Inhibitors of C-FMS kinase

Abstract
The invention is directed to compounds of Formula I:
Description
BACKGROUND OF THE INVENTION

The invention relates to novel compounds that function as protein tyrosine kinase inhibitors. More particularly, the invention relates to novel compounds that function as inhibitors of c-fms kinase.


Protein kinases are enzymes that serve as key components of signal transduction pathways by catalyzing the transfer of the terminal phosphate from adenosine 5′-triphosphate (ATP) to the hydroxy group of tyrosine, serine and threonine residues of proteins. As a consequence, protein kinase inhibitors and substrates are valuable tools for assessing the physiological consequences of protein kinase activation. The overexpression or inappropriate expression of normal or mutant protein kinases in mammals has been demonstrated to play significant roles in the development of many diseases, including cancer and diabetes.


Protein kinases can be divided into two classes: those which preferentially phosphorylate tyrosine residues (protein tyrosine kinases) and those which preferentially phosphorylate serine and/or threonine residues (protein serine/threonine kinases). Protein tyrosine kinases perform diverse functions ranging from stimulation of cell growth and differentiation to arrest of cell proliferation. They can be classified as either receptor protein tyrosine kinases or intracellular protein tyrosine kinases. The receptor protein tyrosine kinases, which possess an extracellular ligand binding domain and an intracellular catalytic domain with intrinsic tyrosine kinase activity, are distributed among 20 subfamilies.


Receptor tyrosine kinases of the epidermal growth factor (“EGF”) family, which includes HER-1, HER-2/neu and HER-3 receptors, contain an extracellular binding domain, a transmembrane domain and an intracellular cytoplasmic catalytic domain. Receptor binding leads to the initiation of multiple intracellular tyrosine kinase dependent phosphorylation processes, which ultimately results in oncogene transcription. Breast, colorectal and prostate cancers have been linked to this family of receptors.


Insulin receptor (“IR”) and insulin-like growth factor I receptor (“IGF-1R”) are structurally and functionally related but exert distinct biological effects. IGF-1R overexpression has been associated with breast cancer.


Platelet derived growth factor (“PDGF”) receptors mediate cellular responses that include proliferation, migration and survival and include PDGFR, the stem cell factor receptor (c-kit) and c-fms. These receptors have been linked to diseases such as atherosclerosis, fibrosis and proliferative vitreoretinopathy.


Fibroblast growth factor (“FGR”) receptors consist of four receptors which are responsible for the production of blood vessels, for limb outgrowth, and for the growth and differentiation of numerous cell types.


Vascular endothelial growth factor (“VEGF”), a potent mitogen of endothelial cells, is produced in elevated amounts by many tumors, including ovarian carcinomas. The known receptors for VEGF are designated as VEGFR-1 (Flt-1), VEGFR-2 (KDR), VEGFR-3 (Flt-4). A related group of receptors, tie-1 and tie-2 kinases, have been identified in vascular endothelium and hematopoietic cells. VEGF receptors have been linked to vasculogenesis and angiogenesis.


Intracellular protein tyrosine kinases are also known as non-receptor protein tyrosine kinases. Over 24 such kinases have been identified and have been classified into 11 subfamilies. The serine/threonine protein kinases, like the cellular protein tyrosine kinases, are predominantly intracellular.


Diabetes, angiogenesis, psoriasis, restenosis, ocular diseases, schizophrenia, rheumatoid arthritis, cardiovascular disease and cancer are exemplary of pathogenic conditions that have been linked with abnormal protein tyrosine kinase activity. Thus, a need exists for selective and potent small-molecule protein tyrosine kinase inhibitors. U.S. Pat. Nos. 6,383,790; 6,346,625; 6,235,746; 6,100,254 and PCT International Applications WO 01/47897, WO 00/27820 and WO 02/068406 are indicative of recent attempts to synthesize such inhibitors.


SUMMARY OF THE INVENTION

The invention addresses the current need for selective and potent protein tyrosine kinase inhibitors by providing potent inhibitors of c-fms kinase. The invention is directed to the novel compounds of Formula I:




embedded image



or a solvate, hydrate, tautomer or pharmaceutically acceptable salt thereof, wherein:

  • W is




embedded image


  • wherein each R4 is independently H, F, Cl, Br, I, OH, OCH3, OCH2CH3, SC(1-4)alkyl, SOC(1-4)alkyl, SO2C(1-4)alkyl, —C(1-3)alkyl, CO2Rd, CONReRf, C=—CRg, or CN;
    • wherein Rd is H, or —C(1-3)alkyl;
      • Re is H, or —C(1-3)alkyl;
      • Rf is H, or —C(1-3)alkyl; and
      • Rg is H, —CH2OH, or —CH2CH2OH;

  • R2 is cycloalkyl, spiro-substituted cycloalkenyl, heterocyclyl, spirosubstituted piperidinyl, thiophenyl, dihydrosulfonopyranyl, phenyl, furanyl, tetrahydropyridyl, or dihydropyranyl, any of which may be independently substituted with one or two of each of the following: chloro, fluoro, hydroxy, C(1-3)alkyl, and C(1-4)alkyl;

  • Z is H, F, or CH3;

  • J is CH, or N;

  • X is





embedded image




    • R5 is H, —C(1-6)alkyl, —OC(1-4)alkyl, —CN, —NA3A4, —SO2CH3, —CO2C(1-4)alkyl, —CH2—NA3A4, —CH2CH2NA3A4, —CONA3A4, —CH2OC(1-4)alkyl, —OC(1-4)alkylORa, —NHCH2CH2CO2C(1-4)alkyl, —NHCH2CH2OC(1-4)alkyl, —N(C(1-4)alkyl)CH2CH2NA3A4, —OC(1-4)alkylNA3A4, —OCH2CO2C(1-4)alkyl, —CH2CO2C(0-4)alkyl, —CH2CH2SO2C(1-4)alkyl, —SO2CH2CH2NA3A4, —SOCH2CH2NA3A4, —SCH2CH2NA3A4, —NHSO2CH2CH2NA3A4, phenyl, imidazolyl, thiazolyl, 4H-[1,2,4]oxadiazol-5-onyl, 4H-pyrrolo[2,3-b]pyrazinyl, pyridinyl, [1,3,4]oxadiazolyl, 4H-[1,2,4]triazolyl, tetrazolyl, pyrazolyl, [1,3,5]triazinyl, and [1,3,4]thiadiazolyl;



  • A3 is —C(1-4)alkyl, or CH2CH2ORa;

  • A4 is —C(1-4)alkyl, CORa, CH2CON(CH3)2, —CH2CH2ORa, —CH2CH2SC(1-4)alkyl, —CH2CH2SOC(1-4)alkyl, or —CH2CH2SO2C(1-4)alkyl;
    • alternatively, A3 and A4 may be taken together to form a nitrogen containing heterocyclic ring selected from the following:





embedded image






      • wherein Ra is H or C(1-4)alkyl;

      • Raa is H or C(1-4)alkyl; and

      • Rbb is H, —C(1-4)alkyl, —CH2CH2OCH2CH2OCH3, —CH2CO2H, —C(O)C(1-4)alkyl; or CH2C(O)C(1-4)alkyl.







Herein and throughout this application, whenever a variable, for example Ra, appears more than once in an embodiment of Formula I, each such substitution is independently defined.


Herein and throughout this application, the terms “Me”, “Et”, “Pr”, and “Bu” refer to methyl, ethyl, propyl, and butyl respectively.







DETAILED DESCRIPTION OF THE INVENTION

The invention is directed to novel compounds of Formula I:




embedded image



or a solvate, hydrate, tautomer or pharmaceutically acceptable salt thereof, wherein:

  • W is




embedded image


  • wherein each R4 is independently H, F, Cl, Br, I, OH, OCH3, OCH2CH3, SC(1-4)alkyl, SOC(1-4)alkyl, SO2C(1-4)alkyl, —C(1-3)alkyl, CO2Rd, CONReRf, C=—CRg, or CN;
    • wherein Rd is H, or —C(1-3)alkyl;
      • Re is H, or —C(1-3)alkyl;
      • Rf is H, or —C(1-3)alkyl; and
      • Rg is H, —CH2OH, or —CH2CH2OH;

  • R2 is cycloalkyl (including cyclohexenyl, and cycloheptenyl), spiro-substituted cycloalkenyl (including spiro[2.5]oct-5-enyl, spiro[3.5]non-6-enyl, spiro[4.5]dec-7-enyl, and spiro[5.5]undec-2-enyl)heterocyclyl (including piperidinyl), spirosubstituted piperidinyl (including 3-aza-spiro[5.5]undecanyl, and 8-aza-spiro[4.5]decanyl), thiophenyl, dihydrosulfonopyranyl, phenyl, furanyl, tetrahydropyridyl, or dihydropyranyl, any of which may be independently substituted with one or two of each of the following: chloro, fluoro, hydroxy, C(1-3)alkyl, and C(1-4)alkyl (said substituted cycloalkyls include 4,4-dimethyl cyclohexenyl, 4,4-diethyl cyclohexenyl, 4-methyl cyclohexenyl, 4-ethyl cyclohexenyl, 4-n-propyl cyclohexenyl, 4-iso-propyl cyclohexenyl, and 4-tert-butyl cyclohexenyl; said substituted piperidinyls include 4-methyl piperidinyl, 4-ethyl piperidinyl, 4-(1′hydroxyeth-2′yl)piperidinyl, and 4,4 dimethyl piperidinyl);

  • Z is H, F, or CH3;

  • J is CH, or N;

  • X is





embedded image




    • R5 is H, —C(1-6)alkyl, —OC(1-4)alkyl, —CN, —NA3A4, —SO2CH3, —CO2C(1-4)alkyl, —CH2—NA3A4, —CH2CH2NA3A4, —CONA3A4, —CH2OC(1-4)alkyl, —OC(1-4)alkylORa, —NHCH2CH2CO2C(1-4)alkyl, —NHCH2CH2OC(1-4)alkyl, —N(C(1-4)alkyl)CH2CH2NA3A4, —OC(1-4)alkylNA3A4, —OCH2CO2C(1-4)alkyl, —CH2CO2C(1-4)alkyl, —CH2CH2SO2C(1-4)alkyl, —SO2CH2CH2NA3A4, —SOCH2CH2NA3A4, —SCH2CH2NA3A4, —NHSO2CH2CH2NA3A4, phenyl, imidazolyl, thiazolyl, 4H-[1,2,4]oxadiazol-5-onyl, 4H-pyrrolo[2,3-b]pyrazinyl, pyridinyl, [1,3,4]oxadiazolyl, 4H-[1,2,4]triazolyl, tetrazolyl, pyrazolyl, [1,3,5]triazinyl, and [1,3,4]thiadiazolyl;



  • A3 is —C(1-4)alkyl, or CH2CH2ORa;

  • A4 is —C(1-4)alkyl, CORa, CH2CON(CH3)2, —CH2CH2ORa (including —CH2CH2OCH3), —CH2CH2SC(1-4)alkyl (including —CH2CH2SCH3), —CH2CH2SOC(1-4)alkyl (including —CH2CH2SOCH3), or —CH2CH2SO2C(1-4)alkyl (including —CH2CH2SO2CH3);
    • alternatively, A3 and A4 may be taken together to form a nitrogen containing heterocyclic ring selected from the following:





embedded image






      • wherein Ra is H or C(1-4)alkyl;

      • Raa is H or C(1-4)alkyl; and

      • Rbb is H, —C(1-4)alkyl, —CH2CH2OCH2CH2OCH3, —CH2CO2H, —C(O)C(1-4)alkyl; or CH2C(O)C(1-4)alkyl;


        and solvates, hydrates, tautomers and pharmaceutically acceptable salts thereof.







In a preferred embodiment of the invention:

  • W is




embedded image


  • R2 is





embedded image


  • Z is H;

  • J is CH or N;

  • X is





embedded image




    • R5 is H, —C(1-6)alkyl, phenyl, —CH2CH2NA3A4, —CH2CH2SO2CH3, pyridyl, imidazolyl, —CH2NA3A4, or —CH2ORa;
      • wherein:
      • A3 is —CH3;
      • A4 is —COCH3, or —CH3;
      • alternatively, A3 and A4 may be taken together to form a nitrogen containing heterocyclic ring selected from the following:







embedded image






      • Ra is H, or —C(1-4)alkyl;

      • Rbb K is —C(1-4)alkyl, or —COCH3;


        as well as solvates, hydrates, tautomers and pharmaceutically acceptable salts thereof.







In another embodiment of the invention:

  • W is




embedded image


  • R2 is

  • Z is H;





embedded image


  • J is CH, or N;

  • X is





embedded image




    • R5 is —C(1-3)alkyl, —CH2NA3A4, or —CH2ORa;
      • wherein:
      • A3 is —CH3;
      • A4 is —COCH3, or —CH3;
      • alternatively, A3 and A4 may be taken together to form a nitrogen containing heterocyclic ring selected from the following:







embedded image






      • Ra is H, or —C(1-4)alkyl;

      • Rbb is —C(1-4)alkyl, or —COCH3;


        as well as solvates, hydrates, tautomers and pharmaceutically acceptable salts thereof.







In another embodiment of the invention:

  • W is




embedded image


  • R2 is





embedded image


  • Z is H;

  • J is CH, or N;

  • X is





embedded image



as well as solvates, hydrates, tautomers and pharmaceutically acceptable salts thereof.


In another embodiment of the invention:

  • W is




embedded image


  • R2 is





embedded image


  • Z is H;

  • J is CH, or N;

  • X is





embedded image



as well as solvates, hydrates, tautomers and pharmaceutically acceptable salts thereof.


In another embodiment of the invention:

  • W is




embedded image


  • R2 is





embedded image


  • Z is H;

  • J is CH, or N;

  • X is





embedded image




    • R5 is —C(1-3)alkyl, —CH2NA3A4, or —CH2ORa;
      • wherein:
      • A3 is —CH3;
      • A4 is —COCH3, or —CH3;
      • alternatively, A3 and A4 may be taken together to form a nitrogen containing heterocyclic ring selected from the following:







embedded image






      • Ra is H, or —C(1-4)alkyl;

      • Rbb is —C(1-4)alkyl, or —COCH3;


        as well as solvates, hydrates, tautomers and pharmaceutically acceptable salts thereof.


        and pharmaceutically acceptable salts thereof solvates, hydrates, tautomers and pharmaceutically acceptable salts thereof.


        Another embodiment of the invention consists of example numbers 1, 2, 3, 4, 5, and solvates, hydrates, tautomers and pharmaceutically acceptable salts thereof, and any combination thereof.







The invention also relates to methods of inhibiting protein tyrosine kinase activity in a mammal by administration of a therapeutically effective amount of at least one compound of Formula I. A preferred tyrosine kinase is c-fms.


The invention is considered to include the enantiomeric, diastereomeric and tautomeric forms of all compounds of Formula I as well as their racemic mixtures. In addition, some of the compounds represented by Formulae I may be prodrugs, i.e., derivatives of an acting drug that possess superior delivery capabilities and therapeutic value as compared to the acting drug. Prodrugs are transformed into active drugs by in vivo enzymatic or chemical processes.


I. DEFINITIONS

The term “alkyl” refers to both linear and branched chain radicals of up to 12 carbon atoms, preferably up to 6 carbon atoms, unless otherwise indicated, and includes, but is not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, hexyl, isohexyl, heptyl, octyl, 2,2,4-trimethylpentyl, nonyl, decyl, undecyl and dodecyl.


The term “cycloalkyl” refers to a saturated or partially unsaturated ring composed of from 3 to 8 carbon atoms. Up to four alkyl substituents may optionally be present on the ring. Examples include cyclopropyl, 1,1-dimethyl cyclobutyl, 1,2,3-trimethylcyclopentyl, cyclohexyl, cyclopentenyl, cyclohexenyl, and 4,4-dimethyl cyclohexenyl.


The term “alkylamino” refers to an amino with one alkyl substituent, wherein the amino group is the point of attachment to the rest of the molecule.


The term “alkoxy” refers to straight or branched chain radicals of up to 12 carbon atoms, unless otherwise indicated, bonded to an oxygen atom. Examples include methoxy, ethoxy, propoxy, isopropoxy and butoxy.


The term “spiro-substituted cycloalkenyl” refers to a pair of cycloalkyl rings that share a single carbon atom and wherein at least one of the rings is partially unsaturated, for example:




embedded image


The term “spiro-substituted heterocyclyl” refers to a heterocyclyl and cycloalkyl ring that share a single carbon atom, for example:




embedded image


II. THERAPEUTIC USES

The compounds of Formula I represent novel potent inhibitors of protein tyrosine kinases, such as c-fms, and may be useful in the prevention and treatment of disorders resulting from actions of these kinases.


The invention also provides methods of inhibiting a protein tyrosine kinase comprising contacting the protein tyrosine kinase with an effective inhibitory amount of at least one of the compounds of Formula I. A preferred tyrosine kinase is c-fms. The compounds of the present invention are also inhibitors of FLT3 tyrosine kinase activity. In one embodiment of inhibiting a protein tyrosine kinase, at least one of the compounds of Formula I is combined with a known tyrosine kinase inhibitor.


In various embodiments of the invention, the protein tyrosine kinases inhibited by the compounds of Formula I are located in cells, in a mammal or in vitro. In the case of mammals, which includes humans, a therapeutically effective amount of a pharmaceutically acceptable form of at least one of the compounds of Formula I is administered.


The invention further provides methods of treating cancer in mammals, including humans, by administration of a therapeutically effective amount of a pharmaceutically acceptable composition of least one compound of Formula I. Exemplary cancers include, but are not limited to, acute myeloid leukemia, acute lymphocytic leukemia, ovarian cancer, uterine cancer, prostate cancer, lung cancer, breast cancer, colon cancer, stomach cancer, and hairy cell leukemia. The invention also provides methods of treating certain precancerous lesions including myelofibrosis. In one embodiment of the invention, an effective amount of at least one compound of Formula I is administered in combination with an effective amount of a chemotherapeutic agent.


The invention further provides methods of treating and of preventing metastasis arising from cancers that include, but are not limited to, ovarian cancer, uterine cancer, prostate cancer, lung cancer, breast cancer, colon cancer, stomach cancer, and hairy cell leukemia.


The invention further provides methods for the treatment osteoporosis, Paget's disease, and other diseases in which bone resorption mediates morbidity including rheumatoid arthritis and other forms of inflammatory arthritis, osteoarthritis, prosthesis failure, osteolytic sarcoma, myeloma, and tumor metastasis to bone as occurs frequently in cancers including, but not limited to, breast cancer, prostate cancer, and colon cancer.


The invention also provides methods of treating pain, in particular skeletal pain caused by tumor metastasis or osteoarthritis, as well as visceral, inflammatory, and neurogenic pain.


The invention also provides methods of treating cardiovascular, inflammatory, and autoimmune diseases in mammals, including humans, by administration of a therapeutically effective amount of a pharmaceutically acceptable form of at least one of the compounds of Formula I. Examples of diseases with an inflammatory component include glomerulonephritis, inflammatory bowel disease, prosthesis failure, sarcoidosis, congestive obstructive pulmonary disease, idiopathic pulmonary fibrosis, asthma, pancreatitis, HIV infection, psoriasis, diabetes, tumor related angiogenesis, age-related macular degeneration, diabetic retinopathy, restenosis, schizophrenia or Alzheimer's dementia. These may be effectively treated with compounds of this invention. Other diseases that may be effectively treated include, but are not limited to atherosclerosis and cardiac hypertrophy.


Autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and other forms of inflammatory arthritis, psoriasis, Sjogren's syndrome, multiple sclerosis, or uveitis, can also be treated with compounds of this invention.


The term “therapeutically effective amount” as used herein, means that amount of active compound or pharmaceutical agent that elicits the biological or medicinal response in a tissue system, animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician, which includes alleviation, prevention, treatment, or the delay of the onset or progression of the symptoms of the disease or disorder being treated.


When employed as protein tyrosine kinase inhibitors, the compounds of the invention may be administered in an effective amount within the dosage range of about 0.5 mg to about 10 g, preferably between about 0.5 mg to about 5 g, in single or divided daily doses. The dosage administered will be affected by factors such as the route of administration, the health, weight and age of the recipient, the frequency of the treatment and the presence of concurrent and unrelated treatments.


It is also apparent to one skilled in the art that the therapeutically effective dose for compounds of the present invention or a pharmaceutical composition thereof will vary according to the desired effect. Therefore, optimal dosages to be administered may be readily determined by one skilled in the art and will vary with the particular compound used, the mode of administration, the strength of the preparation, and the advancement of the disease condition. In addition, factors associated with the particular subject being treated, including subject age, weight, diet and time of administration, will result in the need to adjust the dose to an appropriate therapeutic level. The above dosages are thus exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.


The compounds of Formula I may be formulated into pharmaceutical compositions comprising any known pharmaceutically acceptable carriers. Exemplary carriers include, but are not limited to, any suitable solvents, dispersion media, coatings, antibacterial and antifungal agents and isotonic agents. Exemplary excipients that may also be components of the formulation include fillers, binders, disintegrating agents and lubricants.


The pharmaceutically-acceptable salts of the compounds of Formula I include the conventional non-toxic salts or the quaternary ammonium salts which are formed from inorganic or organic acids or bases. Examples of such acid addition salts include acetate, adipate, benzoate, benzenesulfonate, citrate, camphorate, dodecylsulfate, hydrochloride, hydrobromide, lactate, maleate, methanesulfonate, nitrate, oxalate, pivalate, propionate, succinate, sulfate and tartrate. Base salts include ammonium salts, alkali metal salts such as sodium and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases such as dicyclohexylamino salts and salts with amino acids such as arginine. Also, the basic nitrogen-containing groups may be quaternized with, for example, alkyl halides.


The pharmaceutical compositions of the invention may be administered by any means that accomplish their intended purpose. Examples include administration by parenteral, subcutaneous, intravenous, intramuscular, intraperitoneal, transdermal, buccal or ocular routes. Alternatively or concurrently, administration may be by the oral route. Suitable formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form, for example, water-soluble salts, acidic solutions, alkaline solutions, dextrose-water solutions, isotonic carbohydrate solutions and cyclodextrin inclusion complexes.


The present invention also encompasses a method of making a pharmaceutical composition comprising mixing a pharmaceutically acceptable carrier with any of the compounds of the present invention. Additionally, the present invention includes pharmaceutical compositions made by mixing a pharmaceutically acceptable carrier with any of the compounds of the present invention. As used herein, the term “composition” is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combinations of the specified ingredients in the specified amounts.


Polymorphs and Solvates


Furthermore, the compounds of the present invention may have one or more polymorph or amorphous crystalline forms and as such are intended to be included in the scope of the invention. In addition, the compounds may form solvates, for example with water (i.e., hydrates) or common organic solvents. As used herein, the term “solvate” means a physical association of the compounds of the present invention with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. The term “solvate” is intended to encompass both solution-phase and isolatable solvates. Non-limiting examples of suitable solvates include ethanolates, methanolates, and the like.


It is intended that the present invention include within its scope solvates of the compounds of the present invention. Thus, in the methods of treatment of the present invention, the term “administering” shall encompass the means for treating, ameliorating or preventing a syndrome, disorder or disease described herein with the compounds of the present invention or a solvate thereof, which would obviously be included within the scope of the invention albeit not specifically disclosed.


Methods of Preparation




embedded image


Scheme 1 illustrates general methodology for the preparation of compounds of Formula I where Rb is X (when X is available in starting material or prepared as shown in later schemes) or compounds of Formula 1-6 where Rb is a leaving group (preferably bromo, chloro, or fluoro) that are useful intermediates used in later schemes. To illustrate the methodology of this scheme, reagents and conditions for the compounds where J is CH are defined. Those skilled in the art will recognize that where J is N, minor modifications of the reaction conditions and preferred reagents may be required.


Amines of Formula 1-1 may be commercially available or can be obtained from nitro compounds of Formula 1-0 by reduction using standard synthetic methodology (see Reductions in Organic Chemistry, M. Hudlicky, Wiley, New York, 1984). The preferred conditions are catalytic hydrogenation using a palladium catalyst in a suitable solvent such as methanol or ethanol. In cases where Rb is a halogen and not available as amines of Formula 1-1, nitro reductions may be performed using iron or zinc in a suitable solvent such as acetic acid, or using iron and ammonium chloride in ethanol and water.


Compounds of Formula 1-2 where R2 is cycloalkyl can be obtained by ortho-halogenation, preferably bromination, of amino compounds of Formula 1-1 followed by metal-catalyzed coupling reactions with boronic acids or boronate esters (Suzuki reactions, where R2M is R2B(OH)2 or a boronic ester, see N. Miyaura and A. Suzuki, Chem. Rev., 95:2457 (1995); A. Suzuki in Metal-Catalyzed Coupling Reactions, F. Deiderich, P. Stang, Eds., Wiley-VCH, Weinheim (1988)) or tin reagents (Stille reactions, where R2M is R2Sn(alkyl)3, see J. K. Stille, Angew. Chem., Int. Ed. Engl., 25: 508-524 (1986)) on the intermediate halo compound. When Rb is Br, an iodo can be introduced such that is reacts preferentially over the bromine in the metal-catalyzed coupling reactions (when J is CH, this compound is commercially available). Preferred conditions for the bromination of 1-1 are N-bromosuccinimide (NBS) in a suitable solvent such as N,N-dimethylformamide (DMF), dichloromethane (DCM) or acetonitrile. Metal-catalyzed couplings, preferably Suzuki reactions, can be performed according to standard methodology, preferably in the presence of a palladium catalyst such as tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4), an aqueous base such aq. Na2CO3, and a suitable solvent such as toluene, ethanol, 1,4-dioxane, dimethoxyethane (DME), or DMF.


Compounds of Formula 1-2 where R2 is cycloalkylamino (for example, piperidino) can be obtained by nucleophilic aromatic substitution of leaving groups L1 (preferably fluoro or chloro) from compounds of Formula 1-3 that are activated by the nitro group with cycloalkylamines (R2H; for example, piperidine) in the presence of a suitable base such as K2CO3, N,N-diisopropylethylamine (DIEA) or NEt3 to give compounds 1-4, followed by reduction of the nitro group as described above.


The amino group in compounds of Formula 1-2 can then be coupled with a heterocyclic acid P1—WCOOH (or a corresponding salt thereof P1—WCOOM2, where M2 is Li, Na or K) where P1 is an optional protecting group (for example 2-(trimethylsilyl)ethoxymethyl (SEM) such as when W is imidazole, triazole, pyrrole, or benzimidazole) or where P1 is not present such as when W is furan. (For a list of protecting groups for W, see Theodora W. Greene and Peter G. M. Wuts, Protective Groups in Organic Synthesis, John Wiley and Sons, Inc., NY (1991)). The coupling can be carried out according to standard procedures for amide bond formation (for a review, see: M. Bodansky and A. Bodansky, The Practice of Peptide Synthesis, Springer-Verlag, NY (1984)) or by reaction with acid chlorides P1—WCOCl or activated esters P1—WCO2Rq (where Rq is a leaving group such as pentafluorophenyl or N-succinimide) to form compounds of Formula 1-5. The preferred reaction conditions for coupling with P1—WCOOH or P1—WCOOM2 are: when W is a furan (optional protecting group P1 not present), oxalyl chloride in dichloromethane (DCM) with DMF as a catalyst to form the acid chloride WCOCl and then coupling in the presence of a trialkylamine such as N,N-diisopropylethylamine (DIEA); when W is a pyrrole (optional protecting group P1 not present), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) and 1-hydroxybenzotriazole (HOBt); and when W is an imidazole, pyrrole or benzimidazole (optional P1 present) the preferred conditions are bromotripyrrolidinophosphonium hexafluorophosphate (PyBroP) and DIEA in a solvent such as DCM or DMF.


When W in compounds of Formula 1-5 contain an optional protecting group P1 as mentioned previously, it can be removed at this point to give compounds of Formula 1-6. For example, when W is imidazole protected on nitrogen with a SEM group, the SEM group can be removed with either acidic reagents such as trifluoroacetic acid (TFA) or fluoride sources such as tetrabutylammonium fluoride (TBAF) (see Greene and Wuts above).


Finally it is understood that in compounds of Formula I (i.e., Formula 1-6 where Rb is X) may be further derivatized. Examples of further derivatization, include, but are not limited to: when compounds of Formula I contain a cyano group, this group may be hydrolyzed to amides or acids under acidic or basic conditions; when compounds of Formula I contain an ester, the ester may be hydrolysed to the acid, and the acid may be converted to amides by the methods described above for amide bond formation. Amides may be converted to amines by a Curtius or Schmidt reaction (for review see, Angew. Chemie Int. Ed., 44(33), 5188-5240, (2005)) or amines may be obtained by reduction of cyano groups (Synthesis, 12, 995-6, (1988) and Chem. Pharm. Bull., 38(8), 2097-101, (1990)). Acids may be reduced to alcohols, and alcohols may be oxidized to aldehydes and ketones. The preferred conditions for the reduction of a carboxylic acid in the presence of a cyano group include sodium borohydride and ethyl chloroformate in tetrahydrofuran (THF); and alcohol oxidation can be performed using the Dess-Martin periodinane reagent (Adv. Syn. Catalysis, 346, 111-124 (2004)). Aldehydes and ketones may be reacted with primary or secondary amines in the presence of a reducing agent such as sodium triacetoxyborohydride (see J. Org. Chem., 61, 3849-3862, (1996)) to give amines by reductive amination. Olefins may be reduced by catalytic hydrogenation. When compounds of Formula I contain a sulfide, either acyclic or cyclic, the sulfide can be further oxidized to the corresponding sulfoxides or sulfones. Sulfoxides can be obtained by oxidation using an appropriate oxidant such as one equivalent of meta-chloroperbenzoic acid (MCPBA) or by treatment with NaIO4 (see, for example, J. Med. Chem., 46: 4676-86 (2003)) and sulfones can be obtained using two equivalents of MCPBA or by treatment with 4-methylmorpholine N-oxide and catalytic osmium tetroxide (see, for example, PCT application WO 01/47919). Also, both sulfoxides and sulfones can be prepared by using one equivalent and two equivalents of H2O2 respectively, in the presence of titanium (IV) isopropoxide (see, for example, J. Chem. Soc., Perkin Trans. 2, 1039-1051 (2002)).




embedded image


Scheme 2 illustrates the synthesis of compounds of Formula I where X is




embedded image



and G is O (where n is 1-2) or NRa (where n is 1).


For the illustration of synthetic strategy in this scheme, reagents and conditions are defined for the substrate where J is CH. It is understood that similar synthetic methods can be utilized with minor modifications when J is N.


The starting material, compound 1-5 (Rb is Br), is obtained as described in Scheme 1. Its optional protecting group P1, if present, can be removed at this point as described in Scheme 1 to give compound 1-6 which can also serve as a starting material in this synthetic sequence.


Bromide 1-5 can be subjected to a Stille coupling with an alkoxyvinyltin reagent (where R6 is H, C1-5alkyl, OC(1-4)alkyl, NA3A4, CH2NA3A4, CO2C(1-4)alkyl, CH2SO2C(1-4)alkyl) as shown (see, for example, J. Org. Chem., 48: 1559-60 (1983)) to give compound 2-1. The vinyl alkyl ether group (C(1-4)alkylOC═CH(R6)—) in compound 2-1 can be hydrolyzed by acidic reagents, such as trifluoroacetic acid or acetic acid, to afford the ketone 2-2 (where ═CH—R6 becomes —R5). Optional protecting group P1, if stable to the hydrolysis conditions, can also be removed at this point to give 2-4 as described in Scheme 1.


Alternatively 2-4 can be obtained directly from 1-6 by reaction of an organolithium intermediate (as derived in Scheme 4 for the conversion of 1-6 to 4-1) with an appropriate electrophile R5COL3 such as an acid chloride (where L3 is Cl; see, for example, J. Med. Chem., 48, 3930-34 (2005)) or a Weinreb amide (where L3 is N(OMe)Me; see, for example, Bioorg. Med. Chem. Lett., 14(2): 455-8 (2004)).


The ketone 2-4 can be converted to a 5- or 6-membered ring ketal of Formula I where G is O and n is 1-2 (see Protective Groups in Organic Synthesis, T. H. Greene and Peter G. M. Wuts, John Wiley and Sons, NY (1991)) or to a 5-membered ring aminal of Formula I where G is NRa and n is 1 (see Bergmann, E. D., Chem. Rev., 309-352 (1953) and Gosain, R., et al, Tetrahedron Lett., 40, 6673-6 (1999)). The 5- or 6-membered ring ketals (G is O) are synthesized from 1,2-ethanediol (where n is 1) or 1,3-propanediol (where n is 2), using an appropriate acid catalyst, preferably para-toluenesulfonic acid, in an anhydrous solvent, preferably benzene or toluene.


Similarly, optionally protected compound 2-2, when P1 is chosen such that it is stable to the ketal- and aminal-forming conditions, can also be converted to ketals or aminals 2-3 as just described and then deprotected as described in Scheme 1 to provide the compound of Formula I.


It is understood that functional groups of compounds in this scheme can be further derivatized as outlined in Scheme 1.




embedded image


Scheme 3 illustrates a route to the preparation of 2-imidazolecarboxylates of Formula 3-5 where Ra is H or C(1-4)alkyl, and Rd is H, alkyl, —CN, or —CONH2 that are used as intermediates in the synthesis of compounds of Formula I where W is imidazole.


Imidazoles of Formula 3-1 where Ra is H or C(1-4)alkyl, and Rc is H, C(1-4)alkyl or —CN are either commercially available or, in the case where Rc is —CN, are readily available from commercially available aldehydes (3-1 where Rc is CHO) by reaction with hydroxylamines followed by dehydration with a suitable reagent such as phosphorus oxychloride or acetic anhydride (Synthesis, 677, 2003). Imidazoles of Formula 3-1 are protected with a suitable group (P1) such as a methoxymethylamine (MOM), or preferably a SEM group to give compounds of Formula 3-2 (see Theodora W. Greene and Peter G. M. Wuts, Protective Groups in Organic Synthesis, John Wiley and Sons, Inc., NY (1991)).


Imidazoles of Formula 3-2, where Rc is —CN, are halogenated with a suitable reagent such as N-bromosuccinimide or N-iodosuccinimide under either electrophilic conditions in a solvent such as DCM or CH3CN or under radical conditions in the presence of an initiator such as azobis(isobutyronitrile) (AIBN) in a solvent such as CCl4 to give compounds of Formula 3-3 where L8 is a leaving group (preferably bromo or iodo). Halogen-magnesium exchange on compounds of Formula 3-3 provides the organomagnesium species, which is then reacted with a suitable electrophile to provide compounds of Formula 3-4. The preferred conditions for halogen-magnesium exchange are using an alkyl-magnesium reagent, preferably isopropylmagnesium chloride in a suitable solvent such as THF at temperatures between −78° C.- to 0° C. The preferred electrophiles are ethyl chloroformate or ethyl cyanoformate. For examples of halogen-magnesium exchange on cyanoimidazoles see J. Org. Chem. 65, 4618, (2000).


For imidazoles of Formula 3-2, where Rc is not —CN, these may be converted directly to imidazoles of Formula 3-4 by deprotonation with a suitable base such as an alkyllithium followed by reaction with an electrophile as described above for the organomagnesium species. The preferred conditions are treating the imidazole with n-butyllithium in THF at −78° C. and quenching the resulting organolithium species with ethyl chloroformate (for examples, see Tetrahedron Lett., 29, 3411-3414, (1988)).


The esters of Formula 3-4 may then be hydrolyzed to carboxylic acids (M is H) or carboxylate salts (M is Li, Na, or K) of Formula 3-5 using one equivalent of an aqueous metal hydroxide (MOH) solution, preferably potassium hydroxide in a suitable solvent such as ethanol or methanol. Synthesis of compounds of Formula 3-5 where Rd is —CONH2 is accomplished by first treating compounds of Formula 3-4 where Rc is —CN with an appropriate alkoxide such as potassium ethoxide to convert the cyano group to an imidate group (Pinner reaction) followed by hydrolysis of both the ester and imidate groups with two equivalents of an aqueous metal hydroxide solution.




embedded image


Scheme 4 illustrates a route to 2-imidazolecarboxylates of Formula 4-3 or 4-5 where Re is chloro or bromo, and M is H, Li, K, or Na that are used as intermediates in the synthesis of compounds of Formula I where W is imidazole.


Compounds of Formula 4-1 are first prepared by protection of commercially available ethyl imidazolecarboxylate according to the methods outlined in Scheme 8, preferably with a SEM group.


Compounds of Formula 4-2 are prepared by reaction of compounds of Formula 4-1 with one equivalent of an appropriate halogenating reagent, such as NBS or NCS in a suitable solvent such as CH3CN, DCM or DMF at 25° C. Compounds of Formula 4-4 are prepared by reaction of compounds of Formula 4-1 with two equivalents of an appropriate halogenating reagent, such as NBS or NCS in a suitable solvent such as CH3CN or DMF at temperatures between 30° C. to 80° C. Imidazoles of Formula 4-3 and 4-5 are then obtained from the respective esters by hydrolysis as described in Scheme 3.




embedded image


Scheme 5 illustrates a method for the preparation of imidazoles of Formula 5-3 where Rf is —SCH3, —SOCH3, or —SO2CH3, M is H, Li, K, or Na that are used as intermediates in the synthesis of compounds of Formula I where W is imidazole.


Imidazole 5-1 (WO 1996011932) is protected according to the methods described in Scheme 3, preferably with a SEM protecting group to give compounds of Formula 5-2. Ester hydrolysis according to the procedure in Scheme 3 gives compounds of Formula 5-3 where Rf is —SCH3. Oxidation of 2-methylthioimidazoles of Formula 5-2 with one equivalent of an appropriate oxidant, followed by ester hydrolysis according to the procedure in Scheme 3 gives compounds of Formula 5-3 where Rf is —SOCH3. Oxidation with two equivalents of an appropriate oxidant, followed by ester hydrolysis according to the procedure in Scheme 3 gives compounds of Formula 5-3 where Rf is —SO2CH3. The preferred reagent for oxidation is MCPBA in DCM. References for the conversion of sulfides to sulfoxides and sulfones are given in Scheme 1.


The following examples are for exemplary purposes only and are in no way meant to limit the invention.


Example 1
5-Cyano-1H-imidazole-2-carboxylic acid [2-cyclohex-1-enyl-4-(2-methyl-[1,3]dioxolan-2-yl)-phenyl]-amide



embedded image


a) 1-(2-Trimethylsilanyl-ethoxymethyl)-1H-imidazole-4-carbonitrile



embedded image


A flask charged with imidazole-4-carbonitrile (0.50 g, 5.2 mmol) (Synthesis, 677, 2003), 2-(trimethylsilyl)ethoxymethyl chloride (SEMCl) (0.95 mL, 5.3 mmol), K2CO3 (1.40 g, 10.4 mmol), and acetone (5 mL) was stirred for 10 h at RT. The mixture was diluted with EtOAc (20 mL), washed with water (20 mL), brine (20 mL) and the organic layer was dried over MgSO4. The crude product was eluted from a 20-g solid phase extraction (SPE) cartridge (silica) with 30% EtOAc/hexane to give 0.80 g (70%) of the title compound as a colorless oil. Mass spectrum (CI(CH4), m/z): Calcd. for C10H17N3OSi, 224.1 (M+H). found 224.1.


b) 2-Bromo-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-4-carbonitrile



embedded image


To a solution of 1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-4-carbonitrile (0.70 g, 3.1 mmol) (as prepared in the previous step) in CCl4 (10 mL) was added N-bromosuccinimide (NBS) (0.61 g, 3.4 mmol) and azobis(isobutyronitrile) (AIBN) (cat), and the mixture was heated at 60° C. for 4 h. The reaction was diluted with EtOAc (30 mL), washed with NaHCO3 (2×30 mL), brine (30 mL), the organic layer was dried over Na2SO4 and then concentrated. The title compound was eluted from a 20-g SPE cartridge (silica) with 30% EtOAc/hexane to give 0.73 g (77%) of a yellow solid. Mass spectrum (CI(CH4), m/z): Calcd. for C10H16BrN3OSi, 302.0/304.0 (M+H). found 302.1/304.1.


c) 4-Cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylic acid ethyl ester



embedded image


To a solution of 2-bromo-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-4-carbonitrile (0.55 g, 1.8 mmol) (as prepared in the previous step) in tetrahydrofuran (THF) (6 mL) at −40° C. was added dropwise a solution of 2 M i-PrMgCl in THF (1 mL). The reaction was allowed to stir for 10 min at −40° C. and then cooled to −78° C., and ethyl cyanoformate (0.30 g, 3.0 mmol) was added. The reaction was allowed to attain RT and stirred for 1 h. The reaction was quenched with saturated aq NH4Cl, diluted with EtOAc (20 mL), washed with brine (2×20 mL). The organic layer was dried over Na2SO4 and then concentrated. The title compound was eluted from a 20-g SPE cartridge (silica) with 30% EtOAc/hexane to give 0.40 g (74%) of a colorless oil. Mass spectrum (ESI, m/z): Calcd. for C13H21N3O3Si, 296.1 (M+H). found 296.1.


d) 4-Cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylate potassium salt



embedded image


To a solution of 4-cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylic acid ethyl ester (0.40 g, 1.3 mmol) (as prepared in the previous step) in ethanol (3 mL) was added a solution of 6M KOH (0.2 mL, 1.2 mmol) and the reaction was stirred for 10 min and then concentrated to give 0.40 g (100%) of the title compound as a yellow solid. 1H-NMR (CD3OD; 400 MHz) δ 7.98 (s, 1H), 5.92 (s, 2H), 3.62 (m, 2H), 0.94 (m, 2H), 0.00 (s, 9H). Mass spectrum (ESI-neg, m/z): Calcd. for C11H16KN3O3Si, 266.1 (M-K). found 266.0.


e) 4-Bromo-2-cyclohex-1-enyl-phenylamine



embedded image


To a mixture of 4-bromo-2-iodo-phenylamine (2.00 g, 6.71 mmol), 2-cyclohex-1-enyl-4,4,5,5-tetramethyl-[1,3,2]dioxaborolane (1.40 g, 6.71 mmol) and Pd(PPh3)4 (388 mg, 0.336 mmol) in 40 mL of 1,4-dioxane was added 2.0 M aq Na2CO3 solution (26.8 mL, 53.7 mmol). After stirring at 80° C. for 5 h under Ar, the reaction was cooled to RT. The mixture was treated with EtOAc (100 mL), washed with H2O (3×30 mL) and brine (20 mL). The organic layer was dried (Na2SO4) and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (10-20% EtOAc/hexane) to give 1.47 g (87%) of the title compound as a light brown oil. Mass spectrum (ESI, m/z): Calcd. for C12H14BrN, 252.0 (M+H). found 252.0.


f) 4-Cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylic acid (4-bromo-2-cyclohex-1-enyl-phenyl)-amide



embedded image


To a mixture of 4-bromo-2-cyclohex-1-enyl-phenylamine (as prepared in the previous step, 1.23 g, 4.88 mmol), potassium 4-cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylate (as prepared in Example 1, step (d), 1.49 g, 4.88 mmol) and PyBroP (2.27 g, 4.88 mmol) in 25 mL of DMF was added N,N-diisopropylethylamine (DIEA) (2.55 mL, 14.6 mmol). After stirring at RT for 16 h, the mixture was treated with 100 mL of EtOAc and washed with H2O (2×30 mL), brine (30 mL) and dried (Na2SO4). The organic solvent was evaporated and the residue was purified by flash chromatography on silica gel (5-10% EtOAc/hexane) to give 2.21 g (90%) of the title compound as a white solid. 1H-NMR (CDCl3; 400 MHz): δ 9.70 (s, 1H), 8.26 (d, 1H, J=8.6 Hz), 7.78 (s, 1H), 7.36 (dd, 1H, J=8.6, 2.3 Hz), 7.31 (d, 1H, J=2.3 Hz), 5.94 (s, 2H), 5.86 (m, 1H), 3.66 (t, 2H, J=8.3 Hz), 2.19-2.33 (m, 4H), 1.75-1.88 (m, 4H), 0.97 (t, 2H, J=8.3 Hz), 0.00 (s, 9H).


g) 4-Cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylic acid (4-acetyl-2-cyclohex-1-enyl-phenyl)-amide



embedded image


A mixture of 4-cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylic acid (4-bromo-2-cyclohex-1-enyl-phenyl)-amide (as prepared in the previous step, 100 mg, 0.199 mmol), tributyl(1-ethoxyvinyl)stannane (86.3 mg, 0.239 mmol) and Pd(PPh3)2Cl2 (10.5 mg, 0.0149 mmol) in 2 mL of 1,4-dioxane was stirred at 90° C. for 2 h under Ar. After cooling to RT, the reaction was treated with EtOAc (40 mL) and washed with 15% citric acid aqueous solution (2×10 mL), H2O (10 mL) and brine (10 mL). The organic layer was dried over Na2SO4 and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (10-20% EtOAc/hexane) to give 80.1 mg (86%) of the title compound as a light brown oil. Mass spectrum (ESI, m/z): Calcd. for C25H32N4O3Si, 465.2 (M+H). found 465.1.


h) 4-Cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylic acid [2-cyclohex-1-enyl-4-(2-methyl-[1,3]dioxolan-2-yl)-phenyl]-amide



embedded image


A solution of 4-cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylic acid (4-acetyl-2-cyclohex-1-enyl-phenyl)-amide (as prepared in the previous step, 135 mg, 0.290 mmol), ethanediol (363 mg, 5.80 mmol) and catalytic p-toluenesulfonic acid (PTSA) in 21 mL of benzene were heated at reflux under Dean-Stark conditions for 4 h. The reaction was diluted with EtOAc (25 mL), washed with water (3×20 mL), dried (Na2SO4), and concentrated in vacuo. Purification of the residue using preparative TLC (10% MeOH—CHCl3) afforded 100 mg (68%) of the title compound as a white solid. Mass spectrum (ESI, m/z): Calcd. for C27H36N4O4Si, 509.2 (M+H). found 509.0.


i) 5-Cyano-1H-imidazole-2-carboxylic acid [2-cyclohex-1-enyl-4-(2-methyl-[1,3]dioxolan-2-yl)-phenyl]-amide

To a solution of 4-cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylic acid [2-cyclohex-1-enyl-4-(2-methyl-[1,3]dioxolan-2-yl)-phenyl]-amide (as prepared in the previous step, 45 mg, 0.088 mmol) in 3 mL of THF was added tetrabutyl ammonium fluoride (TBAF) (69 mg, 0.264 mmol). The reaction was stirred for 14 h at room temperature, at which time the temperature was raised to 60° C. for 15 min and then diluted with EtOAc (25 mL) and washed with water (3×25 mL). The organic layer was dried (Na2SO4) and concentrated in vacuo. Purification of the residue using preparative TLC (10% MeOH—CHCl3) afforded 31 mg (93%) of the title compound as a white solid. 1H-NMR (CDCl3; 400 MHz): δ 9.76 (s, 1H), 8.28 (s, 1H), 7.97 (d, 1H, J=8.3 Hz), 7.33 (dd, 1H, J=8.3, 2.0 Hz), 7.21 (s, 1H, J=2.0 Hz), 5.77 (s, 1H), 3.98 (m, 2H), 3.72 (m, 2H), 2.20-2.15 (m, 4H), 1.75-1.66 (m, 4H), 1.56 (s, 3H). Mass spectrum (ESI, m/z): Calcd. for C21H22N4O3, 379.1 (M+H). found 379.1.


Example 2
4-Cyano-1H-imidazole-2-carboxylic acid [2-cyclohex-1-enyl-4-(2-methyl-[1,3]dioxan-2-yl)-phenyl]-amide



embedded image


a) 4-Cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylic acid [2-cyclohex-1-enyl-4-(2-methyl-[1,3]dioxan-2-yl)-phenyl]-amide



embedded image


The title compound was prepared from 4-cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylic acid (4-acetyl-2-cyclohex-1-enyl-phenyl)-amide (as prepared in Example 1, step (h), 0.58 mmol), 1,3-propanediol (882 mg, 11.6 mmol) and catalytic PTSA according to the procedure in Example 1, step (h) (147 mg, 49%). Mass spectrum (ESI, m/z): Calcd. for C28H38N4O4Si, 523.2 (M+H). found 523.3.


b) 4-Cyano-1H-imidazole-2-carboxylic acid [2-cyclohex-1-enyl-4-(2-methyl-[1,3]dioxan-2-yl)-phenyl]-amide

The title compound was prepared from 4-cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylic acid [2-cyclohex-1-enyl-4-(2-methyl-[1,3]dioxan-2-yl)-phenyl]-amide (as prepared in the previous step, 145 mg, 0.276 mmol) and tetrabutylammonium fluoride (216 mg, 0.820 mmol) according to the procedure in Example 1, step (i) (69.4 mg, 64%). 1H-NMR (CDCl3; 400 MHz): δ 9.61 (s, 1H), 8.36 (d, 1H, J=8.4 Hz), 7.74 (s, 1H), 7.38 (dd, 1H, J=8.4, 1.9 Hz), 7.26 (m, 1H), 5.88 (s, 1H), 3.92-3.79 (m, 4H), 2.34-2.26 (m, 4H), 2.13 (m, 1H), 1.87-1.77 (m, 4H), 1.52 (s, 3H), 1.28 (m, 1H). Mass spectrum (ESI, m/z): Calcd. for C22H24N4O3, 393.1 (M+H). found 393.1.


Example 3
4-Cyano-1H-imidazole-2-carboxylic acid [2-(4,4-dimethyl-cyclohex-1-enyl)-6-(2-methyl-oxazolidin-2-yl)-pyridin-3-yl]-amide



embedded image


a) 6-Bromo-2-iodo-pyridin-3-ylamine



embedded image


To a stirred solution of 6-bromo-pyridin-3-ylamine (10.2 g, 0.0580 mol) and Ag2SO4 (18.1 g, 0.0580 mol) in EtOH (150 mL) was added I2 (7.59 g, 0.0580 mol) and the reaction was allowed to stir overnight. At this time hexane (200 mL) was added and the resultant mixture was filtered through Celite. The solvent was removed in vacuo, dissolved in CHCl3 (200 mL), washed with aqueous saturated Na2S2O3 (100 mL), water (1×100 mL), and dried (Na2SO4). The solvent was concentrated in vacuo and the residue was dissolved in hot EtOAc (100 mL), filtered and treated with hexanes (100 mL). Filtration gave 11.2 g (65%) of 6-bromo-2-iodo-pyridin-3-ylamine as a white crystalline material. 1H-NMR (CDCl3; 400 MHz): δ 7.10 (d, 1H, J=8.2 Hz), 6.74 (d, 1H, J=8.2 Hz), 4.06 (br s, 2H).


b) 6-Bromo-2-(4,4-dimethyl-cyclohex-1-enyl)-pyridin-3-ylamine



embedded image


A solution of 6-bromo-2-iodo-pyridin-3-ylamine (as prepared in the previous step, 1.00 g, 3.35 mmol) in toluene (27 mL) and EtOH (13.5 mL) was treated with 2.0 M aq Na2CO3 (13.4 mL, 26.8 mmol) and 4,4-dimethyl-cyclohex-1-enylboronic acid (567 mg, 3.68 mmol). The mixture was degassed via sonication, placed under Ar, treated with Pd(PPh3)4 (271 mg, 0.234 mmol), and heated to 80° C. for 5 h. The cooled mixture was diluted with EtOAc (100 mL) and washed with water (2×50 mL). The combined aqueous layers were extracted with EtOAc (1×100 mL). The combined organic layers were dried over MgSO4 and concentrated in vacuo. Silica gel chromatography of the residue on a Varian MegaBond Elut 50-g column with 10% EtOAc-hexane afforded 668 mg (71%) of 6-bromo-2-(4,4-dimethyl-cyclohex-1-enyl)-pyridin-3-ylamine as a tan solid. 1H-NMR (CDCl3; 400 MHz): δ 7.06 (d, 1H, J=8.3 Hz), 6.85 (d, 1H, J=8.3 Hz), 5.95 (m, 1H), 3.86 (br s, 2H), 2.43-2.39 (m, 2H), 1.99-1.97 (m, 2H), 1.51 (t, 2H, J=6.4 Hz), 0.99 (s, 6H).


c) 4-Cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylic acid [6-bromo-2-(4,4-dimethyl-cyclohex-1-enyl)-pyridin-3-yl]-amide



embedded image


The title compound was prepared from 6-bromo-2-(4,4-dimethyl-cyclohex-1-enyl)-pyridin-3-ylamine (as prepared in the previous step, 60 mg, 0.21 mmol), potassium 4-cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylate (as prepared in Example 1, step (d), 91.0 mg, 0.290 mmol), PyBroP (157 mg, 0.330 mmol) and DIEA (91.0 μL, 0.520 mmol) according to the procedure in Example 1, step (f) (84 mg, 78%). 1H-NMR (CDCl3; 400 MHz): δ 9.91 (s, 1H), 8.64 (d, 1H, J=8.6 Hz), 7.79 (s, 1H), 7.38 (d, 1H, J=8.6 Hz), 6.00 (m, 1H), 5.92 (s, 2H), 3.67 (m, 2H), 2.46 (m, 2H), 2.14 (m, 2H), 1.62 (t, 2H, J=6.3 Hz), 1.12 (s, 6H), 0.98 (m, 2H).


d) 4-Cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylic acid [2-(4,4-dimethyl-cyclohex-1-enyl)-6-(1-ethoxy-vinyl)-pyridin-3-yl]-amide



embedded image


To a round bottom flask containing 4-cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylic acid [6-bromo-2-(4,4-dimethyl-cyclohex-1-enyl)-pyridin-3-yl]-amide (as prepared in the previous step, 32 mg, 0.060 mmol), Pd(PPh3)4 (7 mg, 0.006 mmol), and tributyl-(1-ethoxy-vinyl)-stannane (30 mg, 0.080 mmol) was added DMF (0.7 mL) and the resultant solution was allowed to stir at 100° C. overnight. The reaction was diluted with EtOAc (25 mL), washed with water (2×25 mL), dried (Na2SO4) and concentrated in vacuo. Purification of the residue by preparative TLC (20% EtOAc-hexanes) afforded 12 mg (43%) of the title compound as an oil. Mass spectrum (ESI, m/z): Calcd. for C28H39N5O3Si, 522.2 (M+H). found 522.3.


b) 5-Cyano-1H-imidazole-2-carboxylic acid [6-acetyl-2-(4,4-dimethyl-cyclohex-1-enyl)-pyridin-3-yl]-amide



embedded image


The title compound was prepared from 5-cyano-1-(2-trimethylsilanyl-ethoxymethyl)-1H-imidazole-2-carboxylic acid [2-(4,4-dimethyl-cyclohex-1-enyl)-6-(1-ethoxy-vinyl)-pyridin-3-yl]-amide (as prepared in the previous step, 12 mg, 0.023 mmol)) as a solution in 10 mL of DCM with 0.4 mL of EtOH and 10 mL of TFA; the mixture was stirred for 1 h at RT. The mixture was concentrated and triturated with Et2O to give (4.4 mg, 52%). Mass spectrum (ESI, m/z): Calcd. for C20H21N5O2, 364.1 (M+H). found 364.1.


c) 4-Cyano-1H-imidazole-2-carboxylic acid [2-(4,4-dimethyl-cyclohex-1-enyl)-6-(2-methyl-oxazolidin-2-yl)-pyridin-3-yl]-amide

The title compound is prepared from 5-cyano-1H-imidazole-2-carboxylic acid [6-acetyl-2-(4,4-dimethyl-cyclohex-1-enyl)-pyridin-3-yl]-amide (as prepared in the previous step) and 2-aminoethanol according to the procedure in Example 1, step (h).


The following examples are produced according to procedures of previous examples with the corresponding reagents as indicated in the table below:
















Example


Procedure



No.
Name
Structure
Reference
Reagents







4
4-Cyano-1H-imidazole-2- carboxylic acid [2-(4,4- dimethyl-cyclohex-1-enyl)- 4-(2-methyl-oxazolidin-2- yl)-phenyl]-amide


embedded image


Example 1, steps (e-i)


embedded image







5
4-Cyano-1H-imidazole-2- carboxylic acid [2-(4,4- dimethyl-cyclohex-1-enyl)- 4-(2,3-dimethyl- oxazolidin-2-yl)-phenyl]- amide


embedded image


Example 1, steps (e-i)


embedded image











IV. RESULTS

Fluorescence Polarization Competition Immunoassay


An autophosphorylation, fluorescence polarization competition immunoassay was used to determine the potency for c-fms inhibition exhibited by selected compounds of Formula I. The assay was performed in black 96-well microplates (LJL BioSystems). The assay buffer used was 100 mM 4-(2-hydroxyethyl)piperazine 1-ethanesulfonic acid (HEPES), pH 7.5, 1 mM 1,4-dithio-DL-threitol (DTT), 0.01% (v/v) Tween-20. Compounds were diluted in assay buffer containing 4% dimethylsulfoxide (DMSO) just prior to the assay. To each well, 5 μL of compound were added followed by the addition of 3 μL of a mix containing 33 nM c-fms (Johnson & Johnson PRD) and 16.7 mM MgCl2 (Sigma) in assay buffer. The kinase reaction was initiated by adding 2 μL of 5 mM ATP (Sigma) in assay buffer. The final concentrations in the assay were 11 nM c-fms, 1 mM ATP, 5 mM MgCl2, 2% DMSO. Control reactions were ran in each plate: in positive and negative control wells, assay buffer (made 4% in DMSO) was substituted for the compound; in addition, positive control wells received 1.2 μL of 50 mM ethylene diaminetetraaceticacid (EDTA).


The plates were incubated at room temperature for 45 min. At the end of the incubation, the reaction was quenched with 1.2 μL of 50 mM EDTA (EDTA was not added to the positive control wells at this point; see above). Following a 5-min incubation, each well received 10 μL of a 1:1:3 mixture of anti-phosphotyrosine antibody, 10×, PTK green tracer, 10× (vortexed), FP dilution buffer, respectively (all from PanVera, cat. #P2837). The plate was covered, incubated for 30 min at room temperature and the fluorescence polarization was read on the Analyst. The instrument settings were: 485 nm excitation filter; 530 nm emission filter; Z height: middle of well; G factor: 0.93. Under these conditions, the fluorescence polarization values for positive and negative controls were approximately 300 and 150, respectively, and were used to define the 100% and 0% inhibition of the c-fms reaction. The reported IC50 values are averages of three independent measurements.


CSF-1-Driven Mouse Bone-Marrow Derived Macrophages Assay


Macrophages are derived by culturing mouse bone marrow in alpha-MEM supplemented with 10% FCS and 50 ng/ml recombinant mouse CSF-1 in bacteriologic dishes. On the sixth day, macrophages are detached from dishes, washed, and resuspended to 0.05 million cells/ml in alpha-MEM containing 10% FCS. One hundred ul of cell suspension are distributed per well into 96 well culture plates. Wells are further supplemented with the addition of 50 ul media containing 15 ng/ml CSF-1, 3 uM Indomethacin, and 3× of a dilution series of test compounds. The cells are cultured for 30 hrs at 37 degrees and 5% CO2. During the final six hours, cultures are supplemented with an additional 30 ul of media containing a 1:500 dilution of bromodeoxyuridine (BrDU). At the end of the culture period, the plates are spun at 1000 RPM for 1 minute and 130 ul of media is removed with a pipet and replaced with 150 ul of fixative solution for 1 hour @ room temperature. The fixative is then dispelled from the plates and the plates allowed to air dry. Incorporation of BrDU into the fixed, dried cells is quantified using a specific ELISA.


Table 2 lists the assay results for representative compounds of the invention.











TABLE 2







mCSF driven


Example
1 nM c-fms; peptide Pi
proliferation BMDM


#
assay IC-50 (μM)
(Mouse) IC-50 (μM)

















1
0.0034
0.048


2
0.0039
0.044









While the foregoing specification teaches the principles of the present invention, with examples provided for the purpose of illustration, it will be understood that the practice of the invention encompasses all of the usual variations, adaptations and/or modifications as come within the scope of the following claims and their equivalents.


All publications disclosed in the above specification are hereby incorporated by reference in full.

Claims
  • 1. A compound of Formula I
  • 2. The compound of claim 1, wherein: W is
  • 3. The compound of claim 2, wherein: R2 is
  • 4. The compound of claim 3, wherein: W is
  • 5. The compound of Formula I
  • 6. The compound selected from the group consisting of:
  • 7. A pharmaceutical composition, comprising a compound of claim 1 and a pharmaceutically acceptable carrier.
  • 8. A pharmaceutical dosage form comprising a pharmaceutically acceptable carrier and from about 0.5 mg to about 10 g of at least one compound of claim 1.
  • 9. The dosage form of claim 8 adapted for parenteral or oral administration.
CROSS REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. patent application Ser. No. 11/736,650, filed Apr. 18, 2007, pending; which claims priority to US Provisional Patent Applications 60/793,667, filed Apr. 20, 2006.

US Referenced Citations (70)
Number Name Date Kind
2466420 Hagemeyer et al. Apr 1949 A
3226394 Schipper Dec 1965 A
4551540 Hechenbleikner et al. Nov 1985 A
5101440 Watanabe et al. Mar 1992 A
5190541 Abele et al. Mar 1993 A
5474765 Thorpe Dec 1995 A
5534940 Sato et al. Jul 1996 A
5666164 Kondo et al. Sep 1997 A
5762918 Thorpe Jun 1998 A
5855866 Thorpe et al. Jan 1999 A
5874442 Doll et al. Feb 1999 A
5940132 Kondo et al. Aug 1999 A
5944718 Austin et al. Aug 1999 A
5968952 Venet et al. Oct 1999 A
6037350 Venet et al. Mar 2000 A
6117432 Ganne et al. Sep 2000 A
6169096 Venet et al. Jan 2001 B1
6187786 Venet et al. Feb 2001 B1
6342219 Thorpe et al. Jan 2002 B1
6420387 Venet et al. Jul 2002 B1
6458800 Angibaud et al. Oct 2002 B1
6596746 Das et al. Jul 2003 B1
6692491 Phan Feb 2004 B1
6710781 Sato Mar 2004 B1
6987119 Gaiba et al. Jan 2006 B2
7039254 Maenaka et al. May 2006 B1
7157456 Straub et al. Jan 2007 B2
7208493 Wrasidlo et al. Apr 2007 B2
7427683 Player et al. Sep 2008 B2
7429603 Player et al. Sep 2008 B2
7645755 Illig et al. Jan 2010 B2
7662837 Illig et al. Feb 2010 B2
7790724 Player et al. Sep 2010 B2
7795279 Ballentine et al. Sep 2010 B2
7973035 Illig et al. Jul 2011 B2
20020016625 Falotico et al. Feb 2002 A1
20020019414 Altmann et al. Feb 2002 A1
20020028028 Michel Mar 2002 A1
20020119962 Jacobs et al. Aug 2002 A1
20030130280 O'Farrell et al. Jul 2003 A1
20030153610 Straub et al. Aug 2003 A1
20030169247 Kawabe et al. Sep 2003 A1
20040049032 Charrier et al. Mar 2004 A1
20050004112 Player et al. Jan 2005 A1
20050113566 Player et al. May 2005 A1
20050184952 Konno et al. Aug 2005 A1
20050219188 Kawabe et al. Oct 2005 A1
20060055661 Kawaguchi Mar 2006 A1
20060100619 McClurken et al. May 2006 A1
20060122181 Ikemoto et al. Jun 2006 A1
20060132383 Gally et al. Jun 2006 A1
20060148812 Illig et al. Jul 2006 A1
20060189623 Illig et al. Aug 2006 A1
20060258724 Straub et al. Nov 2006 A1
20060281771 Baumann et al. Dec 2006 A1
20060281788 Baumann et al. Dec 2006 A1
20070121039 Tago et al. May 2007 A1
20070179125 Fraysse et al. Aug 2007 A1
20070182682 Hong et al. Aug 2007 A1
20070249593 Illig et al. Oct 2007 A1
20070259869 Binch et al. Nov 2007 A1
20080051402 Illig et al. Feb 2008 A1
20080068402 Ioka et al. Mar 2008 A1
20080100554 Mori May 2008 A1
20080106641 Chou May 2008 A1
20080284719 Yoshida Nov 2008 A1
20090105296 Chen et al. Apr 2009 A1
20090197913 Baumann et al. Aug 2009 A1
20110037785 Shiomi Feb 2011 A1
20110195960 Illig et al. Aug 2011 A1
Foreign Referenced Citations (83)
Number Date Country
101017260 Aug 2007 CN
1566379 Aug 2005 EP
1705636 Sep 2006 EP
1936600 Jun 2008 EP
1189719 Apr 1970 GB
01346070 Dec 2001 JP
3243861 Jan 2002 JP
02064704 Feb 2002 JP
02099250 Apr 2002 JP
03255915 Sep 2003 JP
04184937 Jul 2004 JP
04212503 Jul 2004 JP
05293265 Oct 2005 JP
05309338 Nov 2005 JP
05346639 Dec 2005 JP
0684710 Mar 2006 JP
3766231 Apr 2006 JP
06308665 Nov 2006 JP
07140404 Jun 2007 JP
07225871 Sep 2007 JP
07310319 Nov 2007 JP
07322944 Dec 2007 JP
08021207 Jan 2008 JP
08107715 May 2008 JP
08116554 May 2008 JP
09031585 Feb 2009 JP
08287118 Nov 2009 JP
05129914 Apr 2007 RU
WO 9410138 May 1994 WO
WO 9611932 Apr 1996 WO
WO 9621452 Jul 1996 WO
WO 9632907 Oct 1996 WO
WO 9716443 May 1997 WO
WO 9721701 Jun 1997 WO
WO 9730992 Aug 1997 WO
WO 9806700 Feb 1998 WO
WO 9828264 Jul 1998 WO
WO 9828303 Jul 1998 WO
WO 9840383 Sep 1998 WO
WO 9849157 Nov 1998 WO
WO 9854174 Dec 1998 WO
WO 9945712 Sep 1999 WO
WO 9945912 Sep 1999 WO
WO 0001691 Jan 2000 WO
WO 0002871 Jan 2000 WO
WO 0012498 Mar 2000 WO
WO 0012499 Mar 2000 WO
WO 0039082 Jul 2000 WO
WO 0147919 Jul 2001 WO
WO 0232861 Apr 2002 WO
WO 02092599 Nov 2002 WO
WO 03024931 Mar 2003 WO
WO 03024969 Mar 2003 WO
WO 03035009 May 2003 WO
WO 03037347 May 2003 WO
WO 03057690 Jul 2003 WO
WO 03099771 Dec 2003 WO
WO 03099796 Dec 2003 WO
WO 2004005281 Jan 2004 WO
WO 2004016597 Feb 2004 WO
WO 2004018419 Mar 2004 WO
WO 2004039782 May 2004 WO
WO 2004043389 May 2004 WO
WO 2004045548 Jun 2004 WO
WO 2004045549 Jun 2004 WO
WO 2004046120 Jun 2004 WO
WO 2004058749 Jul 2004 WO
WO 2004085388 Oct 2004 WO
WO 2005012220 Feb 2005 WO
WO 2005040139 May 2005 WO
WO 2005047273 May 2005 WO
WO 2005073225 Aug 2005 WO
2006047277 May 2006 WO
WO 2006047277 May 2006 WO
WO 2006047504 May 2006 WO
WO 2006135630 Dec 2006 WO
WO 2006135636 Dec 2006 WO
WO 2006135713 Dec 2006 WO
WO 2006135718 Dec 2006 WO
WO 2006138155 Dec 2006 WO
WO 2007048088 Apr 2007 WO
WO 2009058968 May 2009 WO
WO 2009157224 Dec 2009 WO
Non-Patent Literature Citations (173)
Entry
Dorwald , Side Reactions in Organic Synthesis, 2005, Wiley: VCH Weinheim Preface, pp. 1-15 & Chapter 8, pp. 279-308.
Guillory (in Brittain ed.), “Polymorphism in Pharmaceutical Solids.,” NY: Marcel Dekker, Inc., 1999, 1-2, 125-181, 183-226.
Yu et al., “Physical characterization of, etc.,” PSTT, vl. 1(3), 118-127 (1998).
Vippagunta et al., “Crystalline Solids”, Advanced Drug Delivery Reviews 48 (2001) 3-26.
U.S. Office Action mailed Jan. 24, 2013 for corresponding U.S. Appl. No. 12/736,660.
Abstract of Japanese Patent Publication JP06-178277 published on Jun. 24, 1994.
Abarbri et al., J. Org. Chem. (2000), 65, 4618-4634.
Abdel-Magid et al, “Reductive Amination of Aldehydes and Ketones with Sodium Triacetoxyborohydride.Studies on Direct and Indirect Reductive Amination Procedures”, J Org. Chem., vol. 61 pp. 3849-3862 (1996).
Aboutaleb et al., International Sem in Surgical Oncol 6(17): 1-3, 2006.
Acute myeloid leukemia: MedlinePlus Medical Encyclopedia. Retrieved on Dec. 28, 2010. Electronic Resource: http://www.nlm.nih.gov/medlineplus/ency/article/000542.htm].
Advani, A., Curr Hematologic Malignancy Reports 1:101-107,2006.
Altman et al. The Cancer Dictionary, 1992, pp. 30-32.
Ansari-Lari, A. et al., “FLT3 mutations in myeloid sarcoma” British Journal of Haematology. Sep. 2004 126(6):785-91.
Armstrong, S.A. et al., (2004) “FLT3 mutations in childhood acute lymphoblastic leukemia.” Blood. 103: 3544-6.
Arnon et al., “Monoclonal Antibodies for Immunotargeting of Drugs in Cancer Therapy”, In Monoclonal Antibodies and Cancer Therapy, Reisfeld et al. (eds.), pp. 243-256 (Alan R. Liss, Inc. 1985).
Auewarakul et al., Ann Hematol, 85:108-112, 2006.
Barkenbus et al., Journal of Organic Chemistry (1951), 16, 232-8.
Baumann et al.. J Biochem Biophys Methods. 2004; 60:69-79.
Beletskaya et al., Chem. Rev., 100:3009 (2000).
Beller et al., Applied Homogeneous Catalysis with Organometallic Compounds, Cornils, B. and Herrmann, W. A. (Eds.), 2, 1009-1024, VCH, Weinheim, Germany (1996).
Berenbaum et al. What is synergy? Pharmacological Reviews, 1989.
Berge, S., et al, “Pharmaceutical Salts”, J. Pharm. Sci., Jan. 1977, 66(1): 1-19.
Blouin et al. Rat models of bone metastases. Clin. Exp. Metastasis, 2005, 22: 605-614.
Bodansky, M. et al., “The Practice of Peptide Synthesis”, Springer-Verlag, NY (1984).
Brase et al., Angew. Chemie Int. Ed., 44(33), 5188-5240, (2005).
Brase et al., Metal-Catalyzed Cross-Coupling Reactions (2nd Edition), p. 217-315, A. de Meijere, F. Diederich, Eds., Wiley-VCH, Weinheim (2004).
British Journal of Haematology, “Flt3 mutations and leukemia”, 2003,122(4):523-38.
Brown et al., J. Chem. Soc., Perkin Trans. 2, 1039-1051 (2002).
Buchner T., W. Hiddemann, et al. (2002). “Acute myeloid leukemia: treatment over 60.” Rev Clin Exp Hematol. 6(1):46-59.
Buchwald, E.L. et al., Top. Curr. Chem., 219:131-209 (2001).
Burnett, A. K. (2002). “Acute myeloid leukemia: treatment of adults under 60 years.” Rev Clin Exp Hematol 6(1): 26-45.
Byrn et al., Solid-State Chemistry of Drugs, Second Edition, 1999, pp. 233-247.
Canibano, V. et al., Synthesis 14, 2175 (2001).
ChemBlink. Tipifarnib. Electronic Resource. Retrived on Dec. 18, 2010: [http://www.chemblink.com/products/192185-72-1.htm].
Chou TC, Talalay P. (1984) “Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors.” Adv Enzyme Regul. 22:27-55.
Clohlsy et al. Bone Cancer Pain. (Presented at the Third North American Symposium on Skeletal Complications of Malignancy, Bethesda, Maryland; Apr. 25-27, 2002).
Coll. Czech. Chem. Commun.: 31(11), 4432-41, (1966), Palecek, J.
Comprehensive Organic Transformations: Larock, R.S.; Wiley and Sons Inc., USA 1999.
Corey et al., Tetrahedron Lett., 29, 995 (1988).
Cortes. Farnesyltransferase inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Clinical Lymphoma, vol. 4, Suppl. 1, S30-S35, 2003.
Couturier et al., Organic Process Research & Development, 2002, 6, 42-48.
Crandall et al., J. Am. Chem. Soc. (1968), 90, 6251-6253.
Cummins et al., Tetrahedron (1988), 44(16), 5151.
Dib, et al., European Journal of Pharmacology. 2006, pp. 27-33, 551.
Dirlam et al., J. Heterocyclic Chem, 17, 409, (1980).
Dolan, S., et al, J. Chem., Soc., Chem. Commun., 1588-9 (1985).
Drexler, H. G. et al. (2004), “FLT3: receptor and ligand”; Growth Factors 22(2):71-3.
Drexler, H.G., “The Leukemia-Lymphoma Cell Line Factsbook”, Academic Pres:SanDiego, CA, 2000.
Eastwood, P., Tetrahedron Lett. (2000), 41, 3705-8.
Ferrara et al., “Prognostic factors and therapeutic options for relapsed or refractory acute myeloid leukemia.” Haematologica. Aug. 2004, Vo1. 89, No. 8, Aug. 2004; pp. 998-1008.
Fohlisch et al, Liebigs Annalen der Chemie, (1), 1-5 (1987) [English Abstract provided].
Galemmo et al., J. Med. Chem., 33(10), 2828-41; (1990).
Gavezzotti, “Are Crystal Structures Predictable?” Accounts of Chemical Research, vol. 27, pp. 309-314 (1994).
Gilliand, G., et.al, “The roles of FLT3 in mematopoiesis and leukemia”, Blood. 2002; 100:1532-42.
Gotlib, J (2005) “Farnesyltransferase inhibitor therapy in acute myelogenous leukemia.” Curr. Hematol. Rep.;4(1):77-84.
Gould, P., “Salt selection for basic drugs”, Ref. International J. Pharm. 1986, 33, 201-217.
Gray, M. et al., Tetrahedron Lett., 41:6237-40 (2000).
Griswold, I. J. et al., “Effects of MLN518, A Dual FLT3 and KIT inhibitor, on Normal and Malignant Hematopoiesis” Blood, Jul. 2004 [Epub ahead of print].
Guanti et al., Tetrahedron, 46 (20), 7081, (1990).
Guanti et al., Tetrahedron: Asymmetry 8(13), 2175-2187, (1997).
Haluska P., G.K. Dy, A.A. Adjei. (2002) “Farnesyl transferase inhibitors as anticancer agents.” Eur J Cancer. 38(13):1685-700.
Han, J., Advances in Characterization of Pharmaceutical Hydrates, Trends in Bio/PharmaceuticalIndustry, pp. 25-29. Mar. 2006.
Harmata et al., Org. Lett. (2000), 2, 2703-2705.
Hartwig, J.F., “Organopalladium Chemistry for Organic Synthesis,” Wiley Interscience, NY (2002).
Hayakawa et al., Bioorg. Med. Chem. Lett., 14(2): 455-8 (2004).
Hellstrom et al., “Antibodies for Drug Delivery”, in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623-653 (Marcel Dekker, Inc. 1987).
Hengartner, MO. (2000) “The biochemistry of apoptosis.” Nature 407:770-76.
Hess et al., J. Am. Chem. Soc. (1998), 120, 12310.
Hill et al., J. Am. Chem. Soc. (1973), 95, 1338.
Hogermeier et al., Chem. Eur. J., 2007, 13, 2410.
Hulkenberg et al., Tetrahedron Lett., 23(14), 1505-08; (1982).
Iddon. B. et al., J. Chem. Soc. Perkin Trans. 1., 1370, (1980).
Illig, et al., “Discovery of novel FMS Kinase Inhibitors as Anti-inflammatory Agents” Bioorganic & Medicinal Chemistry Letters, Pergamon, 2008, pp. 1642-1648 vol. 18, No. 5.
Ishikubo et al (Jpn J Clin Oncol 36:494-498, 2006.
Itsuno et al., Synthesis, 12, 995-6, (1988).
Johnson et al., Brit J Cancer, 84:1424-1431 (2001).
Johnson et al., J. Org. Chem. (1970), 35(3), 584-592.
Kamwakami J., et al. “A Convenient Synthesis of 4(5)-Alkylacyl-1H-imidazoles from 4(5)-Imidazolecarboxaldehyde” Synthesis, No. 5, pp. 677-680 (2003).
Katritsky, A. et al., “para-Formylation of Nitroarenes via Vicarious Nucleophilic Substitution of Hydrogen with Tris(benzotriazol-1-yl)methane”, Tetrahedron Lett., 37:347-50 (1996).
Khanapure et al, J. Med. Chem., 48(11): 3930-34 (2005).
Kim et al., European Journal of Organic Chemistry (2000), 12, 2195-2201.
Kolder, C.R., et al, “Synthesis and Reactivity of 5-Chloro-2,4-Dihydrosypyridine”, x Recl. Trav. Chim. Pays-Bas; 285 (1953).
Koutek, et al, Synth. Commun., 6 (4), 305-8 (1976).
Lancet J.E., J.D. Rosenblatt, J.E. Karp. (2003) “Farnesyltransferase inhibitors and myeloid malignancies: phase I evidence of Zarnestra activity in high-risk leukemias.” Semin Hematol. 39(3 Suppl 2):31-5.
Larock, R.C., Comprehensive Organic Transformations, 2nd Ed., Wiley-VCH, NY, (1999), pp. 996-1003.
Lee, K. and Cha, J. K., J. Amer. Chem. Soc., 123: 5590-5591 (2001).
Leonard et al., J. Org. Chem., 28, 3021, (1963).
Levis, M. et al. 2001, “A FLT3 tyrosine kinase inhibitor is selectively cytoxic to acute myeloid leukemia blasts harboring FLT3 internal tandem duplication mutations”, Blood 98(3):885-7.
Levis, M. et al., “Novel FLT3 tyrosine kinase inhibitors” Expert Opin. Investing. Drugs (2003) 12 (12) 1951-1962.
Levis, M. et al., “Small Molecule FLT3 Tyrosine Kinase Inhibitors” Current Pharmaceutical Design, 2004, 10, 1183-1193.
Levis, M., et al. (2004) “In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects.” Blood. 104(4):1145-50.
Lewis, et al. “Diacetoxypiperidinium Analogs of Acetylcholine”, Junal of Medicinal Chemistry, 1973, vol. 16, No. 2 pp. 156-159.
Lipshutz et al., Tetrahedron Lett. (1988), 29, 3411-3414.
Liu et al., J. Am. Chem. Soc. 2004, 126, 5182.
Loader, C., et al, Can. J. Chem, 59, 2673 (1981).
Lovborg H, Gullbo J, Larsson R. (2005) “Screening for apoptosis-classical and emerging techniques.” Anticancer Drugs 16:593-9.
Lyon, R. , et al., “Synthesis and Evaluation of Phenyl-and Benzoylpiperazines as Potential Serotonergic Agents”, J. Med. Chem., 29: 630-4 (1986).
Major, R., et al. “1-Alkoxy-4-phenyl-4-propionoxypiperdines and Their 3-Methyl Homologs as New Analgesics”, vol. 26, pp. 1867-1847, (1961).
Martinez—Teipel et al., QSAR & Combinatorial Science, 23(10), 854-858 (2004).
McBee et al., Journal of the American Chemical Society (1957), 79, 2323-5.
McKenna, H.J. et al., “Mice lacking flt3 ligand having deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells and natural killer cells”, Blood Jun. 2000; 95:3489-3497.
Meltzer et al., Bioorganic & Medicinal Chemistry (2002), 10(11) and 3583-3591.
Miyaura, N. et al., “Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds”, Chem. Rev. 95:2457 (1995).
Mock et al., J. Phys. Org. Chem., 16(3), 175-182 (2003).
Modern Amination Methods: Ricci, A., Ed., Wiley-VCH: Weinheim, 2000.
Muci, et al., “Practical Palladium Catalysts for C—N and C—O Bond Formation”, Top. Curr., Chem. 219-131-209 (2001).
Murata, K. et al., “Selective cytotoxic mechanism of GTP-14564, a novel tyrosine kinase inhibitor in leukemia cells expressing a constitutively active Fms-like tyrosine kinase 3 (FLT3)” J Biol Chem. Aug. 29, 2003; 278(35):32892-8.
Murata, K. et al., “Synthesis of Alkenylboronates via Palladium-Catalyzed Borylation of Alkenyl Triflates (or Iodindes) with Pinacolborane” Synthesis, 2000, No. 6, pp. 778-780.
Murray, et al., “SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model ”, Clinical & Experimental Metastasis, 2003, pp. 757-766, vol. 20, No. 8.
Myles et al., J. Org. Chem., 55, 1636 (1990).
Nguyen et al., Tetrahedron, 62(4), 647-651; (2006).
Nicolai, E., et al., “New Process for the Synthesis of Imidazo[4-5-b] pyridine Derivatives as Potent Orally Active Thromboxane A2 Receptor Antagonists”, J. Heterocyclic Chemistry, 31, (73) (1994).
Nose et al., Chem. Pharm. Bull., 38(8), 2097-101, (1990).
Noyori et al., Org. React., 1983, 29, 163.
Nunez G, Benedict MA, Hu Y, Inohara N. (1998) “Caspases: the proteases of the apoptotic pathway.” Oncogene 17:3237-45.
O'Farrell, A.M. et al. “SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo” Blood, May 2003; 101:3597-3605.
Olah, G.A. et al., “Formylating Agents”, Chemical Reviews, vol. 87, No. 4, 1987.
Prendergast et al., (2001) “Farnesyl Transferase Inhibtors: Mechanism and Applications” Expert Opin Investig Drugs. 10(12):2105-16.
Protecting Groups, P, Kocienski Thieme Medical Publishers, 2000.
Pure Appl. Chem., 1976, 45:13-30.
Quentmeier H, et al. FLT3 mutations in acute myeloid leukemia cell lines. Leukemia. Jan. 2003;17:120-124.
Quintard et al., J. Org. Chem., 48: 1559-60 (1983).
Reed et al., Synthetic Communications, 20(4), 563-71, (1990).
Regan, J., et al., Structure-Activity Relationships of the p38* MAP Kinsase Inhibitor 1-)5-tert-Butyl-2-p-tolyl-2h-pyrazol-3-yl)-3-[4-(2-morpholin-4-yl-ethoxy)naph-thalen-1-yl-)urea (BIRB 796)J. Med. Chem., 46:4676-86 (2003).
Reinecke et al., Chemistry—A European Journal (1995), 1(6), 368-73.
Romeo, G., et al, “New Pyrimido [5,4-b—indoles as Ligands for *1-Adrenoceptor Subtypes”, J. Med. Chem., 46: 2877-2894 (2003).
Roush, W., J. Am. Chem. Soc. 102, 1390 (1980).
Sadick, M. et al., Analysis of Heregulin-Induced ErbB2 Phosphorylation with a High-Throughput Kinase Receptor Activation Enzyme-Linked Immunsorbent Assay, Analytical Biochemistry. 1996; 235:207-214.
Sasaki et al., Tett. Lett. (1982), 23, 1693.
Sato et al., Bulletin of the Chemical Society of Japan (1983), 56(9), 2680-99.
Sato et al., Bulletin of the Chemical Society of Japan (1984), 57(9), 2515-25.
Scheijen, B. et al. (2002), “Tyrosine kinase oncogenes innormal hematopoiesis and hematological disease”, Oncogene 21(21):3314-33.
Schmid et al., Helv. Chim. Acta. (1974), 57, 1883 [see English Summary provided].
Sendelbach, et al, Journal of Organic Chemistry (1999), 64(10), 3398-3408.
Shih L. Y. et al., (2004) “Internal tandem duplication of fms-like tyrosine kinase 3 is associated with poor outcome in patients with myelodysplastic syndrome.” Cancer, 101; 989-98.
Simpson WG, The calcium channel blocker verapamil and cancer chemotherapy. Cell Calcium. Dec. 1985;6(6):449-67.
Smith, B. D. et al., “Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia” Blood, May 2004; 103:3669-3676.
Smith, P, “The Curtius Reaction”, Organic Reactions 3:337 (1947).
Stille, J.K., “The Palladium-Catalyzed Cross-Coupling Reactions of Organotin Reagents with Organic Electrophiles”, Angew, Chem, Int. Ed. Engl., 25:508-524 (1986).
Stirewalt, D.L. et al. (2003), “The role of FLT3 in haematopoietic malignancies”, NatRev Cancer 3(9):650-65.
Stone, R.M. et al. “PKC 412 FLT3 inhibitor therapy in AML: results of a phase II trial” An Hematol 2004; 83 Suppl 1:S89-90.
Sundermeier, U., Doebler, C. and Beller, M., Modern Oxidation Methods, Baeckvall, J. (Ed.)., 1-20, Wiley-Verlag (2004) Weinheim, Germany (2004).
Suzuki, A., “Metal-Catalyzed Coupling Reactions” F. Deiderich, P. Stang, Eds., Wiley-VCH, Weinheim (1998).
Takada, Y., et al. (2004). “Protein farnesyltransferase inhibitor (SCH 66336) abolishes NF-kappaB activation induced by various carcinogens and inflammatory stimuli leading to suppression of NF-kappaB-regulated gene expression and up-regulation of apoptosis.”J Biol Chem 279, 26287-99.
Takahashi, K., et al, Chem. Lett. (2000), 126-7.
Takaya et al., J Amer Chem Soc, (1978), 100(6), 1765-77.
Thalhammer et al. Duration of second complete remission in patients with acute myeloid leukemia treated with chemotherapy: a retrospective single-center study. Ann. Hematology, 1996, 72: 216-222.
Thompson et al., Journal of Industrial and Engineering Chemistry (Washington, D. C.) (1952), 44,1659-62.
Thorpe, “Antibody Carriers of Cytotoxic Agents in Cancer Therapy: A Review”, in Monoclonal Antibodies '84: Biological and Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985).
Tohma et al., Adv. Syn. Catalysis, 346, 111-124 (2004).
Tse, K.F. et al., “Inhibition of FLT3-mediated transformation by use of a tyrosine kinase inhibitor” Leukemia, Jul. 2001 15(7):1001-10.
van Engeland M., L.J. Nieland ,et al. (1998) “Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure.” Cytometry. 31(1):1-9.
Walker et al, Dermatol 212:70-72, 2006 (Abstract Only).
West et al., J. Org. Chem (1993), 58, 6795-6803.
Wilson et al., Reducing Ion Channel Activity in a Series of 4-Heterocyclic Arylamide FMS Inhibitors, 20 Bioorg. & Med. Chem. Letts. 3925-3929 (2010).
Wroblewski et al., Journal of the American Chemical Society (1996), 118, 10168-10174.
Wustrow, et al, “Coupling of Arylboronic Acids with a Partially Reduced Pyridine Derivative” Synthesis, 993 (1991).
Wustrow et al., Tetrahedron Lett., 35, 61-4 (1994).
www.cancer.org (accessed online Mar. 2, 2010), “Can Acute Myeloid Luchemia (AML) Be Prevented?”.
Yee et al. Synergistic effect of SU11248 with cytarabine or daunorubicin on FLT3 ITD-positive leukemic cells. Blood, 2004, 104: 4202-4209. Published online Aug. 10, 2004.
Yee, K.W.H. et al., “SU5416 and SU5614 inhibit kinase activity of wild-type and mutant FLT3 receptor tyrosine kinase” Blood, Sep. 2002; 100:2941-294.
Zhu et al. Farnesyltransferase inhibitor R115777 (Zarnestra, Tipifarnib) synergizes with paclitaxel to induce apoptosis and mitotic arrest and to inhibit tumor growth of multiple myeloma cells. Blood, vol. 105, No. 12, 4759-4766, Published online Feb. 22, 2005.
Chemcats RN 93730-20-2, Nov. 28, 1988.
Chemcats RN 443895-82-7 Apr. 24, 2003.
Chemcats RN 701272-70-0, Jan. 1, 2004.
Chemcats RN 712290-43, Jan. 1, 2004.
Jonas, Nilsson W. et al., “Solid-Phase Synthesis of Libraries Generated from a 4-Phenyl-2-carboxy-piperazine Scaffold”, J. Comb. Chem., 2001, 3, 546-553.
Moffett, Robert Bruce et al., “Antiulcer Agents. p-Aminobenzamido Aromatic Compounds”, Journal of Medicinal Chemistry, 1971, vol. 14, No. 10, pp. 963-968.
Nilsson et al., J. Comb. Chem., vol. 3, pp. 546-553 (2001).
Rastelli et al. J. Med. Chem., 2003, 46, 2834-2845.
International Search Report mailed Jan. 27, 2009 in corresponding PCT/JP2008/072403.
International Search Report mailed Jun. 9, 2009 in corresponding PCT/JP2009/054712.
International Search Report mailed Jun. 9, 2009 in corresponding PCT/JP2009/054936.
Related Publications (1)
Number Date Country
20140200245 A1 Jul 2014 US
Provisional Applications (1)
Number Date Country
60793667 Apr 2006 US
Divisions (1)
Number Date Country
Parent 11736650 Apr 2007 US
Child 14210920 US