INHIBITORS OF THE PHD2 ZINC FINGER TO TREAT ANEMIA

Information

  • Research Project
  • 9345190
  • ApplicationId
    9345190
  • Core Project Number
    R43HL137458
  • Full Project Number
    1R43HL137458-01
  • Serial Number
    137458
  • FOA Number
    PA-16-302
  • Sub Project Id
  • Project Start Date
    4/1/2017 - 7 years ago
  • Project End Date
    3/31/2018 - 6 years ago
  • Program Officer Name
    WARREN, RONALD Q
  • Budget Start Date
    4/1/2017 - 7 years ago
  • Budget End Date
    3/31/2018 - 6 years ago
  • Fiscal Year
    2017
  • Support Year
    01
  • Suffix
  • Award Notice Date
    3/3/2017 - 7 years ago

INHIBITORS OF THE PHD2 ZINC FINGER TO TREAT ANEMIA

PROJECT SUMMARY/ABSTRACT Anemia is common disease and is associated with many conditions, including end-stage renal disease. Recombinant versions of Erythropoeitin (EPO), the key hormone that regulates red blood cell mass, have been a mainstay of treatment for this condition. The necessity of parenteral administration, however, has prompted the search for alternative methods for increasing red cell mass. In this regard, a subset of patients with erythrocytosis harbor loss of function mutations in the Prolyl Hydroxylase Domain protein 2 (PHD2, also known as EGLN1) gene, thereby identifying the encoding protein, PHD2, as an attractive target to increase red cell mass. PHD2 is the key enzyme that downregulates Hypoxia Inducible Factor-? (HIF-?), which, in turn, activates the EPO gene. Indeed there are efforts underway elsewhere to inhibit the active site of PHD2 as an approach to treating anemia. However, the catalytic domain of PHD2 is homologous to other proteins, thereby warranting efforts to more specifically inhibit PHD2. PHD2 is distinctive in harboring a zinc finger domain that, like its catalytic domain, is essential for efficient downregulation of HIF-?. In the present application, we propose targeting this zinc finger in order to increase HIF-? and thereby increase red cell mass. In preliminary studies, we have conducted an Alpha Screen for compounds that can inhibit the interaction between the zinc finger of PHD2 and its ligand, which serves to recruit PHD2 to the HSP90 pathway to facilitate HIF-? hydroxylation. We have identified compounds that can disrupt this interaction. We propose the following Specific Aims. First, we wish to identify structure activity relationships with the aim of improving inhibition. Second, we seek to attain acceptable ADME/PK drug values for at least one or two compounds. Third, we propose injecting this compound(s) into a novel knockin mouse line in which the Phd2 gene has a humanized zinc finger so as to allow interaction with compounds identified by the in vitro studies. Accordingly, this application involves a partnership that brings together the medicinal chemistry expertise of the Fox Chase Chemical Diversity Center with the experience of the Principal Investigator?s laboratory at the University of Pennsylvania in examining the HIF pathway. The long term goal of this project will be to identify a preclinical candidate that can be evaluated in more detailed IND-directed studies. Such a candidate will be promising agent for the treatment of anemia.

IC Name
NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
  • Activity
    R43
  • Administering IC
    HL
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    300000
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    837
  • Ed Inst. Type
  • Funding ICs
    NHLBI:300000\
  • Funding Mechanism
    SBIR-STTR RPGs
  • Study Section
    ZRG1
  • Study Section Name
    Special Emphasis Panel
  • Organization Name
    FOX CHASE CHEMICAL DIVERSITY CENTER, INC
  • Organization Department
  • Organization DUNS
    828761002
  • Organization City
    DOYLESTOWN
  • Organization State
    PA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    189028400
  • Organization District
    UNITED STATES