Following procedures analogous to those described in Example 1, substituting 4-trifluoromethylbenzenesulfonyl for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.2 (d, J=9 Hz, 2H, Ar—H), 7.8 (m, 2H, Ar—H), 7.6 (m, 2H, Ar—H), 7.1 (d, J=9 Hz, 2H, Ar—H), 3.2 (d, J=13 Hz, 2H, CH2); 31P NMR (121 MHz, D2O) δP 18 (t, 1P).


EXAMPLE 19
[(2,4-Dinitrobenzenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl)ester sodium salt (18)

Following procedures analogous to those described in Example 1, substituting 2,4-dinitrobenzenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.61 (m, 1H); 8.35 (m, 1H), 8.15 (m, 1H), 7.98 (d, J=9.0 Hz, 2H); 7.02 (d, J=9.0 Hz, 2H), 3.41 (d, J=11.4 Hz, 2H).


EXAMPLE 20
[(8-Quinolylsulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt (19)

Following procedures analogous to those described in Example 1, substituting 8-quinolylsulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 6.68-8.78 (m, 10H), 3.13 (d, J=12.9 Hz, 2H); 31P NMR (121 MHz, D2O) δP 13.4.


EXAMPLE 21
[2,4,6-trimethylbenzenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenol) ester sodium salt (21)

Following procedures analogous to those described in Example 1, substituting 2,4,6-trimethylbenzenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.2 (d, J=9 Hz, 2H, Ar—H), 6.8 (s, 2H, Ar—H), 3.2 (d, J=13 Hz, 2H, CH2), 2.3 (s, 6H, CH3), 2.1 (s, 3H, CH3); 31P NMR (121 MHz, D2O) δP 18 (t, 1 P).


EXAMPLE 22
[(4-Chloro-3-nitrobenzenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt (22)

Following procedures analogous to those described in Example 1, substituting 4-chloro-3-nitrobenzenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.4 (s, 1H, Ar—H), 8.2 (d, J=9 Hz, 2H, Ar—H), 7.9 (d, 1 H. Ar—H), 7.7 (d, 1H, Ar—H), 7.2 (s, 2H, Ar—H), 3.2 (d, J=13 Hz, 2H, CH2); 31P NMR (121 MHz, D2O) δP 18 (t, 1 P).


EXAMPLE 23
[2-Bromobenzenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt (23)

Following procedures analogous to those described in Example 1, substituting 2-bromobenzenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δ 8.2 (d, J=9 Hz, 2H, Ar—H), 8.1 (s, 1H, Ar—H), 7.6 (d, 1H, Ar—H), 7.4 (m, 2H, Ar—H), 7.2 (s, 2H, Ar—H), 3.2 (d, J=13 Hz, 2H, CH2); 31P NMR (121 MHz, D2O) δp 17 (t, 1P).


EXAMPLE 24
[(3-Pyridinesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt (24)

Following procedures analogous to those described in Example 1, substituting 3-pyridinesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.80 (s, 1 H), 8.55 (d, J=4.8 Hz, 1H), 8.13 (d, J=8.1 Hz, 1H), 8.03 (d, J=9.0 Hz, 2H), 7.46 (dd, J=4.8, 8.1 Hz, 1H), 7.05 (d, J=9.0 Hz, 2H), 3.19 (d, J=12.3 Hz, 2H); 31P NMR (121 MHz, D2O) δP 13.7.


EXAMPLE 25
[(3-Pyridinesulfonylamino)methyl]-phosphonic acid mono-(3-pyridinyl)ester sodium salt (25)

Following procedures analogous to those described in Example 1, substituting 3-pyridinesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 3-hydroxypyridine for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, CD3OD) δH 3.17 (d, J=13.2 Hz, 2H), 7.37 (dd, J=4.8, 8.1 Hz, 1H), 7.57-7.69 (m, 2H), 8.23-8.29 (m, 2H), 8.40 (br s, 1H), 8.74 (dd, J=1.2, 4.8 Hz, 1H), 9.00 (d, J=1.5 Hz, 1H); 31P NMR (121 MHz, CD3OD) δP 12.1; 13C NMR (75.4 MHz, CD3OD) δC 40.6 (d, J=152 Hz), 125.5, 125.7, 130.5 (d, J=3.8 Hz), 136.8, 138.2, 143.5 (d, J=4.3 Hz), 144.7, 148.7, 151.2 (d, J=7.7 Hz), 153.8.


EXAMPLE 26
[(3-Dibenzofuransulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt (27)

Following procedures analogous to those described in Example 1, substituting 3-dibenzofuransulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.2 (s, 1H, Ar—H), 7.8 (d, J=9 Hz, 2H, Ar—H), 7.45 (m, 3H, Ar—H), 7.2 (t, J=7.5 Hz, 2H, Ar—H), 6.8 (d, J=9 Hz, 2H, Ar—H), 3.2 (d, J=12.9 Hz, 2H, CH2); 31P NMR (121 MHz, D2O) δP17.17 (t, J=12.2 Hz, 1 P).


EXAMPLE 27
[(2-Thiophenesulfonylamino)methyl]-phosphonic acid mono-(2,4,6-trifluorophenyl) ester sodium salt (28)

Following procedures analogous to those described in Example 1, substituting 2-thiophenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 2,4,6-trifluorophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 7.73 (dd, J=5.0; 1.5 Hz, 1H), 7.62 (dd, J=3.6, 1.5 Hz, 1H), 7.10 (dd, J=5.0, 3.6 Hz, 1H), 6.77 (m, 2H), 3.20 (d, J=13.2 Hz, 2H).


EXAMPLE 28
(2-Pyridinesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt (31)

Following procedures analogous to those described in Example 1, substituting 2-pyridinesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O), δH 8.49 (m, 1H), 8.08 (d, J=9.0 Hz, 2H), 7.86-7.98 (m, 2H), 7.52 (m, 1H), 7.11 (d, J=9.0 Hz, 2H), 3.28 (d, J=12.3 Hz, 2H); 31P NMR (121 MHz, D2O) δP 13.7.


EXAMPLE 29
[(2-Pyridinesulfonylamino)methyl]-phosphonic acid mono-(2-chloro-pyridine-3-yl)ester sodium salt (32)

Following procedures analogous to those described in Example 1, substituting 2-pyridinesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2, the title compound was obtained: 1H NMR (300 MHz, D2O), δH 8.48 (d, J=4.8 Hz, 1H), 7.83-7.98 (m, 3H), 7.57 (d, J=8.1 Hz, 1H), 7.51 (m, 1H), 7.23 (dd, J=4.8, 8.1 Hz, 1H), 3.30 (d, J=12.0 Hz, 2H); 31P NMR (121 MHz, D2O) δP 19.0.


EXAMPLE 30
[(5-Isoquinolinesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt (33)

Following procedures analogous to those described in Example 1, substituting 5-isoquinolinesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.92 (br s, 1H), 8.31 (br s, 1H), 8.21 (dd, J=1.0, 7.5 Hz, 1H), 8.12 (d, J=6.3 Hz, 1H), 7.98 (d, J=8.1 Hz, 1H), 7.62 (d, J=9.0 Hz, 2H), 7.52 (m, 1H), 6.53 (d, J=9.0 Hz, 2H), 3.18 (d, J=12.9 Hz, 2H); 31P NMR (121 MHz, D2O) δP 12.5.


EXAMPLE 31
[(2-Pyridinesulfonylamino)methyl]-phosphonic acid (34)

Following procedures analogous to those described in Example 1, steps 2-3, substituting 2-pyridinesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.53 (m, 1H), 7.90-8.05 (m, 2H), 7.58 (m, 1H), 3.07 (d, J=12.6 Hz, 2H); 31P NMR (121 MHz, D2O) δP 15.8.


EXAMPLE 32
[(5-Isoquinolinesulfonylamino)methyl]-phosphonic acid mono-(2-chloropyridin-3-yl)ester sodium salt (36)

Following procedures analogous to those described in Example 1, substituting 5-isoquinolinesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 9.00 (s, 1H), 8.36 (d, J=6.0 Hz, 1H), 8.29 (d, J=7.2 Hz, 1 H), 8.19 (d, J=6.0 Hz, 1H), 8.06 (d, J=7.5 Hz, 1H), 7.74 (d, J=4.8 Hz, 1H), 7.57 (m, 1H), 7.07 (d, J=8.1 Hz, 1H), 6.92 (dd, J=4.8, 8.1 Hz, 1H), 3.24 (d, J=11.7 Hz, 2H); 31P NMR (121 MHz, D2O) δP 12.1.


EXAMPLE 33
[(4-Fluorobenzenesulfonylamino)methyl]-phosphonic acid mono-(2-bromopyridin-3-yl) ester sodium salt (37)

Following procedures analogous to those described in Example 1, substituting 2-bromo-3-hydroxypyridine for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δ 7.95 (d, J=4.8 Hz, 2H), 7.76 (m, 2H), 7.51 (d, J=8.1 Hz, 2H), 7.25 (dd, J=4.8, 8.1 Hz, 1H), 7.16 (m, 2H), 3.17 (d, J=12.9 Hz, 2H).


EXAMPLE 34
[(2-Thiophenesulfonylamino)methyl]-phosphonic acid mono-(2-chloropyridin-3-yl)ester sodium salt (38)

Following procedures analogous to those described in Example 1, substituting 2-thiophenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 7.99 (d, J=4.8 Hz, 1H), 7.70 (d, J=4.8 Hz, 1H), 7.58 (m, 2H), 7.26 (dd, J=8.4; 5.1 Hz, 1H), 7.06 (t, J=4.8 Hz, 1H), 3.21 (d, J=12.9 Hz, 2H).


EXAMPLE 35
[(4-phenylbenzenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl)ester sodium salt (39)

Following procedures analogous to those described in Example 1, substituting 4-phenylbenzenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-nitrophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 7.87 (d, J=9.0 Hz, 2H), 7.73 (d, J=8.1 Hz, 2H), 7.59 (d, J=8.1 Hz, 2H), 7.49 (d, J=6.6 Hz, 2 H), 7.35 (m, 3H), 6.91 (d, J=9.0 Hz, 2H), 3.16 (d, J=12.3 Hz, 2H); 31P NMR (121 MHz, D2O) δP 12.6.


EXAMPLE 36
[(4-Phenylbenzenesulfonylamino)methyl]-phosphonic acid mono-(2-chloro-pyridine-3-yl)ester sodium salt (40)

Following procedures analogous to those described in Example 1, substituting 4-phenylbenzenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.04 (m, 1H), 7.78 (d, J=8.4 Hz, 2H), 7.65 (d, J=8.4 Hz, 2H), 7.54 (d, J=6.6 Hz, 2H), 7.31-7.43 (m, 3H), 7.16 (m, 1H), 3.14 (d, J=12.6 Hz, 2H); 31P NMR (121 MHz, D2O) δP 14.3.


EXAMPLE 37
[(5-Bromo-2-thiophenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt (41)

Following procedures analogous to those described in Example 1, substituting 5-bromo-2-thiophenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.10 (d, J=8.4 Hz, 2H), 7.30 (d, J=4.2 Hz, 1H), 7.10 (d, J=8.4 Hz, 2H), 7.02 (d, J=4.2 Hz, 1H), 3.18 (d, J=12.9 Hz, 2H); 31P NMR (121 MHz, D2O) δP 13.3.


EXAMPLE 38
[(5-Bromo-2-thiophenesulfonylamino)methyl]-phosphonic acid mono-(2-chloropyridin-3-yl)ester sodium salt (42)

Following procedures analogous to those described in Example 1, substituting 5-bromo-2-thiophenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2, the title compound was obtained: 1H NMR (300 MHz, CD3OD) δH 7.96 (d, J=4.8 Hz, 1H), 7.55 (d, J=8.1 Hz, 1H), 7.31 (d, J=3.9 Hz, 1H), 7.22 (dd, J=4.8, 8.1 Hz, 1H), 7.01 (d, J=3.9 Hz, 1H), 3.21 (d, J=12.9 Hz, 2H); 31P NMR (121 MHz, CD3OD) δP 15.1.


EXAMPLE 39
[(2-Thiophenesulfonylamino)methyl]-phosphonic acid (43)

Following procedures analogous to those described in Example 1, steps 2-3, substituting 2-thiophenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2, the title compound was obtained: 1H NMR (300 MHz, CD3OD) δH 7.79 (dd, J=4.8, 12.6 Hz, 1H), 7.64 (dd, J=3.9, 1.2 Hz, 1H), 7.17 (dd, J=4.8, 3.9 Hz, 1H), 3.16 (d, J=13.2 Hz, 2H).


EXAMPLE 40
[(5-Bromo-2-thiophenesulfonylamino)methyl]-phosphonic acid (58)

Following procedures analogous to those described in Example 1, steps 2-3, substituting 5-bromo-2-thiophenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2, the title compound was obtained: 1H NMR (300 MHz, CD3OD) δH 7.47 (d, J=3.9 Hz, 1H), 7.25 (d, J=3.9 Hz, 1H), 3.23 (d, J=13.5 Hz, 2H); 31P NMR (121 MHz, CD3OD) δP 17.9; 13C NMR (75.4 MHz, CD3OD) δC 40.8 (d, J=157 Hz), 120.3, 132.1, 133.7, 143.0.


EXAMPLE 41
[(3-(N-Phenylcarbamoylamino)-sulfonylamino)methyl]-phosphonic acid (59)

Following procedures analogous to those described in Example 1, steps 2-3, substituting 3-(N-phenylcarbamoylamino)-sulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2, the title compound was obtained: 1H NMR (300 MHz, DMSO-d6) δH 9.11 (s, 1H), 8.18 (s, 1H), 7.73 (d, J=9.0 Hz, 2H), 7.63 (d, J=8.7 Hz, 2H), 7.56 (m, 1H), 7.46 (d, J=7.8 Hz, 2H), 7.30 (app. t, J=7.8 Hz, 2H), 7.0 (m, 1H), 2.80 (d, J=13.5 Hz, 2H), 31P NMR (121 MHz, DMSO-d6) δP 17.0.


EXAMPLE 42
[(2-Thiophenesulfonylamino)methyl]-phosphonic acid mono-(4-chlorophenyl) ester ammonium salt (61)

Following procedures analogous to those described in Example 1, substituting 2-thiophenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 4-chlorophenol for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (400 MHz, D2O) δH 7.87 (dd, J=1.5, 5 Hz, 1H, Ar—H), 7.73 (dd, J=1.5, 4 Hz, 1H, Ar—H), 7.34-7.37 (m, 2H, Ar—H), 7.23 (dd, J=4, 5 Hz, 1H, Ar—H), 7.06-7.08 (m, 2H, Ar—H), 3.26 (d, J=27.0 Hz, 2H, NCH2P); 31P NMR: (164 MHz, D2O) δP 14.4; 13C NMR (100 MHz, D2O) δC 39.5 (d, J=152 Hz), 123.0 (d, J=3.5 Hz), 128.9, 129.8, 130.2, 134.2, 134.6, 138.1, 150.7.


EXAMPLE 43
[(3-(N-Phenylcarbamoylamino)benzenesulfonylamino)methyl]-phosphonic acid mono-(2-chloropyridin-3-yl)ester sodium salt (70)

Following procedures analogous to those described in Example 1, substituting (N-phenylcarbamoylamino)sulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2, the title compound was obtained: 1H NMR (300 MHz, CD3OD) δ 8.08 (m, 1H), 7.64-7.91 (m, 5H), 7.49 (m, 2H), 7.34 (m, 3H), 7.08 (m, 1H), 3.20 (d, J=13.8 Hz, 2H); 31P NMR (121 MHz, CD3OD) δP 13.2.


EXAMPLE 44
[(5-Bromo-2-thiophenesulfonylamino)methyl]-phosphonic acid mono-(5-chloropyridin-3-yl)ester sodium salt (71)

Following procedures analogous to those described in Example 1, substituting 5-bromo-2-thiophenesulfonyl chloride for 4-fluorobenzenesulfonyl chloride in step 2 and 5-chloro-3-hydroxypyridine for 2-chloro-3-hydroxypyridine in step 4, the title compound was obtained: 1H NMR (300 MHz, D2O) δH 8.20 (br.s. 1H), 8.11 (br.s. 1H), 7.54 (m, 1H), 7.33 (d, J=4.2 Hz, 1H), 7.05 (d, J=4.2 Hz, 1H), 3.20 (d, J=12.6 Hz, 2H); 31P NMR (121 MHz, D2O) δP 13.9.


EXAMPLE 45
Phenylsulfonylhydrazinyl-mono-(4-nitrophenyl)-phosphonamide (189)

Benzenesulfonyl hydrazide (0.5 g, 2.9 mmol) and pyridine (0.27 g, 3.2 mmol) in 50 mL of dry THF were added to a stirring solution of p-nitrophenylphosphoryl dichloride (0.75 g, 2.9 mmol) in 50 mL of dry THF at 0° C. After addition was complete, the solution was brought to room temperature and stirring was continued for 4 more hours. Finally, 1 N NaOH (9 mL) was added with stirring. Volatiles were removed, and the remaining aqueous solution was freeze-dried. The resultant crude product was more than 85% pure, but final purification was accomplished by preparative HPLC on an SMT C18 column using water/acetonitrile gradient. Analytical HPLC under similar conditions showed the product to be one peak (>95% pure). 1H NMR (300 MHz, D2O): δH 8.1 (d, 2H, p-nitrophenyl, 7.4-7.65 (m, 5H, Ar—H), 7.1 (d, 2H, p-nitrophenyl); 31P NMR (162 MHz) δp 0.08(s).


EXAMPLE 46
[(2-thiophenesulfonylamino)-methyl]-phosphonic acid mono-(3-chlorophenyl) ester ammonium salt (48)



embedded image



Step 1: 2-Thiophenesulfonamide (vi).


At 0° C., a concentrated solution of ammonium hydroxide (50 mL, 1.35 mol) was added to a solution of 2-thiophenesulfonyl chloride (50 g, 0.27 mol) in methanol (300 mL). The mixture was stirred at room temperature overnight, cooled in an ice bath, and a concentrated solution of HCl was added until the pH reached 7. The resultant solution was extracted with ethyl acetate, and the combined organic layers were dried over anhydrous magnesium sulfate and concentrated to afford 45 g of a brownish solid. Trituration with methylene chloride-hexanes (1:1) afforded the title compound: 1H NMR (300 MHz, CD3OD) δH 7.73 (m, 1H), 7.59 (m, 1H), 7.05 (m, 1H).


Step 2: [(2-Thiophenesulfonylamino)methyl]phosohonic acid dimethyl ester (vii).


To a solution of 2-thiophenesulfonamide (vi) (1.0 g, 6.1 mmol) in methanol (5 mL) was added a catalytic amount of sodium methoxide and paraformaldehyde (200 mg, 6.7 mmol). The reaction was heated to 55° C. for 1 h, and then the homogeneous solution was cooled and trimethyl phosphite (0.8 mL, 6.8 mmol) was added. After heating the reaction mixture for an additional 1 h at 55° C., the reaction mixture was cooled and concentrated. The residue was dissolved in dichloromethane (15 mL), washed with water (10 mL), dried (MgSO4), filtered and concentrated. Purification by flash chromatography (elution with methanol-chloroform; 1:19) yielded (vii) (600 mg, 34%) as a colorless solid: 31P NMR: (162 MHz, CDCl3) δP 23.7. Also isolated was the corresponding N-methylated compound, [(2-thiophenesulfonyl-N-methylamino)methyl]-phosphonic acid dimethyl ester (234 mg, 13%) as a colorless solid: 13C NMR (100 MHz, CDCl3) δC 36.7, 44.6 (d, J=165 Hz), 53.2 (d, J=6.5 Hz), 127.6, 132.4, 132.6, 135.7.


Step 3: [(2-Thiophenesulfonylamino)methyl]-phosphonic acid (43).


The dimethyl ester (vii) was treated with bromotrimethylsilane according to the procedure described in Example 1, step 3, to afford the title compound: 1H NMR (300 MHz, CD3OD) δH 7.79 (dd, J=4.8, 1.2 Hz, 1H), 7.64 (dd, J=3.9, 1.2 Hz, 1H), 7.17 (dd, J=4.8, 3.9 Hz, 1H), 3.16 (d, J=13.2 Hz, 2H).


Step 4: [(2-Thiophenesulfonylamino)methyl]-phosphonic acid di-(3-chlorophenyl) ester (viii).


To a solution of 3-chlorophenol (700 μL, 6.6 mmol) in pyridine (8 mL) at −45° C. was added thionyl chloride (230 μL, 3.2 mmol). The reaction was stirred at −45° C. for 1 h, and then a solution of phosphonic acid (200 mg, 0.78 mmol) in pyridine (5 mL) was slowly added. The reaction mixture was warmed to ambient temperature overnight, and the solution was then concentrated. The residue was dissolved in dichloromethane (15 mL) and washed with water (10 mL). The organic extracts were dried (MgSO4) and concentrated, and the residue was purified by flash chromatography (elution with ethyl acetate-hexanes; 1:1) to yield the diester (viii) (86 mg, 23%) as a colorless solid: 1H NMR (400 MHz, CDCl3) δH 7.57-7.58 (m, 2H, Ar—H), 7.14-7.26 (m, 6H, Ar—H), 7.04-7.09 (m, 3H, Ar—H), 6.46 (dt, J=2.5, 6.5 Hz, 1H, NH), 3.69 (dd, J=6.5, 12.5 Hz, 2H, NCH2P).


Step 5: [2-Thiophenesulfonylamino)methyl]-phosphonic acid mono-3-chlorophenyl) ester ammonium salt (48).


To a solution of diester (viii) (86 mg, 0.18 mmol) in dioxane (1.5 mL) was added 1 N sodium hydroxide solution (720 μL, 0.72 mmol) and water (4 mL). After 3 h, the solution was neutralized and concentrated the residue was purified by flash chromatography (elution with chloroform:methanol:concentrated ammonium hydroxide; 8.2:2:0.25) to afford the title compound (28 mg, 40%) as a colorless solid: 1H NMR (400 MHz, D2O) δH 7.84 (d, J=5 Hz, 1H, Ar—H), 7.71 (d, J=3.5 Hz, Ar—H), 7.30 (t, J=8 Hz, 1H, Ar—H), 7.15-7.21 (m, 3H, Ar—H), 7.01-7.03 (m, 1H, Ar—H), 3.23 (d, J=14 Hz, 2H, NCH2P); 31P NMR: (164 MHz, D2O) δP 14.5.


EXAMPLE 47
[(2-Thiophenesulfonylamino)methyl]-phosphonic acid mono-(3-dimethylamino)phenyl) ester ammonium salt (78)

According to the procedure described in Example 1, step 4, the phosphonic acid 43 was treated with 3-dimethylamino)phenol. The ammonium salt was purified by flash chromatography (elution with chloroform:methanol:concentrated ammonium hydroxide; 8:2:0.25), followed by lyophilization, to afford the title compound: 1H NMR (300 MHz, D2O) δH 7.67 (m, 1H), 7.54 (m, 1H), 7.11 (t, J=7.0 Hz, 1H), 7.04 (m, 1H), 6.68 (d, J=8.4 Hz, 1H), 6.64 (s, 1H), 6.48 (d, J=8.4 Hz, 1H), 3.07, d, J=13.2 Hz, 2H), 2.73 (s, 6H); 31P NMR: (121 MHz, D2O) δP 14.6; 13C NMR (75 MHz, D2O) δC 147.69, 144.91, 132.66, 129.13, 128.76, 125.97, 123.49, 110.35, 108.23, 104.94, 38.00, 34.21, (d, J=150.0 Hz).


EXAMPLE 48
[(2-Thiophenesulfonylamino)methyl]-phosphonic acid mono-(benzyl) ester ammonium salt (79)

According to the procedure described in Example 1, step 4, the phosphonic acid 43 was treated with benzyl alcohol. The ammonium salt was purified by flash chromatography (elution with chloroform:methanol:concentrated ammonium hydroxide; 8:2:0.25), followed by lyophilization, to afford the title compound: 1H NMR (300 MHz, D2O) δH 7.71 (m, 1H), 7.58 (m, 1H), 7.29 (s, 5H), 7.07 (t, J=7.0 Hz, 1H), 4.75 (d, J=7.8 Hz, 2H), 2.93 (d, J=12.9 Hz, 2H); 31P NMR: (121 MHz, D2O) δP 16.65; 13C NMR (75 MHz, D2O) δC 132.75; 131.10, 129.07, 128.72, 124.12, 123.70, 123.47, 123.13, 62.55, 34.40, (d, J=147.4 Hz).


EXAMPLE 49
[(2-Thiophenesulfonylamino)methyl]-phosphonic acid mono-methyl ester sodium salt (80)

The diester (vii) was treated with sodium hydroxide according to the procedure described in Example 46, step 5, to produce the title compound: 1H NMR (300 MHz, CD3OD) δH 7.65 (dd, J=4.8, 1.2 Hz, 1H), 7.62 (dd, J=3.6, 1.2 Hz, 1H), 7.15 (dd, J=4.8, 3.6 Hz, 1H), 3.55 (d, J=9.3 Hz, 3H), 3.04 (d, J=13.8 Hz, 2H); 31P NMR: (121 MHz, CD3OD) δP 17.60; 13C NMR (75 MHz, CD3OD) δC 141.77, 132.98, 132.90, 128.43, 52.02, 40.11, (d, J=147.2 Hz).


EXAMPLE 50
[(3-thiophenesulfonylamino)methyl]-phosphonic acid (ix)

Starting with 3-thiophenesulfonyl chloride, procedures analogous to those described in Example 46, steps 1-3, were followed to produce the title compound: 1H NMR (300 MHz, CD3OD) δH 8.15 (dd, J=3, 1.2 Hz, 1H), 7.66 (dd, J=5.4, 3.0 Hz, 1H), 7.44 (dd, J=5.4, 1.2 Hz, 1H), 3.18 (d, J=13.5 Hz, 2H); 13C NMR (75.4 MHz, CD3OD) δC 140.8, 131.8, 129.4, 126.6, 40.7 (d, J=157 Hz).


EXAMPLE 51
[(3-Thiophenesulfonylamino)methyl]-phosphonic acid mono(3-pyridyl) ester sodium salt (55)

Phosphonic acid compound (ix) was treated with 3-hydroxypyridine according to the procedure described in Example 1, step 4, to provide the title compound: 1H NMR (300 MHz, D2O) δH 8.15 (br.s, 2H), 8.03 (m, 1H), 7.49 (m, 1H), 7.44 (br d, J=8.7 Hz, 1H), 7.28 (m, 1H), 7.25 (m, 1H), 3.10 (d, J=13.0 Hz, 2H).


EXAMPLE 52
[(3-Thiophenesulfonylamino)methyl]-phosphonic acid mono-(2-chloro-3-pyridyl) ester sodium salt (56)

Phosphonic acid compound (ix) was treated with 2-chloro-3-hydroxypyridine according to the procedure described in Example 1, step 4, to provide the title compound: 1H NMR (300 MHz, D2O) δH 8.05 (dd, J=3.0, 1.2 Hz, 1H), 7.98 (br d, J=4.8 Hz, 1H), 7.57 (m, 1H), 7.48 (dd, J=5.4, 3.0 Hz, 1H), 7.25 (m, 2H), 3.18 (d, J=12.6 Hz, 2H).


EXAMPLE 53
[(3-Thiophenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt (57)

Phosphonic acid compound (ix) was treated with 4-nitrophenol according to the procedure described in Example 1, step 4, to provide the title compound: 1H NMR (300 MHz, D2O) δH 8.10 (d, J=9.3 Hz, 2H), 8.04 (m, 1H); 7.50 (dd, J=5.1, 3.0 Hz, 1H), 7.26 (dd, J=5.1, 1.5 Hz, 1H), 7.14 (d, J=9.3 Hz, 2H), 3.11 (d, J=12.9 Hz, 2H).


EXAMPLE 54
[(3-Thiophenesulfonylamino)methyl]-phosphonic acid mono-(2-fluoro-4-nitrophenyl) ester sodium salt (69)

Phosphonic acid compound (ix) was treated with 2-fluoro-4-nitrophenol according to the procedure described in Example 1, step 4, to provide the title compound: 1H NMR (300 MHz, D2O) δH 8.05 (m, 1H), 7.99 (m, 1H), 7.93 (m, 1H), 7.49 (m, 1H), 7.27 (m, 2H), 3.18 (d, J=12.6 Hz, 2 H).


EXAMPLE 55
[(3-Furylsulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester sodium salt (74)

Step 1: 3-Furylsulfonamide (x)


3-Furylsulfonyl chloride was treated with ammonia according to the procedure described in Example 46, step 1, to produce the title compound.


Step 2: [(3-Furylsulfonylamino)methyl]-phosphonic acid (73)


3-Furylsulfonamide (x) was treated with paraformaldehyde and trimethylphosphite, followed by treatment with bromotrimethylsilane, according to the procedure described in Example 46, steps 2 and 3, to produce the title compound: 1H NMR (300 MHz, CD3OD) δH 8.13 (dd, J=1.5, 0.6 Hz, 1H), 7.71 (t, J=1.8 Hz, 1H), 6.78 (dd, J=1.8, 0.6 Hz, 1H), 3.21 (d, J=13.5 Hz, 2H); 13C NMR (75 MHz, CD3OD) δC 147.2, 146.4, 128.0, 109.3, 40.7 (d, J=158 Hz).


Step 3: [(3-Furylsulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl)ester sodium salt (74)


Compound 73 was treated with 4-nitrophenol in the presence of CCl3CN according to the procedure described in Example 1, step 4, to produce the title compound: 1H NMR (300 MHz, D2O) δH 8.11 (d, J=9.0 Hz, 2H), 7.80 (m, 1H), 7.51 (m, 1H), 7.16 (d, J=9.0 Hz, 2H), 6.61 (m, 1H), 3.16 (d, J=13.0 Hz, 2H).


EXAMPLE 56
[(3-Furylsulfonylamino)methyl]-phosphonic acid mono-(2-fluoro-4-nitrophenyl) ester sodium salt (75)

Compound 73 was treated with 2-fluoro-4-nitrophenol in the presence of CCl3CN according to the procedure described in Example 1, step 4, to produce the title compound: 1H NMR (300 MHz, D2O) δH 8.00 (m, 3H), 7.53 (m, 1H), 7.35 (t, J=8.4 Hz, 1H), 6.63 (m, 1H), 3.21 (d, J=12.9 Hz, 2H).


EXAMPLE 57
[(3-Furylsulfonylamino)methyl]-phosphonic acid mono-(2-chloropyridin-3-yl) ester sodium salt (76)

Compound 73 was treated with 2-chloro-3-hydroxypyridine in the presence of CCl3CN according to the procedure described in Example 1, step 4, to produce the title compound: 1H NMR (300 MHz, D2O) δH 8.01 (m, 1H), 7.99 (m, 1H), 7.62 (dt, J=8.1, 1.5 Hz, 1H), 7.51 (t, J=2.0 Hz, 1H), 7.27 (dd, J=8.1, 4.8 Hz, 1H), 6.61 (dd, J=2.0, 0.9 Hz, 1H), 3.20 (d, J=12.6 Hz, 2H).


EXAMPLE 58
[(2-benzothiophenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester ammonium salt (77)

Step 1: 2-Benzothiophenesulfonamide


Preparation of 2-benzothiophenesulfonamide was effected using the reported procedure (S. L. Graham et al., J. Med. Chem. 1989, 32, 2548).


Step 2: [(2-Benzothiophenesulfonylamino)methyl]-phosphonic acid mono-(4-nitrophenyl)ester ammonium salt (77).


2-Benzothiophenesulfonamide was treated with paraformaldehyde and trimethylphosphite, followed by treatment with bromotrimethylsilane, according to the procedure described in Example 46, steps 2 and 3. The crude product was purified by flash chromatography-(elution with dichloromethane:methanol: concentrated ammonium hydroxide; 7:3.5:0.5), followed by lyophilization, to afford the ammonium salt 77: 1H NMR (300 MHz, DMSO-d6) δH 7.9 (m, 5H, Ar—H), 7.4 (m, 2H, Ar—H), 7.2 (d, J=9 Hz, 2H, Ar—H), 2.8 (d, J=12.9 Hz, 2H, CH2); 31P NMR (121 MHz, D2O) δP 12.08 (t, J=12.2 Hz, 1 P).


EXAMPLE 59
[(2-Thiophenesulfonyl-N-methylamino)methyl]-phosphonic acid mono-(4-nitrophenyl) ester ammonium salt (47)

Step 1: [(2-Thiophenesulfonyl-N-methylamino)methyl]-phosphonic acid (xi)


To a solution of [(2-thiophenesulfonyl-N-methylamino)methyl]-phosphonic acid dimethyl ester (obtained as described in Example 46, step 2) (180 mg, 0.6 mmol) in dichloromethane (3 mL) at 0° C. was slowly added bromotrimethylsilane (190 μL, 1.4 mmol). The reaction was gradually warmed to room temperature and allowed to stir overnight. The reaction mixture was concentrated, the residue was redissolved in dichloromethane, and the solution was again concentrated. Methanol (10 mL) was added to the residue, and the solution was stirred at room temperature for 30 min. The solution was then filtered and concentrated. The oily residue was triturated with 1:1 ether-hexanes, and an orange solid was collected by filtration. The orange solid was boiled in dichloromethane (3 mL), cooled, and filtered to yield the title compound (120 mg, 74%) as a colorless solid: 1H NMR (400 MHz, CD3OD) δH 7.87 (dd, J=1.5, 4 Hz, 1H, Ar—H), 7.66 (dd, J=1.5, 3.5 Hz, 1H, Ar—H), 7.25 (dd, J=4, 5 Hz, 1H, Ar—H), 3.31 (d, J=12.5 Hz, 2H, CH2P), 2.92 (s, 3H, NCH3).


Step 2: [(2-Thiophenesulfonyl-N-methylamino)methyl]-phosphonic acid mono-(4-nitrophenyl)ester ammonium salt (47)


Compound (xi) was treated with 4-nitrophenol according to the procedure described in Example 1, step 4. The crude product was purified by flash chromatography (elution with chloroform:methanol:concentrated ammonium hydroxide; 8:2:0.25) to afford the ammonium salt 47 (43%) as a colorless solid: 1H NMR (400 MHz, CD3OD) δH 8.19-8.23 (m, 2H, Ar—H), 7.85 (dd, J=1, 5 Hz, 1H, Ar—H), 7.62 (dd, J=1, 4 Hz, 1H, Ar—H), 7.44 (dd, J=1, 9.5 Hz, 2H, Ar—H), 7.23 (dd, J=4, 5 Hz, 1H, Ar—H), 3.30 (d, J-13.5 Hz, 2H, NCH2P), 2.93 (s, 3H, NCH3); 13C NMR (100 MHz, CD3OD) δC 37.1, 47.4, 122.4 (d, J=4 Hz), 126.1, 128.9, 133.7 (d, J=7 Hz), 137.1, 144.7, 159.5; 31P NMR (162 MHz, CD3OD) δP 12.7; MS (neg. FAB) m/z 391 (M-1, 100%), 306 (15%), 153 (35%).


EXAMPLE 60
[2-Phenyl-1-(thiophene-2-sulfonylamino)-ethyl]-phosphonic acid mono-(4-nitrophenyl) ester ammonium salt. (44)



embedded image



Step 1: [2-Phenyl-1-thiophene-2-sulfonylamino)-ethyl]-phosphonic acid diethyl ester (xii)


To a suspension of sulfonamide (vi) (500 mg; 0.31 mmol) in acetyl chloride (5 mL) was slowly added diethyl phosphite (400 μL; 0.31 mmol). The reaction was cooled to 0° C. and then phenylacetaldehyde (450 μL; 0.39 mmol) was added dropwise. The reaction was gradually warmed to ambient temperature and after 6 hrs the homogeneous solution was concentrated. The residue was diluted with dichloromethane (25 mL) then washed successively with water (10 mL), saturated sodium bicarbonate (10 mL) and brine (10 mL). The combined organic extracts were dried (MgSO4), evaporated and initially purified by flash chromatography (ethyl acetate-hexanes; 3:2). A second purification by flash chromatography (acetone-hexanes; 3:7) yielded diethyl phosphonate (xii) (437 mg, 35%) as a colorless solid; 1H NMR (400 MHz, CDCl3) δH 1.22 (t, J=7 Hz, 3H, OCH2CH3), 1.26 (t, J=7 Hz, 3H, OCH2CH3), 2.89 (dt, J=8, 14 Hz, 1H, CHPh), 3.12 (dt, J=6, 14 Hz, 1H, CHPh), 3.96-4.23 (m, 5H, NCHP and OCH2CH3), 6.38 (dd, J=2, 9.5 Hz, 1H, NH), 6.92-6.93 (m, 1H, Ar—H), 7.12-7.20 (m, 5H, Ar—H), 7.33-7.34 (m, 1H, Ar—H), 7.43-7.45 (m, 1 H. Ar—H).


Step 2: [2-Phenyl-1-thiophene-2-sulfonylamino)-ethyl]-phosphonic acid (xiii)


To a solution of diethyl phosphonate (xii) (745 mg; 1.8 mmol) in dichloromethane (8 mL) at 0° C. was slowly added bromotrimethylsilane (2 mL; 15.2 mmol). The reaction was gradually warmed to room temperature and the following day the solution was evaporated. The residue was redissolved in dichloromethane (10 mL), evaporated and the process repeated once more. Methanol (10 mL) was added to the residue and the solution stirred at room temperature for 30 minutes, then the solution was filtered and concentrated. The oily residue was triturated with 1:1 ether-hexanes and the orange solid collected by filtration. Finally, the orange solid was boiled in dichloromethane (5 mL), cooled and filtered to yield pure phosphonic acid (xiii) (512 mg, 80%) as a colorless solid: 1H NMR (400 MHz, CD3OD) δH 2.71 (dt, J=14, 10 Hz, 1H, CHPh), 3.13 (ddd, J=4, 8, 14 Hz, 1H, CHPh), 3.89 (ddd, J=4, 10, 14 Hz, NCHP), 6.86 (dd, J=3.5, 5 Hz, 1H, Ar—H), 7.07-7.15 (m, 6H, Ar—H), 7.53 (dd, J=1.5, 5 Hz, 1H, Ar—H).


Step 3: [2-Phenyl-1-thiophene-2-sulfonylamino)-ethyl]-phosphonic acid mono-(4-nitrophenyl) ester ammonium salt (44)


To sealed tube containing phosphonic acid (xiii) (50 mg; 0.14 mmol) and sublimed 4-nitrophenol (24 mg; 0.17 mmol) was added pyridine (0.7 mL) and trichloroacetonitrile (100 μL; 1.0 mmol). The reaction was heated to 105° C. for 6 hrs then was cooled and concentrated. The residue was purified by flash chromatography (chloroform-methanol-concentrated ammonium hydroxide; 8:2:0.25) to yield the ammonium salt 44 (36.4 mg, 52%) as a colorless solid: 1H NMR (400 MHz, CD3OD) δH 2.83 (td, J=9, 14 Hz, 1H, CHPh), 3.23-3.29 (m, 1H, CHPh), 3.95-4.02 (m, 1H, NCHP), 6.85 (dd, J=4, 5 Hz, 1H, Ar—H), 7.08-7.20 (m, 6 H. Ar—H), 7.27-7.31 (m, 2H, Ar—H), 7.52 (dd, J=1.5, 5 Hz, 1H, Ar—H), 8.12-8.16 (m, 2H, Ar—H); 31P NMR: (162 MHz, CD3OD) δP 16.7; 13C NMR: (100 MHz, CD3OD) δP 38.1, 122.0, 125.9, 127.3, 128.3, 129.2, 130.6, 132.2, 132.3, 144.4, 144.5.


EXAMPLE 61
[2-Methyl-1-thiophene-2-sulfonylamino)-propyl]-phosphonic acid mono-(4-nitrophenyl) ester ammonium salt (52)

The title compound was synthesized according to the three-step procedure described in Example 60, Steps 1-3, but substituting isobutyraldehyde for phenylacetaldehyde. The mono ester 52 was isolated as a colorless solid (13% yield over three steps): 1H NMR: (400 MHz, DMSO-D6) δH 0.86 (d, J=7 Hz, 3H, CH3), 0.93 (d, J=7 Hz, 3H, CH3), 2.02-2.10 (m, 1H, (CH3)2CH), 3.28-3.35 (m, 1H, NCHP), 7.03 (dd, J=3.5, 5 Hz, 1H, Ar—H), 7.12 (br s, 5H, NH), 7.17 (dd, J=9 Hz, 2H, Ar—H), 7.60 (dd, J=1, 3.5 Hz, 1H, Ar—H), 7.75 (dd, J=1, 5 Hz, 1H, Ar—H), 8.06-8.10 (m, 2H, Ar—H); 31P NMR: (162 MHz, DMSO-D6) δP 14.2; 13C NMR: (100 MHz, DMSO-D6) δC 19.8, 21.3, (d, J=10), 30.7, 58.3 (d, J=142.3), 121.3 (d, J=4.5), 125.9, 128.2, 132.2, 132.4, 142.2, 144.7, 161.2.


EXAMPLE 62
[Phenyl-(thiophene-2-sulfonylamino)-methyl]-phosphonic acid mono-(4-nitrophenyl) ester ammonium salt (53)

The title compound was synthesized according to the three-step procedure in Example 60, Steps 1-3, but substituting benzaldehyde for phenylacetaldehyde. The mono ester 53 was isolated as a colorless solid (8% yield over three steps): 1H NMR (400 MHz, DMSO-D6) δH 4.44 (d, J=22 Hz, 1H, NCHP), 6.83 (dd, J=4, 5 Hz, 1H, Ar—H), 7.00-7.07 (m, 4H), 7.17-7.33 (m, 9H), 7.60 (dd, J=1.5, 5 Hz, 1H, Ar—H), 8.08-8.12 (m, 2H, Ar—H); 31P NMR: (162 MHz, DMSO-D6) δP 10.1; 13C NMR: (100 MHz, DMSO-D6) δC 58.0 (d, J=140.2 Hz) 121.6 (d, J=4 Hz), 125.9, 126.9, 127.9, 128.1, 129.1 (d, J=5 Hz), 132.3, 132.6, 138.9, 142.4, 143.6 and 161.4.


EXAMPLE 63
[2-Phenyl-1-(thiophene-2-sulfonylamino)-ethyl]-phosphonic acid mono-(2-chloropyridin-3-yl)ester ammonium salt (46)

To a sealed tube containing phosphonic acid (xiii) (134 mg; 0.39 mmol) and 2-chloro-3-pyridinol (60 mg; 0.46 mmol) was added pyridine (1.9 mL) and trichloroacetonitrile (270 μL; 2.7 mmol). The reaction was heated to 105° C. for 6 hours then was cooled and concentrated. The residue was purified by flash chromatography (chloroform-methanol-concentrated ammonium hydroxide; 9:2:0.1) to yield the ammonium salt 46 (100 mg, 54%) as a colorless solid: 1H NMR: (400 MHz, CD3OD) δH 2.87 (td, J=9, 14 Hz, 1H, CHPh), 3.28-3.36 (m, 1H; CHPh), 4.01 (ddd, J=4.5, 9, 17 Hz, 1H, NCHP), 6.81 (dd, J=3.5, 5 Hz, 1H, Ar—H), 7.07-7.21 (m, 6H. Ar—H), 7.28 (dd, J=4.5, 8 Hz, 1H, Ar—H), 7.46 (dd, J=1.5, 5 Hz, 1H, Ar—H), 7.91-7.93 (m, 1H, Ar—H), 7.99-8.02 (m, 1H, Ar—H); 31P NMR: (162 MHz, CD3OD) δP 17.0; 13C NMR: (100 MHz, DMSO-D6) δC 38.3, 55.6, (d, J=147.6 Hz), 124.3, 126.7, 128.1, 130.1, 130.4, 131.8, 132.1, 140.3 (d, J=10 Hz), 142.4, 142.7, 144.5, 147.9.


EXAMPLE 64
[2-Methyl-1-(thiophene-2-sulfonylamino)-propyl]-phosphonic acid mono-(2-chloropyridin-3-yl)ester ammonium salt (54)

Following the same procedure as described in Example 63, but substituting the phosphonic acid derived from Example 61 for phosphonic acid (xiii), the title compound was obtained. The mono ester 54 was isolated as a colorless solid (37% yield): 1H NMR (400 MHz, CD3OD) δH 1.02 (d, J=7 Hz, 3H, CH3), 1.06 (d, J=7 Hz, 3H, CH3), 2.24-2.32 (m, 1H, (CH3)2CH), 3.69 (dd, J=3.5, 19.5 Hz, 1H, NCHP), 6.91 (dd, J=4, 5 Hz, 1H, Ar—H), 7.25 (dd, J=5, 8 Hz, 1 H, Ar—H), 7.52-7.59 (m, 2H, Ar—H), 7.80-7.82 (m, 1H, Ar—H), 7.99-8.01 (m, 1H, Ar—H); 31P NMR: (162 MHz, CD3OD) δP 17.3; 13C NMR: (100 MHz, DMSO-d6) δC 18.8, 21.1 (d, J=11.5), 31.1 (d, J=5), 59.0 (d, J=149.5), 124.5, 128.0, 131.2, 132.2, 132.8, 143.6, 144.5, 156.2, 156.4.


EXAMPLE 65
[Phenyl-(thiophene-2-sulfonylamino)-methyl]-phosphonic acid mono-(2-chloropyridin-3-yl)ester ammonium salt (60)

Following the same procedure as described in Example 63, but substituting the phosphonic acid derived from Example 62 for phosphonic acid (xiii), the title compound was obtained. The mono ester 60 was isolated as a colorless solid (50% yield): 1H NMR (400 MHz, DMSO-d6) δH 4.49 (d, J=22 Hz, 1H, NCHP), 6.80 (dd, J=4, 5 Hz, 1H, Ar—H), 6.99-7.07 (m, 3H, Ar—H), 7.20-7.33 (m, 9H), 7.58 (dd, J=1.5, 5 Hz, 1H, Ar—H), 7.84 (dd, J=1.5, 8 Hz, 1H, Ar—H), 7.94 (dd, J=1.5, 5 Hz 1H, Ar—H); 31P NMR: (162 MHz, DMSO-D6) δP 10.7; 13C NMR: (100 MHz, DMSO-d6) δC 58.3 (d, J=140.5), 124.3, 127.0, 127.9, 128.1, 129.1 (d, J=5), 129.9, 132.3, 132.6, 138.8, 142.5, 142.9, 143.5, 148.0.


EXAMPLE 66
[(2-Benzothiophenesulfonyl-N-methylamino)-methyl]-phosphonic acid mono-(4-nitrophenyl) ester ammonium salt. (142)



embedded image



Step 1: [(2-Benzothiophenesulfonyl-N-methylamino)-N-methyl]-phosphonic acid dimethyl ester (xiv)


A reaction mixture consisting of 290 mg (0.83 mmol) of [(2-benzothiophenesulfonylamino)-methyl]-phosphonic acid dimethyl ester, 380 mg (1.16 mmol) of anhydrous cesium carbonate, 0.11 mL (1.16 mmol) of methyl iodide and 5 mL of anhydrous DMF stirred for 16 hours at room temperature. After the reaction was complete, DMF was evaporated in vacuum, and the residue was suspended in 15 mL of water and extracted with dichloromethane. The extract was dried over anhydrous magnesium sulfate, filtered and evaporated, providing an oily residue which was chromatographed on a silica gel column, eluent EtOAc/hexane (7:3), then dichloromethane/MeOH (20:1), to yield the title compound as a yellowish oil (190 mg, 63%): 1H NMR: (300 MHz, CDCl3) δH 3.00 (s, CH3), 3.48 (d, J=11.5 Hz, 2H), 3.83 (d, J=10.9 Hz, 6H, 2CH3), 7.45-7.50 (m, 2H, Ar—H), 7.83-7.89 (m, 3H, Ar—H).


Step 2: [(2-Benzothiophenesulfonyl-N-methylamino)-methyl]-phosphonic acid (xv)


To a solution of 550 mg (1.58 mmol) of the compound (xiv) in 10 mL of anhydrous dichloromethane at 0° C., 0.49 mL of bromotrimethylsilane was added. The mixture was warmed up to room temperature and left overnight. Dichloromethane was evaporated; the oily residue was dissolved in another 10 mL of dichloromethane, filtered, again evaporated and redissolved in 10 mL of MeOH. The methanolic solution stirred at room temperature 30 min., evaporated and the residue was triturated with a mixture ether/hexane to form a white crystalline product which was separated by filtration (390 mg, 70%): 1H NMR: (300 MHz, DMSO-D6) δH 2.88 (s, CH3), 3.21 (d, J=12.1 Hz, 2 H), 7.49-7.61 (m, 2H, Ar—H), 8.01-8.17 (m, 3H, Ar—H).


Step 3: [(2-Benzothiophenesulfonyl-N-methylamino)-methyl]-phosphonic acid mono-(4-nitrophenyl) ester ammonium salt (142)


A reaction mixture consisting of 500 mg (1.56 mmol) of (xv), 265 mg (1.90 mmol) of p-nitrophenol, 1.1 mL (11 mmol) of trichloroacetonitrile, and 5 mL of anhydrous pyridine was stirred in a sealed tube for 5 hours at 105-110° C. After the reaction was complete, pyridine was evaporated in vacuum, the oily residue was chromatographed on a silica gel column, eluent chloroform/MeOH/ammonium hydroxide (9:2:0.1) to yield 620 mg (87%) of the title compound as a pale crystalline substance: 1H NMR: (300 MHz, DMSO-d6) δH 2.89 (s, CH3), 3.07 (d, J=11.5 Hz, 2 H), 7.15 (br s, 4H, NH4), 7.37 (d, J=9.3 Hz, 2H, Ar—H), 7.47-7.57 (m, 2H, Ar—H), 8.01-8.14 (m, 5 H, Ar—H).


EXAMPLE 67
[(2-Benzothiophenesulfonyl-N-ethylamino)-methyl]-phosphonic acid mono-(4-nitrophenyl) ester ammonium salt (144)

The title compound was prepared in 62% yield following the procedure from Example 66, steps 1-3, but using ethyl iodide as the alkylating agent: 1H NMR: (300 MHz, DMSO-d6) δH 1.00 (t, J=7.0 Hz, CH3), 3.33 (d, J=11.1 Hz, PCH2), 3.49 (q, J=7.1 Hz), 6.95-7.51 (m, 8H, Ar—H, NH4), 7.98-8.10 (m, 5H, Ar—H).


EXAMPLE 68
[(2-Benzothiophenesulfonyl-N-benzylamino)-methyl]-phosphonic acid mono-(4-nitrophenyl) ester ammonium salt (145)

The title compound was prepared in 58% yield following the procedure from Example 66, steps 1-3 but using benzyl bromide as the alkylating agent: 1H NMR: (300 MHz, DMSO-d6) δH 3.29 (d, J=10.0 Hz, PCH2), 4.78 (s, CH2Ph), 7.16-7.47 (m, 13H, Ar—H, NH4), 7.96-8.00 (m, 4H, Ar—H), 8.07 (s, 1H, Ar—H)


EXAMPLE 69
[(2-Benzothiophenesulfonyl-N-phenylethylamino)-methyl]-phosphonic acid mono-(4-nitrophenyl)ester ammonium salt (143)

The title compound was prepared in 55% following the procedure from Example 66, steps 1-3, but using 2-bromoethyl benzene as the alkylating agent: 1H NMR: (300 MHz, DMSO-d6) δH 2.86 (dd, J=8.4, Hz, NCH2), 3.43 (d, J=11.2 Hz, PCH2), 3.58 (dd, J=8.5 Hz, CH2Ph), 7.13-7.56 (m, 13H, Ar—H, NH4), 7.96-8.10 (m, 5H, Ar—H).


EXAMPLE 70
(5,8-dichlorobenzothiophene-2-sulfonyl)aminomethylphosphonic acid mono-(4-nitrophenyl) ester ammonium salt (128)



embedded image



Step 1: 2,2-Diethoxyethyl 2,5-dichlorophenyl sulfide (xvi)


Under a nitrogen atmosphere, to 2,5-dichlorobenzenethiol (25 g, 139 mmol) in 140 mL of acetone in a 250 mL round-bottomed flask was added 21 g (154 mmol) of potassium carbonate, followed by 22 mL (146 mmol) of diethyl acetal. The mixture was stirred overnight at room temperature and then filtered, washing the collected solid with acetone, and the filtrate was concentrated. Water was added to the concentrated filtrate, and the aqueous phase was extracted three times with ethyl acetate. The combined organic layers were washed with 0.5 M KOH, water and brine, dried over magnesium sulfate, filtered, and concentrated. The title compound was obtained as a yellow oil (37 g, 90%): 1H NMR (300 MHz, CDCl3) δH 7.36 (d, j=2.1 Hz, 1H), 7.26 (d, J=8.4 Hz, 1H), 7.06 (dd, J=2.1, 8.4 Hz, 1H), 4.71 (t, J=5.4 Hz, 1H), 3.71 (quintuplet, J=7.2 Hz, 2H), 3.57 (quintuplet, J=6.9 Hz, 2H), 3.14 (d, J=5.4 Hz, 2H), 1.22 (t, J=7.2 Hz, 6H).


Step 2: 5,8-Dichlorobenzothiophene (xvii)


Anhydrous chlorobenzene (250 mL) was placed in a 500-mL three-necked flask equipped with a condenser, an addition funnel, and a magnetic stirring bar. The apparatus was flushed with nitrogen, and polyphosphoric acid (40 g) was added. The mixture was heated at 125° C., and 2,2-diethoxyethyl 2,5-dichlorophenyl sulfide (24 g, 82 mmol) in 25 mL of chlorobenzene was added over one hour. The resultant mixture was allowed to sir overnight. The reaction mixture was cooled to room temperature, and the organic phase was separated from polyphosphoric acid. Residual polyphosphoric acid was decomposed with water, and the resultant aqueous phase was washed twice with chloroform. The combined organic phases were dried over magnesium sulfate and concentrated. The crude product was purified by flash chromatography, eluting with a mixture of 5% ethyl acetate: 95% hexane to give 1.5 g (99%) of 5,8-dichlorobenzothiophene as a light yellow solid: 1H NMR (300 MHz, CDCl3) δH 7.57 (d, J=5.4 Hz, 1H), 7.53 (d, J=5.4 Hz, 1H), 7.32 (d, J=8.1 Hz, 1H), 7.27 (d, J=8.1 Hz, 1H).


Step 3: 5,8-Dichlorobenzothiophene-2-sulfonamide (xviii)


Under a nitrogen atmosphere, to 5,8-dichlorobenzothiophene (6.58 g, 32 mmol) in 50 mL of THF at −78° C. in a 250-mL round-bottomed flask was slowly added a 2.5 M solution of n-butyllithium in pentane (16 mL, 40 mmol). After 30 minutes, sulfur dioxide gas was bubbled over the solution until the mixture became acidic. Hexane was added, and the mixture was warmed to room temperature. The sulfinic salt was collected by filtration and dried overnight under high vacuum.


Under a nitrogen atmosphere, to the sulfinic salt (8.88 g, 32 mmol) in 60 mL of dichloromethane at 0° C. in a 250-mL round-bottomed flask was added N-chloro-succinimide (6.29 g, 47 mmol). After 15 minutes, the mixture was warmed to room temperature over 45 minutes. The suspension was filtered over Celite, and the filtrate was concentrated to give 9.65 g (100%) of the corresponding sulfonyl chloride. This material was dissolved in 50 mL of acetone and cooled to 0° C., and 10 mL of ammonium hydroxide was added. After 15 minutes, the mixture was warmed to room temperature over 45 minutes, and the solvents were evaporated. The residue was dissolved in water and extracted three times with ethyl acetate. The combined organic layers were washed with brine, dried over magnesium sulfate, and concentrated. The title compound was obtained as a white solid (6.45 g, 70%): 1H NMR (300 MHz, CDCl3) δH 8.09 (s, 1H), 7.41 (s, 2H)


Step 4: (5,8-dichlorobenzothiophene-2-sulfonyl)aminomethylphosphonic acid mono-(4-nitrophenyl) ester ammonium salt (128)


Compound 128 was prepared by procedures analogous to those described in Example 46, steps 2 and 3, and Example 1, step 4: 1H NMR (300 MHz, DMSO-d6) δH 7.94 (s, 1H), 7.92 (d, J=9.3 Hz, 2H), 7.57-7.65 (m, 2H), 7.21-7.38 (m, 4H), 7.22 (d, J=9.3 Hz, 2H), 2.96 (d, J=12.9 Hz, 2H).


EXAMPLE 71
Determination of IC50

Enzyme activity against the commercially available substrate, nitrocefin, was measured in the presence of various inhibitor concentrations. The P99 β-lactamase enzyme (1 mg/mL) was dissolved in 20 mM MOPS buffer at pH 7.50, and diluted 200-fold in the same buffer containing 0.1% BSA. Nitrocefin was stored as a 100 μM stock solution in 20 mM MOPS at pH 7.5. Stock solutions of test compounds were prepared in 10 mM MOPS at pH 7.5 (approximately 1 mg/mL)


A typical assay contained 300 μL of 100 μM nitrocefin, x μL of inhibitor test compound, 110-x μL of MOPS, and 10 μL of P99 β-lactamase. The reaction at 25° C. was followed spectrophotometrically at 482 nm. IC50 values were determined from the dose-response plots of the initial rates vs. inhibitor concentration


TEM R+ and L-1 custom character-lactamases were assayed as described above for P99 custom character-lactamase.


Representative results using the test inhibitors of the invention showing the inhibition of β-lactamases are shown in Tables 1, 2, 4, and 5.


EXAMPLE 72
Determination of Antibiotic Minimum Inhibitory Concentration (MIC) in the Presence and Absence of β-Lactamase Inhibitor

Principle


An increasing number of organisms produce enzymes that inhibit the actions of β-lactam antibiotics, so-called, β-lactamases. The “strength” of β-lactam antibiotics can be improved by pairing them with compounds that inhibit bacterial enzyme β-lactamases. The Minimum Inhibitory Concentration (MIC) test determines the lowest concentration of an antibiotic at which no visible bacterial growth occurs. This test permits comparisons to be made between bacterial growth in the presence of antibiotic alone (control) and bacterial growth in the presence of both an antibiotic and a novel (test) compound.


Materials Required


β-lactamase positive strains


β-lactam antibiotics


β-lactamase inhibitor compounds


appropriate bacterial growth medium


β-Lactamase Positive strains



Klebsiella oxytoca [ATCC#51983]



Staphylococcus aureus [MGH: MA#50848]



Enterococcus faecalis [ATCC#49757]



Enterobacter cloacae [ATCC#23355]



Haemophilus influenzae [ATCC#43163]


β-Lactam Antibiotics


















Piperacillin
333 mg/mL



TAZOCIN ™ (piperacillin +
308 mg/mL



tazobactam)



Ticarcillin
500 mg/mL



TIMENTIN ™ (ticarcillin +
500 mg/mL



clavulanic acid)



Cefoxitin
333 mg/mL



Ceftriaxone
250 mg/mL



Preparation:
Dissolved in MHB




(Mueller Hinth Broth)



Working dilutions:
0.06 mg/mL to 4.22 mg/mL











β-Lactamase Inhibitor Compounds (Test Compounds)


















Preparation:
Dissolved in MHB or DMSO











Stock solution:
2
mg/mL



Working concentration:
1, 10, 100
μg/mL











Culture Media


















MHB:
Mueller Hinth Broth



HTM:

Haemophilus Test Medium Broth




origin:
Becton Dickinson



storage:
4° C.









Blood agar (prepared general culture plate)



Chocolate agar (prepared plate + accessory factors,



required by H inflenzae)










origin:
Oxoid



storage:
4° C.











Assay Procedure


Frozen bacterial stocks were thawed to room temperature, and a few drops were placed on an appropriate plate; chocolate agar was used for H. influenzae, blood agar was used for all others. The plates were incubated overnight at 37° C. in air, except for H. influenzae, which was incubated in a CO2 incubator. The cultures were subcultured the following day, and the subcultures were again incubated overnight


A sterile loop was touched to 3 colonies and used to inoculate 1 mL of Mueller-Hinton Broth (MHB). The bacterial solution was diluted 18.8-fold (20 μL of bacterial solution in 355 μL of broth). 5 μL of the resultant inoculum solution contained ˜4×104 CFU/mL. Confirmation of the inoculum was performed by preparing a serial dilution to give 100 μL of a 5000-fold dilution, all of which was then plated onto an appropriate plate. After incubation overnight at 37° C., the plate had 75-150 colonies.


In each well of a 96-well microtiter plate was combined 5 μL of bacterial inoculum, 90 μL of antibiotic dilutions, and 5 μL of test compound (or media for determination of the MIC of the antibiotic in the absence of test compound). Each plate included 2 wells with no bacterial inoculum (negative control) and 2 wells with no test compound and no antibiotic (positive control). The plate was covered and incubated with gentle shaking for 16-20 hours at 37° C. in air (CO2 for H. influenzae). Absorbance was read at 540 nm (Multiskan Titertek mcc/340). Bacterial growth was scored as follows:















invisible to the naked eye (OD <0.05)
NEGATIVE


barely visible (OD >0.05, but <50% of positive control
PLUS/MINUS


readily visible (typically OD >0.10)
PLUS


abundant growth (OD >0.3)
PLUS-PLUS









The minimum inhibitory concentration (MIC), defined to be the lowest dilution of antibiotic that completely inhibits growth, was determined for the antibiotic alone and for antibiotic in the presence of each test compound. In some cases, the determination of MIC in the presence of test compound was performed at more than one concentration of the test compound.


Representative data is presented in Tables 1 and 2. The impact of the novel β-lactamase inhibitors is expressed as the ratio of the MIC determined in the absence of β-lactamase inhibitor to the MIC determined in the presence of the specified concentration of the lactamase inhibitor test compound. A value of 1 indicates that the β-lactamase inhibitor had no effect on antibiotic potency, while a positive integer indicates that the β-lactamase inhibitor produces a synergistic effect when co-administered with an antibiotic agent, that is, a higher concentration of antibiotic is required to completely inhibit visible bacterial growth in the absence of the test compound than in its presence


EXAMPLE 73
Synergistic Effect of β-Lactamase Inhibitors When Tested Against Highly Resistant β-Lactamase Positive Bacterial Strains

Following procedures identical to those described in Example 72, β-lactamase inhibitors were tested for their ability to enhance antibiotic efficacy against β-lactamase positive bacterial strains that are very highly resistant to β-lactam antibiotics. Representative results are presented in Table 3.


Highly Resistant β-Lactamase Positive Strains



Enterobacter cloacae (derepressed)



Pseudomonas aeroginosa [ATCC#12470-resistant]



Stenotrophomonas maltophilia [ATCC#12968-resistant]



Pseudomonas aeroginosa [ATCC#98043010-intermediate resistance]



Stenotrophomonas maltopilia [ATCC#980430294-intermediate resistance]


Successful inhibition of bacterial βlactamase activity in these assays is expected to be predictive of success in animals and humans. For examples of the successful clinical development of β-lactamase inhibitors identified by in vitro testing, see, e.g., Di Modugno et al., Current Opinion in Anti-Infective Investigational Drugs 1:26-39 (1999); Moellering, J. Antimicrobial Chemotherapy 31 Suppl. A:1-8 (1993).









TABLE 1







β-Lactamase Inhibition and Microbiological Efficacy of


Sulfonamidomethylphosphonate Derivatives.




embedded image
























Synergy2








(at μg/mL)



















IC50
Class C
Class A




















(μM)
E. Cl3
H. In.
St. A.


Cpd.
R1
R3
R4
Log P
“C”1
10/14
10/15
10


















 1


embedded image


H
PNP6

162
1/1
(1)
(1)





 2


embedded image


H
PNP

16

24
2





 3


embedded image


H
PNP

5
2/1
(1)
(1)





 4


embedded image


H
PNP

2
2/1
(1)
(1)





 5


embedded image


H
PNP

4
2/1
(1)
(1)





 6


embedded image


H
PNP

7
2/1
(1)
(1)





 7


embedded image


H
PNP

4
4/2
(16)
(2)





 8


embedded image


H


embedded image



>100
2/1
1
(1)





 9


embedded image


H
PNP

5
4/2
32
2





 10


embedded image


H
PNP

6
2/1
16
4





 11


embedded image


H


embedded image



>100
1/1
8
1





 12


embedded image


H
PNP

10
1/1
8
1





 13


embedded image


H
PNP

6
4/1
8
1





 14


embedded image


H
PNP

3
4/2
(8)
(2)





 15


embedded image


H
PNP

18
3/1
4
1





 16


embedded image


H
PNP

19
1/1
8
1





 17


embedded image


H
PNP

9
2/1
8
2





 18


embedded image


H
PNP

4
4/1
8
1





 19


embedded image


H
PNP

43
4/4
(4)
(1)





 20


embedded image


H
F


8/8
(16)
(1)





 21


embedded image


H
PNP

4
2/1
(2)
(1)





 22


embedded image


H
PNP

7
2/1
16
4





 23


embedded image


H
PNP

14
1/1
2
1





 24


embedded image


H
PNP

119
4/1
8
1





 25


embedded image


H


embedded image



1,200
10/2 
1
2





 26


embedded image


H


embedded image



1,200
16/2 
1
1





 27


embedded image


H
PNP

5.0
1/1
4
2





 28


embedded image


H


embedded image



1,800





 29


embedded image


H
F

972





 30


embedded image


H


embedded image



622
8/2
1
1





 31


embedded image


H
PNP

136
8/2
2
1





 32


embedded image


H


embedded image



639
16/2 
1
1





 33


embedded image


H
PNP

5
8/4
4
4





 34


embedded image


H
OH

1600
2/2
1
1





 35


embedded image


H
OCH3diester


1/1
1
1





 36


embedded image


H


embedded image



410
2/2
1
1





 37


embedded image


H


embedded image



2000
4/2
1
1





 38


embedded image


H


embedded image



362
8/4
1
1





 39


embedded image


H
PNP

7
1/1
8
4





 40


embedded image


H


embedded image



356
2/1
4
2





 41


embedded image


H
PNP

5
2/1
8
4





 42


embedded image


H


embedded image



59
8/1
2
1





 43


embedded image


H
OH





 44


embedded image




embedded image


PNP

192
2/2
1
1





 45


embedded image


H


embedded image



3500
2/1
1
1





 46


embedded image




embedded image




embedded image



188
1/1
1
1





 47


embedded image


HN—Me
PNP

276
2
1





 48


embedded image


H


embedded image



189
4/2
1
1





 49


embedded image


H


embedded image



3000
1/1
1
1





 50


embedded image


H


embedded image



3000
2/1
1
1





 51


embedded image


H
OMe

1700
2/1
1
1





 52


embedded image




embedded image


PNP

1400
4/2
1
1





 53


embedded image




embedded image


PNP

363
2/2
1
1





 54


embedded image




embedded image




embedded image



1800
2/1
1
1





 55


embedded image


H


embedded image



3600
4/1
2
2





 56


embedded image


H


embedded image



1100
8/1
2
1





 57


embedded image


H
PNP

77
4/1
8
2





 58


embedded image


H
OH

1,200
2/1
1
1





 59


embedded image


H
OH

472
1/1
1
1





 60


embedded image




embedded image




embedded image



603
2/1
1
1





 61


embedded image


H


embedded image



3,500
2/1
1
1





 62


embedded image




embedded image


PNP

44
2/1





 63


embedded image




embedded image




embedded image



40
2/1





 64


embedded image




embedded image


PNP
0.56
84
2/2





 65


embedded image




embedded image


PNP
0.86
365
1





 66


embedded image




embedded image




embedded image


0.24
217
1





 67


embedded image




embedded image




embedded image


0.16
20
1





 68


embedded image




embedded image




embedded image


−0.84
52






 69


embedded image


H


embedded image



28
4/2
16
2





 70


embedded image


H


embedded image



93
2/2
1
1





 71


embedded image


H


embedded image



84
2/1
16
2





 72


embedded image


H
PNP

4
27





 73


embedded image


H
OH





 74


embedded image


H
PNP

34
4/2
1
1





 75


embedded image


H


embedded image



35
4/4
16
2





 76


embedded image


H


embedded image



502
4/2
1
1





 77


embedded image


H
PNP

0.4
12/3 
24
6





 78


embedded image


H


embedded image



3000
1/1
1
1





 79


embedded image


H


embedded image



3000
2/1
1
1





 80


embedded image


H
OMe

1700
2/1
1
1





 81


embedded image


H


embedded image


−0.23
53
4/1
1
1





 82


embedded image


H


embedded image


−0.51
0.1
8/8
32
2





 83


embedded image


H


embedded image


−1.14
88
4/1
8
2





 84


embedded image


H


embedded image


0.64
10
2/2
1
1





 85


embedded image


H


embedded image


−1.11
64
4/1
1
1





 86


embedded image


H


embedded image


−0.61
826
4/1
1
1





 87


embedded image


H
PNP
−0.51
7
1/1
16
2





 88


embedded image


H


embedded image



1,500
1/1
1
1





—OMe





amide-ester





 89


embedded image


H


embedded image



359
4





amide





 90


embedded image


H
PNP
−0.99
6
1/1
32
4





 91


embedded image


H
PNP
−0.62
5
4/2
32
2





 92


embedded image


H
OHacid
−1.70
446
2





 93


embedded image


H
PNP
−0.71
9
4/2
4
1





 94


embedded image


H


embedded image



175
1





 95


embedded image


H


embedded image


−0.40
6
1/1
8
1





 96


embedded image


H


embedded image


−1.06
18
2/1
2
1





 97


embedded image


H
PNP
−0.69
2
8





 98


embedded image


H


embedded image


−0.55
39
1/1
2
1





 99


embedded image


H


embedded image


0.42
3
4/2





100


embedded image


H
PNP
−0.31
0.4
5/2





101


embedded image


H


embedded image


−0.91
16
9/1





102


embedded image


H
PNP
−1.23
12
22/2 





103


embedded image


H
PNP
−1.33
52
4/1





104


embedded image


H
PNP
−1.23
5
11/2 





105


embedded image


H
OHMono-acidMono-sodiumsalt
−0.68
83
8





106


embedded image


H


embedded image


−0.47
0.4
2/1





107


embedded image


H


embedded image


0.38
46
8/1





108


embedded image


H


embedded image


−0.85
234
4/2





109


embedded image


H


embedded image


0.45
9
4/1





110


embedded image


H


embedded image


−2.10
83
4/2





111


embedded image


H


embedded image


0.58
3
4





112


embedded image


H


embedded image


−0.35
60
16 





113


embedded image


H


embedded image


−0.24
19
8





114


embedded image


H
PNP
−0.055
0.3
6





115


embedded image


H


embedded image


−0.46
116
16 





116


embedded image


H


embedded image


−0.41
48
4





117


embedded image


H
PNP
−0.015
0.4
4





118


embedded image


H
PNP
−0.31
0.3
4





119


embedded image


H
PNP
0.42
1
4





120


embedded image




embedded image


PNP
−1.15
1,000
4





121


embedded image




embedded image


PNP
−0.73
4,000
8





122


embedded image


H


embedded image


−1.08
11
2





123


embedded image




embedded image


PNP
−0.19
101
4





124


embedded image




embedded image


PNP
−0.22
242
4





125


embedded image




embedded image


PNP
−0.065
223
2





126


embedded image




embedded image


PNP
−1.01
244
4





127


embedded image


H


embedded image


0.61
1
1





128


embedded image


H
PNP
0.45
0.1
16 





129


embedded image




embedded image




embedded image


−0.85
499
2





130


embedded image




embedded image




embedded image


−0.90
1,400
4





131


embedded image


H


embedded image


−0.65
29
2





132


embedded image


H


embedded image


0.70
0.4
4





133


embedded image


H
PNP
−0.68
6
4





134


embedded image


H


embedded image


−1.08
196
4





135


embedded image


H


embedded image


0.48
6





136


embedded image


H


embedded image


0.095
358
4





137


embedded image


H


embedded image


−0.52
593
4





138


embedded image


H


embedded image



755
2





139


embedded image


H
(OBn)2Diester


1





140


embedded image


H


embedded image


−0.11
4
2





141


embedded image


H


embedded image


−0.78
655
4


















142


embedded image


HN—Me
PNP
−0.091
1.3K
2


















143


embedded image


HN-phenethyl
PNP
1.17
133
4





144


embedded image


HN—Et
PNP
−0.036
463
4





145


embedded image


HN-benzyl
PNP
0.86
94
4





146


embedded image


HN—Me


embedded image


−0.30
2,500
1





147


embedded image


HN—Me


embedded image


0.84
1,200
1





148


embedded image


H


embedded image


0.13
505
2





149


embedded image


H


embedded image


−0.1
972
1





150


embedded image


HN—Me


embedded image


0.65
765





151


embedded image


H


embedded image


0.23





152


embedded image


H


embedded image


−0.57
96
4





153


embedded image


H
PNP
0.17
0.2
16 





154


embedded image


HN—Me
PNP
0.62
11
4





155


embedded image


H
PNP
−0.09
2.0
4





156


embedded image


H


embedded image


−0.28
32
2





157


embedded image




embedded image




embedded image


−0.51
432
1





158


embedded image




embedded image


PNP
0.13
213
1





159


embedded image




embedded image


PNP
−0.25
71
1





160


embedded image




embedded image




embedded image


−0.69
219
1





161


embedded image




embedded image




embedded image


−0.72
140
1





162


embedded image




embedded image




embedded image


0.28
213
1





163


embedded image




embedded image




embedded image


−1.30
497





164


embedded image


H
PNP
−0.01
0.31
6





165


embedded image


HN—Me
PNP
0.71
18
2





166


embedded image


H


embedded image



2,800
1





167


embedded image


H
PNP
0.53
2
2





168


embedded image


H


embedded image


0.92
51
1





169


embedded image


H


embedded image


−0.07
140
1





170


embedded image


H


embedded image


0.70?
67
1





171


embedded image


H


embedded image


−0.49
214
1


















172


embedded image


H


embedded image


−0.54
1.9K
1


















173


embedded image


H


embedded image


−0.14
408
1





174


embedded image


H


embedded image


−0.41
829
1





175


embedded image


H


embedded image


−0.69
9
1





176


embedded image


H


embedded image


−0.31
972
1





177


embedded image


H


embedded image



618
1





178


embedded image


H


embedded image


0.21
185
1





179


embedded image


H


embedded image


−1.10
46





180


embedded image


H
PNP
−0.90
1.4


















181


embedded image


H


embedded image



1.9K
1





182


embedded image


H


embedded image


−0.98
1.6K
1


















183


embedded image


H


embedded image


0.34
205
1





184


embedded image


H
PNP
−0.33
0.5
32 





185


embedded image


H


embedded image


−0.06
5





186


embedded image


H
PNP
0.67
0.2





187


embedded image


H


embedded image



27





188


embedded image


H


embedded image


















189


embedded image



62
2






1Class C β-lactamase [P99].




2Expressed as the ratio of the antibiotic MIC determined in the absence of β-lactamase inhibitor to the antibiotic MIC determined in the presence of β-lactamase inhibitor.




3E. Cl = Enterobacter cloacae [ATCC #23355]; H. In. = Haemophilius influenzae [ATCC #43163]; St. A. = Staphylococcus aureus [MGH:MA #50848].




4The first value provided was determined at an inhibitor concentration of 10 μg/mL, and the second value was determined at an inhibitor concentration of 1 μg/mL. Where only one value is provided, it was determined at an inhibitor concentration of 10 μg/mL.




5Values within parentheses were determined at an inhibitor concentration of 100 μg/mL.




6PNP = p-nitrophenol




7In four separate tests, synergy values of 32, 2, 1, and 1 were obtained. The value of 32 is believed to be an outlyer.














TABLE 2







β-Lactamase Inhibition and Microbiological Efficacy of


Sulfonamidomethylphosphonate Derivatives.




embedded image




























Synergy5







IC50
IC50
IC50
Class C






Log
(μM)
(μM)
(μM)
E. Cl6


Cpd.
R1
R3
R4
P
“C”2
“A”3
“B”4
10/17


















190


embedded image


H
PNP
0.58
0.7
>200
>200
8/16





191


embedded image




embedded image


OH
0.78
84
>200
>200
0





192


embedded image




embedded image


OH
0.58
128
>200
>200
0





193


embedded image


H
PNP
0.55
4
>200
>200
4





194


embedded image


H


embedded image


0.37
648
>200
>200
0





195


embedded image


H
PNP
0.03
0.6
>200
>200
2





196


embedded image


H
PNP
0.60
0.8
>200
>200
4





197


embedded image


H


embedded image


0.64
106
>200

2





198


embedded image


H


embedded image


0.66
3
>200
>200
8





199


embedded image


H


embedded image


0.72
25
>200
>200
0





200


embedded image




embedded image


PNP
0.87
1200
>200
>200
2





201


embedded image


H


embedded image



1
>200
>200
8





202


embedded image


H


embedded image



594
>200
>200
0





203


embedded image


H


embedded image



361
>200
>200
0





204


embedded image


H


embedded image



87
>200
>200
0





205


embedded image


H


embedded image



334
>200
>200
8





206


embedded image


H
PNP
0.85
0.1
467
>200
4





207


embedded image


H
PNP

1
275
>200
2





208


embedded image


H
PNP
0.56
3
>200
>200
4





209


embedded image


H


embedded image


0.10
142
>200
>200
2





210


embedded image


H


embedded image


0.30
23
149
>200
0





211


embedded image


H


embedded image



50
>200

0





212


embedded image


H


embedded image


1.0
9
64
201
0





213


embedded image


H


embedded image



50
14
>200
0





214


embedded image


H
PNP

0.2
87
>200
16 





215


embedded image


H


embedded image



93
494

0





216


embedded image


H


embedded image



196
>200
>200
0





217


embedded image


H


embedded image



367
>200
>200





218


embedded image


H


embedded image



356
>200
>200





219


embedded image


H


embedded image



619
>200
>200
0





220


embedded image


H


embedded image



48
>200
>200
0





221


embedded image


H
PNP

0.5
>200
>200
8





222


embedded image


H
PNP

7
>200
>200
4





223


embedded image


H


embedded image



9
278
>200
0





224


embedded image




embedded image


PNP

183
>200
>200
0





225


embedded image


H


embedded image



1400
>200

0





226


embedded image


H


embedded image



0.3
576

16 





227


embedded image


H


embedded image



9
>200

2





228


embedded image


H


embedded image



98
>200

2





229


embedded image


H
PNP

0.9








230


embedded image


H


embedded image



29








231


embedded image


H


embedded image



165
>200
>200






232


embedded image


H


embedded image



0.2
250
>200
16 





233


embedded image


H


embedded image



205
>200
>200
0





234


embedded image


H


embedded image



219
>200
>200
0





235


embedded image


H


embedded image



5
>200

8





236


embedded image


H


embedded image



578
>200
>200






237


embedded image


H


embedded image


0.3
204
>200
>200
0





238


embedded image


H


embedded image


−0.4
53
131
>200
0





239


embedded image


H


embedded image


0.6
0.5
282
>200
16 





240


embedded image


H


embedded image


0.1
458
>200

0





241


embedded image


H


embedded image



5
>200
>200
2





242


embedded image


H


embedded image


−0.2
5
>200
>200
2





243


embedded image


H


embedded image


−0.4
6
>200
>200
2





244


embedded image


H


embedded image



4
>200
>200
4





245


embedded image


H


embedded image


−0.1
43
272

0





246


embedded image


H


embedded image


−0.1
623
>200
>200
2





247


embedded image


H


embedded image



0.8
20
>200
8





248


embedded image


H


embedded image


0.3
0.06
103

32 





249


embedded image


H


embedded image



14
>200

2





250


embedded image


H


embedded image


0.6
9
>200

2





251


embedded image


H


embedded image


−0.6
30
>200

0





252


embedded image


H


embedded image



1300
>200

0





253


embedded image


H


embedded image


−0.4
0.2
68

16 





254


embedded image


H


embedded image



0.3
13

32 





255


embedded image


H


embedded image


0.7
0.6
6

8





256


embedded image


H


embedded image



174
>200

0





257


embedded image


H


embedded image



354
>200

0





258


embedded image


H


embedded image



80
>200

0





259


embedded image


H


embedded image



177
>200

0





260


embedded image


H


embedded image



130
>200

0





261


embedded image


H


embedded image



78
>200






262


embedded image


H


embedded image



165
>252

0





263


embedded image


H


embedded image



81
>256

0





264


embedded image


H


embedded image



97
394

4





265


embedded image


H


embedded image



93
359

4





266


embedded image


H


embedded image



82
>244

0





267


embedded image


H


embedded image



2
240

2





268


embedded image


H
PNP
−0.4
3
>240

2





269


embedded image


H


embedded image


−0.2
6
107

0





270


embedded image


H


embedded image



452
>200

16 





271


embedded image


H
PNP
0.3
2
>200

2





272


embedded image


H


embedded image



50
>200

2





273


embedded image


H


embedded image



4
54

2





274


embedded image


H


embedded image



47
>200

2





275


embedded image


H


embedded image



0.1
21

32/8 





276


embedded image


H


embedded image



63
>200

4





277


embedded image


H


embedded image



139
>200

2





278


embedded image


H


embedded image



137
>200

2





279


embedded image


H


embedded image



109
>200

0





280


embedded image


H


embedded image



11
68

0





281


embedded image


H


embedded image



4
75

4





282


embedded image


H


embedded image



43
662

0





283


embedded image


H


embedded image



20
74

0





284


embedded image


H


embedded image


−0.3
0.4
511

8





285


embedded image


H


embedded image


−0.5
0.4
356

4





286


embedded image


H


embedded image



2
>200

16/16





287


embedded image


H


embedded image



15
>200

16/8 





288


embedded image


H


embedded image



375
>200

 8/16





289


embedded image


H


embedded image



6
>200

32/32





290


embedded image


H


embedded image



27
>200

16/32





291


embedded image


H


embedded image



666








292


embedded image


H


embedded image



>240
>240

0/0





293


embedded image


H


embedded image



1100
>300

0/0





294


embedded image


H


embedded image



77
149

4





295


embedded image


H


embedded image



27
454

0/0





296


embedded image


H


embedded image



98
>200

0/0





297


embedded image


H


embedded image



>600
>200

0/0





298


embedded image


H


embedded image



0.06
157

32 





299


embedded image


H


embedded image



2
150

8/8





300


embedded image


H


embedded image



28
130

0/2





301


embedded image


H


embedded image



4
74

4/4





302


embedded image


H


embedded image



3
141

0/2





303


embedded image


H


embedded image



9
>200

2/2





304


embedded image


H


embedded image



5
>200

16/32





305


embedded image


H


embedded image



6
>200

8/4





306


embedded image


H


embedded image



7
>200

2/4





307


embedded image


H


embedded image



30
>200

2/2





308


embedded image


H


embedded image



53
>200

0/0





309


embedded image




embedded image




embedded image



109
>200

0/0





310


embedded image


H


embedded image



0.7
19

8/8





311


embedded image




embedded image




embedded image



170
>200

0/0





312


embedded image


H


embedded image



0.1
>200

16/8





313


embedded image


H


embedded image



27
>200

4/4






2Class C β-lactamase [P99].




3Class A β-lactamase [TEM R+].




4Class B β-lactamase [L-1].




5Expressed as the ratio of the antibiotic MIC determined in the absence of β-lactamase inhibitor to the antibiotic MIC determined in the presence of β-lactamase inhibitor.




6E. Cl = Enterobacter cloacae [ATCC #23355]; H. In. = Haemophilius influenzae [ATCC #43163]; St. A. = Staphylococcus aureus [MGH:MA #50848].




7The first value provided was determined at an inhibitor concentration of 10 μg/mL, and the second value was determined at an inhibitor concentration of 1 μg/mL. Where only one value is provided, it was determined at an inhibitor concentration of 10 μg/mL.







EXAMPLE 73
Synergistic Effect of β-Lactamase Inhibitors when Tested Against Highly Resistant β-Lactamase Positive Bacterial Strains

Following procedures identical to those described in Example 72, β-lactamase inhibitors were tested for their ability to enhance antibiotic efficacy against β-lactamase positive bacterial strains that are very highly resistant to β-lactam antibiotics. Representative results are presented in Table 3.


Highly Resistant D-Lactamase Positive Strains



Enterobacter cloacae (derepressed)



Pseudomonas aeroginosa [ATCC#12470-resistant]



Stenotrophomonas maltophilia [ATCC#12968-resistant]



Pseudomonas aeroginosa [ATCC#98043010-intermediate resistance]



Stenotrophomonas maltopilia [ATCC#98043029-intermediate resistance]


Successful inhibition of bacterial β-lactamase activity in these assays is expected to be predictive of success in animals and humans. For examples of the successful clinical development of β-lactamase inhibitors identified by in vitro testing, see, e.g., Di Modugno et al., Current Opinion in Anti-Infective Investigational Drugs 1:26-39 (1999); Moellering, J. Antimicrobial Chemotherapy 31 Suppl. A: 1-8 (1993).









TABLE 3





Synergy results from screening against highly resitant microorganisms.






















embedded image


      IC50
     ResistantEnt. Cloacae2
     ResistantPseudo.















Cpd.
R1
R3
R5
(μM)“C”1
10 μg/mL
1 μg/mL
10 μg/mL
1 μg/mL


















15


embedded image


H
PNP
18
1

1






77


embedded image


H
PNP
0.4
5

1






72


embedded image


H
PNP
4
1
1
1
1





76


embedded image


H


embedded image


502
5

1






82


embedded image


H


embedded image


0.1
5

1






114


embedded image


H
PNP
0.3
5

1






128


embedded image


H
PNP
0.1
5
1
1
1














Resistant
Intermed.
Intermed.




Stenotro.


Pseudo.


Stenotro.
















Cpd.
10 μg/mL
1 μg/mL
10 μg/mL
1 μg/mL
10 μg/mL
1 μg/mL



















15
1

4

1



77
5

8

1



72
1
1
1
1
1
1



76
5

1

1



82
5

8

1



114
4

1

1



128
1
1
2
1
2
1








1Class C β-lactamase [P99].





2
Enterobacter Cloacae(derepressed), Pseudomonas aeroginosa(#12470-resistant), Stenotrophomonas maltophilia(#12968-resistant), Pseudomonas aeroginosa(#98043010-intermediate resistance), Stenotrophomonas maltophilia(#98043029-intermediate resistance).














TABLE 4









embedded image



















Synergy at 10




IC50
IC50
μg/ml






















IC50
(μM)
(μM)



P99
LogP


Cmpd



(μM)
TEM1
L-1

Ent.


Ent.


Stap.


Ent.

or


#
R1
R
X
“C”
“A”
“B”

Cl.


Faec.


Aureus


Bact.

pKa





















501


embedded image


H


embedded image


 6
380

2
0
0
0





502


embedded image


H


embedded image


 12 15
12K

0
2
0
0





503


embedded image


H


embedded image


 30
>250

4
0
0
0





504


embedded image


H


embedded image


 1 1
 3K

8
2
0
2





505


embedded image


H


embedded image


109149
126

4
2
0
0





506


embedded image


H


embedded image


 37
>250

2
2
0






507


embedded image


H


embedded image


 11
585

4
2
2






508


embedded image


H


embedded image


153250
>250

2
2
0
0





509


embedded image


H


embedded image


 35
 69

0
0
0
0





510


embedded image


H


embedded image


 75
140

8
0
0
0





511


embedded image


H


embedded image


 45
 94

4
0
0
0





512


embedded image


H


embedded image


 9
170

4
2
0
0





513


embedded image


H


embedded image


 19
>250

4
0
0
0





514


embedded image


H


embedded image


 2
259

16
0
0
2





515


embedded image


H


embedded image


 8
 66

4
2
2
0





516


embedded image


H


embedded image


 4 6
628

16
0
0
0





517


embedded image


H


embedded image


 9
117

8
0
2
0





518


embedded image


H


embedded image


 5 10
227 94

4
0
0
0





519


embedded image


H


embedded image


21(MD)
17498-MD

2
4
4
4
4(oxy)





520


embedded image


H


embedded image


>500


4
0
0
0





521


embedded image





embedded image


1220-MD
 407≧664

8
2
2
0





522


embedded image


H


embedded image


48-MD1
184 ≧57 26 34

8
2
8

2(oxy





523


embedded image


H


embedded image


412-MD
 62 81

4
2
4






524


embedded image


H


embedded image


 14
175

2
0
0






525


embedded image


H


embedded image


 19 6
172

0
2
0






526


embedded image


H


embedded image


53(75 μMNC)1-MD4
 1K≧3K 1K

8
4
8







527


embedded image


H


embedded image


 55 50(75 uMNC)183181
 60

4
2
0






528


embedded image


H


embedded image


 5
162234

8
2
0






529


embedded image


H


embedded image


 15 21
128

4
2
2
0





530


embedded image


H


embedded image


 56 76
>250

4
2

0





531


embedded image


H


embedded image


 12
289

4
0
0
0
2oxy





532


embedded image


H


embedded image


19xx-MD
 743≧752

64
8
2
2





533


embedded image


H


embedded image


 7
226

4
4
8
0





534


embedded image


H


embedded image


 7
260557

16
2
2
0
Insol.stock





535


embedded image


H


embedded image


 28
123

4
4
0
0





536


embedded image


H


embedded image


 4
327

4
4
2
2





537


embedded image


H


embedded image


 22
150

0
4
0
0





538


embedded image


H


embedded image


22-MD1-MD
 272≧247>333

64
4
4
0





539


embedded image


H


embedded image


 69
272

4
4
0
0





540


embedded image


H


embedded image


 20
>250

16
4
4
0





541


embedded image


H


embedded image


 1
230

16
4
4
0





542


embedded image


H


embedded image


 11 4
 37 57

0
4

0





543


embedded image


H


embedded image


>250
>250





544


embedded image


H


embedded image





4
0
8
0





545


embedded image


H


embedded image







546


embedded image


H


embedded image


132125
142215

2
0
2
0





547


embedded image


H


embedded image


 12 8
115229

16
0
0
0





548


embedded image


H


embedded image


 11 10
112185

4
0
0
0





549


embedded image


H


embedded image


 60 34
198148





550


embedded image


H


embedded image





2
0
0
0





551


embedded image


H


embedded image





2
0
0
0





552


embedded image


H


embedded image


22-MD
 50

2
0
>16
0





553


embedded image


H


embedded image





2
0
0
0





554


embedded image


H


embedded image





2
0
2
0





555


embedded image


H


embedded image





8
0
0
0





556


embedded image


H


embedded image


5-MD
 32

>16
0
>16
0





557


embedded image


H


embedded image






0
0





558


embedded image


H


embedded image






0
0





559


embedded image


H


embedded image


6-MD
 65


0
>16





560


embedded image


H


embedded image







561


embedded image


H


embedded image


 61
 98





562


embedded image


—CO2Et


embedded image


>250
>250





563


embedded image


—CO2Et


embedded image


>250
>250
















TABLE 5









embedded image














Synergy



(at μg/mL)











IC50
Class C
Class A














CMPD


(μM)
E. Cl
Ps.
H. In.



#
R1
X
“C”
10/1
100
10/1
St.A 10

















221


embedded image


F
151
8/8

0/0





221A.2


embedded image


F
154
 32/4 16/8 32/4
2
000
00





223


embedded image




embedded image



4/2





245


embedded image


PNP
 19





253


embedded image




embedded image



2/0

0





255


embedded image




embedded image



4/2





276


embedded image




embedded image



2/0







280


embedded image




embedded image



2/2

0
0





298


embedded image




embedded image



0/0

0/0





701


embedded image


PNP
 1
8/2

(2)
(2)





702


embedded image




embedded image


>100
4/2

(4)
(0)





703


embedded image




embedded image


>100
2/2

(8)
(4)





704


embedded image


PNP

0/0

0
0





705


embedded image




embedded image


255
2/2

(2)
(0)

















706


embedded image




embedded image


>3K
0/0

(0)
(0)





707


embedded image




embedded image


>1K
2/0

(0)
(0)

















708


embedded image


PNP
 32
0/0

2
0





709


embedded image




embedded image


 41
2/0

0
0





710


embedded image




embedded image


172
2/0

0
0





711


embedded image


PNP
207
0/0

0
0

















712


embedded image




embedded image


>1K
2/0

0
0

















713


embedded image




embedded image


 9
8/2

0
2





714


embedded image




embedded image



0/0

0
0

















715


embedded image




embedded image


2.2K
2/2

0
0

















716


embedded image




embedded image


316
8/0

0
0





717


embedded image




embedded image



8/0

0
0

















718


embedded image


OH
1.6K
4/0

0
0








Claims
  • 1. A compound of the following formula:
  • 2. The compound according to claim 1 wherein the substituents of the optionally substituted phenyl of R1 and the optionally substituted phenyl, pyridinyl, and quinolinyl of R10 are independently selected from —NO2, —CO2H, and halo.
  • 3. The compound according to claim 1 wherein R1 is unsubstituted.
  • 4. The compound according to claim 1 wherein R5 is selected from:
  • 5. The compound according to claim 1 wherein R1—L and R5 are selected from the following combinations:
  • 6. A compound of the following formula:
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a division of U.S. application Ser. No. 10/884,435 filed Jul. 2, 2004, which is a division of U.S. application Ser. No. 10/302,124 filed Nov. 22, 2002, now U.S. Pat. No. 6,884,791, which is a continuation-in-part of a U.S. application Ser. No. 10/266,213 filed Oct. 8, 2002, now U.S. Pat. No. 7,030,103, which is a continuation of U.S. application Ser. No. 09/610,456 filed Jul. 5, 2000, now U.S. Pat. No. 6,472,406, which claims the benefit of U.S. Provisional Application No. 60/142,362 filed on Jul. 6, 1999.

US Referenced Citations (11)
Number Name Date Kind
2443835 Pedersen Jun 1948 A
3870771 Golburn et al. Mar 1975 A
3959551 Golburn et al. May 1976 A
4031170 Birum Jun 1977 A
4032601 Birum Jun 1977 A
4302448 Bickel et al. Nov 1981 A
5324855 Morikawa et al. Jun 1994 A
5420328 Campbell May 1995 A
5681821 Powers et al. Oct 1997 A
6075014 Weston et al. Jun 2000 A
6472406 Besterman et al. Oct 2002 B1
Foreign Referenced Citations (12)
Number Date Country
2 261 081 Dec 1972 DE
261073 Mar 1988 EP
505122 Sep 1992 EP
805147 Nov 1997 EP
1367677 Sep 1974 GB
54-90160 Jul 1979 JP
62-126160 Jun 1987 JP
9532947 Dec 1995 WO
9729080 Aug 1997 WO
9933850 Jul 1999 WO
0040030 Jan 2000 WO
0102411 Jan 2001 WO
Related Publications (1)
Number Date Country
20070293675 A1 Dec 2007 US
Provisional Applications (1)
Number Date Country
60142362 Jul 1999 US
Divisions (2)
Number Date Country
Parent 10884435 Jul 2004 US
Child 11830305 US
Parent 10302124 Nov 2002 US
Child 10884435 US
Continuations (1)
Number Date Country
Parent 09610456 Jul 2000 US
Child 10266213 US
Continuation in Parts (1)
Number Date Country
Parent 10266213 Oct 2002 US
Child 10302124 US