INHIBITORY CHIMERIC ANTIGEN RECEPTORS

Abstract
The invention relates to an inhibitory chimeric antigen receptor (N-CAR) comprising an extracellular domain comprising an antigen binding domain,a transmembrane domain and,an intracellular domainwherein the intracellular domain comprises an Immunoreceptor Tyrosine-based Switch Motif ITSM, wherein said ITSM is a sequence of amino acid TX1YX2X3X4, whereinX1 is an amino acidX2 is an amino acidX3 is an amino acid andX4 is V or I.
Description
INCORPORATION-BY-REFERENCE OF SEQUENCE LISTING

The present specification makes reference to a Sequence Listing (submitted electronically as a .xml file named “20240315 ALG-002US3 SL.xml” on Mar. 15, 2024). The .xml file was generated on Mar. 15, 2024 and is 2,677 KB in size. The entire contents of the sequence listing are herein incorporated by reference.


FIELD OF THE INVENTION

The invention relates to negative T-cell signal inducing chimeric antigen receptor (N-CAR or ICAR) and to T-cells comprising such N-CAR as well as a positive T-cell signal inducing CAR (P-CAR) as well as their use in therapy.


BACKGROUND

T-cell therapies based on redirected T-cell targeting using chimeric antigen receptor (CAR) are beginning to show great promise in the clinic, particularly in the oncology setting (see Hutchinson L., Nat Rev Clin Oncol. 2014 Oct. 28; Lee D W et al., Lancet. 2014 Oct. 10. pii: S0140-6736 (14)61403-3 or Grupp S A et al., N Engl J Med. 2013 Apr. 18; 368 (16): 1509-18). Given the growing enthusiasm of the field, there is a significant effort being made to identify appropriate targets for CAR T-cell therapy. Given the potency of such therapeutics, the field's ability to identify novel targets for such therapy is hindered by concerns about on-target off-tissue (meaning off-tumor) activity. Such events not only mitigate efficacy but also present tremendous safety challenges as demonstrated by recent clinical events (see Morgan R A et al., Mol Ther. 2010 April; 18 (4): 843-51; Morgan R A et al., J Immunother. 2013 February; 36 (2): 133-51 or Linette G P et al., Blood. 2013 Aug. 8; 122 (6): 863-71). Clinical approaches to mitigate these safety concerns while effective also act directly or indirectly on the infused CAR T-cell therapeutic entities.


In order to address these safety issues pertaining to on-target off-tissue activity of CAR T-cells, and expand the target space amenable to this mode of therapeutics, there is growing emphasis in creating logic gates to modulate T-cell signaling (see Federov V D et al., Sci Transl Med. 2013 Dec. 11; 5 (215): 215ra172).


One such approach involves using a NOT gate, wherein the T-cell expresses two or more CARs on its cell surface. CARs that provide positive T-cell signals (P-CARs) bind to tumor antigens to enable T-cell activation and/or proliferation and/or cytokine secretion, and/or cytotoxicity mediated by CD3zeta or other immunoreceptor tyrosine-based activation motif (ITAM) containing motifs; while CARs that provide a negative T-cell signal (N-CARs) bind to the off-tissue antigens and attenuate or abrogate the positive signals.


Therefore under the on-tissue (on-tumor) scenario the T-cell only receives the P-CAR signal and subsequent activation and cytotoxicity and in the off-tissue (off-tumor) scenario the T-cell receives both the P-CAR and N-CAR signals, whereby the latter attenuates or terminates downstream signaling leading to impaired or no activation and cytotoxicity.


Therefore, there is a need for negative or inhibitory CAR (N-CAR) that can be used to generate a negative signal suitable to prevent off target activation of P-CAR T-cells (T-cells comprising a P-CAR). It would be an additional benefit if such negative signal is short-termed, reversible and sufficient to attenuate or prevent on-target off-tissue activity of CAR T-cells comprising such N-CAR.


DETAILED DESCRIPTION OF THE INVENTION
General Techniques

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry and immunology, which are within the skill of the art. Such techniques are explained fully in the literature, such as, Molecular Cloning: A Laboratory Manual, second edition (Sambrook et al., 1989) Cold Spring Harbor Press; Oligonucleotide Synthesis (M. J. Gait, ed., 1984); Methods in Molecular Biology, Humana Press; Cell Biology: A Laboratory Notebook (J. E. Cellis, ed., 1998) Academic Press; Animal Cell Culture (R. I. Freshney, ed., 1987); Introduction to Cell and Tissue Culture (J. P. Mather and P. E. Roberts, 1998) Plenum Press; Cell and Tissue Culture: Laboratory Procedures (A. Doyle, J. B. Griffiths, and D. G. Newell, eds., 1993-1998) J. Wiley and Sons; Methods in Enzymology (Academic Press, Inc.); Handbook of Experimental Immunology (D. M. Weir and C. C. Blackwell, eds.); Gene Transfer Vectors for Mammalian Cells (J. M. Miller and M. P. Calos, eds., 1987); Current Protocols in Molecular Biology (F. M. Ausubel et al., eds., 1987); PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994); Current Protocols in Immunology (J. E. Coligan et al., eds., 1991); Short Protocols in Molecular Biology (Wiley and Sons, 1999); Immunobiology (C. A. Janeway and P. Travers, 1997); Antibodies (P. Finch, 1997); Antibodies: a practical approach (D. Catty., ed., IRL Press, 1988-1989); Monoclonal antibodies: a practical approach (P. Shepherd and C. Dean, eds., Oxford University Press, 2000); Using antibodies: a laboratory manual (E. Harlow and D. Lane (Cold Spring Harbor Laboratory Press, 1999); The Antibodies (M. Zanetti and J. D. Capra, eds., Harwood Academic Publishers, 1995).


Definitions

The following terms, unless otherwise indicated, shall be understood to have the following meanings: the term “isolated molecule” as referring to a molecule (where the molecule is, for example, a polypeptide, a polynucleotide, or an antibody) that by virtue of its origin or source of derivation (1) is not associated with naturally associated components that accompany it in its native state, (2) is substantially free of other molecules from the same source, e.g., species, cell from which it is expressed, library, etc., (3) is expressed by a cell from a different species, or (4) does not occur in nature. Thus, a molecule that is chemically synthesized, or expressed in a cellular system different from the system from which it naturally originates, will be “isolated” from its naturally associated components. A molecule also may be rendered substantially free of naturally associated components by isolation, using purification techniques well known in the art. Molecule purity or homogeneity may be assayed by a number of means well known in the art. For example, the purity of a polypeptide sample may be assayed using polyacrylamide gel electrophoresis and staining of the gel to visualize the polypeptide using techniques well known in the art. For certain purposes, higher resolution may be provided by using HPLC or other means well known in the art for purification.


An “antibody” is an immunoglobulin molecule capable of specific binding to a target, such as a carbohydrate, polynucleotide, lipid, polypeptide, etc., through at least one antigen recognition site, located in the variable region of the immunoglobulin molecule. As used herein, the term encompasses not only intact polyclonal or monoclonal antibodies, but also, unless otherwise specified, any antigen binding portion thereof that competes with the antibody for specific binding, fusion proteins comprising an antigen binding portion, and any other modified configuration of the immunoglobulin molecule that comprises an antigen recognition site. Antigen binding portions include, for example, Fab, Fab′, F(ab′)2, Fd, Fv, domain antibodies (dAbs, e.g., shark and camelid antibodies), fragments including complementarity determining regions (CDRs), single chain variable fragment antibodies (scFv), maxibodies, minibodies, intrabodies, diabodies, triabodies, tetrabodies, v-NAR and bis-scFv, and polypeptides that contain at least a portion of an immunoglobulin that is sufficient to confer specific antigen binding to the polypeptide. An antibody includes an antibody of any class, such as IgG, IgA, or IgM (or sub-class thereof), and the antibody need not be of any particular class. Depending on the antibody amino acid sequence of the constant region of its heavy chains, immunoglobulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2. The heavy-chain constant regions that correspond to the different classes of immunoglobulins are called alpha, delta, epsilon, gamma, and mu, respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulins are well known.


A “variable region” of an antibody refers to the variable region of the antibody light chain or the variable region of the antibody heavy chain, either alone or in combination. As known in the art, the variable regions of the heavy and light chains each consist of four framework regions (FRs) connected by three complementarity determining regions (CDRs) also known as hypervariable regions, and contribute to the formation of the antigen binding site of antibodies. If variants of a subject variable region are desired, particularly with substitution in amino acid residues outside of a CDR region (e.g., in the framework region), appropriate amino acid substitution, preferably, conservative amino acid substitution, can be identified by comparing the subject variable region to the variable regions of other antibodies which contain CDR1 and CDR2 sequences in the same canonincal class as the subject variable region (Chothia and Lesk, J Mol Biol 196 (4): 901-917, 1987).


In certain embodiments, definitive delineation of a CDR and identification of residues comprising the binding site of an antibody is accomplished by solving the structure of the antibody and/or solving the structure of the antibody-ligand complex. In certain embodiments, that can be accomplished by any of a variety of techniques known to those skilled in the art, such as X-ray crystallography. In certain embodiments, various methods of analysis can be employed to identify or approximate the CDR regions. In certain embodiments, various methods of analysis can be employed to identify or approximate the CDR regions. Examples of such methods include, but are not limited to, the Kabat definition, the Chothia definition, the AbM definition, the contact definition, and the conformational definition.


The Kabat definition is a standard for numbering the residues in an antibody and is typically used to identify CDR regions. Sec, e.g., Johnson & Wu, 2000, Nucleic Acids Res., 28:214-8. The Chothia definition is similar to the Kabat definition, but the Chothia definition takes into account positions of certain structural loop regions. Sec, e.g., Chothia et al., 1986, J. Mol. Biol., 196:901-17; Chothia et al., 1989, Nature, 342:877-83. The AbM definition uses an integrated suite of computer programs produced by Oxford Molecular Group that model antibody structure. Sec, e.g., Martin et al., 1989, Proc Natl Acad Sci (USA), 86:9268-9272; “AbM™, A Computer Program for Modeling Variable Regions of Antibodies,” Oxford, UK; Oxford Molecular, Ltd. The AbM definition models the tertiary structure of an antibody from positive sequence using a combination of knowledge databases and ab initio methods, such as those described by Samudrala et al., 1999, “Ab Initio Protein Structure Prediction Using a Combined Hierarchical Approach,” in PROTEINS, Structure, Function and Genetics Suppl., 3:194-198. The contact definition is based on an analysis of the available complex crystal structures. Sec, e.g., MacCallum et al., 1996, J. Mol. Biol., 5:732-45. In another approach, referred to herein as the “conformational definition” of CDRs, the positions of the CDRs may be identified as the residues that make enthalpic contributions to antigen binding. See, e.g., Makabe et al., 2008, Journal of Biological Chemistry, 283:1156-1166. Still other CDR boundary definitions may not strictly follow one of the above approaches, but will nonetheless overlap with at least a portion of the Kabat CDRs, although they may be shortened or lengthened in light of prediction or experimental findings that particular residues or groups of residues do not significantly impact antigen binding. As used herein, a CDR may refer to CDRs defined by any approach known in the art, including combinations of approaches. The methods used herein may utilize CDRs defined according to any of these approaches. For any given embodiment containing more than one CDR, the CDRs may be defined in accordance with any of Kabat, Chothia, extended, AbM, contact, and/or conformational definitions.


As known in the art, a “constant region” of an antibody refers to the constant region of the antibody light chain or the constant region of the antibody heavy chain, either alone or in combination.


As used herein, “monoclonal antibody” refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally-occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations, which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. The modifier “monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the hybridoma method first described by Kohler and Milstein, 1975, Nature 256:495, or may be made by recombinant DNA methods such as described in U.S. Pat. No. 4,816,567. The monoclonal antibodies may also be isolated from phage libraries generated using the techniques described in McCafferty et al., 1990, Nature 348:552-554, for example. As used herein, “humanized” antibody refers to forms of non-human (e.g. murine) antibodies that are chimeric immunoglobulins, immunoglobulin chains, or fragments thereof (such as Fv, Fab, Fab′, F(ab′)2 or other antigen-binding subsequences of antibodies) that contain minimal sequence derived from non-human immunoglobulin. Preferably, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a CDR of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat, or rabbit having the desired specificity, affinity, and capacity. The humanized antibody may comprise residues that are found neither in the recipient antibody nor in the imported CDR or framework sequences, but are included to further refine and optimize antibody performance.


A “human antibody” is one which possesses an amino acid sequence which corresponds to that of an antibody produced by a human and/or has been made using any of the techniques for making human antibodies as disclosed herein. This definition of a human antibody specifically excludes a humanized antibody comprising non-human antigen binding residues.


The term “chimeric antibody” is intended to refer to antibodies in which the variable region sequences are derived from one species and the constant region sequences are derived from another species, such as an antibody in which the variable region sequences are derived from a mouse antibody and the constant region sequences are derived from a human antibody.


The term “epitope” refers to that portion of a molecule capable of being recognized by and bound by an antibody at one or more of the antibody's antigen-binding regions. Epitopes often consist of a surface grouping of molecules such as amino acids or sugar side chains and have specific three-dimensional structural characteristics as well as specific charge characteristics. In some embodiments, the epitope can be a protein epitope. Protein epitopes can be linear or conformational. In a linear epitope, all of the points of interaction between the protein and the interacting molecule (such as an antibody) occur linearly along the positive amino acid sequence of the protein. A “nonlinear epitope” or “conformational epitope” comprises noncontiguous polypeptides (or amino acids) within the antigenic protein to which an antibody specific to the epitope binds. The term “antigenic epitope” as used herein, is defined as a portion of an antigen to which an antibody can specifically bind as determined by any method well known in the art, for example, by conventional immunoassays. Once a desired epitope on an antigen is determined, it is possible to generate antibodies to that epitope, e.g., using the techniques described in the present specification. Alternatively, during the discovery process, the generation and characterization of antibodies may elucidate information about desirable epitopes. From this information, it is then possible to competitively screen antibodies for binding to the same epitope. An approach to achieve this is to conduct competition and cross-competition studies to find antibodies that compete or cross-compete with one another for binding to the antigen.


The term “signaling domain” refers to the functional portion of a protein which acts by transmitting information within the cell to regulate cellular activity via defined signaling pathways by generating second messengers or functioning as effectors by responding to such messengers.


The term “off-tissue antigen” (or off-tumor antigen) refers to an antigen which is present on non-tumor tissue and not present on the tumor of interest (tumor to be treated by the cells of the invention comprising a P-CAR directed to a tumor antigen and a N-CAR directed to an off-tissue antigen), or only present on the tumor of interest at much lower levels compared to levels of tumor antigen (i.e. the antigen present on the tumor of interest and targeted by the P-CAR).


The term “anti-tumor effect” refers to a biological effect which can be manifested by various means, including but not limited to, e.g., a decrease in tumor volume, a decrease in the number of tumor cells, a decrease in the number of metastases, an increase in life expectancy, decrease in tumor cell proliferation, decrease in tumor cell survival, or amelioration of various physiological symptoms associated with the cancerous condition. An “anti-tumor effect” can also be manifested by the ability of the cells of the invention in prevention of the occurrence of tumor in the first place.


The term “autologous” refers to any material derived from the same individual to whom it is later to be re-introduced into the individual.


The term “allogeneic” refers to any material derived from a different animal of the same species as the individual to whom the material is introduced. Two or more individuals are said to be allogeneic to one another when the genes at one or more loci are not identical. In some aspects, allogeneic material from individuals of the same species may be sufficiently unlike genetically to interact antigenically


The term “xenogeneic” refers to a graft derived from an animal of a different species.


The term “cancer” refers to a disease characterized by the rapid and uncontrolled growth of aberrant cells. Cancer cells can spread locally or through the bloodstream and lymphatic system to other parts of the body. Examples of various cancers are described herein and include but are not limited to, breast cancer, prostate cancer, ovarian cancer, cervical cancer, skin cancer, pancreatic cancer, colorectal cancer, renal cell cancer, liver cancer, brain cancer, lymphoma, leukemia, lung cancer and the like.


The term “conservative sequence modifications” refers to amino acid modifications that do not significantly affect or alter the binding characteristics of the antibody or antibody fragment containing the amino acid sequence. Such conservative modifications include amino acid substitutions, additions and deletions. Modifications can be introduced into an antibody or antibody fragment of the invention by standard techniques known in the art, such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions are ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine, tryptophan), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, one or more amino acid residues within a CAR of the invention can be replaced with other amino acid residues from the same side chain family and the altered CAR can be tested using the functional assays described herein.


In some embodiments, the “fragment” of a sequence of amino acids is shorter than said sequence of amino acid. In some embodiments, the fragment of a sequence of amino acids is at least 1%, 5% 10%, 20%, 40%, 50%, 60%, 70%, 80% or 90% shorter than said sequence of amino acids. In some embodiments, the fragment of a sequence of amino acids is shorter by at least 1, 5, 10, 20, 50, 100, 200, 300 amino acids as compared to said sequence of amino acids.


Unless otherwise specified, the left to right orientation of amino acid sequences or formula representing amino acid sequences are disclosed using the conventional left to right orientation N-Term to C-term.


N-terminal flanking region of a domain refers to the sequence of amino acid which is directly adjacent to the N-terminal amino acid of said domain. C-terminal flanking region of a domain refers to the sequence of amino acid which is directly adjacent to the C-terminal amino acid of said domain. For example, in the sequence seq1-ITIM-seq2, seq1 is the N-terminal flanking region of the ITIM intracellular domain and seq2 N-terminal flanking region of the ITIM intracellular domain. In another example, the naturally occurring N-terminal flanking region of ITIM.*ITSM intracellular domains is the sequence of amino acid which is directly adjacent to the N-terminal amino acid of the ITIM motif of the ITIM.*ITSM intracellular domain. In another example, the naturally occurring C-terminal flanking region of ITIM.*ITSM intracellular domain is the sequence of amino acid which is directly adjacent to the C-terminal amino acid of the ITSM motif of the ITIM.*ITSM intracellular domain.


In another example, the naturally occurring N-terminal flanking region of an ITIM only intracellular domain is the sequence of amino acid which is directly adjacent to the N-terminal amino acid of the ITIM of the ITIM only intracellular domain. In another example, the naturally occurring C-terminal flanking region of an ITIM only intracellular domain is the sequence of amino acid which is directly adjacent to the C-terminal amino acid of the ITIM of the ITIM only intracellular domain.


In another example, the naturally occurring N-terminal flanking region of an ITSM only intracellular domain is the sequence of amino acid which is directly adjacent to the N-terminal amino acid of the ITSM of the ITSM only intracellular domain. In another example, the naturally occurring C-terminal flanking region of an ITSM only intracellular domain is the sequence of amino acid which is directly adjacent to the C-terminal amino acid of the ITSM of the ITSM only intracellular domain.


The term “stimulation,” refers to a positive response induced by binding of a stimulatory molecule (e.g., a TCR/CD3 complex) with its cognate ligand thereby mediating a signal transduction event, such as, but not limited to, signal transduction via the TCR/CD3 complex. Stimulation can mediate altered expression of certain molecules, such as downregulation of TGF-β, and/or reorganization of cytoskeletal structures, and the like.


The term “antigen presenting cell” or “APC” refers to an immune system cell such as an accessory cell (e.g., a B-cell, a dendritic cell, and the like) that displays a foreign antigen complexed with major histocompatibility complexes (MHC's) on its surface. T-cells may recognize these complexes using their T-cell receptors (TCRs). APCs process antigens and present them to T-cells.


An “intracellular signaling domain,” as the term is used herein, refers to an intracellular portion of a molecule.


The term “encoding” refers to the inherent property of specific sequences of nucleotides in a polynucleotide, such as a gene, a cDNA, or an mRNA, to serve as templates for synthesis of other polymers and macromolecules in biological processes having either a defined sequence of nucleotides (e.g., rRNA, tRNA and mRNA) or a defined sequence of amino acids and the biological properties resulting therefrom. Thus, a gene, cDNA, or RNA, encodes a protein if transcription and translation of mRNA corresponding to that gene produces the protein in a cell or other biological system. Both the coding strand, the nucleotide sequence of which is identical to the mRNA sequence and is usually provided in sequence listings, and the non-coding strand, used as the template for transcription of a gene or cDNA, can be referred to as encoding the protein or other product of that gene or cDNA.


Unless otherwise specified, a “nucleotide sequence encoding an amino acid sequence” includes all nucleotide sequences that are degenerate versions of each other and that encode the same amino acid sequence. The phrase nucleotide sequence that encodes a protein or a RNA may also include introns to the extent that the nucleotide sequence encoding the protein may in some version contain an intron(s).


The term “effective amount” or “therapeutically effective amount” are used interchangeably herein, and refer to an amount of a compound, formulation, material, or composition, as described herein effective to achieve a particular biological result.


The term “endogenous” refers to any material from or produced inside an organism, cell, tissue or system.


The term “exogenous” refers to any material introduced from or produced outside an organism, cell, tissue or system.


The term “expression” refers to the transcription and/or translation of a particular nucleotide sequence driven by a promoter.


The term “transfer vector” refers to a composition of matter which comprises an isolated nucleic acid and which can be used to deliver the isolated nucleic acid to the interior of a cell. Numerous vectors are known in the art including, but not limited to, linear polynucleotides, polynucleotides associated with ionic or amphiphilic compounds, plasmids, and viruses. Thus, the term “transfer vector” includes an autonomously replicating plasmid or a virus. The term should also be construed to further include non-plasmid and non-viral compounds which facilitate transfer of nucleic acid into cells, such as, for example, a polylysine compound, liposome, and the like. Examples of viral transfer vectors include, but are not limited to, adenoviral vectors, adeno-associated virus vectors, retroviral vectors, lentiviral vectors, and the like.


The term “expression vector” refers to a vector comprising a recombinant polynucleotide comprising expression control sequences operatively linked to a nucleotide sequence to be expressed. An expression vector comprises sufficient cis-acting elements for expression; other elements for expression can be supplied by the host cell or in an in vitro expression system. Expression vectors include all those known in the art, including cosmids, plasmids (e.g., naked or contained in liposomes) and viruses (e.g., lentiviruses, retroviruses, adenoviruses, and adeno-associated viruses) that incorporate the recombinant polynucleotide.


The term “lentivirus” refers to a genus of the Retroviridae family. Lentiviruses are unique among the retroviruses in being able to infect non-dividing cells; they can deliver a significant amount of genetic information into the DNA of the host cell, so they are one of the most efficient methods of a gene delivery vector. HIV, SIV, and FIV are all examples of lentiviruses.


The term “lentiviral vector” refers to a vector derived from at least a portion of a lentivirus genome, including especially a self-inactivating lentiviral vector as provided in Milone et al., Mol. Ther. 17 (8): 1453-1464 (2009). Other examples of lentivirus vectors that may be used in the clinic, include but are not limited to, e.g., the LENTIVECTOR® gene delivery technology from Oxford BioMedica, the LENTIMAX™ vector system from Lentigen and the like. Nonclinical types of lentiviral vectors are also available and would be known to one skilled in the art.


The term “homologous” or “identity” refers to the subunit sequence identity between two polymeric molecules, e.g., between two nucleic acid molecules, such as, two DNA molecules or two RNA molecules, or between two polypeptide molecules. When a subunit position in both of the two molecules is occupied by the same monomeric subunit; e.g., if a position in each of two DNA molecules is occupied by adenine, then they are homologous or identical at that position. The homology between two sequences is a direct function of the number of matching or homologous positions; e.g., if half (e.g., five positions in a polymer ten subunits in length) of the positions in two sequences are homologous, the two sequences are 50% homologous; if 90% of the positions (e.g., 9 of 10), are matched or homologous, the two sequences are 90% homologous.


The term “operably linked” or “transcriptional control” refers to functional linkage between a regulatory sequence and a heterologous nucleic acid sequence resulting in expression of the latter. For example, a first nucleic acid sequence is operably linked with a second nucleic acid sequence when the first nucleic acid sequence is placed in a functional relationship with the second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences can be contiguous with each other and, e.g., where necessary to join two protein coding regions, are in the same reading frame.


The terms “polypeptide”, “oligopeptide”, “peptide” and “protein” are used interchangeably herein to refer to chains of amino acids of any length. The chain may be linear or branched, it may comprise modified amino acids, and/or may be interrupted by non-amino acids. The terms also encompass an amino acid chain that has been modified naturally or by intervention; for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling component. Also included within the definition are, for example, polypeptides containing one or more analogs of an amino acid (including, for example, unnatural amino acids, etc.), as well as other modifications known in the art. It is understood that the polypeptides can occur as single chains or associated chains.


As known in the art, “polynucleotide,” or “nucleic acid,” as used interchangeably herein, refer to chains of nucleotides of any length, and include DNA and RNA. The nucleotides can be deoxyribonucleotides, ribonucleotides, modified nucleotides or bases, and/or their analogs, or any substrate that can be incorporated into a chain by DNA or RNA polymerase. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and their analogs. If present, modification to the nucleotide structure may be imparted before or after assembly of the chain. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component. Other types of modifications include, for example, “caps”, substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as, for example, those with uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoamidates, carbamates, etc.) and with charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), those containing pendant moieties, such as, for example, proteins (e.g., nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.), those with intercalators (e.g., acridine, psoralen, etc.), those containing chelators (e.g., metals, radioactive metals, boron, oxidative metals, etc.), those containing alkylators, those with modified linkages (e.g., alpha anomeric nucleic acids, etc.), as well as unmodified forms of the polynucleotide(s). Further, any of the hydroxyl groups ordinarily present in the sugars may be replaced, for example, by phosphonate groups, phosphate groups, protected by standard protecting groups, or activated to prepare additional linkages to additional nucleotides, or may be conjugated to solid supports. The 5′ and 3′ terminal OH can be phosphorylated or substituted with amines or organic capping group moieties of from 1 to 20 carbon atoms. Other hydroxyls may also be derivatized to standard protecting groups. Polynucleotides can also contain analogous forms of ribose or deoxyribose sugars that are generally known in the art, including, for example, 2′-O-methyl-, 2′-O-allyl, 2′-fluoro- or 2′-azido-ribose, carbocyclic sugar analogs, alpha- or beta-anomeric sugars, epimeric sugars such as arabinose, xyloses or lyxoses, pyranose sugars, furanose sugars, sedoheptuloses, acyclic analogs and abasic nucleoside analogs such as methyl riboside. One or more phosphodiester linkages may be replaced by alternative linking groups. These alternative linking groups include, but are not limited to, embodiments wherein phosphate is replaced by P(O)S(“thioate”), P(S) S (“dithioate”), (O) NR2 (“amidate”), P(O)R, P(O) OR′, CO or CH2 (“formacetal”), in which each R or R′ is independently H or substituted or unsubstituted alkyl (1-20 C) optionally containing an ether (—O—) linkage, aryl, alkenyl, cycloalkyl, cycloalkenyl or araldyl. Not all linkages in a polynucleotide need be identical. The preceding description applies to all polynucleotides referred to herein, including RNA and DNA.


An antibody that “preferentially binds” or “specifically binds” (used interchangeably herein) to an epitope is a term well understood in the art, and methods to determine such specific or preferential binding are also well known in the art. A molecule is said to exhibit “specific binding” or “preferential binding” if it reacts or associates more frequently, more rapidly, with greater duration and/or with greater affinity with a particular cell or substance than it does with alternative cells or substances. An antibody “specifically binds” or “preferentially binds” to a target if it binds with greater affinity, avidity, more readily, and/or with greater duration than it binds to other substances.


A “host cell” includes an individual cell or cell culture that can be or has been a recipient for vector(s) for incorporation of polynucleotide inserts. Host cells include progeny of a single host cell, and the progeny may not necessarily be completely identical (in morphology or in genomic DNA complement) to the original parent cell due to natural, accidental, or deliberate mutation. A host cell includes cells transfected in vivo with a polynucleotide(s) of this invention.


The term “compete”, as used herein with regard to an antibody, means that a first antibody, or an antigen-binding portion thereof, binds to an epitope in a manner sufficiently similar to the binding of a second antibody, or an antigen-binding portion thereof, such that the result of binding of the first antibody with its cognate epitope is detectably decreased in the presence of the second antibody compared to the binding of the first antibody in the absence of the second antibody. The alternative, where the binding of the second antibody to its epitope is also detectably decreased in the presence of the first antibody, can, but need not be the case. That is, a first antibody can inhibit the binding of a second antibody to its epitope without that second antibody inhibiting the binding of the first antibody to its respective epitope. However, where each antibody detectably inhibits the binding of the other antibody with its cognate epitope or ligand, whether to the same, greater, or lesser extent, the antibodies are said to “cross-compete” with each other for binding of their respective epitope(s). Both competing and cross-competing antibodies are encompassed by the present invention. Regardless of the mechanism by which such competition or cross-competition occurs (e.g., steric hindrance, conformational change, or binding to a common epitope, or portion thereof), the skilled artisan would appreciate, based upon the teachings provided herein, that such competing and/or cross-competing antibodies are encompassed and can be useful for the methods disclosed herein.


As used herein, “treatment” is an approach for obtaining beneficial or desired clinical results.


As used herein, an “effective dosage” or “effective amount” of drug, compound, or pharmaceutical composition is an amount sufficient to effect any one or more beneficial or desired results. For prophylactic use, beneficial or desired results include eliminating or reducing the risk, lessening the severity, or delaying the outset of the disease, including biochemical, histological and/or behavioral symptoms of the disease, its complications and intermediate pathological phenotypes presenting during development of the disease. For therapeutic use, beneficial or desired results include clinical results such as reducing incidence or amelioration of one or more symptoms of various diseases or conditions (such as, for example without limitation, renal cell, gastric, head and neck, lung, ovarian, and pancreatic cancers), decreasing the dose of other medications required to treat the disease, enhancing the effect of another medication, and/or delaying the progression of the disease. An effective dosage can be administered in one or more administrations. For purposes of this invention, an effective dosage of drug, compound, or pharmaceutical composition is an amount sufficient to accomplish prophylactic or therapeutic treatment either directly or indirectly. As is understood in the clinical context, an effective dosage of a drug, compound, or pharmaceutical composition may or may not be achieved in conjunction with another drug, compound, or pharmaceutical composition. Thus, an “effective dosage” may be considered in the context of administering one or more therapeutic agents, and a single agent may be considered to be given in an effective amount if, in conjunction with one or more other agents, a desirable result may be or is achieved.


An “individual” or a “subject” is a mammal, more preferably, a human. Mammals also include, but are not limited to, farm animals, sport animals, pets, primates, horses, dogs, cats, mice and rats.


As used herein, “vector” means a construct, which is capable of delivering, and, preferably, expressing, one or more gene(s) or sequence(s) of interest in a host cell. Examples of vectors include, but are not limited to, viral vectors, naked DNA or RNA expression vectors, plasmid, cosmid or phage vectors, DNA or RNA expression vectors associated with cationic condensing agents, DNA or RNA expression vectors encapsulated in liposomes, and certain eukaryotic cells, such as producer cells.


As used herein, “expression control sequence” means a nucleic acid sequence that directs transcription of a nucleic acid. An expression control sequence can be a promoter, such as a constitutive or an inducible promoter, or an enhancer. The expression control sequence is operably linked to the nucleic acid sequence to be transcribed.


The term “promoter” refers to a DNA sequence recognized by the synthetic machinery of the cell, or introduced synthetic machinery, required to initiate the specific transcription of a polynucleotide sequence.


The term “promoter/regulatory sequence” refers to a nucleic acid sequence which is required for expression of a gene product operably linked to the promoter/regulatory sequence. In some instances, this sequence may be the core promoter sequence and in other instances, this sequence may also include an enhancer sequence and other regulatory elements which are required for expression of the gene product. The promoter/regulatory sequence may, for example, be one which expresses the gene product in a tissue specific manner.


The term “constitutive” promoter refers to a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a cell under most or all physiological conditions of the cell.


The term “inducible” promoter refers to a nucleotide sequence which, when operably linked with a polynucleotide which encodes or specifies a gene product, causes the gene product to be produced in a cell substantially only when an inducer which corresponds to the promoter is present in the cell.


The term “tissue-specific” promoter refers to a nucleotide sequence which, when operably linked with a polynucleotide encodes or specified by a gene, causes the gene product to be produced in a cell substantially only if the cell is a cell of the tissue type corresponding to the promoter.


The term “flexible polypeptide linker” or “linker” as used in the context of a scFv refers to a peptide linker that consists of amino acids such as glycine and/or serine residues used alone or in combination, to link variable heavy and variable light chain regions together. In one embodiment, the flexible polypeptide linker is a Glycine/Serine linker and comprises the amino acid sequence (Gly-Gly-Gly-Ser), or (Gly-Gly-Gly-Gly-Ser), where n is a positive integer equal to or greater than 1. For example, n=1, n=2, n=3, n=4, n=5, n=6, n=7, n=8, n=9 and n=10. In one embodiment, the flexible polypeptide linkers include, but are not limited to, (Gly4Ser)4 or (Gly4Ser)3. In another embodiment, the linkers include multiple repeats of (GlyxSer)n, where x=1, 2, 3, 4 or 5 and n is 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10, such as multiple repeat of (GlySer), (Gly2Ser) or (Gly5Ser). Also included within the scope of the invention are linkers described in WO2012/138475, incorporated herein by reference.


As used herein, a 5′ cap (also termed an RNA cap, an RNA 7-methylguanosine cap or an RNA m G cap) is a modified guanine nucleotide that has been added to the “front” or 5′ end of a eukaryotic messenger RNA shortly after the start of transcription. The 5′ cap consists of a terminal group which is linked to the first transcribed nucleotide. Its presence is critical for recognition by the ribosome and protection from RNases. Cap addition is coupled to transcription, and occurs co-transcriptionally, such that each influences the other. Shortly after the start of transcription, the 5′ end of the mRNA being synthesized is bound by a cap-synthesizing complex associated with RNA polymerase. This enzymatic complex catalyzes the chemical reactions that are required for mRNA capping. Synthesis proceeds as a multi-step biochemical reaction. The capping moiety can be modified to modulate functionality of mRNA such as its stability or efficiency of translation.


As used herein, “in vitro transcribed RNA” refers to RNA, preferably mRNA, that has been synthesized in vitro. Generally, the in vitro transcribed RNA is generated from an in vitro transcription vector. The in vitro transcription vector comprises a template that is used to generate the in vitro transcribed RNA.


As used herein, a “poly(A)” is a series of adenosines attached by polyadenylation to the mRNA. In the preferred embodiment of a construct for transient expression, the polyA is between 50 and 5000, preferably greater than 64, more preferably greater than 100, most preferably greater than 300 or 400. poly(A) sequences can be modified chemically or enzymatically to modulate mRNA functionality such as localization, stability or efficiency of translation.


As used herein, “polyadenylation” refers to the covalent linkage of a polyadenylyl moiety, or its modified variant, to a messenger RNA molecule. In eukaryotic organisms, most messenger RNA (mRNA) molecules are polyadenylated at the 3′ end. The 3′ poly(A) tail is a long sequence of adenine nucleotides (often several hundred) added to the pre-mRNA through the action of an enzyme, polyadenylate polymerase. In higher eukaryotes, the poly(A) tail is added onto transcripts that contain a specific sequence, the polyadenylation signal. The poly(A) tail and the protein bound to it aid in protecting mRNA from degradation by exonucleases. Polyadenylation is also important for transcription termination, export of the mRNA from the nucleus, and translation. Polyadenylation occurs in the nucleus immediately after transcription of DNA into RNA, but additionally can also occur later in the cytoplasm. After transcription has been terminated, the mRNA chain is cleaved through the action of an endonuclease complex associated with RNA polymerase. The cleavage site is usually characterized by the presence of the base sequence AAUAAA near the cleavage site. After the mRNA has been cleaved, adenosine residues are added to the free 3′ end at the cleavage site.


As used herein, “transient” refers to expression of a non-integrated transgene for a period of hours, days or weeks, wherein the period of time of expression is less than the period of time for expression of the gene if integrated into the genome or contained within a stable plasmid replicon in the host cell.


The term “signal transduction pathway” refers to the biochemical relationship between a variety of signal transduction molecules that play a role in the transmission of a signal from one portion of a cell to another portion of a cell. The phrase “cell surface receptor” includes molecules and complexes of molecules capable of receiving a signal and transmitting signal across the membrane of a cell.


Reference to “about” a value or parameter herein includes (and describes) embodiments that are directed to that value or parameter per se. For example, description referring to “about X” includes description of “X.” Numeric ranges are inclusive of the numbers defining the range.


It is understood that wherever embodiments are described herein with the language “comprising,” otherwise analogous embodiments described in terms of “consisting of” and/or “consisting essentially of” are also provided.


Where aspects or embodiments of the invention are described in terms of a Markush group or other grouping of alternatives, the present invention encompasses not only the entire group listed as a whole, but each member of the group individually and all possible subgroups of the main group, but also the main group absent one or more of the group members. The present invention also envisages the explicit exclusion of one or more of any of the group members in the claimed invention.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control. Throughout this specification and claims, the word “comprise,” or variations such as “comprises” or “comprising” will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers. Unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. Any example(s) following the term “e.g.” or “for example” is not meant to be exhaustive or limiting. Exemplary methods and materials are described herein, although methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention. The materials, methods, and examples are illustrative only and not intended to be limiting.





DESCRIPTION OF FIGURES


FIGS. 1 and 2 show the dual cell surface expression of P-CAR1 and various N-CARs assessed by multicolor flow cytometry in transduced NFAT-luciferase reporter Jurkat cells.



FIGS. 3 and 4 show the dual cell surface expression of P-CAR1 and various N-CARs assessed by multicolor flow cytometry in transduced NFkB-luciferase reporter Jurkat cells. In FIGS. 1 to 4, P-CAR expression was detected using a recombinant human CD19-mouse IgG Fc fusion protein followed by APC-conjugated F(ab′)2 goat anti-mouse Fcγ (shown on x axis), and N-CAR expression was detected with a biotinylated recombinant human PSMA-human IgG1 Fc fusion protein followed by PE-conjugated streptavidin (y axis).



FIGS. 5A, 5B and 5C show the inhibitory effect of various N-CARs on P-CAR1 induced T cell activation. Control ΔPD1- or test N-CAR-transduced luciferase reporter Jurkat cells expressing P-CAR1 were incubated with either CD19-expressing AAPCs or dual CD19+PSMA-expressing AAPCs, and luciferase activity was assessed 16 h later. Data are expressed as a ratio of the mean RLU from co-culture with CD19+PSMA AAPCs/CD19 AAPCs. n=6 replicates per sample; data shown are the means+/−95% CI). FIGS. 5A/5C and 5B show results using NFAT-luciferase reporter and NFkB-luciferase reporter Jurkat cells, respectively.



FIGS. 6 and 7 show the dual cell surface expression of P-CAR2 and and N-CARs listed in Table 10 assessed by multicolor flow cytometry in transduced NFAT-luciferase reporter Jurkat cells. FIGS. 8 and 9 show the dual cell surface expression of P-CAR2 and N-CARs listed in Table 10 assessed by multicolor flow cytometry in transduced NFkB-luciferase reporter Jurkat cells. In FIGS. 6 to 9, P-CAR expression was detected using a recombinant human CD19-mouse IgG Fc fusion protein followed by APC-conjugated F(ab′)2 goat anti-mouse Fcγ (shown on x axis), and N-CAR expression was detected with a biotinylated recombinant human PSMA-human IgG1 Fc fusion protein followed by PE-conjugated streptavidin (y axis).



FIGS. 10A and 10B show the inhibitory effect of various N-CARs on P-CAR2 induced T cell activation. Control ΔPD1- or test N-CAR-transduced luciferase reporter Jurkat cells expressing P-CAR2 were incubated with either CD19-expressing or dual PSMA/CD19-expressing AAPCs, and luciferase activity was assessed 16 h later. Data are expressed as a ratio of the mean RLU from co-culture with CD19+PSMA AAPCs/CD19 AAPCs. n=6 replicates per sample; data shown are the means+/−95% CI. FIGS. 10A and 10B show results using NFAT-luciferase reporter and NFkB-luciferase reporter Jurkat cells, respectively.





DETAILED DESCRIPTION

The invention relates to a negative signal (or inhibitory) chimeric antigen receptor (N-CAR) comprising

    • an extracellular domain comprising an antigen binding domain,
    • a transmembrane domain, and,
    • an intracellular domain
    • wherein the intracellular domain comprises an Immunoreceptor Tyrosine-based Switch Motif ITSM, wherein said ITSM is a sequence of amino acid TX1YX2X3X4, wherein
    • X1 is an amino acid,
    • X2 is an amino acid,
    • X3 is an amino acid, and,
    • X4 is V or I.


In some embodiments the term amino acid refers to a natural amino acid. In some embodiments, the term amino acid refer to an amino acid selected from glycine, alanine, valine, leucine, isoleucine, phenylalanine, proline, serine, threonine, tyrosine, cysteine, methionine, lysine, arginine, histidine, tryptophan, aspartic acid, glutamic acid, asparagine or glutamine.


In some embodiments, when the extracellular domain is a scFv against PSMA, then the intracellular domain is not the intracellular domain of human PD-1.


In some embodiments, the intracellular domain is not the intracellular domain of human PD-1.


In some embodiments, the intracellular domain is not the intracellular domain of human BTLA.


In some embodiments, the intracellular domain is not the intracellular domain of human CD244.


In some embodiments, the intracellular domain is not SEQ ID No 2000, SEQ ID No 2001 or SEQ ID No 2002.


In some embodiments, the extracellular domain does not bind to PMSA.


In some embodiments, the intracellular domain does not comprise the full intracellular domain of PD-1.


In some embodiments, the ITSM is not TEYATI.


The intracellular domain or region of the N-CAR includes an inhibitory intracellular signaling domain. An inhibitory intracellular signaling domain is generally responsible for inactivation of the signal from a positive intracellular signaling domain from a P-CAR on the same immune cell in which the N-CAR has been introduced, thereby blocking activation of a normal effector function of the immune cell. The term “effector function” refers to a specialized function of a cell. Effector function of a T-cell, for example, may be cytolytic activity or helper activity including the secretion of cytokines.


Intracellular Domain of the N-CAR

In some embodiments, the intracellular domain comprises the following sequence:

    • ((L1-ITIM-L2)n-(L3-ITSM-L4)m)p, wherein
    • n is 0, 1 or an integer greater than 1;
    • m is 1 or an integer greater than 1;
    • p is 1 or an integer greater than 1;
    • L1 is absent or comprises one or more, preferably one, sequences selected from the group consisting of:
      • (a) a naturally occurring N-terminal flanking region of an ITIM only intracellular domain or a fragment thereof such as, for example, any of the sequences shown in Table 3 below or a fragment thereof;
      • (b) a naturally occurring N-terminal flanking region of an ITIM.*ITSM intracellular domain or a fragment thereof, such as, for example, any of the sequences shown in Table 1 below or a fragment thereof;
      • (c) a naturally occurring intracellular domain from a known inhibitory receptor such as any of the sequences shown in table 2 or a fragment thereof, wherein said intracellular domain is N-terminally flanking to a sequence in (b) above; and
      • (d) a non-naturally occurring sequence comprising between 1 and 500 amino acids; each of L2 and L3 is absent or comprises one or more, preferably one, sequences selected from the group consisting of:
      • (e) a naturally occurring C-terminal flanking region of an ITIM only intracellular domain, such as, for example, any of the sequences shown in Table 4 below or a fragment thereof;
      • (f) a naturally occurring N-terminal flanking region of an ITSM only intracellular domain such as, for example, any of the sequences shown in Table 6 below or a fragment thereof;
      • (g) a naturally occurring intracellular domain between ITIM and ITSM from proteins that have ITIM.*ITSM motif such as, for example, any of the sequences shown in Table 5 below or a fragment thereof;
      • (h) a naturally occurring intracellular domain from a known inhibitory receptor such as any of the sequences shown in table 2 or a fragment thereof, wherein said intracellular domain is N-terminally flanking to a sequence in (f) or (g) above; and
      • (i) a non-naturally occurring sequence comprising between 1 and 500 amino acids; and
    • L4 is absent or comprises one or more, preferably one, sequences selected from the group consisting of:
      • (j) a naturally occurring C-terminal flanking region of an ITIM.*ITSM intracellular domain or a fragment thereof such as, for example, any of the sequences shown in Table 7 below or a fragment thereof;
      • (k) a naturally occurring C-terminal flanking region of an ITSM only intracellular domain such as, for example, any of the sequences shown in Table 8 below or a fragment thereof;
      • (l) a naturally occurring intracellular domain from a known inhibitory receptor such as any of the sequences shown in table 2 or a fragment thereof wherein said intracellular domain is C-terminally flanking to a sequence in (j) or (k) above; and
      • (m) a non-naturally occurring sequence comprising between 1 and 500 amino acids, and, wherein,
    • the ITIM is the sequence X5X6YX7X8X9, wherein
    • X5 is S, V, I or L,
    • X6 is an amino acid,
    • X7 is an amino acid,
    • X8 is an amino acid, and,
    • X9 is V, I or L, and,
    • the ITSM is the sequence TX1YX2X3X4, wherein
    • X1 is an amino acid,
    • X2 is an amino acid,
    • X3 is an amino acid, and,
    • X4 is V or I,
    • or a variant thereof.


In some embodiments, the known inhibitory receptor refers to an inhibitory receptor comprising an extracellular domain, a transmembrane domain and an intracellular domain which do not comprise any ITIM or ITSM and which provides a negative signal able to reduce the activation signal provided by the TCR/CD3 complex in a T-cell.


In some embodiments, the known inhibitory receptor refers to an inhibitory receptor comprising an extracellular domain, a transmembrane domain and an intracellular domain which provide a negative signal able to reduce the activation signal provided by the TCR/CD3 complex in a T-cell.


In some embodiments, the known inhibitory receptor is selected from CTLA4, LAG3 HAVCR2 (TIM3), KIR2DL2, LILRB1, TIGIT, CEACAM1, CSFIR, CD5, CD96, CD22 and LAIR1. In a preferred embodiment, the known inhibitory receptor is KIR2DL2.


ITIM.*ITSM intracellular domain refers to a domain comprising one ITIM and one ITSM. ITSM only intracellular domain refers to a domain comprising one ITSM and no ITIM. ITIM only intracellular domain refers to a domain comprising one ITIM and no ITSM.


When one or more of n, m or p are greater than 1, each occurrence of L1, L2, L3, L4, ITIM and ITSM is selected independently from the other. For example, the intracellular domain of the N-CAR may comprise several ITSM having different sequences.


In some embodiments, L1 is absent or comprises one or more, preferably one, sequences selected from the group consisting of:

    • (a) a naturally occurring N-terminal flanking region of ITIM only intracellular domains selected from









YKMYGSEMLHKRDPLDEDEDTD





DHWALTQRTARAVSPQSTKPMAES





CSRAARGTIGARRTGQPLKEDPSAVPVFS





HRQNQIKQGPPRSKDEEQKPQQRPDLAVDVLERTADKATVNGLPEKDRET





DTSALAAGSSQE





KTHRRKAARTAVGRNDTHPTTGSASPKHQKKSKLHGPTETSSCSGAAPTV





EMDEE





LTRKKKALRIHSVEGDLRRKSAGQEEWSPSAPSPPGSCVQAEAAPAGLCG





EQRGEDCAELHDYFNV





KCYFLRKAKAKQMPVEMSRPAVPLLNSNNEKMSDPNMEANSHYGHNDDVR





NHAMKPINDNKEPLNSD





RRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYDN





DPDLCFRMQEGSEVYSNPCLEENKPG





WRMMKYQQKAAGMSPEQVLQPLEGDLCYADLTLQLAGTSPQKATTKLSSA





QVDQVEVEYVTMASLPKED





KRVQETKFGNAFTEEDSELVVNYIAKKSFCRRAIELTLHSLGVSEELQNK





LEDVVIDRNLLILGKILGEGEFGSVMEGNLKQEDGTSLKVAVKTMKLDNS





SQREIEEFLSEAACMKDFSHPNVIRLLGVCIEMSSQGIPKPMVILPFMKY





GDLHTY








    • (b) a naturally occurring N-terminal flanking region of ITIM.*ITSM intracellular domains selected from












YKMYGSEMLHKRDPLDEDEDTD





WRMMKYQQKAAGMSPEQVLQPLEGD





CSRAARGTIGARRTGQPLKEDPSAVPVFS





RIRQKKAQGSTSSTRLHEPEKNAREITQDTND





KTHRRKAARTAVGRNDTHPTTGSASPKHQKKSKLHGPTETSSCSGAAPTV





EMDEE





KCYFLRKAKAKQMPVEMSRPAVPLLNSNNEKMSDPNMEANSHYGHNDDVR





NHAMKPINDNKEPLNSD





RRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYDN





DPDLCFRMQEGSEVYSNPCLEENKPG





KRVQETKFGNAFTEEDSELVVNYIAKKSFCRRAIELTLHSLGVSEELQNK





LEDVVIDRNLLILGKILGEGEFGSVMEGNLKQEDGTSLKVAVKTMKLDNS





SQREIEEFLSEAACMKDFSHPNVIRLLGVCIEMSSQGIPKPMVILPFMKY





GDLHTY








    • (c) a naturally occurring intracellular domain from a known inhibitory receptor selected from the sequences shown in table 2, wherein said intracellular domain is N-terminally flanking to a sequence in (b) above; and

    • (d) a non-naturally occurring sequence comprising between 1 and 500 amino acids.





In some embodiments, each of L2 and L3 is absent or comprises one or more, preferably one, sequences selected from the group consisting of:

    • (e) a naturally occurring C-terminal flanking region of ITIM only intracellular domains selected from;









GNCSFFTETG





NFHGMNPSKDTSTEYSEVRTQ





KEEEMADTSYGTVKAENIIMMETAQTSL





NHSVIGPNSRLARNVKEAPTEYASICVRS





DHWALTQRTARAVSPQSTKPMAESITYAAVARH





QVSSAESHKDLGKKDTETVYSEVRKAVPDAVESRYSRTEGSLDGT





DFQWREKTPEPPVPCVPEQTEYATIVFPSGMGTSSPARRGSADGPRSAQP





LRPEDGHCSWPL





NLPKGKKPAPQAAEPNNHTEYASIQTSPQPASEDTLTYADLDMVHLNRTP





KQPAPKPEPSFSEYASVQVPRK





TLQLAGTSPQKATTKLSSAQVDQVEVEYVTMASLPKEDISYASLTLGAED





QEPTYCNMGHLSSHLPGRGPEEPTEYSTISRP





ETGPKHIPLQTLLKFMVDIALGMEYLSNRNFLHRDLAARNCMLRDDMTVC





VADFGLSKKIYSGDYYRQGRIAKMPVKWIAIESLADRVYTSKSDVWAFGV





TMWEIATRGMTPYPGVQNHEMYDYLLHGHRLKQPEDCLDELYEIMYSCWR





TDPLDRPTFSVLRLQLEKLLESLPDVRNQADVIYVNTQLLESSEGLAQGS





TLAPLDLNIDPDSIIASCTPRAAISVVTAEVHDSKPHEGRYILNGGSEEW





EDLTSAPSAAVTAEKNSVLPGERLVRNGVSWSHSSMLPLGSSLPDELLFA





DDSSEGSEVLM








    • (f) a naturally occurring N-terminal flanking region of ITSM only intracellular domains selected from;












YKMYGSEMLHKRDPLDEDEDTDISYKKLKEEEMAD





CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC





VPEQ





RIRQKKAQGSTSSTRLHEPEKNAREITQDTNDITYADLNLPKGKKPAPQA





AEPNNH





KTHRRKAARTAVGRNDTHPTTGSASPKHQKKSKLHGPTETSSCSGAAPTV





EMDEELHYASLNFHGMNPSKDTS





KCYFLRKAKAKQMPVEMSRPAVPLLNSNNEKMSDPNMEANSHYGHNDDVR





NHAMKPINDNKEPLNSDVQYTEVQVSSAESHKDLGKKDTE





RRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYDN





DPDLCFRMQEGSEVYSNPCLEENKPGIVYASLNHSVIGPNSRLARNVKEA





P





WRMMKYQQKAAGMSPEQVLQPLEGDLCYADLTLQLAGTSPQKATTKLSSA





QVDQVEVEYVTMASLPKEDISYASLTLGAEDQEPTYCNMGHLSSHLPGRG





PEEP





WRRKRKEKQSETSPKEFLTIYEDVKDLKTRRNHEQEQTFPGGGSTIYSMI





QSQSSAPTSQEPAYTLYSLIQPSRKSGSRKRNHSPSFNS





VRSCRKKSARPAAGVGDTGIEDANAVRGSASQGPLTEPWAEDSPPDQPPP





ASARSSVGEGELQYASLSFQMVKPWDSRGQEATD





NKCGRRNKFGINRPAVLAPEDGLAMSLHFMTLGGSSLSPTEGKGSGLQGH





IIENPQYFSDACVHHIKRRDIVLKWELGEGAFGKVFLAECHNLLPEQDKM





LVAVKALKEASESARQDFQREAELLTMLQHQHIVRFFGVCTEGRPLLMVF





EYMRHGDLNRFLRSHGPDAKLLAGGEDVAPGPLGLGQLLAVASQVAAGMV





YLAGLHFVHRDLATRNCLVGQGLVVKIGDFGMSRDIYS





KLARHSKFGMKGPASVISNDDDSASPLHHISNGSNTPSSSEGGPDAVIIG





MTKIPVIENPQYFGITNSQLKPDTFVQHIKRHNIVLKRELGEGAFGKVFL





AECYNLCPEQDKILVAVKTLKDASDNARKDFHREAELLTNLQHEHIVKFY





GVCVEGDPLIMVFEYMKHGDLNKFLRAHGPDAVLMAEGNPPTELTQSQML





HIAQQIAAGMVYLASQHFVHRDLATRNCLVGENLLVKIGDFGMSRDVYS





KRKGRCSVPAFCSSQAEAPADTPEPTAGHTLYSVLSQGYEKLDTPLRPAR





QQPTPTSDSSSDSNLTTEEDEDRPEVHKPISGRYEVFDQVTQEGAGHDPA





PEGQADYDPVTPYVTEVESVVGENTMYAQVFNLQGKTPVSQKEESSA





KRVQETKFGNAFTEEDSELVVNYIAKKSFCRRAIELTLHSLGVSEELQNK





LEDVVIDRNLLILGKILGEGEFGSVMEGNLKQEDGTSLKVAVKTMKLDNS





SQREIEEFLSEAACMKDFSHPNVIRLLGVCIEMSSQGIPKPMVILPFMKY





GDLHTYLLYSRLETGPKHIPLQTLLKFMVDIALGMEYLSNRNFLHRDLAA





RNCMLRDDMTVCVADFGLSKKIYSGDYYRQGRIAKMPVKWIAIESLADRV





YTSKSDVWAFGVTMWEIATRGM








    • (g) a naturally occurring intracellular domain between ITIM and ITSM from proteins that have ITIM.*ITSM motif selected from;












KEEEMAD





NFHGMNPSKDTS





QVSSAESHKDLGKKDTE





NLPKGKKPAPQAAEPNNH





NHSVIGPNSRLARNVKEAP





DFQWREKTPEPPVPCVPEQ





TLQLAGTSPQKATTKLSSAQVDQVEVEYVTMASLPKEDISYASLTLGAED





QEPTYCNMGHLSSHLPGRGPEEP





ETGPKHIPLQTLLKFMVDIALGMEYLSNRNFLHRDLAARNCMLRDDMTVC





VADFGLSKKIYSGDYYRQGRIAKMPVKWIAIESLADRVYTSKSDVWAFGV





TMWEIATRGM








    • (h) a naturally occurring intracellular domain from known inhibitory receptors selected from the sequences shown in table 2 wherein said intracellular domain is N-terminally flanking to a sequence in (f) or (g) above; and

    • (i) a non-naturally occurring sequence comprising between 1 and 500 amino acids.





In some embodiments, LA is absent or comprises one or more, preferably one, sequences selected from the group consisting of:

    • (j) a naturally occurring C-terminal flanking region of ITIM.*ITSM intracellular domains selected from:









SRP





RTQ





CVRS





KAENIIMMETAQTSL





RKAVPDAVESRYSRTEGSLDGT





VFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL





QTSPQPASEDTLTYADLDMVHLNRTPKQPAPKPEPSFSEYASVQVPRK





QNHEMYDYLLHGHRLKQPEDCLDELYEIMYSCWRTDPLDRPTFSVLRLQL





EKLLESLPDVRNQADVIYVNTQLLESSEGLAQGSTLAPLDLNIDPDSIIA





SCTPRAAISVVTAEVHDSKPHEGRYILNGGSEEWEDLTSAPSAAVTAEKN





SVLPGERLVRNGVSWSHSSMLPLGSSLPDELLFADDSSEGSEVLM








    • (k) a naturally occurring C-terminal flanking region of ITSM only intracellular domain selected from












RTQ





SRP





KIHR





CVRS





KAENIIMMETAQTSL





RKAVPDAVESRYSRTEGSLDGT





RKPQVVPPPQQNDLEIPESPTYENFT





GKSQPKAQNPARLSRKELENFDVYS





VFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL





QTSPQPASEDTLTYADLDMVHLNRTPKQPAPKPEPSFSEYASVQVPRK





FNLQGKTPVSQKEESSATIYCSIRKPQVVPPPQQNDLEIPESPTYENFT





GGRTMLPIRWMPPESILYRKFTTESDVWSFGVVLWEIFTYGKQPWYQLSN





TEAIDCITQGRELERPRACPPEVYAIMRGCWQREPQQRHSIKDVHARLQA





LAQAPPVYLDVLG





GGHTMLPIRWMPPESIMYRKFTTESDVWSLGVVLWEIFTYGKQPWYQLSN





NEVIECITQGRVLQRPRTCPQEVYELMLGCWQREPHMRKNIKGIHTLLQN





LAKASPVYLDILG





QNHEMYDYLLHGHRLKQPEDCLDELYEIMYSCWRTDPLDRPTFSVLRLQL





EKLLESLPDVRNQADVIYVNTQLLESSEGLAQGSTLAPLDLNIDPDSIIA





SCTPRAAISVVTAEVHDSKPHEGRYILNGGSEEWEDLTSAPSAAVTAEKN





SVLPGERLVRNGVSWSHSSMLPLGSSLPDELLFADDSSEGSEVLM





KDLKTRRNHEQEQTFPGGGSTIYSMIQSQSSAPTSQEPAYTLYSLIQPSR





KSGSRKRNHSPSFNSTIYEVIGKSQPKAQNPARLSRKELENFDVYS








    • (l) a naturally occurring intracellular domain from a known inhibitory receptor selected from the sequences shown in table 2 wherein said intracellular domain is C-terminally flanking to a sequence in (j) or (k) above; and

    • (m) a non-naturally occurring sequence comprising between 1 and 500 amino acids.





In some embodiments the intracellular domain comprises the sequence (L3-ITSM-L4)™ (i.e, n is 0 and p is 1).


In some embodiments, the intracellular domain comprises the sequence L3-ITSM-L4 (i.e, n is 0, m is 1 and p is 1).


In some embodiments, the intracellular domain comprises the sequence L3-ITSM-L4-L3-ITSM-L4 (i.e, n is 0, m is 2 and p is 1).


In some embodiments, the intracellular domain comprises the following sequence: ((L1-ITIM-L2)n-(L3-ITSM-L4) m) P, wherein

    • n is 0;
    • m is 1;
    • p is 1;
    • L3 comprises one sequence selected from
      • (f) a naturally occurring N-terminal flanking region of an ITSM only intracellular domain such as, for example, any of the sequences shown in Table 6 below or a fragment thereof; or,
      • (i) a non-naturally occurring sequence comprising between 1 and 500 amino acids; and
    • LA comprises one or more, preferably one or two, sequences selected from the group consisting of:
      • (k) a naturally occurring C-terminal flanking region of an ITSM only intracellular domain such as, for example, any of the sequences shown in Table 8 below or a fragment thereof;
      • (l) a naturally occurring intracellular domain from a known inhibitory receptor such as any of the sequences shown in table 2 or a fragment thereof wherein said intracellular domain is C-terminally flanking to a sequence in (k) above; and
      • (m) a non-naturally occurring sequence comprising between 1 and 500 amino acids, and, wherein,
    • the ITSM is the sequence TX1YX2X3X4, wherein
    • X1 is an amino acid,
    • X2 is an amino acid,
    • X3 is an amino acid, and,
    • X4 is V or I,
    • or a variant thereof.


In some embodiments, the intracellular domain comprises the following sequence: ((L1-ITIM-L2)n-(L3-ITSM-L4)m)p, wherein

    • n is 0;
    • m is 1;
    • p is 1;
    • L3 is selected from









YKMYGSEMLHKRDPLDEDEDTDISYKKLKEEEMAD





CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC





VPEQ





RIRQKKAQGSTSSTRLHEPEKNAREITQDTNDITYADLNLPKGKKPAPQA





AEPNNH





KTHRRKAARTAVGRNDTHPTTGSASPKHQKKSKLHGPTETSSCSGAAPTV





EMDEELHYASLNFHGMNPSKDTS





KCYFLRKAKAKQMPVEMSRPAVPLLNSNNEKMSDPNMEANSHYGHNDDVR





NHAMKPINDNKEPLNSDVQYTEVQVSSAESHKDLGKKDTE





RRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYDN





DPDLCFRMQEGSEVYSNPCLEENKPGIVYASLNHSVIGPNSRLARNVKEA





P





WRMMKYQQKAAGMSPEQVLQPLEGDLCYADLTLQLAGTSPQKATTKLSSA





QVDQVEVEYVTMASLPKEDISYASLTLGAEDQEPTYCNMGHLSSHLPGRG





PEEP





WRRKRKEKQSETSPKEFLTIYEDVKDLKTRRNHEQEQTFPGGGSTIYSMI





SQSSAPTSQEPAYTLYSLIQPSRKSGSRKRNHSPSFNS





VRSCRKKSARPAAGVGDTGIEDANAVRGSASQGPLTEPWAEDSPPDQPPP





ASARSSVGEGELQYASLSFQMVKPWDSRGQEATD





NKCGRRNKFGINRPAVLAPEDGLAMSLHFMTLGGSSLSPTEGKGSGLQGH





IIENPQYFSDACVHHIKRRDIVLKWELGEGAFGKVFLAECHNLLPEQDKM





LVAVKALKEASESARQDFQREAELLTMLQHQHIVRFFGVCTEGRPLLMVF





EYMRHGDLNRFLRSHGPDAKLLAGGEDVAPGPLGLGQLLAVASQVAAGMV





YLAGLHFVHRDLATRNCLVGQGLVVKIGDFGMSRDIYS





KLARHSKFGMKGPASVISNDDDSASPLHHISNGSNTPSSSEGGPDAVIIG





MTKIPVIENPQYFGITNSQLKPDTFVQHIKRHNIVLKRELGEGAFGKVFL





AECYNLCPEQDKILVAVKTLKDASDNARKDFHREAELLTNLQHEHIVKFY





GVCVEGDPLIMVFEYMKHGDLNKFLRAHGPDAVLMAEGNPPTELTQSQML





HIAQQIAAGMVYLASQHFVHRDLATRNCLVGENLLVKIGDFGMSRDVYS





KRKGRCSVPAFCSSQAEAPADTPEPTAGHTLYSVLSQGYEKLDTPLRPAR





QQPTPTSDSSSDSNLTTEEDEDRPEVHKPISGRYEVFDQVTQEGAGHDPA





PEGQADYDPVTPYVTEVESVVGENTMYAQVFNLQGKTPVSQKEESSA





KRVQETKFGNAFTEEDSELVVNYIAKKSFCRRAIELTLHSLGVSEELQNK





LEDVVIDRNLLILGKILGEGEFGSVMEGNLKQEDGTSLKVAVKTMKLDNS





SQREIEEFLSEAACMKDFSHPNVIRLLGVCIEMSSQGIPKPMVILPFMKY





GDLHTYLLYSRLETGPKHIPLQTLLKFMVDIALGMEYLSNRNFLHRDLAA





RNCMLRDDMTVCVADFGLSKKIYSGDYYRQGRIAKMPVKWIAIESLADRV





YTSKSDVWAFGVTMWEIATRGM








    • and L4 comprises one sequence selected from the group consisting of (k)












RTQ





SRP





KIHR





CVRS





KAENIIMMETAQTSL





RKAVPDAVESRYSRTEGSLDGT





RKPQVVPPPQQNDLEIPESPTYENFT





GKSQPKAQNPARLSRKELENFDVYS





VFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL





QTSPQPASEDTLTYADLDMVHLNRTPKQPAPKPEPSFSEYASVQVPRK





FNLQGKTPVSQKEESSATIYCSIRKPQVVPPPQQNDLEIPESPTYENFT





GGRTMLPIRWMPPESILYRKFTTESDVWSFGVVLWEIFTYGKQPWYQLSN





EAIDCITQGRELERPRACPPEVYAIMRGCWQREPQQRHSIKDVHARLQAL





AQAPPVYLDVLG





GGHTMLPIRWMPPESIMYRKFTTESDVWSLGVVLWEIFTYGKQPWYQLSN





NEVIECITQGRVLQRPRTCPQEVYELMLGCWQREPHMRKNIKGIHTLLQN





LAKASPVYLDILG





QNHEMYDYLLHGHRLKQPEDCLDELYEIMYSCWRTDPLDRPTFSVLRLQL





EKLLESLPDVRNQADVIYVNTQLLESSEGLAQGSTLAPLDLNIDPDSIIA





SCTPRAAISVVTAEVHDSKPHEGRYILNGGSEEWEDLTSAPSAAVTAEKN





SVLPGERLVRNGVSWSHSSMLPLGSSLPDELLFADDSSEGSEVLM





KDLKTRRNHEQEQTFPGGGSTIYSMIQSQSSAPTSQEPAYTLYSLIQPSR





KSGSRKRNHSPSFNSTIYEVIGKSQPKAQNPARLSRKELENFDVYS








    • and optionally

    • (l) a naturally occurring intracellular domain from a known inhibitory receptor such as any of the sequences shown in table 2 or a fragment thereof wherein said intracellular domain is C-terminally flanking to a sequence in (k) above;

    • and the ITSM is the sequence TX1YX2X3X4, wherein

    • X1 is an amino acid,

    • X2 is an amino acid,

    • X3 is an amino acid, and,

    • X4 is V or I,

    • or a variant thereof.





In some embodiments, the intracellular domain comprises the following sequence: ((L1-ITIM-L2)n-(L3-ITSM-L4) m)p, wherein

    • n is 0;
    • m is 1;
    • p is 1;
    • L3 is selected from









CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC





VPEQ





RIRQKKAQGSTSSTRLHEPEKNAREITQDTNDITYADLNLPKGKKPAPQA





AEPNNH





KCYFLRKAKAKQMPVEMSRPAVPLLNSNNEKMSDPNMEANSHYGHNDDVR





NHAMKPINDNKEPLNSDVQYTEVQVSSAESHKDLGKKDTE





RRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYDN





DPDLCFRMQEGSEVYSNPCLEENKPGIVYASLNHSVIGPNSRLARNVKEA





P





WRMMKYQQKAAGMSPEQVLQPLEGDLCYADLTLQLAGTSPQKATTKLSSA





QVDQVEVEYVTMASLPKEDISYASLTLGAEDQEPTYCNMGHLSSHLPGRG





PEEP





WRRKRKEKQSETSPKEFLTIYEDVKDLKTRRNHEQEQTFPGGGSTIYSMI





QSQSSAPTSQEPAYTLYSLIQPSRKSGSRKRNHSPSFNS





VRSCRKKSARPAAGVGDTGIEDANAVRGSASQGPLTEPWAEDSPPDQPPP





SARSSVGEGELQYASLSFQMVKPWDSRGQEATD





KRKGRCSVPAFCSSQAEAPADTPEPTAGHTLYSVLSQGYEKLDTPLRPAR





QQPTPTSDSSSDSNLTTEEDEDRPEVHKPISGRYEVFDQVTQEGAGHDPA





PEGQADYDPVTPYVTEVESVVGENTMYAQVFNLQGKTPVSQKEESSA







L4 comprises one sequence selected from the group consisting of (k)









SRP





KIHR





CVRS





RKAVPDAVESRYSRTEGSLDGT





RKPQVVPPPQQNDLEIPESPTYENFT





GKSQPKAQNPARLSRKELENFDVYS





VFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL





QTSPQPASEDTLTYADLDMVHLNRTPKQPAPKPEPSFSEYASVQVPRK








    • and optionally

    • (l) a naturally occurring intracellular domain from a known inhibitory receptor selected from the sequences shown in table 2 or a fragment thereof wherein said intracellular domain is C-terminally flanking to a sequence in (k) above;

    • and the ITSM is the sequence TX1YX2X3X4, wherein

    • X1 is an amino acid,

    • X2 is an amino acid,

    • X3 is an amino acid, and,

    • X4 is V or I,

    • or a variant thereof.





In some embodiments, the intracellular domain comprises the following sequence: ((L1-ITIM-L2)n-(L3-ITSM-L4)m)p, wherein

    • n is 0;
    • m is 1;
    • p is 1;
    • L3 is selected from









CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC





VPEQ








    • and L4 comprises

    • (k)














VFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL










      • and

      • (l) a naturally occurring intracellular domain from a known inhibitory receptor selected from the sequences shown in table 2 or a fragment thereof wherein said intracellular domain is C-terminally flanking to a sequence in (k) above;



    • and the ITSM is the sequence TX1YX2X3X4, wherein

    • X1 is an amino acid,

    • X2 is an amino acid,

    • X3 is an amino acid, and,

    • X4 is V or I,

    • or a variant thereof.





In some embodiments, the intracellular domain comprises the following sequence: ((L1-ITIM-L2)n-(L3-ITSM-L4)m)p, wherein

    • n is 0;
    • m is 1;
    • p is 1;
    • L3 is selected from









WRMMKYQQKAAGMSPEQVLQPLEGDLCYADLTLQLAGTSPQKATTKLSSA





QVDQVEVEYVTMASLPKEDISYASLTLGAEDQEPTYCNMGHLSSHLPGRG





PEEP








    • LA comprises

    • (k)














SRP










      • and optionally

      • (l) a naturally occurring intracellular domain from a known inhibitory receptor selected from the sequences shown in table 2 or a fragment thereof wherein said intracellular domain is C-terminally flanking to a sequence in (k) above;



    • and the ITSM is the sequence TX1YX2X3X4, wherein

    • X1 is an amino acid,

    • X2 is an amino acid,

    • X3 is an amino acid, and,

    • X4 is V or I,

    • or a variant thereof.





In some embodiments, the intracellular domain comprises the following sequence: ((L1-ITIM-L2)n-(L3-ITSM-L4) m) P, wherein

    • n is 0;
    • m is 1;
    • p is 1 or 2;
    • L3 comprises one sequence selected from
      • (i) a non-naturally occurring sequence comprising between 1 and 500 amino acids; and
    • L4 comprises one or more, preferably one or two, sequences selected from:
      • (m) a non-naturally occurring sequence comprising between 1 and 500 amino acids, and, wherein,
    • the ITSM is the sequence TX1YX2X3X4, wherein
    • X1 is an amino acid,
    • X2 is an amino acid,
    • X3 is an amino acid, and,
    • X4 is V or I.


In some embodiments, the intracellular domain comprises the sequence (L1-ITIM-L2-L3-ITSM-L4)p wherein p is 1, 2, 3, 4 or 5;

    • L1 is a naturally occurring N-terminal flanking region of an ITIM only intracellular domain or a fragment thereof such as, for example, any of the sequences shown in Table 3 below or a fragment thereof;
    • L2 is absent;
    • L3 is a naturally occurring intracellular domain between ITIM and ITSM from proteins that have ITIM.*ITSM motif or a fragment thereof such as, for example, any of the sequences shown in Table 5 below or a fragment thereof;
    • L4 is a naturally occurring C-terminal flanking region of an ITIM.*ITSM intracellular domain or a fragment thereof such as, for example, any of the sequences shown in Table 7 below or a fragment thereof; or a naturally occurring C-terminal flanking region of ITSM only intracellular domain or a fragment thereof such as, for example, any of the sequences shown in Table 8 below or a fragment thereof.


In some embodiments, the intracellular domain comprises the sequence (L1-ITIM-L2-L3-ITSM-L4) P wherein

    • p is 1, 2, 3, 4 or 5;
    • L1 is a naturally occurring N-terminal flanking region of ITIM only intracellular domains selected from the following sequences;









YKMYGSEMLHKRDPLDEDEDTD





DHWALTQRTARAVSPQSTKPMAES





CSRAARGTIGARRTGQPLKEDPSAVPVFS





HRQNQIKQGPPRSKDEEQKPQQRPDLAVDVLERTADKATVNGLPEKDRET





DTSALAAGSSQE





KTHRRKAARTAVGRNDTHPTTGSASPKHQKKSKLHGPTETSSCSGAAPTV





EMDEE





LTRKKKALRIHSVEGDLRRKSAGQEEWSPSAPSPPGSCVQAEAAPAGLCG





EQRGEDCAELHDYFNV





KCYFLRKAKAKQMPVEMSRPAVPLLNSNNEKMSDPNMEANSHYGHNDDVR





NHAMKPINDNKEPLNSD





RRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYDN





DPDLCFRMQEGSEVYSNPCLEENKPG





WRMMKYQQKAAGMSPEQVLQPLEGDLCYADLTLQLAGTSPQKATTKLSSA





QVDQVEVEYVTMASLPKED





KRVQETKFGNAFTEEDSELVVNYIAKKSFCRRAIELTLHSLGVSEELQNK





LEDVVIDRNLLILGKILGEGEFGSVMEGNLKQEDGTSLKVAVKTMKLDNS





SQREIEEFLSEAACMKDFSHPNVIRLLGVCIEMSSQGIPKPMVILPFMKY





GDLHTY








    • L2 is absent;

    • L3 is a naturally occurring intracellular domain between ITIM and ITSM from proteins that have ITIM.*ITSM motif selected from the following sequences:












KEEEMAD





NFHGMNPSKDTS





QVSSAESHKDLGKKDTE





NLPKGKKPAPQAAEPNNH





NHSVIGPNSRLARNVKEAP





DFQWREKTPEPPVPCVPEQ





TLQLAGTSPQKATTKLSSAQVDQVEVEYVTMASLPKEDISYASLTLGAED





QEPTYCNMGHLSSHLPGRGPEEP





ETGPKHIPLQTLLKFMVDIALGMEYLSNRNFLHRDLAARNCMLRDDMTVC





VADFGLSKKIYSGDYYRQGRIAKMPVKWIAIESLADRVYTSKSDVWAFGV





TMWEIATRGM








    • L4 is a naturally occurring C-terminal flanking region of ITIM.*ITSM intracellular domains selected from the following sequences:












SRP





RTQ





CVRS





KAENIIMMETAQTSL





RKAVPDAVESRYSRTEGSLDGT





VFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL





QTSPQPASEDTLTYADLDMVHLNRTPKQPAPKPEPSFSEYASVQVPRK





QNHEMYDYLLHGHRLKQPEDCLDELYEIMYSCWRTDPLDRPTFSVLRLQL





EKLLESLPDVRNQADVIYVNTQLLESSEGLAQGSTLAPLDLNIDPDSIIA





SCTPRAAISVVTAEVHDSKPHEGRYILNGGSEEWEDLTSAPSAAVTAEKN





SVLPGERLVRNGVSWSHSSMLPLGSSLPDELLFADDSSEGSEVLM








    • or a naturally occurring C-terminal flanking region of ITSM only intracellular domains selected from the following sequences:












RTQ





SRP





CVRS





KAENIIMMETAQTSL





RKAVPDAVESRYSRTEGSLDGT





VFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL





QTSPQPASEDTLTYADLDMVHLNRTPKQPAPKPEPSFSEYASVQVPRK





FNLQGKTPVSQKEESSATIYCSIRKPQVVPPPQQNDLEIPESPTYENFT





GGRTMLPIRWMPPESILYRKFTTESDVWSFGVVLWEIFTYGKQPWYQLSN





TEAIDCITQGRELERPRACPPEVYAIMRGCWQREPQQRHSIKDVHARLQA





LAQAPPVYLDVLG





GGHTMLPIRWMPPESIMYRKFTTESDVWSLGVVLWEIFTYGKQPWYQLSN





NEVIECITQGRVLQRPRTCPQEVYELMLGCWQREPHMRKNIKGIHTLLQN





LAKASPVYLDILG





QNHEMYDYLLHGHRLKQPEDCLDELYEIMYSCWRTDPLDRPTFSVLRLQL





EKLLESLPDVRNQADVIYVNTQLLESSEGLAQGSTLAPLDLNIDPDSIIA





SCTPRAAISVVTAEVHDSKPHEGRYILNGGSEEWEDLTSAPSAAVTAEKN





SVLPGERLVRNGVSWSHSSMLPLGSSLPDELLFADDSSEGSEVLM





KDLKTRRNHEQEQTFPGGGSTIYSMIQSQSSAPTSQEPAYTLYSLIQPSR





KSGSRKRNHSPSFNSTIYEVIGKSQPKAQNPARLSRKELENFDVYS.







or a variant thereof.


In some embodiments, the non-naturally occurring sequence of (d), (i) and (m) comprises between 1 and 500 amino acids, preferably 1 to 400, 1 to 300, 1 to 200, 1 to 100, 10 to 100, 10 to 80, 10 to 60, 10 to 40, 100 to 200, 100 to 300 or 100 to 400.


In some embodiments, the non-naturally occurring sequence of (d) or (i) is a Glycine/Serine linker (GlyxSer)n where x=1, 2, 3, 4 or 5 and n is 1 to 100. Preferably the Glycine/Serine linker comprises the amino acid sequence (Gly-Gly-Gly-Ser)n or (Gly-Gly-Gly-Gly-Ser)n, where n is a positive integer equal to or greater than 1, preferably between 1 to 100, 1 to 80, 1 to 50, 1 to 20 or 1 to 10. For example, n=1, n=2, n=3, n=4, n=5, n=6, n=7, n=8, n=9 and n=10. In one embodiment, the glycine/serine linkers include, but are not limited to, (Gly4Ser)4 or (Gly4Ser)3.


In some embodiments, X1 is E, V or I.


In some embodiments, X1 is E.


In some embodiments, X2 is S or A.


In some embodiments, X2 is A.


In some embodiments, X3 is E, S, T, Q or V.


In some embodiments, X3 is E.


In some embodiments, X3 is T.


In some embodiments, X2 is I.


In some embodiments, X5 is L, V or I.


In some embodiments, X5 is L.


In some embodiments, X5 is V.


In some embodiments, X5 is I.


In some embodiments, X6 is A, H, Q, T, D, V, L or E.


In some embodiments, X6 is H.


In some embodiments, X6 is D.


In some embodiments, X7 is A, G, T, V or E.


In some embodiments, X7 is A.


In some embodiments, X7 is G.


In some embodiments, X8 is V, S, D or E.


In some embodiments, X8 is S or E.


In some embodiments, X8 is E.


In some embodiments, X9 is L or V.


In some embodiments, X9 is L.


In some embodiments, X5 is L or V, X8 is E and X9 is L.


In some embodiments, the ITSM, or at least one of the ITSMs when several ITSMs are present in the intracellular domain, is selected from SEQ ID No 926 to SEQ ID No 1015 (see below table).












TAYELV
SEQ ID No 926







TAYGLI
SEQ ID No 927







TAYNAV
SEQ ID No 928







TCYGLV
SEQ ID No 929







TCYPDI
SEQ ID No 930







TDYASI
SEQ ID No 931







TDYDLV
SEQ ID No 932







TDYLSI
SEQ ID No 933







TDYQQV
SEQ ID No 934







TDYYRV
SEQ ID No 935







TEYASI
SEQ ID No 936







TEYATI
SEQ ID No 937







TEYDTI
SEQ ID No 938







TEYPLV
SEQ ID No 939







TEYSEI
SEQ ID No 940







TEYSEV
SEQ ID No 941







TEYSTI
SEQ ID No 942







TEYTKV
SEQ ID No 943







TFYHVV
SEQ ID No 944







TFYLLI
SEQ ID No 945







TFYNKI
SEQ ID No 946







TFYPDI
SEQ ID No 947







TGYEDV
SEQ ID No 948







TGYLSI
SEQ ID No 949







THYKEI
SEQ ID No 950







TIYAQV
SEQ ID No 951







TIYAVV
SEQ ID No 952







TIYCSI
SEQ ID No 953







TIYEDV
SEQ ID No 954







TIYERI
SEQ ID No 955







TAYELV
SEQ ID No 86







TIYEVI
SEQ ID No 956







TIYHVI
SEQ ID No 957







TIYIGV
SEQ ID No 958







TIYLKV
SEQ ID No 959







TIYSMI
SEQ ID No 960







TIYSTI
SEQ ID No 961







TIYTYI
SEQ ID No 962







TKYFHI
SEQ ID No 963







TKYMEI
SEQ ID No 964







TKYQSV
SEQ ID No 965







TKYSNI
SEQ ID No 966







TKYSTV
SEQ ID No 967







TLYASV
SEQ ID No 968







TLYAVV
SEQ ID No 969







TLYFWV
SEQ ID No 970







TLYHLV
SEQ ID No 971







TLYPMV
SEQ ID No 972







TLYPPI
SEQ ID No 973







TLYRDI
SEQ ID No 974







TLYRDV
SEQ ID No 975







TLYSKI
SEQ ID No 976







TLYSLI
SEQ ID No 977







TLYSPV
SEQ ID No 978







TMYAQV
SEQ ID No 979







TMYCQV
SEQ ID No 980







TNYKAV
SEQ ID No 981







TNYNLV
SEQ ID No 982







TPYAGI
SEQ ID No 983







TPYPGV
SEQ ID No 984







TPYVDI
SEQ ID No 985







TAYELV
SEQ ID No 86







TQYGRV
SEQ ID No 986







TQYNQV
SEQ ID No 987







TRYAYV
SEQ ID No 988







TRYGEV
SEQ ID No 989







TRYHSV
SEQ ID No 990







TRYKTI
SEQ ID No 991







TRYLAI
SEQ ID No 992







TRYMAI
SEQ ID No 993







TRYQKI
SEQ ID No 994







TRYQQI
SEQ ID No 995







TRYSNI
SEQ ID No 996







TRYSPI
SEQ ID No 997







TSYGTV
SEQ ID No 998







TSYMEV
SEQ ID No 999







TSYQGV
SEQ ID No 1000







TSYTTI
SEQ ID No 1001







TTYRSI
SEQ ID No 1002







TTYSDV
SEQ ID No 1003







TTYVTI
SEQ ID No 1004







TVYAQI
SEQ ID No 1005







TVYASV
SEQ ID No 1006







TVYEVI
SEQ ID No 1007







TVYGDV
SEQ ID No 1008







TVYKGI
SEQ ID No 1009







TVYQRV
SEQ ID No 1010







TVYSEV
SEQ ID No 1011







TVYSTV
SEQ ID No 1012







TYYHSI
SEQ ID No 1013







TYYLQI
SEQ ID No 1014







TYYYSV
SEQ ID No 1015







TAYELV
SEQ ID No 86






In some embodiments, the ITSM, or at least one of the ITSMs when several ITSMs are present in the intracellular domain is TEYASI.


In some embodiments, the ITSM, or at least one of the ITSMs when several ITSMs are present in the intracellular domain is TEYSEI.


In some embodiments, the ITSM, or at least one of the ITSMs when several ITSMs are present in the intracellular domain is TVYSEV.


In some embodiments, the ITSM, or at least one of the ITSMs when several ITSMs are present in the intracellular domain is TEYSTI.


In some embodiments, the ITIM, or at least one of the ITIMs when several ITIMs are present in the intracellular domain is selected from SEQ ID No 1016 to SEQ ID 1998 (see below table).












LLYEMV
SEQ ID No 1016







ITYFAL
SEQ ID No 1017







ISYKGL
SEQ ID No 1018







LAYHTV
SEQ ID No 1019







VQYLRL
SEQ ID No 1020







LTYVLL
SEQ ID No 1021







VRYSIV
SEQ ID No 1022







LLYLLL
SEQ ID No 1023







IAYGDI
SEQ ID No 1024







IAYRDL
SEQ ID No 1025







IAYSLL
SEQ ID No 1026







IAYSRL
SEQ ID No 1027







ICYALL
SEQ ID No 1028







ICYDAL
SEQ ID No 1029







ICYPLL
SEQ ID No 1030







ICYQLI
SEQ ID No 1031







IDYILV
SEQ ID No 1032







IDYKTL
SEQ ID No 1033







IDYTQL
SEQ ID No 1034







IDYYNL
SEQ ID No 1035







IEYCKL
SEQ ID No 1036







IEYDQI
SEQ ID No 1037







IEYGPL
SEQ ID No 1038







IEYIRV
SEQ ID No 1039







IEYKSL
SEQ ID No 1040







IEYKTL
SEQ ID No 1041







IEYSVL
SEQ ID No 1042







IEYWGI
SEQ ID No 1043







IFYGNV
SEQ ID No 1044







IFYHNL
SEQ ID No 1045







IFYKDI
SEQ ID No 1046







IFYQNV
SEQ ID No 1047







IFYRLI
SEQ ID No 1048







IGYDIL
SEQ ID No 1049







IGYDVL
SEQ ID No 1050







IGYICL
SEQ ID No 1051







IGYKAI
SEQ ID No 1052







IGYLEL
SEQ ID No 1053







IGYLPL
SEQ ID No 1054







IGYLRL
SEQ ID No 1055







IGYPFL
SEQ ID No 1056







IGYSDL
SEQ ID No 1057







IHYRQI
SEQ ID No 1058







IHYSEL
SEQ ID No 1059







IIYAFL
SEQ ID No 1060







IIYHVI
SEQ ID No 1061







IIYMFL
SEQ ID No 1062







IIYNLL
SEQ ID No 1063







IIYNNL
SEQ ID No 1064







IIYSEV
SEQ ID No 1065







IKYCLV
SEQ ID No 1066







IKYKEL
SEQ ID No 1067







IKYLAL
SEQ ID No 1068







IKYTCI
SEQ ID No 1069







ILYADI
SEQ ID No 1070







ILYAFL
SEQ ID No 1071







ILYCSV
SEQ ID No 1072







ILYEGL
SEQ ID No 1073







ILYELL
SEQ ID No 1074







ILYFQI
SEQ ID No 1075







ILYHTV
SEQ ID No 1076







ILYLQV
SEQ ID No 1077







ILYSIL
SEQ ID No 1078







ILYSVL
SEQ ID No 1079







ILYTEL
SEQ ID No 1080







ILYTIL
SEQ ID No 1081







IMYTLV
SEQ ID No 1082







INYCSV
SEQ ID No 1083







INYKDI
SEQ ID No 1084







INYTTV
SEQ ID No 1085







INYVLL
SEQ ID No 1086







IPYDVL
SEQ ID No 1087







IPYLLV
SEQ ID No 1088







IPYRTV
SEQ ID No 1089







IPYSQL
SEQ ID No 1090







IPYSRI
SEQ ID No 1091







IPYTQI
SEQ ID No 1092







IQYAPL
SEQ ID No 1093







IQYASL
SEQ ID No 1094







IQYERL
SEQ ID No 1095







IQYGII
SEQ ID No 1096







IQYGNV
SEQ ID No 1097







IQYGRV
SEQ ID No 1098







IQYNVV
SEQ ID No 1099







IQYRSI
SEQ ID No 1100







IQYTEL
SEQ ID No 1101







IQYWGI
SEQ ID No 1102







IRYANL
SEQ ID No 1103







IRYLDL
SEQ ID No 1104







IRYPLL
SEQ ID No 1105







IRYRLL
SEQ ID No 1106







IRYRTI
SEQ ID No 1107







ISYASL
SEQ ID No 1108







ISYCGV
SEQ ID No 1109







ISYEPI
SEQ ID No 1110







ISYFQI
SEQ ID No 1111







ISYGLI
SEQ ID No 1112







ISYKKL
SEQ ID No 1113







ISYLPL
SEQ ID No 1114







ISYPML
SEQ ID No 1115







ISYTTL
SEQ ID No 1116







ITYAAV
SEQ ID No 1117







ITYADL
SEQ ID No 1118







ITYAEL
SEQ ID No 1119







ITYAEV
SEQ ID No 1120







ITYASV
SEQ ID No 1121







ITYDLI
SEQ ID No 1122







ITYENV
SEQ ID No 1123







ITYQLL
SEQ ID No 1124







ITYSLL
SEQ ID No 1125







IVYAEL
SEQ ID No 1126







IVYALV
SEQ ID No 1127







IVYASL
SEQ ID No 1128







IVYEIL
SEQ ID No 1129







IVYFIL
SEQ ID No 1130







IVYHML
SEQ ID No 1131







IVYLCI
SEQ ID No 1132







IVYRLL
SEQ ID No 1133







IVYSAL
SEQ ID No 1134







IVYSWV
SEQ ID No 1135







IVYTEL
SEQ ID No 1136







IVYYIL
SEQ ID No 1137







IWYENL
SEQ ID No 1138







IWYFVV
SEQ ID No 1139







IWYNIL
SEQ ID No 1140







IYYLGV
SEQ ID No 1141







LAYALL
SEQ ID No 1142







LAYARI
SEQ ID No 1143







LAYDSV
SEQ ID No 1144







LAYFGV
SEQ ID No 1145







LAYHRL
SEQ ID No 1146







LAYKDL
SEQ ID No 1147







LAYKRI
SEQ ID No 1148







LAYPPL
SEQ ID No 1149







LAYQTL
SEQ ID No 1150







LAYREV
SEQ ID No 1151







LAYRII
SEQ ID No 1152







LAYRLL
SEQ ID No 1153







LAYSQL
SEQ ID No 1154







LAYSSV
SEQ ID No 1155







LAYTLL
SEQ ID No 1156







LAYWGI
SEQ ID No 1157







LAYYTV
SEQ ID No 1158







LCYADL
SEQ ID No 1159







LCYAIL
SEQ ID No 1160







LCYFHL
SEQ ID No 1161







LCYHPI
SEQ ID No 1162







LCYKEI
SEQ ID No 1163







LCYKFL
SEQ ID No 1164







LCYMII
SEQ ID No 1165







LCYRKI
SEQ ID No 1166







LCYRVL
SEQ ID No 1167







LCYSTV
SEQ ID No 1168







LCYTLV
SEQ ID No 1169







LDYASI
SEQ ID No 1170







LDYCEL
SEQ ID No 1171







LDYDKI
SEQ ID No 1172







LDYDKL
SEQ ID No 1173







LDYDYL
SEQ ID No 1174







LDYDYV
SEQ ID No 1175







LDYEFL
SEQ ID No 1176







LDYINV
SEQ ID No 1177







LDYNNL
SEQ ID No 1178







LDYPHV
SEQ ID No 1179







LDYSPV
SEQ ID No 1180







LDYVEI
SEQ ID No 1181







LDYWGI
SEQ ID No 1182







LEYAPV
SEQ ID No 1183







LEYIPL
SEQ ID No 1184







LEYKTI
SEQ ID No 1185







LEYLCL
SEQ ID No 1186







LEYLKL
SEQ ID No 1187







LEYLQI
SEQ ID No 1188







LEYLQL
SEQ ID No 1189







LEYQRL
SEQ ID No 1190







LEYVDL
SEQ ID No 1191







LEYVSV
SEQ ID No 1192







LEYYQI
SEQ ID No 1193







LFYAQL
SEQ ID No 1194







LFYCSV
SEQ ID No 1195







LFYERV
SEQ ID No 1196







LFYGFL
SEQ ID No 1197







LFYKYV
SEQ ID No 1198







LFYLLL
SEQ ID No 1199







LFYNKV
SEQ ID No 1200







LFYRHL
SEQ ID No 1201







LFYTLL
SEQ ID No 1202







LFYWDV
SEQ ID No 1203







LFYWKL
SEQ ID No 1204







LGYGNV
SEQ ID No 1205







LGYKEL
SEQ ID No 1206







LGYLQL
SEQ ID No 1207







LGYPLI
SEQ ID No 1208







LGYPWV
SEQ ID No 1209







LGYSAL
SEQ ID No 1210







LGYSDL
SEQ ID No 1211







LGYVTL
SEQ ID No 1212







LHYAKI
SEQ ID No 1213







LHYALV
SEQ ID No 1214







LHYANL
SEQ ID No 1215







LHYARL
SEQ ID No 1216







LHYASI
SEQ ID No 1217







LHYASL
SEQ ID No 1218







LHYASV
SEQ ID No 1219







LHYATI
SEQ ID No 1220







LHYATL
SEQ ID No 1221







LHYAVL
SEQ ID No 1222







LHYDVV
SEQ ID No 1223







LHYEGL
SEQ ID No 1224







LHYETI
SEQ ID No 1225







LHYFEI
SEQ ID No 1226







LHYFVV
SEQ ID No 1227







LHYGAI
SEQ ID No 1228







LHYILI
SEQ ID No 1229







LHYINL
SEQ ID No 1230







LHYKRI
SEQ ID No 1231







LHYLDL
SEQ ID No 1232







LHYLNI
SEQ ID No 1233







LHYLTI
SEQ ID No 1234







LHYLVI
SEQ ID No 1235







LHYMAI
SEQ ID No 1236







LHYMII
SEQ ID No 1237







LHYMNI
SEQ ID No 1238







LHYMTI
SEQ ID No 1239







LHYMTL
SEQ ID No 1240







LHYMTV
SEQ ID No 1241







LHYMVI
SEQ ID No 1242







LHYNML
SEQ ID No 1243







LHYPAL
SEQ ID No 1244







LHYPDL
SEQ ID No 1245







LHYPII
SEQ ID No 1246







LHYPIL
SEQ ID No 1247







LHYPLL
SEQ ID No 1248







LHYPML
SEQ ID No 1249







LHYPNV
SEQ ID No 1250







LHYPSI
SEQ ID No 1251







LHYPTI
SEQ ID No 1252







LHYPTL
SEQ ID No 1253







LHYPTV
SEQ ID No 1254







LHYPVI
SEQ ID No 1255







LHYPVL
SEQ ID No 1256







LHYRII
SEQ ID No 1257







LHYRTI
SEQ ID No 1258







LHYSII
SEQ ID No 1259







LHYSSI
SEQ ID No 1260







LHYSTI
SEQ ID No 1261







LHYSTL
SEQ ID No 1262







LHYSVI
SEQ ID No 1263







LHYTAI
SEQ ID No 1264







LHYTAL
SEQ ID No 1265







LHYTII
SEQ ID No 1266







LHYTKV
SEQ ID No 1267







LHYTLI
SEQ ID No 1268







LHYTSI
SEQ ID No 1269







LHYTTI
SEQ ID No 1270







LHYTTV
SEQ ID No 1271







LHYTVI
SEQ ID No 1272







LHYTVL
SEQ ID No 1273







LHYTVV
SEQ ID No 1274







LHYVSI
SEQ ID No 1275







LHYVTI
SEQ ID No 1276







LHYVVI
SEQ ID No 1277







LIYEKL
SEQ ID No 1278







LIYENV
SEQ ID No 1279







LIYKDL
SEQ ID No 1280







LIYNSL
SEQ ID No 1281







LIYSGL
SEQ ID No 1282







LIYTLL
SEQ ID No 1283







LIYTVL
SEQ ID No 1284







LIYWEI
SEQ ID No 1285







LKYCEL
SEQ ID No 1286







LKYDKL
SEQ ID No 1287







LKYESL
SEQ ID No 1288







LKYFTI
SEQ ID No 1289







LKYHTV
SEQ ID No 1290







LKYILL
SEQ ID No 1291







LKYIPI
SEQ ID No 1292







LKYKHV
SEQ ID No 1293







LKYLYL
SEQ ID No 1294







LKYMEV
SEQ ID No 1295







LKYMTL
SEQ ID No 1296







LKYPAI
SEQ ID No 1297







LKYPDV
SEQ ID No 1298







LKYPEL
SEQ ID No 1299







LKYQPI
SEQ ID No 1300







LKYRGL
SEQ ID No 1301







LKYRLL
SEQ ID No 1302







LLYADL
SEQ ID No 1303







LLYAPL
SEQ ID No 1304







LLYAVV
SEQ ID No 1305







LLYCAI
SEQ ID No 1306







LLYEHV
SEQ ID No 1307







LLYELL
SEQ ID No 1308







LLYEQL
SEQ ID No 1309







LLYGQI
SEQ ID No 1310







LLYIRL
SEQ ID No 1311







LLYKAL
SEQ ID No 1312







LLYKFL
SEQ ID No 1313







LLYKLL
SEQ ID No 1314







LLYKTV
SEQ ID No 1315







LLYMVV
SEQ ID No 1316







LLYNAI
SEQ ID No 1317







LLYNIV
SEQ ID No 1318







LLYNVI
SEQ ID No 1319







LLYPAI
SEQ ID No 1320







LLYPLI
SEQ ID No 1321







LLYPNI
SEQ ID No 1322







LLYPSL
SEQ ID No 1323







LLYPTI
SEQ ID No 1324







LLYPVI
SEQ ID No 1325







LLYPVV
SEQ ID No 1326







LLYQIL
SEQ ID No 1327







LLYQNI
SEQ ID No 1328







LLYRLL
SEQ ID No 1329







LLYRVI
SEQ ID No 1330







LLYSII
SEQ ID No 1331







LLYSLI
SEQ ID No 1332







LLYSPV
SEQ ID No 1333







LLYSRL
SEQ ID No 1334







LLYSTI
SEQ ID No 1335







LLYSVI
SEQ ID No 1336







LLYSVV
SEQ ID No 1337







LLYTTI
SEQ ID No 1338







LLYTVI
SEQ ID No 1339







LLYTVV
SEQ ID No 1340







LLYVII
SEQ ID No 1341







LLYVIL
SEQ ID No 1342







LLYVTI
SEQ ID No 1343







LLYWGI
SEQ ID No 1344







LLYYLL
SEQ ID No 1345







LLYYVI
SEQ ID No 1346







LMYDNV
SEQ ID No 1347







LMYMVV
SEQ ID No 1348







LMYQEL
SEQ ID No 1349







LMYRGI
SEQ ID No 1350







LNYACL
SEQ ID No 1351







LNYATI
SEQ ID No 1352







LNYEVI
SEQ ID No 1353







LNYGDL
SEQ ID No 1354







LNYHKL
SEQ ID No 1355







LNYMVL
SEQ ID No 1356







LNYNIV
SEQ ID No 1357







LNYPVI
SEQ ID No 1358







LNYQMI
SEQ ID No 1359







LNYSGV
SEQ ID No 1360







LNYSVI
SEQ ID No 1361







LNYTIL
SEQ ID No 1362







LNYTTI
SEQ ID No 1363







LNYVPI
SEQ ID No 1364







LPYADL
SEQ ID No 1365







LPYALL
SEQ ID No 1366







LPYFNI
SEQ ID No 1367







LPYFNV
SEQ ID No 1368







LPYHDL
SEQ ID No 1369







LPYKLI
SEQ ID No 1370







LPYKTL
SEQ ID No 1371







LPYLGV
SEQ ID No 1372







LPYLKV
SEQ ID No 1373







LPYPAL
SEQ ID No 1374







LPYQVV
SEQ ID No 1375







LPYRTV
SEQ ID No 1376







LPYVEI
SEQ ID No 1377







LPYYDL
SEQ ID No 1378







LQYASL
SEQ ID No 1379







LQYERI
SEQ ID No 1380







LQYFAV
SEQ ID No 1381







LQYFSI
SEQ ID No 1382







LQYHNI
SEQ ID No 1383







LQYIGL
SEQ ID No 1384







LQYIKI
SEQ ID No 1385







LQYLSL
SEQ ID No 1386







LQYMIV
SEQ ID No 1387







LQYPAI
SEQ ID No 1388







LQYPLL
SEQ ID No 1389







LQYPLV
SEQ ID No 1390







LQYPSI
SEQ ID No 1391







LQYPTL
SEQ ID No 1392







LQYPVL
SEQ ID No 1393







LQYRAV
SEQ ID No 1394







LQYSAI
SEQ ID No 1395







LQYSSI
SEQ ID No 1396







LQYSVI
SEQ ID No 1397







LQYTIL
SEQ ID No 1398







LQYTLI
SEQ ID No 1399







LQYTMI
SEQ ID No 1400







LQYYQV
SEQ ID No 1401







LRYAAV
SEQ ID No 1402







LRYAGL
SEQ ID No 1403







LRYAPL
SEQ ID No 1404







LRYASI
SEQ ID No 1405







LRYATI
SEQ ID No 1406







LRYATV
SEQ ID No 1407







LRYAVL
SEQ ID No 1408







LRYCGI
SEQ ID No 1409







LRYELL
SEQ ID No 1410







LRYETL
SEQ ID No 1411







LRYGAL
SEQ ID No 1412







LRYGPI
SEQ ID No 1413







LRYGTL
SEQ ID No 1414







LRYHHI
SEQ ID No 1415







LRYHSI
SEQ ID No 1416







LRYHVL
SEQ ID No 1417







LRYIAI
SEQ ID No 1418







LRYIFV
SEQ ID No 1419







LRYITV
SEQ ID No 1420







LRYKEV
SEQ ID No 1421







LRYKKL
SEQ ID No 1422







LRYKMV
SEQ ID No 1423







LRYKSL
SEQ ID No 1424







LRYKVI
SEQ ID No 1425







LRYLAI
SEQ ID No 1426







LRYLDL
SEQ ID No 1427







LRYLTI
SEQ ID No 1428







LRYLTV
SEQ ID No 1429







LRYMSI
SEQ ID No 1430







LRYMVI
SEQ ID No 1431







LRYNCI
SEQ ID No 1432







LRYNGL
SEQ ID No 1433







LRYNII
SEQ ID No 1434







LRYNIL
SEQ ID No 1435







LRYNKI
SEQ ID No 1436







LRYNSL
SEQ ID No 1437







LRYNVI
SEQ ID No 1438







LRYNVL
SEQ ID No 1439







LRYPFL
SEQ ID No 1440







LRYPII
SEQ ID No 1441







LRYPIL
SEQ ID No 1442







LRYPLL
SEQ ID No 1443







LRYPNI
SEQ ID No 1444







LRYPSI
SEQ ID No 1445







LRYPTI
SEQ ID No 1446







LRYPTL
SEQ ID No 1447







LRYPVI
SEQ ID No 1448







LRYPVL
SEQ ID No 1449







LRYQKL
SEQ ID No 1450







LRYQMI
SEQ ID No 1451







LRYQNL
SEQ ID No 1452







LRYRLI
SEQ ID No 1453







LRYRVI
SEQ ID No 1454







LRYSAI
SEQ ID No 1455







LRYSDL
SEQ ID No 1456







LRYSII
SEQ ID No 1457







LRYSMI
SEQ ID No 1458







LRYSSI
SEQ ID No 1459







LRYSTI
SEQ ID No 1460







LRYSTL
SEQ ID No 1461







LRYSVI
SEQ ID No 1462







LRYSVL
SEQ ID No 1463







LRYSVV
SEQ ID No 1464







LRYTAI
SEQ ID No 1465







LRYTIL
SEQ ID No 1466







LRYTLI
SEQ ID No 1467







LRYTMI
SEQ ID No 1468







LRYTNL
SEQ ID No 1469







LRYTPV
SEQ ID No 1470







LRYTSI
SEQ ID No 1471







LRYTSV
SEQ ID No 1472







LRYTTI
SEQ ID No 1473







LRYTTV
SEQ ID No 1474







LRYTVI
SEQ ID No 1475







LRYVEV
SEQ ID No 1476







LRYVTI
SEQ ID No 1477







LRYVTV
SEQ ID No 1478







LSYDSL
SEQ ID No 1479







LSYEDV
SEQ ID No 1480







LSYFGV
SEQ ID No 1481







LSYILI
SEQ ID No 1482







LSYISV
SEQ ID No 1483







LSYKQV
SEQ ID No 1484







LSYKRL
SEQ ID No 1485







LSYLDV
SEQ ID No 1486







LSYMDL
SEQ ID No 1487







LSYNAL
SEQ ID No 1488







LSYNDL
SEQ ID No 1489







LSYNKL
SEQ ID No 1490







LSYNQL
SEQ ID No 1491







LSYPVL
SEQ ID No 1492







LSYQEV
SEQ ID No 1493







LSYQPV
SEQ ID No 1494







LSYQTI
SEQ ID No 1495







LSYRSL
SEQ ID No 1496







LSYRSV
SEQ ID No 1497







LSYSII
SEQ ID No 1498







LSYSSL
SEQ ID No 1499







LSYSTL
SEQ ID No 1500







LSYTKV
SEQ ID No 1501







LSYTSI
SEQ ID No 1502







LSYTTI
SEQ ID No 1503







LSYVLI
SEQ ID No 1504







LTYADL
SEQ ID No 1505







LTYAEL
SEQ ID No 1506







LTYAQV
SEQ ID No 1507







LTYARL
SEQ ID No 1508







LTYCDL
SEQ ID No 1509







LTYCGL
SEQ ID No 1510







LTYCVL
SEQ ID No 1511







LTYEEL
SEQ ID No 1512







LTYEFL
SEQ ID No 1513







LTYGEV
SEQ ID No 1514







LTYGRL
SEQ ID No 1515







LTYKAL
SEQ ID No 1516







LTYLRL
SEQ ID No 1517







LTYMTL
SEQ ID No 1518







LTYNTL
SEQ ID No 1519







LTYPGI
SEQ ID No 1520







LTYQSV
SEQ ID No 1521







LTYSSV
SEQ ID No 1522







LTYTTV
SEQ ID No 1523







LVYDAI
SEQ ID No 1524







LVYDKL
SEQ ID No 1525







LVYDLV
SEQ ID No 1526







LVYENL
SEQ ID No 1527







LVYGQL
SEQ ID No 1528







LVYHKL
SEQ ID No 1529







LVYQEV
SEQ ID No 1530







LVYRKV
SEQ ID No 1531







LVYRNL
SEQ ID No 1532







LVYSEI
SEQ ID No 1533







LVYTNV
SEQ ID No 1534







LVYWEI
SEQ ID No 1535







LVYWKL
SEQ ID No 1536







LVYWRL
SEQ ID No 1537







LWYEGL
SEQ ID No 1538







LWYKYI
SEQ ID No 1539







LWYNHI
SEQ ID No 1540







LWYTMI
SEQ ID No 1541







LYYCQL
SEQ ID No 1542







LYYGDL
SEQ ID No 1543







LYYKKV
SEQ ID No 1544







LYYLLI
SEQ ID No 1545







LYYPKV
SEQ ID No 1546







LYYRRV
SEQ ID No 1547







LYYSTI
SEQ ID No 1548







LYYVRI
SEQ ID No 1549







LYYVVI
SEQ ID No 1550







SAYATL
SEQ ID No 1551







SAYCPL
SEQ ID No 1552







SAYPAL
SEQ ID No 1553







SAYQAL
SEQ ID No 1554







SAYQTI
SEQ ID No 1555







SAYRSV
SEQ ID No 1556







SAYTAL
SEQ ID No 1557







SAYTPL
SEQ ID No 1558







SAYVVL
SEQ ID No 1559







SCYAAV
SEQ ID No 1560







SCYCII
SEQ ID No 1561







SCYCLL
SEQ ID No 1562







SCYDFL
SEQ ID No 1563







SCYEEL
SEQ ID No 1564







SCYEKI
SEQ ID No 1565







SCYHIL
SEQ ID No 1566







SCYPYI
SEQ ID No 1567







SCYRIL
SEQ ID No 1568







SCYRTL
SEQ ID No 1569







SDYCNL
SEQ ID No 1570







SDYEDL
SEQ ID No 1571







SDYENV
SEQ ID No 1572







SDYESV
SEQ ID No 1573







SDYFIV
SEQ ID No 1574







SDYHTL
SEQ ID No 1575







SDYLAI
SEQ ID No 1576







SDYLDI
SEQ ID No 1577







SDYLEL
SEQ ID No 1578







SDYQDL
SEQ ID No 1579







SDYQRL
SEQ ID No 1580







SDYSVI
SEQ ID No 1581







SDYTHL
SEQ ID No 1582







SEYASV
SEQ ID No 1583







SEYEEL
SEQ ID No 1584







SEYFEL
SEQ ID No 1585







SEYGEL
SEQ ID No 1586







SEYITL
SEQ ID No 1587







SEYKAL
SEQ ID No 1588







SEYKEL
SEQ ID No 1589







SEYKGI
SEQ ID No 1590







SEYLAI
SEQ ID No 1591







SEYLEI
SEQ ID No 1592







SEYMVI
SEQ ID No 1593







SEYQSI
SEQ ID No 1594







SEYRPI
SEQ ID No 1595







SEYSEI
SEQ ID No 1596







SEYSSI
SEQ ID No 1597







SEYTPI
SEQ ID No 1598







SEYTYV
SEQ ID No 1599







SFYAAL
SEQ ID No 1600







SFYDSL
SEQ ID No 1601







SFYKGL
SEQ ID No 1602







SFYLYV
SEQ ID No 1603







SFYNAV
SEQ ID No 1604







SFYPSV
SEQ ID No 1605







SFYQQI
SEQ ID No 1606







SFYQQL
SEQ ID No 1607







SFYSAL
SEQ ID No 1608







SFYSDI
SEQ ID No 1609







SFYSKL
SEQ ID No 1610







SFYSRV
SEQ ID No 1611







SFYWNV
SEQ ID No 1612







SFYYLI
SEQ ID No 1613







SGYAQL
SEQ ID No 1614







SGYATL
SEQ ID No 1615







SGYEKL
SEQ ID No 1616







SGYQLV
SEQ ID No 1617







SGYQRI
SEQ ID No 1618







SGYRRL
SEQ ID No 1619







SGYSHL
SEQ ID No 1620







SGYSQL
SEQ ID No 1621







SGYTLI
SEQ ID No 1622







SGYTRI
SEQ ID No 1623







SGYYRV
SEQ ID No 1624







SHYADV
SEQ ID No 1625







SHYFPL
SEQ ID No 1626







SHYIDI
SEQ ID No 1627







SHYKRL
SEQ ID No 1628







SHYQVV
SEQ ID No 1629







SIYAPL
SEQ ID No 1630







SIYATL
SEQ ID No 1631







SIYEEL
SEQ ID No 1632







SIYEEV
SEQ ID No 1633







SIYELL
SEQ ID No 1634







SIYEVL
SEQ ID No 1635







SIYGDL
SEQ ID No 1636







SIYKKL
SEQ ID No 1637







SIYLNI
SEQ ID No 1638







SIYLVI
SEQ ID No 1639







SIYRYI
SEQ ID No 1640







SIYSWI
SEQ ID No 1641







SKYKEI
SEQ ID No 1642







SKYKIL
SEQ ID No 1643







SKYKSL
SEQ ID No 1644







SKYLAV
SEQ ID No 1645







SKYLGV
SEQ ID No 1646







SKYNIL
SEQ ID No 1647







SKYQAV
SEQ ID No 1648







SKYSDI
SEQ ID No 1649







SKYSSL
SEQ ID No 1650







SKYVGL
SEQ ID No 1651







SKYVSL
SEQ ID No 1652







SLYANI
SEQ ID No 1653







SLYAQV
SEQ ID No 1654







SLYAYI
SEQ ID No 1655







SLYDDL
SEQ ID No 1656







SLYDFL
SEQ ID No 1657







SLYDNL
SEQ ID No 1658







SLYDSI
SEQ ID No 1659







SLYDYL
SEQ ID No 1660







SLYEGL
SEQ ID No 1661







SLYEHI
SEQ ID No 1662







SLYELL
SEQ ID No 1663







SLYHCL
SEQ ID No 1664







SLYHKL
SEQ ID No 1665







SLYIGI
SEQ ID No 1666







SLYKKL
SEQ ID No 1667







SLYKNL
SEQ ID No 1668







SLYLAI
SEQ ID No 1669







SLYLGI
SEQ ID No 1670







SLYNAL
SEQ ID No 1671







SLYNLL
SEQ ID No 1672







SLYRNI
SEQ ID No 1673







SLYSDV
SEQ ID No 1674







SLYTCV
SEQ ID No 1675







SLYTTL
SEQ ID No 1676







SLYVAI
SEQ ID No 1677







SLYVDV
SEQ ID No 1678







SLYVSI
SEQ ID No 1679







SLYYAL
SEQ ID No 1680







SLYYNI
SEQ ID No 1681







SLYYPI
SEQ ID No 1682







SMYDGL
SEQ ID No 1683







SMYEDI
SEQ ID No 1684







SMYNEI
SEQ ID No 1685







SMYQSV
SEQ ID No 1686







SMYTWL
SEQ ID No 1687







SMYVSI
SEQ ID No 1688







SNYENL
SEQ ID No 1689







SNYGSL
SEQ ID No 1690







SNYGTI
SEQ ID No 1691







SNYLVL
SEQ ID No 1692







SNYQEI
SEQ ID No 1693







SNYRLL
SEQ ID No 1694







SNYRTL
SEQ ID No 1695







SNYSDI
SEQ ID No 1696







SNYSLL
SEQ ID No 1697







SPYAEI
SEQ ID No 1698







SPYATL
SEQ ID No 1699







SPYEKV
SEQ ID No 1700







SPYGDI
SEQ ID No 1701







SPYGGL
SEQ ID No 1702







SPYNTL
SEQ ID No 1703







SPYPGI
SEQ ID No 1704







SPYPGV
SEQ ID No 1705







SPYQEL
SEQ ID No 1706







SPYRSV
SEQ ID No 1707







SPYSRL
SEQ ID No 1708







SPYTDV
SEQ ID No 1709







SPYTSV
SEQ ID No 1710







SPYVVI
SEQ ID No 1711







SQYCVL
SEQ ID No 1712







SQYEAL
SEQ ID No 1713







SQYKRL
SEQ ID No 1714







SQYLAL
SEQ ID No 1715







SQYLRL
SEQ ID No 1716







SQYMHV
SEQ ID No 1717







SQYSAV
SEQ ID No 1718







SQYTSI
SEQ ID No 1719







SQYWRL
SEQ ID No 1720







SRYAEL
SEQ ID No 1721







SRYATL
SEQ ID No 1722







SRYESL
SEQ ID No 1723







SRYGLL
SEQ ID No 1724







SRYLSL
SEQ ID No 1725







SRYMEL
SEQ ID No 1726







SRYMRI
SEQ ID No 1727







SRYPPV
SEQ ID No 1728







SRYQAL
SEQ ID No 1729







SRYQQL
SEQ ID No 1730







SRYRFI
SEQ ID No 1731







SRYRFV
SEQ ID No 1732







SRYSAL
SEQ ID No 1733







SRYSDL
SEQ ID No 1734







SRYTGL
SEQ ID No 1735







SRYVRL
SEQ ID No 1736







SSYDEL
SEQ ID No 1737







SSYEAL
SEQ ID No 1738







SSYEIV
SEQ ID No 1739







SSYEPL
SEQ ID No 1740







SSYGRL
SEQ ID No 1741







SSYGSI
SEQ ID No 1742







SSYGSL
SEQ ID No 1743







SSYHII
SEQ ID No 1744







SSYHIL
SEQ ID No 1745







SSYHKL
SEQ ID No 1746







SSYHNI
SEQ ID No 1747







SSYIKV
SEQ ID No 1748







SSYNSV
SEQ ID No 1749







SSYQEI
SEQ ID No 1750







SSYRKV
SEQ ID No 1751







SSYRRV
SEQ ID No 1752







SSYSDI
SEQ ID No 1753







SSYTPL
SEQ ID No 1754







SSYTRL
SEQ ID No 1755







SSYTSV
SEQ ID No 1756







SSYTTI
SEQ ID No 1757







SSYVKL
SEQ ID No 1758







STYAEV
SEQ ID No 1759







STYAGI
SEQ ID No 1760







STYAHL
SEQ ID No 1761







STYALV
SEQ ID No 1762







STYAPI
SEQ ID No 1763







STYDHV
SEQ ID No 1764







STYDKV
SEQ ID No 1765







STYDQV
SEQ ID No 1766







STYDRI
SEQ ID No 1767







STYEEL
SEQ ID No 1768







STYEYL
SEQ ID No 1769







STYILV
SEQ ID No 1770







STYLPL
SEQ ID No 1771







STYMAV
SEQ ID No 1772







STYQTL
SEQ ID No 1773







STYRKL
SEQ ID No 1774







STYSQL
SEQ ID No 1775







STYTSI
SEQ ID No 1776







STYYQV
SEQ ID No 1777







SVYATL
SEQ ID No 1778







SVYCFL
SEQ ID No 1779







SVYCNL
SEQ ID No 1780







SVYDSV
SEQ ID No 1781







SVYDTI
SEQ ID No 1782







SVYEKV
SEQ ID No 1783







SVYEML
SEQ ID No 1784







SVYGSV
SEQ ID No 1785







SVYPII
SEQ ID No 1786







SVYQPI
SEQ ID No 1787







SVYRKV
SEQ ID No 1788







SVYSHL
SEQ ID No 1789







SVYSRV
SEQ ID No 1790







SVYTAL
SEQ ID No 1791







SVYTEL
SEQ ID No 1792







SVYWKV
SEQ ID No 1793







SWYDSI
SEQ ID No 1794







SWYFTV
SEQ ID No 1795







SYYKAI
SEQ ID No 1796







SYYLKL
SEQ ID No 1797







SYYSFV
SEQ ID No 1798







SYYVTI
SEQ ID No 1799







VAYADL
SEQ ID No 1800







VAYARI
SEQ ID No 1801







VAYARV
SEQ ID No 1802







VAYDQL
SEQ ID No 1803







VAYGHV
SEQ ID No 1804







VAYKQV
SEQ ID No 1805







VAYKRL
SEQ ID No 1806







VAYNLL
SEQ ID No 1807







VAYQRV
SEQ ID No 1808







VAYSGV
SEQ ID No 1809







VAYSQV
SEQ ID No 1810







VCYCIV
SEQ ID No 1811







VCYGLV
SEQ ID No 1812







VCYGRL
SEQ ID No 1813







VCYIVV
SEQ ID No 1814







VCYLLV
SEQ ID No 1815







VDYDCI
SEQ ID No 1816







VDYDFL
SEQ ID No 1817







VDYFTI
SEQ ID No 1818







VDYFVL
SEQ ID No 1819







VDYGEL
SEQ ID No 1820







VDYILV
SEQ ID No 1821







VDYIQV
SEQ ID No 1822







VDYKNI
SEQ ID No 1823







VDYMSI
SEQ ID No 1824







VDYNLV
SEQ ID No 1825







VDYPDV
SEQ ID No 1826







VDYSDL
SEQ ID No 1827







VDYSSV
SEQ ID No 1828







VDYTTL
SEQ ID No 1829







VDYVDV
SEQ ID No 1830







VDYVGV
SEQ ID No 1831







VDYVIL
SEQ ID No 1832







VDYVQV
SEQ ID No 1833







VEYAPL
SEQ ID No 1834







VEYDPL
SEQ ID No 1835







VEYGTI
SEQ ID No 1836







VEYHRL
SEQ ID No 1837







VEYLEV
SEQ ID No 1838







VEYQLL
SEQ ID No 1839







VEYRPL
SEQ ID No 1840







VEYSSI
SEQ ID No 1841







VEYSTV
SEQ ID No 1842







VFYAEI
SEQ ID No 1843







VFYLAV
SEQ ID No 1844







VFYRQV
SEQ ID No 1845







VFYVGV
SEQ ID No 1846







VFYYVI
SEQ ID No 1847







VFYYVL
SEQ ID No 1848







VGYETI
SEQ ID No 1849







VHYALL
SEQ ID No 1850







VHYARL
SEQ ID No 1851







VHYETL
SEQ ID No 1852







VHYGGV
SEQ ID No 1853







VHYHSL
SEQ ID No 1854







VHYIPV
SEQ ID No 1855







VHYKEI
SEQ ID No 1856







VHYLQV
SEQ ID No 1857







VHYNSL
SEQ ID No 1858







VHYQSV
SEQ ID No 1859







VHYRSL
SEQ ID No 1860







VIYAQL
SEQ ID No 1861







VIYDRL
SEQ ID No 1862







VIYENV
SEQ ID No 1863







VIYEPL
SEQ ID No 1864







VIYERL
SEQ ID No 1865







VIYIDV
SEQ ID No 1866







VIYKKI
SEQ ID No 1867







VIYKRI
SEQ ID No 1868







VIYPFL
SEQ ID No 1869







VIYPNI
SEQ ID No 1870







VIYSDL
SEQ ID No 1871







VIYSML
SEQ ID No 1872







VIYSSV
SEQ ID No 1873







VIYSWI
SEQ ID No 1874







VKYADI
SEQ ID No 1875







VKYARL
SEQ ID No 1876







VKYATL
SEQ ID No 1877







VKYEGL
SEQ ID No 1878







VKYGDL
SEQ ID No 1879







VKYGSV
SEQ ID No 1880







VKYLLV
SEQ ID No 1881







VKYNPV
SEQ ID No 1882







VKYPPI
SEQ ID No 1883







VKYQRL
SEQ ID No 1884







VKYQVI
SEQ ID No 1885







VKYSEV
SEQ ID No 1886







VKYSNV
SEQ ID No 1887







VKYSRL
SEQ ID No 1888







VKYSTL
SEQ ID No 1889







VKYVDL
SEQ ID No 1890







VLYADI
SEQ ID No 1891







VLYAML
SEQ ID No 1892







VLYASV
SEQ ID No 1893







VLYCLL
SEQ ID No 1894







VLYCLV
SEQ ID No 1895







VLYCVL
SEQ ID No 1896







VLYDCL
SEQ ID No 1897







VLYFHI
SEQ ID No 1898







VLYFTV
SEQ ID No 1899







VLYGDL
SEQ ID No 1900







VLYGQL
SEQ ID No 1901







VLYPMV
SEQ ID No 1902







VLYPRL
SEQ ID No 1903







VLYPRV
SEQ ID No 1904







VLYSEL
SEQ ID No 1905







VLYSRV
SEQ ID No 1906







VLYTAV
SEQ ID No 1907







VLYTIL
SEQ ID No 1908







VMYDAV
SEQ ID No 1909







VNYESI
SEQ ID No 1910







VNYSAL
SEQ ID No 1911







VNYSKI
SEQ ID No 1912







VNYSSI
SEQ ID No 1913







VPYALL
SEQ ID No 1914







VPYDTL
SEQ ID No 1915







VPYEDV
SEQ ID No 1916







VPYEEL
SEQ ID No 1917







VPYKTI
SEQ ID No 1918







VPYLRV
SEQ ID No 1919







VPYNDL
SEQ ID No 1920







VPYPAL
SEQ ID No 1921







VPYQEL
SEQ ID No 1922







VPYRLL
SEQ ID No 1923







VPYSEL
SEQ ID No 1924







VPYTLL
SEQ ID No 1925







VPYTPL
SEQ ID No 1926







VPYTTL
SEQ ID No 1927







VPYVEL
SEQ ID No 1928







VPYVMV
SEQ ID No 1929







VPYVSL
SEQ ID No 1930







VQYKAV
SEQ ID No 1931







VQYKEI
SEQ ID No 1932







VQYNIV
SEQ ID No 1933







VQYRPV
SEQ ID No 1934







VQYSQI
SEQ ID No 1935







VQYSTV
SEQ ID No 1936







VQYTEV
SEQ ID No 1937







VQYYNI
SEQ ID No 1938







VRYARL
SEQ ID No 1939







VRYDNL
SEQ ID No 1940







VRYGRI
SEQ ID No 1941







VRYKKL
SEQ ID No 1942







VRYKRV
SEQ ID No 1943







VRYLDV
SEQ ID No 1944







VRYRTI
SEQ ID No 1945







VRYSDI
SEQ ID No 1946







VRYTQL
SEQ ID No 1947







VRYVCL
SEQ ID No 1948







VSYAEL
SEQ ID No 1949







VSYASV
SEQ ID No 1950







VSYEPI
SEQ ID No 1951







VSYGDI
SEQ ID No 1952







VSYIGL
SEQ ID No 1953







VSYILV
SEQ ID No 1954







VSYMML
SEQ ID No 1955







VSYNNI
SEQ ID No 1956







VSYNNL
SEQ ID No 1957







VSYQEI
SEQ ID No 1958







VSYQPI
SEQ ID No 1959







VSYSAV
SEQ ID No 1960







VSYSFL
SEQ ID No 1961







VSYSLV
SEQ ID No 1962







VSYSPV
SEQ ID No 1963







VSYTML
SEQ ID No 1964







VSYTNL
SEQ ID No 1965







VSYTPL
SEQ ID No 1966







VSYVKI
SEQ ID No 1967







VSYVLL
SEQ ID No 1968







VTYADL
SEQ ID No 1969







VTYAEL
SEQ ID No 1970







VTYAEV
SEQ ID No 1971







VTYAKV
SEQ ID No 1972







VTYAPV
SEQ ID No 1973







VTYAQL
SEQ ID No 1974







VTYATL
SEQ ID No 1975







VTYATV
SEQ ID No 1976







VTYGNI
SEQ ID No 1977







VTYITI
SEQ ID No 1978







VTYQII
SEQ ID No 1979







VTYQIL
SEQ ID No 1980







VTYQLL
SEQ ID No 1981







VTYSAL
SEQ ID No 1982







VTYSTL
SEQ ID No 1983







VTYTLL
SEQ ID No 1984







VTYTQL
SEQ ID No 1985







VTYVNL
SEQ ID No 1986







VVYADI
SEQ ID No 1987







VVYEDV
SEQ ID No 1988







VVYFCL
SEQ ID No 1989







VVYKTL
SEQ ID No 1990







VVYQKL
SEQ ID No 1991







VVYSEV
SEQ ID No 1992







VVYSQV
SEQ ID No 1993







VVYSVV
SEQ ID No 1994







VVYTVL
SEQ ID No 1995







VVYYRI
SEQ ID No 1996







VYYHWL
SEQ ID No 1997







VYYLPL
SEQ ID No 1998






In some embodiments, the ITIM, or at least one of the ITIMs when several ITIMs are present in the intracellular domain is selected from LSYRSL, LPYYDL, LLYSRL, LIYTLL, LLYADL, ISYTTL, VTYSAL, IHYSEL, VDYVIL, LHYASL, LDYDYL, VDYDFL, VTYSTL, IIYSEV, LEYLCL, VLYGQL, VPYTPL, ISYPML, VSYTNL, LLYEMV, VDYNLV, ITYFAL, VHYQSV, VPYVMV, IPYRTV, IAYSLL, VCYGRL, LKYLYL, LLYEHV, ITYSLL, VLYSEL, IWYNIL, ISYKGL, IDYYNL, LEYLQL, LKYRGL, VLYASV, LQYLSL, LFYRHL, VOYKAV, LSYSSL, LSYTKV, VQYSTV, VKYNPV, VVYSEV, LEYVSV, LAYHTV, VQYLRL, VTYTQL, IVYTEL, IVYAEL, VTYAQL, ILYTEL, ITYAAV, VIYIDV, VTYAEV, VTYAPV, VTYAKV, VTYARL, ILYHTV, VLYAML, VIYAQL, LVYENL, LCYADL, ISYASL, LTYVLL, VTYVNL, VRYSIV, VFYRQV, LKYMEV, VDYGEL, LSYMDL, VLYTAV, VQYTEV, IVYASL, VEYLEV, LEYVDL, ITYADL, LTYADL, VIYENV, LAYYTV, VSYSAV, LVYDKL, LNYMVL, LNYACL, LDYINV, LHYATL, LHYAVL, IQYAPL, IQYASL, LLYLLL, VVYSQV, VIYSSV, VVYYRV, VPYVEL, LDYDKL, LSYPVL, VAYSQV, LFYWDV, LIYSQV, or LDYEFL.


In some embodiments, p is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20. In some embodiments, p is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. In some embodiments, p is 1, 2, 3, 4 or 5. In some embodiments, p is 1. In some embodiments, p is 2. In some embodiments, p is 3. In some embodiments, p is 4. In some embodiments, p is 5.


In some embodiments, n is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. In some embodiments, n is 1, 2, 3, 4 or 5. In some embodiments, n is 0. In some embodiments, n is 1. In some embodiments, n is 2. In some embodiments, n is 3.


In some embodiments, m is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20. In some embodiments, m is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10. In some embodiments, m is 1, 2, 3, 4 or 5. In some embodiments, m is 1. In some embodiments, m is 2. In some embodiments, m is 3. In some embodiments, m is 4. In some embodiments, m is 5.


In some embodiments, n is 1 and m is 1.


In some embodiments, n is 1 and m is 1 and p is 1 to 10.


In some embodiments, n is 1 and m is 1 and p is 1.


In some embodiments, n is 0 and m is 1 and p is 1 to 20.


In some embodiments, n is 0, m is 1 to 6 and p is 1.


In some embodiments, n is 0, m is 1 and p is 1.


In some embodiments, n is 0, m is 2 and p is 1.


In some embodiments, n is 0, m is 3 and p is 1.


In some embodiments, n is 0, m is 4 and p is 1.


In some embodiments, n is 0, m is 5 and p is 1.


In some embodiments, n is 0, m is 6 and p is 1.


In some embodiments, n is 0, m is 1 to 6 and p is 1 and ITSM is TEYATI.


In some embodiments, n is 0, m is 1 to 6 and p is 1 and ITSM is TEYSEI.


In some embodiments, n is 0, m is 1 to 6 and p is 1 and ITSM is TVYSEV.


In some embodiments, n is 1, m is 1 and p is 1 to 5.


In some embodiments, n is 1, m is 1 and p is 1.


In some embodiments, n is 1, m is 1 and p is 2.


In some embodiments, n is 1, m is 1 and p is 3.


In some embodiments, n is 1, m is 1 and p is 4.


In some embodiments, n is 1, m is 1 and p is 5.


In some embodiments, n is 1, m is 1 and p is 1 to 5 and ITIM is VDYGEL and ITSM is TEYATI.


In some embodiments, n is 1, m is 1 and p is 1 to 5 and ITIM is LX6YAX8L wherein X6 is selected from H or Q and X8 is V or S, and ITSM is TEYSEI.


In some embodiments, n is 1, m is 1 and p is 1 to 5 and ITIM is LX6YAX8L wherein X6 is selected from H or Q and X8 is V or S, and ITSM is TEYASI.


In some embodiments, n is 1, m is 1 and p is 1 to 5 and ITIM is LX6YAX8L wherein X6 is selected from H or Q and X8 is V or S, and ITSM is TVYSEV.


In some embodiments, the intracellular domain comprises several ITSMs having the same amino acid sequence.


In some embodiments, the intracellular domain comprises several ITSMs having different amino acid sequences.


In some embodiments, the intracellular domain comprises several ITIMs having the same amino acid sequence.


In some embodiments, the intracellular domain comprises several ITIMs having different amino acid sequences.


In some embodiments, the intracellular domain of the NCAR is selected from SEQ ID No 2000, SEQ ID No 2001, SEQ ID No 2002, SEQ ID No 2003, SEQ ID No 2004, SEQ ID No 2005, SEQ ID No 2006, SEQ ID No 2007, SEQ ID No 2008, SEQ ID No 2009, SEQ ID No 2010, SEQ ID No 2011, SEQ ID No 2012, SEQ ID No 2013, SEQ ID No 2014, SEQ ID No 2015, SEQ ID No 2016 and SEQ ID No 2017.









TABLE 1







Naturally occurring N-terminal flanking region of ITIM.*ITSM


intracellular domains varying in length from 1-520 (Table 1


comprises SEQ ID No 1 to SEQ ID No 36)








N






ELFANKRKYT
SEQ ID No 1





RKRNNSRLGNG
SEQ ID No 2





YRHRKKRNGLT
SEQ ID No 3





YKMYGSEMLHKRDPLDEDEDTD
SEQ ID No 4





LRKRRDSLSLSTQRTQGPAESARN
SEQ ID No 5





WRMMKYQQKAAGMSPEQVLQPLEGD
SEQ ID No 6





CSRAARGTIGARRTGQPLKEDPSAVPVFS
SEQ ID No 7





RIRQKKAQGSTSSTRLHEPEKNAREITQDTND
SEQ ID No 8





NNSYQEIEEDADVEWKFARAKLWLSYFDEGRTLPAPFNLVPSPK
SEQ ID No 9





WLHRRLPPQPIRPLPRFAPLVKTEPQRPVKEEEPKIPGDLDQEPS
SEQ ID No 10





SNKCDVVVVGGGISGMAAAKLLHDSGLNVVVLEARDRVGGRTYTLRNQK
SEQ ID No 11





KTHRRKAARTAVGRNDTHPTTGSASPKHQKKSKLHGPTETSSCSGAAPT
SEQ ID No 12


VEMDEE






RVKTRRKKAAQPVQNTDDVNPVMVSGSRGHQHQFQTGIVSDHPAEAGPI
SEQ ID No 13


SEDEQE






KARRKQAAGRPEKMDDEDPIMGTITSGSRKKPWPDSPGDQASPPGDAP
SEQ ID No 14


PLEEQKE






KICRKEARKRAAAEQDVPSTLGPISQGHQHECSAGSSQDHPPPGAATYT
SEQ ID No 15


PGKGEEQE






MENQEKASIAGHMFDVVVIGGGISGLSAAKLLTEYGVSVLVLEARDRVG
SEQ ID No 16


GRTYTIRNEH






VRSCRKKSARPAAGVGDTGIEDANAVRGSASQGPLTEPWAEDSPPDQP
SEQ ID No 17


PPASARSSVGEGE






KCYFLRKAKAKQMPVEMSRPAVPLLNSNNEKMSDPNMEANSHYGHNDD
SEQ ID No 18


VRNHAMKPINDNKEPLNSD






VRLRLQKHRPPADPCRGETETMNNLANCQREKDISVSIIGATQIKNTNK
SEQ ID No 19


KADFHGDHSADKNGFKARYPA






RRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYDN
SEQ ID No 20


DPDLCFRMQEGSEVYSNPCLEENKPG






QSVFNKRKSRVRHYLVKCPQNSSGETVTSVTSLAPLQPKKGKRQKEKPDI
SEQ ID No 21


PPAVPAKAPIAPTFHKPKLLKPQRKVTLPKIAEEN






MSDKMSSFLHIGDICSLYAEGSTNGFISTLGLVDDRCVVQPETGDLNNPP
SEQ ID No 22


KKFRDCLFKLCPMNRYSAQKQFWKAAKPGANSTTDAVLLNKLHHAADLE



KKQNETENRKLLGTV






MTEKMSSFLYIGDIVSLYAEGSVNGFISTLGLVDDRCVVHPEAGDLANPP
SEQ ID No 23


KKFRDCLFKVCPMNRYSAQKQYWKAKQAKQGNHTEAALLKKLQHAAELE



QKQNESENKKLLGEI






MSEMSSFLHIGDIVSLYAEGSVNGFISTLGLVDDRCVVEPAAGDLDNPPK
SEQ ID No 24


KFRDCLFKVCPMNRYSAQKQYWKAKQTKQDKEKIADVVLLQKLQHAAQME



QKQNDTENKKVHGDV






NCVSCCKDPEIDFKEFEDNFDDEIDFTPPAEDTPSVQSPAEVFTLSVPNI
SEQ ID No 25


SLPAPSQFQPSVEGLKSQVARHSLNYIQEIGNGWFGKVLLGEIYTGTSVA



RVIVKELKASANPKEQDTFLKNGEPYYILQHPNILQCVGQCVEA






KRVQETKFGNAFTEEDSELVVNYIAKKSFCRRAIELTLHSLGVSEELQNK
SEQ ID No 26


LEDVVIDRNLLILGKILGEGEF



GSVMEGNLKQEDGTSLKVAVKTMKLDNSSQREIEEFLSEAACMKDFSHP



NVIRLLGVCIEMSSQGIPKPMVILPFMKYGDLHTY






HRRKKETRYGEVFEPTVERGELVVRYRVRKSYSRRTTEATLNSLGISEEL
SEQ ID No 27


KEKLRDVMVDRHKVALGKTLGEGEFGAVMEGQLNQDDSILKVAVKTMKIA



ICTRSELEDFLSEAVCMKEFDHPNVMRLIGVCFQGSERESFPAPVVILPF



MKHGDLHSF






MSGGASATGPRRGPPGLEDTTSKKKQKDRANQESKDGDPRKETGSRYV
SEQ ID No 28


AQAGLEPLASGDPSASASHAAGITGSRHRTRLFFPSSSGSASTPQEEQTK



EGACEDPHDLLATPTPELLLDWRQSAEEVIVKLRVGVGPLQLEDVDAAFT



DTDCVVRFAGGQQWGG






AYKRKSRESDLTLKRLQMQMDNLESRVALECKEAFAELQTDIHELTSDLD
SEQ ID No 29


GAGIPFLDYRTYTMRVLFPGIEDHPVLRDLEVPGYRQERVEKGLKLFAQLI



NNKVFLLSFIRTLESQRSFSMRDRGNVASLIMTVLQSKLEYATDVLKQLLA



DLIDKNLESKNHPKLLLRRTESVAEKMLTNWFTF






YKRKTQDADRTLKRLQLQMDNLESRVALECKEAFAELQTDINELTNHMDE
SEQ ID No 30


VQIPFLDYRTYAVRVLFPGIEAHPVLKELDTPPNVEKALRLFGQLLHSRA



FVLTFIHTLEAQSSFSMRDRGTVASLTMVALQSRLDYATGLLKQLLADLI



EKNLESKNHPKLLLRRTESVAEKMLTNWFTFLLHKFLKECAGEPLF






RWHCPRRLLGACWTLNGQEEPVSQPTPQLENEVSRQHLPATLPEMVAF
SEQ ID No 31


YQELHTPTQGQTMVRQLMHKLLVFSAREVDHRGGCLMLQDTGISLLIPPG



AVAVGRQERVSLILVWDLSDAPSLSQAQGLVSPVVACGPHGASFLKPCTL



TFKHCAEQPSHARTYSSNTTLLDAKVWRPLGRPGAHASRDECRIHLSHF






KQKPRYEIRWRVIESISPDGHEYIYVDPMQLPYDSRWEFPRDGLVLGRVL
SEQ ID No 32


GSGAFGKVVEGTAYGLSRSQPVMKVAVKMLKPTARSSEKQALMSELKIM



THLGPHLNIVNLLGACTKSGPIYIITEYCFYGDLVNYLHKNRDSFLSHHP



EKPKKELDIFGLNPADESTRSYVILSFENNGDYMDMKQADTTQYVPMLER



KEV






MFNYTFQQVQEHTDQIWKFQRHDLIEEYHGRPAAPPPFILLSHLQLFIKR
SEQ ID No 33


VVLKTPAKRHKQLKNKLEKNEEAALLSWEIYLKENYLQNRQFQQKQRPEQ



KIEDISNKVDAMVDLLDLDPLKRSGSMEQRLASLEEQVAQTAQALHWIVR



TLRASGFSSEADVPTLASQKAAEEPDAEPGGRKKTEEPGDSYHVNARHLL



YPNCPVTRFPVPNEKVPWETEFLIYDPPFYTAERKDAAAMDPMGDTLEPL



ST






CCDCGGAPRSAAGFEPVPECSDGAIHSWAVEGPQPEPRDITTVIPQIPPD
SEQ ID No 34


NANIIECIDNSGVYTNEYGGREMQDLGGGERMTGFELTEGVKTSGMPEIC



QEYSGTLRRNSMRECREGGLNMNFMESYFCQKAYAYADEDEGRPSNDC



LLIYDIEGVGSPAGSVGCCSFIGEDLDDSFLDTLGPKFKKLADISLGKE



SYPDLDPSWPPQSTEPVCLPQETEPVVSGHPPISPHFGTTTVISESTYP



SGPGVLHPKPILDP






MADGGEGEDEIQFLRTDDEVVLQCTATIHKEQQKLCLAAEGFGNRLCFLE
SEQ ID No 35


STSNSKNVPPDLSICTFVLEQSLSVRALQEMLANTVEKSEGQVDVEKWKF



MMKTAQGGGHRTLLYGHAILLRHSYSGMYLCCLSTSRSSTDKLAFDVGL



QEDTTGEACWWTIHPASKQRSEGEKVRVGDDLILVSVSSERYLHLSYGN



GSLHVDAAFQQTLWSVAPISSGSEAAQGYLIGGDVLRLLHGHMDECLTVP



SGEHGEEQRRTVHYEGGAVSVHARSLWRLETLRVAWSGSHIRWGQPFR



LRHVTTGKYLSLMEDKNLLLMDKEKADVKSTAFTFRSSKEKLDVGVRKEV



DGMGTSEIKYGDSVCYIQHVDTGLW






MGDAEGEDEVQFLRTDDEVVLQCSATVLKEQLKLCLAAEGFGNRLCFLE
SEQ ID No 36


PTSNAQNVPPDLAICCFVLEQSLSVRALQEMLANTVEAGVESSQGGGHR



TLLYGHAILLRHAHSRMYLSCLTTSRSMTDKLAFDVGLQEDATGEACWWT



MHPASKQRSEGEKVRVGDDIILVSVSSERYLHLSTASGELQVDASFMQTL



WNMNPICSRCEEGFVTGGHVLRLFHGHMDECLTISPADSDDQRRLVYYE



GGAVCTHARSLWRLEPLRISWSGSHLRWGQPLRVRHVTTGQYLALTEDQ



GLVVVDASKAHTKATSFCFRISKEKLDVAPKRDVEGMGPPEIKYGESLCF



VQHVASGLWLTYAAPDPKALRLGVLKKKAMLHQEGHMDDALSLTRCQQE



ESQAARMIHSTNGLYNQFIKSLDSFSGKPRGSGPPAGTALPIEGVILSLQ



DLIIYFEPPSEDLQHEEKQSKLRSLRNRQSLFQEEGMLSMVLNCIDRLN



VYTTAAHFAEFAGEEAAESWKEIVN
















TABLE 2





Examples of intracellular domains of known  inhibitory receptors
















CTLA4
AVSLSKMLKKRSPLTTGVYVKMPPTEPECEKQFQPYFI



PIN (SEQ ID No 37)





LAG3
HLWRRQWRPRRFSALEQGIHPPQAQSKIEELEQEPEPE



PEPEPEPEPEPEPEQL (SEQ ID No 38)





HAVCR2
FKWYSHSKEKIQNLSLISLANLPPSGLANAVAEGIRSE


(TIM3)
ENIYTIEENVYEVEEPNEYYCYVSSRQQPSQPLGCRFA



MP (SEQ ID No 39)





LAIR1
HRQNQIKQGPPRSKDEEQKPQQRPDLAVDVLERTADKA



TVNGLPEKDRETDTSALAAGSSQEVTYAQLDHWALTQR



TARAVSPQSTKPMAESITYAAVARH (SEQ ID 



No 40)





KIR2DL2
HRWCSNKKNAAVMDQESAGNRTANSEDSDEQDPQEVTY



TQLNHCVFTQRKITRPSQRPKTPPTDIIVYAELPNAES



RSKVVSCP (SEQ ID No 41)





LILRB1
LRHRRQGKHWTSTQRKADFQHPAGAVGPEPTDRGLQWR



SSPAADAQEENLYAAVKHTQPEDGVEMDTRSPHDEDPQ



AVTYAEVKHSRPRREMASPPSPLSGEFLDTKDRQAEED



RQMDTEAAASEAPQDVTYAQLHSLTLRREATEPPPSQE



GPSPAVPSIYATLAIH (SEQ ID No 2021)





TIGIT
LTRKKKALRIHSVEGDLRRKSAGQEEWSPSAPSPPGSC



VQAEAAPAGLCGEQRGEDCAELHDYFNVLSYRSLGNCS



FFTETG (SEQ ID No 2022)





CEACAM1
HFGKTGRASDQRDLTEHKPSVSNHTQDHSNDPPNKMNE



VTYSTLNFEAQQPTQPTSASPSLTATEIIYSEVKKQ 



(SEQ ID No 2023)





CSF1R
KYKQKPKYQVRWKIIESYEGNSYTFIDPTQLPYNEKWE



FPRNNLQFGKTLGAGAFGKVVEATAFGLGKEDAVLKVA



VKMLKSTAHADEKEALMSELKIMSHLGQHENIVNLLGA



CTHGGPVLVITEYCCYGDLLNFLRRKAEAMLGPSLSPG



QDPEGGVDYKNIHLEKKYVRRDSGFSSQGVDTYVEMRP



VSTSSNDSFSEQDLDKEDGRPLELRDLLHFSSQVAQGMA



FLASKNCIHRDVAARNVLLTNGHVAKIGDFGLARDIMND



SNYIVKGNARLPVKWMAPESIFDCVYTVQSDVWSYGILL



WEIFSLGLNPYPGILVNSKFYKLVKDGYQMAQPAFAPKN



IYSIMQACWALEPTHRPTFQQICSFLQEQAQEDRRERDY



TNLPSSSRSGGSGSSSSELEEESSSEHLTCCEQGDIAQP



LLQPNNYQFC ((SEQ ID No 2024) 





CD5
KKLVKKFRQKKQRQWIGPTGMNQNMSFHRNHTATVRSHAEN



PTASHVDNEYSQPPRNSHLSAYPALEGALHRSSMQPDNSSD



SDYDLHGAQRL ((SEQ ID No 2025)





CD96
RKWCQYQKEIMERPPPFKPPPPPIKYTCIQEPNESDLPYHE



METL (SEQ ID No 2026)





CD22
KLQRRWKRTQSQQGLQENSSGQSFFVRNKKVRRAPLSEGPH



SLGCYNPMMEDGISYTTLRFPEMNIPRTGDAESSEMQRPPP



DCDDTVTYSALHKRQVGDYENVIPDFPEDEGIHYSELIQFG



VGERPQAQENVDYVILKH (SEQ ID No 2027)
















TABLE 3





Examples of naturally occurring N-terminal flanking regions


of ITIM only intracellular domains varying in length from


0 to 4211 (Table 3 comprises SEQ ID No 42 to SEQ ID No 351)
















K






V






Q






V






T






F






Y






LL






QP






EH






NL






KW






LV






NP






TF






RL






LNP






KCP






ETL






RRA






MAQ






RRRP
SEQ ID No 42





MSEE
SEQ ID No 43





MTSE
SEQ ID No 44





DRYL
SEQ ID No 45





MTDS
SEQ ID No 46





AAKP
SEQ ID No 47





QHFS
SEQ ID No 48





MKPK
SEQ ID No 49





IAAL
SEQ ID No 50





CLNP
SEQ ID No 51





QKVL
SEQ ID No 52





DRYQS
SEQ ID No 53





LKAKD
SEQ ID No 54





DRYYA
SEQ ID No 55





MSYYG
SEQ ID No 56





SSSKP
SEQ ID No 57





LKIRH
SEQ ID No 58





DVRHV
SEQ ID No 59





DRFYA
SEQ ID No 60





EGWRI
SEQ ID No 61





SDIKR
SEQ ID No 62





LHHKKY
SEQ ID No 63





TVDRYL
SEQ ID No 64





SSPTFR
SEQ ID No 65





WRRAGH
SEQ ID No 66





YRVDLV
SEQ ID No 67





NSFDLA
SEQ ID No 68





YRSGIT
SEQ ID No 69





YRLGLT
SEQ ID No 70





QHIMAI
SEQ ID No 71





NSCANP
SEQ ID No 72





RRFCAT
SEQ ID No 73





GDMANNS
SEQ ID No 74





MAYQSLR
SEQ ID No 75





TARNLTV
SEQ ID No 76





MERAEEP
SEQ ID No 77





SMDRFLA
SEQ ID No 78





LRLAAAP
SEQ ID No 79





LRLFAAP
SEQ ID No 80





KRLIALS
SEQ ID No 81





YSNSSVNP
SEQ ID No 82





YANSCVNP
SEQ ID No 83





KLSPRVKR
SEQ ID No 84





KIRLRCQS
SEQ ID No 85





SCDLLTAF
SEQ ID No 86





MASESSPL
SEQ ID No 87





KTANEGGS
SEQ ID No 88





DFAKEGHS
SEQ ID No 89





DHVRRKDS
SEQ ID No 90





DNVKKENS
SEQ ID No 91





VMWKHRYQ
SEQ ID No 92





KMYYSRRG
SEQ ID No 93





DRYIAIRIP
SEQ ID No 94





DRYLAICVP
SEQ ID No 95





DRYLRVKLT
SEQ ID No 96





DRYIGVSYP
SEQ ID No 97





DRYIGVRYS
SEQ ID No 98





DRYVGVRHS
SEQ ID No 99





DRYLAVTNP
SEQ ID No 100





MPFHPVTAA
SEQ ID No 101





DRYISIHRP
SEQ ID No 102





MQLKILVSA
SEQ ID No 103





WKQRRAKEK
SEQ ID No 104





DRFIAVVHP
SEQ ID No 105





DRYIAITKP
SEQ ID No 106





NRYCYICHS
SEQ ID No 107





DRYLAITKP
SEQ ID No 108





DRYCAVMDP
SEQ ID No 109





DRYISIFYA
SEQ ID No 110





DRYITIFHA
SEQ ID No 111





NRYCYICHS
SEQ ID No 112





WKKICNKSS
SEQ ID No 113





WCYRKRYFV
SEQ ID No 114





AHSNSCLNP
SEQ ID No 115





PVFYKLGIT
SEQ ID No 116





KFHRSRRLLG
SEQ ID No 117





VDRYLRVKIP
SEQ ID No 118





FERSCRKENM
SEQ ID No 119





LPSIYLVFLI
SEQ ID No 120





SSKTFQTWQS
SEQ ID No 121





IDRYIAVCHP
SEQ ID No 122





SFCLRNLFFP
SEQ ID No 123





LLKTAKEGGS
SEQ ID No 124





MWRNSKVMNI
SEQ ID No 125





VEKKLFIHEYI
SEQ ID No 126





RKRNNSRLGNG
SEQ ID No 127





QRITVHVTRRP
SEQ ID No 128





MEAAHAKTTEEC
SEQ ID No 129





MARISFSYLCPA
SEQ ID No 130





CCKRQKGKPKRK
SEQ ID No 131





MTGDKGPQRLSG
SEQ ID No 132





PDIPQSVKNKVLE
SEQ ID No 133





KIFKIDIVLWYRD
SEQ ID No 134





TEYVVRLWSAGCR
SEQ ID No 135





QSKSELSHYTFYF
SEQ ID No 136





SIVAYKQVPL
SEQ ID No 137





SLDFFGSQNTQDD
SEQ ID No 138





LWLHNGRSCFGVNR
SEQ ID No 139





RFLRLNLKPDLSDT
SEQ ID No 140





REHQRSGSYHVREE
SEQ ID No 141





MITLTELKCLADAQ
SEQ ID No 142





YNLTRLCRWDKRLL
SEQ ID No 143





AFMNENFKKNVLSA
SEQ ID No 144





MIYRLAQAEERQQLE
SEQ ID No 145





KFRKNFWKLVKDIGC
SEQ ID No 146





ALALAALAAVEPACG
SEQ ID No 147





KKIAAATETAAQENA
SEQ ID No 148





YRKVSKAEEAAQENA
SEQ ID No 149





LKDFSILLMEGVPKS
SEQ ID No 150





TVATAVEQYVPSEKL
SEQ ID No 151





MGRQKELVSRCGEMLH
SEQ ID No 152





CKRRRGQSPQSSPDLP
SEQ ID No 153





LLEGVHLFLTARNLTV
SEQ ID No 154





EERERKHHLKHGPNAP
SEQ ID No 155





PLTHRLLCSEEPPRLH
SEQ ID No 156





LYLLVRKHINRAHTAL
SEQ ID No 157





KLPLWGQPSDQNCYDD
SEQ ID No 158





MYRLKVLQMRLRSAITG
SEQ ID No 159





SMRGTICNPGPRKSMSK
SEQ ID No 160





RILVRKLEPAQGSLHTQ
SEQ ID No 161





SRYATLMQKDSSQETT
SEQ ID No 162





SSHFGCQLVCCQSSNVS
SEQ ID No 163





RILMRKLRTQETRGNEV
SEQ ID No 164





RILLQKLRPPDIRKSDS
SEQ ID No 165





RILLQKLTSPDVGGNDQ
SEQ ID No 166





RSVRPCFTQAAFLKSKYW
SEQ ID No 167





RSGRGRKLSGDQITLPTT
SEQ ID No 168





MAAENEASQESALGAYSP
SEQ ID No 169





TAHVFSCLSLRLRAAFFY
SEQ ID No 170





NPFIYSRNSAGLRRKVLWC
SEQ ID No 171





NNESSNNPSSIASFLSSITY
SEQ ID No 172





TPQLFINYKLKSVAHLPWRM
SEQ ID No 173





WRLKPSADCGPFRGLPLFIH
SEQ ID No 174





NIPLLFYHLWRYFHRPADGSE
SEQ ID No 175





SQVTKSSPEQSYQGDMYPTRG
SEQ ID No 176





CCSALQKRCRKCFNKDSTEAT
SEQ ID No 177





CQRLAARLGVVTGKDLGEVCH
SEQ ID No 178





QVFRNISGKQSSLPAMSKVRR
SEQ ID No 179





GGRREGESWNWAWVLSTRLARH
SEQ ID No 180





YKMYGSEMLHKRDPLDEDEDTD
SEQ ID No 181





HMYRERGGELLVHTGFLGSSQDR
SEQ ID No 182





RKWCQYQKEIMERPPPFKPPPPP
SEQ ID No 183





HNKRKIFLLVQSRKWRDGLCSKT
SEQ ID No 184





RAARRRPEHLDTPDTPPRSQAQE
SEQ ID No 185





NGTCFTAGRLIYVAGREGHMLKV
SEQ ID No 186





DANYEMPGETLKVRYWPRDSWPVG
SEQ ID No 187





ARSQMARNIWYFVVS
SEQ ID No 188





LRKRRDSLSLSTQRTQGPAESARN
SEQ ID No 189





DAASEIPEQGPVIKFWPNEKWAFIG
SEQ ID No 190





WGYKNYREQRQLPQGDYVKKPGDGD
SEQ ID No 191





TSYYSFVSHLRKIRTCTSIMEKD
SEQ ID No 192





LIVRALIYKDLDNSPLRRK
SEQ ID No 193





DHWALTQRTARAVSPQSTKPMAES
SEQ ID No 194





HHNKRKIIAFVLEGKRSKVTRRPKA
SEQ ID No 195





EWKSPFGLTPKGRNRSKVFSFSSALN
SEQ ID No 196





YFLGRLVPRGRGAAEAATRKQRITETE
SEQ ID No 197





QATACRTCHRQQQPAACRGFARVARTIL
SEQ ID No 198





NKFSKYYQKQKDIDVDQCSEDAPEKCHE
SEQ ID No 199





SKCSREVLWHCHLCPSSTEHASASANGH
SEQ ID No 200





DMGSSDGETTHDSQITQEAVPKSLGASE
SEQ ID No 201





CSRAARGTIGARRTGQPLKEDPSAVPVFS
SEQ ID No 202





SVQKLSEFLSSAEIREEQCAPHEPTPQGPA
SEQ ID No 203





KCYKIEIMLFYRNHFGAEELDGDNKDYDAY
SEQ ID No 204





KCYNIELMLFYRQHFGADETNDDNKEYDAY
SEQ ID No 205





GWKLRSYKTLFDAAETMVSLQLGIFNYEEV
SEQ ID No 206





SSFSSCKDVTAEENNEAKNLQLAVARIKKG
SEQ ID No 207





MRTKAAGCAERRPLQPRTEAAAAPAGRAMP
SEQ ID No 208





RKRWQNEKLGLDAGDEYEDENLYEGLNLDDC
SEQ ID No 209





MASHEVDNAELGSASAHGTPGSEAGPEELNT
SEQ ID No 210





NGHPTSNAALFFIERRPHHWPAMKFRSHPDH
SEQ ID No 211





ALLNNIIEIRLDAKKFVTELRRPVAVRAKDIG
SEQ ID No 212





PETKGQSLAEIDQQFQKRRFTLSFGHRQNSTG
SEQ ID No 213





PETKGKKLEEIESLFDNRLCTCGTSDSDEGRY
SEQ ID No 214





YNLMSQKFRAAFRKLCNCKQKPTEKPANYSVA
SEQ ID No 215





NYIFFGRGPQRQKKAAEKAASANNEKMRLDVNK
SEQ ID No 216





DLNESANSTAQYASNAWFAAASSEPEEGISVFE
SEQ ID No 217





DLNESANSTAQYASNAWFAAASSEPEEGISVFE
SEQ ID No 218





SYQQKKFCFSIQQGLNADYVKGENLEAVVCEEPQ
SEQ ID No 219





MDGSGERSLPEPGSQSSAASDDIEIVVNVGGVRQ
SEQ ID No 220





RWCSKKKDAAVMNQEPAGHRTVNREDSDEQDPQE
SEQ ID No 221





MFCSEKKLREVERIVKANDREYNEKFQYADNRIHT
SEQ ID No 222





TQFSETKQRESQLMREQRVRFLSNASTLASFSEPG
SEQ ID No 223





NWLNPPRLQMGSMTSTTLYNSMWFVYGSFVQQGGE
SEQ ID No 224





CFYIKKINPLKEKSIILPKSLISVVRSATLETKPE
SEQ ID No 225





HRWCANKKNAVVMDQEPAGNRTVNREDSDEQDPQE
SEQ ID No 226





NYYSSCRKPTTTKKTTSLLHPDSSRWIPERISLQAP
SEQ ID No 227





HLTALFLTVYEWRSPYGLTPRGRNRSTVFSYSSALN
SEQ ID No 228





YFFIRTLQAHHDRSERESPFSGSSRQPDSLSSIENA
SEQ ID No 229





LHCCCSNKKNAAVMDQEPAGDRTVNREDSDDQDPQE
SEQ ID No 230





HYLRFQRKSIDGSFGSNDGSGNMVASHPIAASTPEG
SEQ ID No 231





RWWNQYENLPWPDRLMSLVSGFVEGKDEQGRLLRRTL
SEQ ID No 232





DVDVDDTTEEQGYGMAYTVHKWSELSWASHWVTFGCW
SEQ ID No 233





RYCWLRRQAALQRRLSAMEKGKLHKPGKDASKRGRQTP
SEQ ID No 234





MKKAEMGRFSISPDEDSSSYSSNSDFNYSYPTKQAALK
SEQ ID No 235





LKCLIVALPKIILAVKSKGKFYLVIEELSQLFRSLVPIQ
SEQ ID No 236





ETLLNAPRAMGTSSSPPSPASVVAPGTTLFEESRLPVFT
SEQ ID No 237





YVRSWRKAGPLPSQIPPTAPGGEQCPLYANVHHQKGKDEG
SEQ ID No 238





TYLSEPLVRGYTTAAAVQVFVSQLKYVFGLHLSSHSGPLS
SEQ ID No 239





RWWSQYTSIPLPDQLMCVISASVHGVDQRGRLLRRTL
SEQ ID No 240





RRFRQACLETCARCCPRPPRARPRALPDEDPPTPSIASLSR
SEQ ID No 241





MAEAITYADLRFVKAPLKKSISSRLGQDPGADDDGE
SEQ ID No 242





MQTSEREGSGPELSPSVMPEAPLESPPFPTKSPAFDLFNLV
SEQ ID No 243





SKEKQFRGLQSRIEQEQKFTVIRGGQVIQIPVADITVGDIAQ
SEQ ID No 244





SKEKQFRGLQSRIEQEQKFTVVRAGQVVQIPVAEIVVGDIAQ
SEQ ID No 245





SKEKQFRGLQCRIEQEQKFSIIRNGQLIQLPVAEIVVGDIAQ
SEQ ID No 246





KCLQGNADGDGGGGQCCRRQDSPSPDFYKQSSPNLQVSSDGT
SEQ ID No 247





SSECQRYVYSILCCKESSDPSSYNSSGQLMASKMDTCSSNLNN
SEQ ID No 248





MDNQGVIYSDLNLPPNPKRQQRKPKGNKNSILATEQE
SEQ ID No 249





WWGDIWWKTMMELRSLDTQKATCHLQQVTDLPWTSVSSPVERE
SEQ ID No 250





RLLFSKTYKLQERSDLTVKEKEELIEEWQPEPLVPPVPKDHPA
SEQ ID No 251





KYYPINMDFKPNFITTYKCECVAPDTVNTTVFNASAPLAPDTNA
SEQ ID No 252





CIRRSCLHRRRTFTYQSGSGEETILQFSSGTLTLTRRPKLQPEP
SEQ ID No 253





MTNPSDRVLPANSMAESREGDFGCTVMELRKLMELRSRDALTQIN
SEQ ID No 254





WLHRRLPPQPIRPLPRFAPLVKTEPQRPVKEEEPKIPGDLDQEPS
SEQ ID No 255





WCQCCPHTCCCYVRCPCCPDKCCCPEALYAAGKAATSGVPSIYAP
SEQ ID No 256





AVCQCRRKNYGQLDIFPARDTYHPMSEYPTYHTHGRYVPPSSTDR
SEQ ID No 257





TVVLRVQFPSWNGLGSIPSTDIYKSTKNYKNIEEPQGVKILRFSSP
SEQ ID No 258





DNTVPGSPEERGLIQWKAGAHANSDMSSSLKSYDFPIGMGIVKRITF
SEQ ID No 259





YRCSQHSSSSEESTKRTSHSKLPEQEAAEADLSNMERVSLSTADPQG
SEQ ID No 260





GLKGIRSALKRPVEQPLGEIPEKSLHSIAVSSIQKAKGYQLLEEEKIV
SEQ ID No 261





RWRRRKGQQRTKATTPAREPFQNTEEPYENIRNEGQNTDPKLNPKDDG
SEQ ID No 262





RFTGHPGAYLRLINRWRLEECHPSGCLIDLCMQMGIIMVLKQTWNNFME
SEQ ID No 263





VVALIYCRKKRISALPGYPECREMGETLPEKPANPTNPDEADKVGAENT
SEQ ID No 264





SYRYVTKPPAPPNSLNVQRVLTFQPLRFIQEHVLIPVFDLSGPSSLAQP
SEQ ID No 265





SNKCDVVVVGGGISGMAAAKLLHDSGLNVVVLEARDRVGGRTYTLRNQK
SEQ ID No 266





TLRNATQQKDMVEVADFDFSPMSDKNPEPPSGVRCCCQMCCGPFLLE
SEQ ID No 267


TP






HRQNQIKQGPPRSKDEEQKPQQRPDLAVDVLERTADKATVNGLPEKDR
SEQ ID No 268


ETDTSALAAGSSQE






MDEEEDGAGAEESGQPRSFMRLNDLSGAGGRPGPGSAEKDPGSADSE
SEQ ID No 269


AEG






EMLHLGFGTIRDSLNSKRRELEDPGAYNYPFTWNTPSAPPGYNIAVKPDQ
SEQ ID No 270





AKTGRTSIQRDLKEQQPQALAPGRGPSHSSAFSMSPLSTAQAPLPNPRT
SEQ ID No 271


AA






LCLRKQSNGREAEYSDKHGQYLIGHGTKVYIDPFTYEDPNEAVREFAKEID
SEQ ID No 272





KNFRRDFFILLSKCGCYEMQAQIYRTETSSTVHNTHPRNGHCSSAPRVT
SEQ ID No 273


NG






QDIGYFLKVAAVGRRVRSYGKRRPARTILRAFLEKARQTPHKPFLLFRDET
SEQ ID No 274





MSAARPQFSIDDAFELSLEDGGPGPESSGVARFGPLHFERRARFEVAD
SEQ ID No 275


EDKQSR






YAATSRQLKRLESVSRSPIYSHFSETVTGASVIRAYNRSRDFEIISDTKVD
SEQ ID No 276


ANQR






MTVPKEMPEKWARAQAPPSWSRKKPSWGTEEERRARANDREYNEKF
SEQ ID No 277


QYASNCIKT






KTHRRKAARTAVGRNDTHPTTGSASPKHQKKSKLHGPTETSSCSGAAP
SEQ ID No 278


TVEMDEE






KARRKQAAGRPEKMDDEDPIMGTITSGSRKKPWPDSPGDQASPPGDA
SEQ ID No 279


PPLEEQKE






RVKTRRKKAAQPVQNTDDVNPVMVSGSRGHQHQFQTGIVSDHPAEAG
SEQ ID No 280


PISEDEQE






MKFEEKCGDNGSIVGRNQSYPGEKHQPKGKPIANGEAEVYAKQEANGK
SEQ ID No 281


CSTPRKSL






DIKINQYIIKKCSPCCACLAKAMERSEQQPLMGWEDEGQPFIRRQSRTD
SEQ ID No 282


SGIFYED






MAEPQAESEPLLGGARGGGGDWPAGLTTYRSIQVGPGAAARWDLCID
SEQ ID No 283


QAVVFIEDA






AVTISLAYSVKKMMKDNNLVRHLDACETMGNATAICSDKTGTLTTNRMT
SEQ ID No 284


VVQAYVGD






AVTISLAYSVKKMMKDNNLVRHLDACETMGNATAICSDKTGTLTMNRMT
SEQ ID No 285


VVQAYIGG






SNMKSRSAGKLWELQHEIEVYRKTVIAQWRALDLDVVLTPMLAPALDLN
SEQ ID No 286


APGRATGA






HPELNVQKRKRSFKAVVTAATMSSRLSHKPSDRPNGEAKTELCENVDP
SEQ ID No 287


NSPAAKKKY






RKSNFIFDKLHKVGIKTRRQWRRSQFCDINILAMFCNENRDHIKSLNRLD
SEQ ID No 288


FITNESD






KICRKEARKRAAAEQDVPSTLGPISQGHQHECSAGSSQDHPPPGAATY
SEQ ID No 289


TPGKGEEQE






SGKTLESWRSLCTRCCWASKGAAVGGGAGATAAGGGGGPGGGGGG
SEQ ID No 290


GPGGGGGPGGGGG






RSCRKKSARPAADVGDIGMKDANTIRGSASQGNLTESWADDNPRHHGL
SEQ ID No 291


AAHSSGEERE






MKSKMRQALGFAKEARESPDTQALLTCAEKEEENQENLDWVPLTTLSH
SEQ ID No 292


CKSLRTMTAI






AILFAVVARGTTILAKHAWCGGNFLEVTEQILAKIPSENNKLTYSHGNYLF
SEQ ID No 293


HYICQDR






MDHAEENEILAATQRYYVERPIFSHPVLQERLHTKDKVPDSIADKLKQAF
SEQ ID No 294


TCTPKKIRN






KKLVKKFRQKKQRQWIGPTGMNQNMSFHRNHTATVRSHAENPTASHV
SEQ ID No 295


DNEYSQPPRNSHL






MPRRLQPRGAGTKGPPAPAPAASGAARNSHSAASRDPPASAKPLLRW
SEQ ID No 296


DEVPDDFVECFIL






RSCRKKSARPAVGVGDTGMEDANAVRGSASQGPLIESPADDSPPHHAP
SEQ ID No 297


PALATPSPEEGE






DNFEYLTRDSSILGPHHLDEFIRVWAEYDPAACGRISYNDMFEMLKHMS
SEQ ID No 298


PPLGLGKKCPAR






SKRWTHLPCGCIINCRQNAYAVASDGKKIKRKGFEFNLSFQKSYGIYKIA
SEQ ID No 299


HEDYYDDDENS






NFNYFYHRETEGEEQSQYMHVGSCQHLSSSAEELRKARSNSTLSK
SEQ ID No 300





VRSCRKKSARPAAGVGDTGIEDANAVRGSASQGPLTEPWAEDSPPDQP
SEQ ID No 301


PPASARSSVGEGE






LKLANEETIKNITHWTLFNYYNSSGWNESVPRPPLHPADVPRGSCWETA
SEQ ID No 302


VGIEFMRLTVSDML






MCHSRSCHPTMTILQAPTPAPSTIPGPRRGSGPEIFTFDPLPEPAAAPAG
SEQ ID No 303


RPSASRGHRKRSRR






ASSAASSEHFEKLHEIFRGLHEDLQGVPERLLGTAGTEEKKKLIRDFDEK
SEQ ID No 304


QQEANETLAEMEEE






MADQIPLYPVRSAAAAAANRKRAAYYSAAGPRPGADRHSRYQLEDESA
SEQ ID No 305


HLDEMPLMMSEEGFENEE






SMILSASVIRVRDGLPLSASTDYEQSTGMQECRKYFKMLSRKLAQLPDR
SEQ ID No 306


CTLKTGHYNINFISSLG






LTRKKKALRIHSVEGDLRRKSAGQEEWSPSAPSPPGSCVQAEAAPAGL
SEQ ID No 307


CGEQRGEDCAELHDYFNV






TIPTSRLKFLKEAGRLTQKEEIPEEELNEDVEEIDHAERELRRGQILWFRG
SEQ ID No 308


LNRIQTQIRVVKAFRS






TIPTSQLKCLKEAGHGPGKDEMTDEELAEGEEEIDHAERELRRGQILWF
SEQ ID No 309


RGLNRIQTQIRVVKAFRS






KCYFLRKAKAKQMPVEMSRPAVPLLNSNNEKMSDPNMEANSHYGHND
SEQ ID No 310


DVRNHAMKPINDNKEPLNSD






MGDTHWRVAQERDELWRAQVVATTVMLERKLPRCLWPRSGICGCEFG
SEQ ID No 311


LGDRWFLRVENHNDQNPLRV






YSPGDYICKKGDIGREMYIIKEGKLAVVADDGVTQFVVLSDGSYFGEISIL
SEQ ID No 312


NIKGSKAGNRRTANIKS






FSPGDYICRKGDIGKEMYIIKEGKLAVVADDGVTQYALLSAGSCFGEISIL
SEQ ID No 313


NIKGSKMGNRRTANIRS






CLKIIKEYERAVVFRLGRIQADKAKGPGLILVLPCIDVFVKVDLRTVTCNIP
SEQ ID No 314


PQEILTRDSVTTQVDG






MTEGARAADEVRVPLGAPPPGPAALVGASPESPGAPGREAERGSELGV
SEQ ID No 315


SPSESPAAERGAELGADEEQR






VRLRLQKHRPPADPCRGETETMNNLANCQREKDISVSIIGATQIKNTNKK
SEQ ID No 316


ADFHGDHSADKNGFKARYPA






VITTCLALGTRRMAKKNAIVRSLPSVETLGCTSVICSDKTGTLTTNQMSV
SEQ ID No 317


CRMFILDRVEGDTCSLNEFTITG






MEAVLNELVSVEDLLKFEKKFQSEKAAGSVSKSTQFEYAWCLVRSKYND
SEQ ID No 318


DIRKGIVLLEELLPKGSKEEQRDY






TRPKPLKPPCDLSMQSVEVAGSGGARRSALLDSDEPLVYFYDDVTTLYE
SEQ ID No 319


GFQRGIQVSNNGPCLGSRKPDQPYEW






HRPKALQPPCNLLMQSEEVEDSGGARRSVIGSGPQLLTHYYDDARTMY
SEQ ID No 320


QVFRRGLSISGNGPCLGFRKPKQPYQW






RRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYD
SEQ ID No 321


NDPDLCFRMQEGSEVYSNPCLEENKPG






WSCERYRADVRTVWEQCVAIMSEEDGDDDGGCDDYAEGRVCKVRFD
SEQ ID No 322


ANGATGPGSRDPAQVKLLPGRHMLFPPLER






GPLVRYLDVKKTNKKESINEELHIRLMDHLKAGIEDVCGHWSHYQVRDK
SEQ ID No 323


FKKFDHRYLRKILIRKNLPKSSIV






KYPTLLHQRKKQRFLSKHISHRGGAGENLENTMAAFQHAVKIGTDMLEL
SEQ ID No 324


DCHITKDEQVVVSHDENLKRATGVNVNISD






AHDHYTVDVVVAYYITTRLFWWYHTMANQQVLKEASQMNLLARVWWY
SEQ ID No 325


RPFQYFEKNVQGIVPRSYHWPFPWPVVHLSRQ






SKASRAPRAHRDINVPRALVDILRHQAGPGTRPDRARSSSLTPGIGGPD
SEQ ID No 326


SMPPRTPKNLYNTVKTPNLDWRALPPPSPS






FKVYKWKQSRDLYRAPVSSLYRTPGPSLHADAVRGGLMSPHLYHQVYL
SEQ ID No 327


TTDSRRSDPLLKKPGAASPLASRQNTLRSCDP






MLCRKTSQQEHVYEAARAHAREANDSGETMRVAIFASGCSSDEPTSQN
SEQ ID No 328


LGNNYSDEPCIGQEYQIIAQINGNYARLLDTVP






KQKNEHHHGHSHYASESLPSKKDQEEGVMEKLQNGDLDHMIPQHCSS
SEQ ID No 329


ELDGKAPMVDEKVIVGSLSVQDLQASQSACYWLKG






HKALMERALRATFREALSSLHSRRRLDTEKKHQEHLLLSILPAYLAREMK
SEQ ID No 330


AEIMARLQAGQGSRPESTNNFHSLYVKRHQGVS






HKHQMQDASRDLFTYTVKCIQIRRKLRIEKRQQENLLLSVLPAHISMGMK
SEQ ID No 331


LAIIERLKEHGDRRCMPDNNFHSLYVKRHQNVS






ERFVAKPCAIALNIQANGPQIAPPNAILEKVFTAITKHPDEKRLEGLSKQLD
SEQ ID No 332


WDVRSIQRWFRQRRNQEKPSTLTRFCESMWRF






AWRLWRCRVARSRELNKPWAAQDGPKPGLGLQPRYGSRSAPKPQVA
SEQ ID No 333


VPSCPSTPDYENMFVGQPAAEHQWDEQGAHPSEDNDFY






HLSQWTRGRSRSHPGQGRSGESVEEVPLYGNLHYLQTGRLSQDPEPD
SEQ ID No 334


QQDPTLGGPARAAEEVMCYTSLQLRPPQGRIPGPGTP






KKRHCGYSKAFQDSDEEKMHYQNGQAPPPVFLPLHHPPGKLPEPQFYA
SEQ ID No 335


EPHTYEEPGRAGRSFTREIEASRIHIEKIIGSGDSGE






QSVFNKRKSRVRHYLVKCPQNSSGETVTSVTSLAPLQPKKGKRQKEKP
SEQ ID No 336


DIPPAVPAKAPIAPTFHKPKLLKPQRKVTLPKIAEEN






MASPGAGRAPPELPERNCGYREVEYWDQRYQGAADSAPYDWFGDFS
SEQ ID No 337


SFRALLEPELRPEDRILVLGCGNSALSYELFLGGFPNVTS






MPHFTVVPVDGPRRGDYDNLEGLSWVDYGERAELDDSDGHGNHRESS
SEQ ID No 338


PFLSPLEASRGIDYYDRNLALFEEELDIRPKVSSLLGKL






AIPTRSLKFLKEAGHGTTKEEITKDAEGLDEIDHAEMELRRGQILWFRGL
SEQ ID No 339


NRIQTQIDVINTFQTGASFKGVLRRQNMGQHLDVKLVPS






IFMKTAQAHRRAETLIFSKHAVIALRHGRLCFMLRVGDLRKSMIISATIHM
SEQ ID No 340


QVVRKTTSPEGEVVPLHQVDIPMENGVGGNSIFLVAPL






SWKRYPASMKQLQQRSLMRRHRKKKRQSLKQMTPSTQEFYVDYKPTN
SEQ ID No 341


TETSEMLLNGTGPCTYNKSGSRECEIPLSMNVSTFLAYDQPT






MANVSKKVSWSGRDRDDEEAAPLLRRTARPGGGTPLLNGAGPGAARQ
SEQ ID No 342


SPRSALFRVGHMSSVELDDELLDPDMDPPHPFPKEIPHNEKLLS






RLFKRRQGRIFPEGSCLNTFTKNPYAASKKTIYTYIMASRNTQPAESRIYD
SEQ ID No 343


EILQSKVLPSKEEPVNTVYSEVQFADKMGKASTQDSKPPGT






AMCLWKNRQQNTIQKYDPPGYLYQGSDMNGQMVDYTTLSGASQINGN
SEQ ID No 344


VHGGFLTNGGLS






LGSGFALKVQEQHRQKHFEKRRMPAANLIQAAWRLYSTDMSRAYLTAT
SEQ ID No 345


WYYYDSILPSFRELALLFEHVQRARNGGLRPLEVRRAPVPDGAP






MSSHKGSVVAQGNGAPASNREADTVELAELGPLLEEKGKRVIANPPKAE
SEQ ID No 346


EEQTCPVPQEEEEEVRVLTLPLQAHHAMEKMEEFVYKVWEGRWRV






WRMMKYQQKAAGMSPEQVLQPLEGDLCYADLTLQLAGTSPQKATTKLS
SEQ ID No 347


SAQVDQVEVEYVTMASLPKED






HYARARRKPGGLSATGTSSHSPSECQEPSSSRPSRIDPQEPTHSKPLAP
SEQ ID No 348


MELEPMYSNVNPGDSNPIYSQIWSIQHTKENSANCPMMHQEHEELT






MAKRKQGNRLGVCGRFLSSRVSGMNPSSVVHHVSDSGPAAELPLDVP
SEQ ID No 349


HIRLDSPPSFDNTTYTSLPLDSPSGKPSLPAPSSLPPLPPKVLVCSKP






SPNRKNPLWPSVPDPAHSSLGSWVPTIMEEDAFQLPGLGTPPITKLTVL
SEQ ID No 350


EEDEKKPVPWESHNSSETCGLPTLVQTYVLQGDPRAVSTQPQSQSGTS



DQ






KRVQETKFGNAFTEEDSELVVNYIAKKSFCRRAIELTLHSLGVSEELQNK
SEQ ID No 351


LEDVVIDRNLLILGKILGEGEFGSVMEGNLKQEDGTSLKVAVKTMKLDNS



SQREIEEFLSEAACMKDFSHPNVIRLLGVCIEMSSQGIPKPMVILPFMKY



GDLHTY
















TABLE 4





Examples of naturally occurring C-terminal flanking regions


of ITIM only intracellular domains (Table 4 comprises


SEQ ID No 352 to SEQ ID No 685)
















K






I






N






R






E






S






R






G






Q






I






A






YA






VQ






QE






MT






SK






AR






AK






RR






QI






QI






LT






VI






VLT






KVS






ARS






IFR






TFL






QGVQ
SEQ ID No 352





FSVR
SEQ ID No 353





YSSK
SEQ ID No 354





PKTR
SEQ ID No 355





VNDT
SEQ ID No 356





GMQQ
SEQ ID No 357





PDLL
SEQ ID No 358





HKSL
SEQ ID No 359





RQPLN
SEQ ID No 360





RTPTN
SEQ ID No 361





RNLTN
SEQ ID No 362





TVFSP
SEQ ID No 363





NRFMK
SEQ ID No 364





LNAIA
SEQ ID No 365





LFTML
SEQ ID No 366





MYVMG
SEQ ID No 367





VTGTR
SEQ ID No 368





TTHRR
SEQ ID No 369





VTRRK
SEQ ID No 370





VTPVR
SEQ ID No 371





MTVRK
SEQ ID No 372





MTVKR
SEQ ID No 373





VTPRR
SEQ ID No 374





KPWWD
SEQ ID No 375





NRLMK
SEQ ID No 376





FKETV
SEQ ID No 377





PFLKNT
SEQ ID No 378





VTQRRG
SEQ ID No 379





MTERKA
SEQ ID No 380





VTMRRT
SEQ ID No 381





RQALAE
SEQ ID No 382





APDSNT
SEQ ID No 383





SKKRGG
SEQ ID No 384





EISAAS
SEQ ID No 385





STLGPG
SEQ ID No 386





NSLSFL
SEQ ID No 387





AHLVQY
SEQ ID No 388





DEHDAII
SEQ ID No 389





VTKRCAR
SEQ ID No 390





KRIEHAK
SEQ ID No 391





VTPWRLR
SEQ ID No 392





VTPCRLR
SEQ ID No 393





RWGFSKQ
SEQ ID No 394





RGDDKDC
SEQ ID No 395





ATRMMMG
SEQ ID No 396





GPSRDPD
SEQ ID No 397





VTLPRARR
SEQ ID No 398





RLPYQLAQ
SEQ ID No 399





LGSFLIGS
SEQ ID No 400





MGDDSSNS
SEQ ID No 401





PLSHLAQN
SEQ ID No 402





ATEGKSVC
SEQ ID No 403





HNNCEKDSV
SEQ ID No 404





RTMKPLPRH
SEQ ID No 405





SQRRNPWQA
SEQ ID No 406





YPMKITGNR
SEQ ID No 407





VSHLRSPRK
SEQ ID No 408





SYPARTRKV
SEQ ID No 409





WGRLRFARK
SEQ ID No 410





VFLNKVMRG
SEQ ID No 411





SGSGYQLV
SEQ ID No 412





HSDSLGSAS
SEQ ID No 413





KATVHLAYL
SEQ ID No 414





CAEDYHWQWR
SEQ ID No 415





QRLLVKAKTQ
SEQ ID No 416





EDFLEESRNQ
SEQ ID No 417





GEKAFGWPGK
SEQ ID No 418





PTVSPFLRQR
SEQ ID No 419





PRTVLWLTIE
SEQ ID No 420





EVCWKLPQSK
SEQ ID No 421





ISNRWLSIGV
SEQ ID No 422





GNCSFFTETG
SEQ ID No 423





DSIRGYFGET
SEQ ID No 424





LHSNSFIRNNY
SEQ ID No 425





TYYSETTVTRT
SEQ ID No 426





TYYSRRTLLGV
SEQ ID No 427





SSYFLGKLLSD
SEQ ID No 428





QARLRQHYQTI
SEQ ID No 429





LVFHHMAQHLMM
SEQ ID No 430





YSTKITIPVIKR
SEQ ID No 431





TYHSERTVTFTY
SEQ ID No 432





PGSNYSEGWHIS
SEQ ID No 433





LCANKKSSVKIT
SEQ ID No 434





DGSPDYQKAKLQ
SEQ ID No 435





VRRQLPVEEPNP
SEQ ID No 436





KLNQVVRKVSAL
SEQ ID No 437





ILRDYKQSSSTL
SEQ ID No 438





DPAKYARWKPWLK
SEQ ID No 439





QLRFNKPVRYAAT
SEQ ID No 440





ELRFNKCVRLCGT
SEQ ID No 441





GLKDQVNTVGIPI
SEQ ID No 442





YKTSQNALDFNTKV
SEQ ID No 443





PSENKENSAVPVEE
SEQ ID No 444





ARTKISDDDDEHTL
SEQ ID No 445





PITKWLPAYKFKEY
SEQ ID No 446





SNLDEVGQQVERLD
SEQ ID No 447





RATASLNANEVEWF
SEQ ID No 448





EMRFSRAVRLCGTLQ
SEQ ID No 449





RICSLTASEGPQQKI
SEQ ID No 450





PLSPYGDIIEK
SEQ ID No 451





TSESKENCTGVQVAE
SEQ ID No 452





SQMNPRSPPATMCSP
SEQ ID No 453





MHPDALEEPDDQNRI
SEQ ID No 454





LSRMQHQSQECKSEE
SEQ ID No 455





QEPNESDLPYHEMETL
SEQ ID No 456





SRENSSSQDPQTEGTR
SEQ ID No 457





EPSGHEKEGFMEAEQC
SEQ ID No 458





KGSNYHLSDNDASDVE
SEQ ID No 459





HTQSAEPPPPPEPARI
SEQ ID No 460





CLISEERNECVIATEV
SEQ ID No 461





ASWATNLKSSIRKANK
SEQ ID No 462





TSMQPTEAMGEEPSRAE
SEQ ID No 463





LSQEHRLLRHSSMADKK
SEQ ID No 464





YSQKPPKRASSQLSWFS
SEQ ID No 465





PRRPGEPREVHIGRALGR
SEQ ID No 466





DTLSTRPGYLWVVWIYRN
SEQ ID No 467





SIMNADILNYCQKESWCK
SEQ ID No 468





NRGPPLDRAEVYSSKLQD
SEQ ID No 469





ISKLSHSKGHQKRKALKTT
SEQ ID No 470





DQNVNEAMPSLKITNDYIF
SEQ ID No 471





DNSPLRRKSIYLVIIV
SEQ ID No 472





QGQRSDVYSDLNTQRPYYK
SEQ ID No 473





EIYLEPLKDAGDGVRYLLR
SEQ ID No 474





LKHDTNIYCRMDHKAEVAS
SEQ ID No 475





QWPALKEKYPKSVYLGRIV
SEQ ID No 476





GKIFSSCFHNTILCMQKESE
SEQ ID No 477





LDDHDYGSWGNYNNPLYDDS
SEQ ID No 478





VRENHGLLPPLYKSVKTYTV
SEQ ID No 479





PCTAQECLASVLKPTNETLN
SEQ ID No 480





PNCNKPRWEKWFMVTFASST
SEQ ID No 481





GYKAFGLVGKLAASGSITMQN
SEQ ID No 482





FGRTVAIKPPKCWTGRFLMNL
SEQ ID No 483





FRRTVSSKTPKCPTGRLLMNL
SEQ ID No 484





NFHGMNPSKDTSTEYSEVRTQ
SEQ ID No 485





HNPTLQVFRKTALLGANGAQP
SEQ ID No 486





GELSLASLHIPFVETQHQTQV
SEQ ID No 487





GEEGVALPANGAGGPGGASARK
SEQ ID No 488





DRRSNQVARALHDHLGLRQGDC
SEQ ID No 489





NHRVDASSMWLYRRYYSNVCQR
SEQ ID No 490





QKMDSLDAMEGDVELEWEETTM
SEQ ID No 491





FHTLRGKGQAAEPPDFNPRDSYS
SEQ ID No 492





SVYQYGSALAHFFYSSDQAWYDR
SEQ ID No 493





DSAEAPADPFAVPEGRSQDARGY
SEQ ID No 494





SAGNGGSSLSYTNPAVAATSANL
SEQ ID No 495





KAKLQSSPDYLQVLEEQTALNKI
SEQ ID No 496





LLKGLGRRQACGYCVFWLLNPLPM
SEQ ID No 497





SRGLQGTYQDVGSLNIGDVQLEKP
SEQ ID No 498





APVVFFYLSQDSRPRSWCLRTVCN
SEQ ID No 499





HFHKVQPQEPKVTDTEYSEIKIHK
SEQ ID No 500





SISLHGLSQVSEDPPSVFNMPEAD
SEQ ID No 501





VNNCEHFVTLLRYGEGVSEQANRA
SEQ ID No 502





QNWGPRFKKLADLYGSKDTFDDDS
SEQ ID No 503





KLRSDCSRPSLQWYTRAQSKMRRPS
SEQ ID No 504





DHSRSTKAVSEKKAKGLGESRKDKK
SEQ ID No 505





STGLTWRSGTASSVSYPKQMPLSQV
SEQ ID No 506





AATVFFCLGQTTRPRSWCLRLVCNP
SEQ ID No 507





YAANPVITPEPVTSPPSYSSEIQANK
SEQ ID No 508





NHCVFTQRKITRPSQRPKTPPTDTSV
SEQ ID No 509





TQGAKEHEEAESGEGTRRRAAEAPSM
SEQ ID No 510





DHLALSRPRRLSTADPADASTIYAVVV
SEQ ID No 511





STSALSEAASDTTQEPPGSHEYAALKV
SEQ ID No 512





SFHKGEPQDLSGQEATNNEYSEIKIPK
SEQ ID No 513





EGALHRSSMQPDNSSDSDYDLHGAQRL
SEQ ID No 514





SFHKARPQYPQEQEAIGYEYSEINIPK
SEQ ID No 515





SFQMVKPWDSRGQEATDTEYSEIKIHR
SEQ ID No 516





IFPGGNKGGGTSCGPAQNPPNNQTPSS
SEQ ID No 517





ELPTATQAQNDYGPQQKSSSSRPSCSCL
SEQ ID No 518





KVPAEEPANELPMNEIEAWKAAEKKARW
SEQ ID No 519





SHQWKSSEDNSKTFSASHNVEATSMFQL
SEQ ID No 520





KEEEMADTSYGTVKAENIIMMETAQTSL
SEQ ID No 521





NLTALDWSLLSKKECLSYGGRLLGNSCK
SEQ ID No 522





SFSEMKSREPKDQEAPSTTEYSEIKTSK
SEQ ID No 523





ELIKPHRAAKGAPTSTVYAQILFEENKL
SEQ ID No 524





NHSVIGPNSRLARNVKEAPTEYASICVRS
SEQ ID No 525





DLASQPVYCNLQSLGQAPMDEEEYVIPGH
SEQ ID No 526





DYDNSENQLFLEEERRINHTAFRTVEIKR
SEQ ID No 527





DHSGGHHSDKINKSESVVYADIRKN
SEQ ID No 528





DHWALTQRTARAVSPQSTKPMAESITYAAVARH
SEQ ID No 529





ENLIYENVAAIQAHKLEV
SEQ ID No 530





SETTGLTPDQVKRNLEKYGLNELPAEEGKT
SEQ ID No 531





SLCYKFLSYFRASSTMRY
SEQ ID No 532





KLEKLVSSLREEDEYSIHPPSSRWKRFYRA
SEQ ID No 533





SHLRKIRTCTSIMEKDLTYSSVKRHL
SEQ ID No 534





ALSSSTSPRAPPSHRPLKSPQNETLYSVLKA
SEQ ID No 535





DPENQNFLLESNLGKKKYETEFHPGTTSFGMS
SEQ ID No 536





FTYGVRFLKKTPWLWNTRHCWYNYPYQPLTTD
SEQ ID No 537





KTLRSLEATDSAFDNPDYWHSRLFPKANAQRT
SEQ ID No 538





QFQNSSEMEKIPEIGKFGEKAPPAPSHVWRPAA
SEQ ID No 539





TFQDSAGARNNRDGNNLRKRGHPAPSPIWRHAA
SEQ ID No 540





LALSSGSRKASAVGDVVNLVSVDVQRLTESVLY
SEQ ID No 541





DILRPYFDVEPAQVRSRLLESMIPIKMVNFPQK
SEQ ID No 542





TCQFEGLLRPYIQHAMYDEEKGTPIFICPVSWG
SEQ ID No 543





LQLDKVDVIPVTAINLYPDGPEKRAENLEDKTCI
SEQ ID No 544





CPVFKGFSSSSKDQIAIPEDTPENTETASVCTKV
SEQ ID No 545





NFEAQQPTQPTSASPSLTATEIIYSEVKKQ
SEQ ID No 546





WSMQQPESSANIRTLLENKDSQVIYSSVKKS
SEQ ID No 547





GRQPGKREPLRSVLRRALGEGAELGARGQSLPMGLL
SEQ ID No 548





PDWLKDNDYLLHGHRPPMPSFRACFKSIFRIHTETG
SEQ ID No 549





DGSHIHTFLDVSFSEALYPVFRILTLEPTALTICPA
SEQ ID No 550





DHWALTQRTARAVSPQSTKPMAESITYAAVARH
SEQ ID No 551





HSLTLRREATEPPPSQEREPPAEPSIYAPLAIH
SEQ ID No 552





RFKNEFKSSGINTASSAASKERTAPHKSNTGFPKLLCA
SEQ ID No 553





REKMWHGRQRLGGVGAGSRPPMPAHPTPASIFSARSTDV
SEQ ID No 554





KKTHPDDSAGEASSRGRAHEEDDEENYENVPRVLLASDH
SEQ ID No 555





GSAQGRRLPLRLVLQRALGDEAELGAVRETSRRGLVDIAA
SEQ ID No 556





SSPTSPTSPGPQQAPPRETYLSEKIPIPDTKPGTFSLRKL
SEQ ID No 557





AGFPKTRLGRLATSTSRSRQLSLCDDYEEQTDEYFFDRDP
SEQ ID No 558





KSLMARRTYLEWPKEKSKRGLFWANLRAAINIKLTEQAKK
SEQ ID No 559





LPWEPSLESEEEVEEEETSEALVLNPRRHQDSSRNKAGGLP
SEQ ID No 560





KESDHFSTELDDITVTDTYLSATKVSFDDTCLASEVSFSQS
SEQ ID No 561





QNLCSRLKTSPVEGLSGNPADLEKRRQVFGHNVIPPKKPKT
SEQ ID No 562





NHCVFTQRKITRPSQRPKTPPTDIIVYTELPNAEP
SEQ ID No 563





TMKTSDKFKFVFREKMGRIVDYFTIQNPSNVDH
SEQ ID No 564





SENFRKAYKQVFKCHIRKDSHLSDTKESKSRIDTPPSTNCTHV
SEQ ID No 565





EFMNEQKLNRYPASSLVVVRSKTEDHEEAGPLPTKVNLAHSEI
SEQ ID No 566





GNYRLKEYEKALKYVRGLLQTEPQNNQAKELERLIDKAMKKDG
SEQ ID No 567





PAGEEDEEEEEDLGWGCPDVAGPTRPTAPPDLHNYMRRIKEIA
SEQ ID No 568





SGLREQTIAIKCLVVLVVALGLPFLAIGYWIAPCSRLGKILRS
SEQ ID No 569





SGLRQQTMAVKFLVVLAVAIGLPFLALIYWFAPCSKMGKIMRG
SEQ ID No 570





SGLRQQTMAVKFLVVLAVAIGLPFLALIYWFAPCSKMGKIMRG
SEQ ID No 571





PPVSRAYTTACVLTTAAVQLELITPFQLYFNPELIFKHFQIWRL
SEQ ID No 572





GNVLILRSVSTAVYKRFPSAQHLVQAGFMTPAEHKQLEKLSLPH
SEQ ID No 573





QNWWTRRKVRQEHGPERKISFPQWEKDYNLQPMNAYGLFDEYLE
SEQ ID No 574





DSNIAFSVNASDKGEASCCDPVSAAFEGCLRRLFTRWGSFCVRNP
SEQ ID No 575





QVSSAESHKDLGKKDTETVYSEVRKAVPDAVESRYSRTEGSLDGT
SEQ ID No 576





VLDSEPKSQASGPEPELYASVCAQTRRARASFPDQAYANSQPAAS
SEQ ID No 577





ETGINLRGALLAMIYNKILRLSTSNLSMGEMTLGQINNLVAIETNQ
SEQ ID No 578





AAGRARAKACRAPGSYGRGTHCHYKAPTVVLHMTKTDPSLENPTHL
SEQ ID No 579





HHELLSHKSFETNAQEDTMETHLETELDLSTITTAGRISDHKQQLA
SEQ ID No 580





DQKYVLILNVFPAPPKRSFLPQVLTEWYIPLEKDERHQWIVLLSFQL
SEQ ID No 581





LQTVYLGKNSEAQPARQILVLDNAAIVCNFGSELSLVYVPSVLEKLD
SEQ ID No 582





RKDSEEEVSLLGSQDIEEGNHQVEDGCREMACEEFNFGEILMTQVIHS
SEQ ID No 583





QRRETEVYACIENEDGSSPTAKQSPLSQERPHRFEDDGELNLVYENL
SEQ ID No 584





APCAKVRPYIAEGESDTDSDLCTPCGPPPRSATGEGPFGDVGWAGPRK
SEQ ID No 585





ERLGYSEDGLEELSRHSVSEADRLLSARSSVDFQAFGVKGGRRINEYFC
SEQ ID No 586





RQRLCRQSVLLWPHQPSGQRSFWAQLGMALTRDNHHFYNRNFCQGP
SEQ ID No 587


TAE






LHRDYDRTVTLLSPPRPGRLPDLQEIGVPLYQSPPGRYLSPKKGANENV
SEQ ID No 588





RSPFYDRFSEARILFLLQLLADHVPGVGLVTRPLMDYLPTWQKIYFYSWG
SEQ ID No 589





NPSPDTRIELNDVVYLIRPDPLAYLPNSEPSRRNSICNVTGQDSREETQL
SEQ ID No 590





RDIYAQRMHTFITSLSSVGIVVSDPDSTDASSIEDNEDICNTTSLENCTAK
SEQ ID No 591





SFQGLRLWEPADQEAPSTTEYSEIKIHTGQPLRGPGFGLQLEREMSGM
SEQ ID No 592


VPK






LVSSVADVLAQGGGPRSSQHCGEGSQLVAADHRGGLDGWEQPGAGQ
SEQ ID No 593


PPSDT






VVSDSGISTDYSSGDSQGAQGGLSDGPYSNPYENSLIPAAEPLPPSYVA
SEQ ID No 594


CS






NPPPDTRLEPSDIVYLIRSDPLAHVASSSQSRKSSCSHKLSSCNPETRDE
SEQ ID No 595


TQL






HPSCCWKPDPDQVDGARSLLSPEGYQLPQNRRMTHLAQKFFPKAKDE
SEQ ID No 596


AASPVKG






GKKFKRYFLQLLKYIPPKAKSHSNLSTKMSTLSYRPSDNVSSSTKKPAPC
SEQ ID No 597


FEVE






SDNFKKSFQNVLCLVKVSGTDDGERSDSKQDKSRLNETTETQRTLLNG
SEQ ID No 598


DLQTSI






SPTNNTVYASVTHSNRETEIWTPRENDTITIYSTINHSKESKPTFSRATAL
SEQ ID No 599


DNV






LGGAAYVNTFHNIALETSDEHREFAMAATCISDTLGISLSGLLALPLHDFL
SEQ ID No 600


CQLS






MQKDSSQETTSCYEKIFYGHLLKKFRQPNFARKLC
SEQ ID No 601





ALATSKALVKFDPEIIGPRDIIKIIEEIGFHASLAQRNPNAHHLDHKMEIKQ
SEQ ID No 602


WKKS






NHCVFTQRKITRPSQRPKTPPTDIIVYTELPNAESRSKVVSCP
SEQ ID No 603





DHCVFTQRKITRPSQRPKTPPTDTILYTELPNAKPRSKVVSCP
SEQ ID No 604





ERKRIQYLHAKLLKKRSKQPLGEVKRRLSLYLTKIHFWLPVLKMIRKKQM
SEQ ID No 605


DMASADKS






SEWLESIRMKRYILHFHSAGLDTMECVLELTAEDLTQMGITLPGHQKRIL
SEQ ID No 606


CSIQGFKD






NADAKYPGYPPEHIIAEKRRARRRLLHKDGSCNVYFKHIFGEWGSYVVDI
SEQ ID No 607


FTTLVDTKW






HRTSKRSEARSAEFTVGRKDSSIICAEVRCLQPSEVSSTEVNMRSRTLQ
SEQ ID No 608


EPLSDCEEVLC






IKYWFHTPPSIPLQIEEYLKDPTQPILEALDKDSSPKDDVWDSVSIISFPEK
SEQ ID No 609


EQEDVLQTL






RREPRQALAGTFRDLRLRLWPQGGGWVQQVALKQVGRRWVASNPRE
SEQ ID No 610


SRPSTLLTNLDRGTPG






DFQWREKTPEPPVPCVPEQTEYATIVFPSGMGTSSPARRGSADGPRSA
SEQ ID No 611


QPLRPEDGHCSWPL






ENDEDGAQASPEPDGGVGTRDSSRTSIRSSQWSFSTISSSTQRSYNTC
SEQ ID No 612


CSWTQHPLIQKNRR






DEIYLESCCQARYHQKKEQMNEELKREAETLREREGEEFDNTCCAEKR
SEQ ID No 613


KKLWDLLEKPNSSV






DMRPPPTAMITLNNSVYWQEFEDTCVYECLDGKDCQSFFCCYEECKSG
SEQ ID No 614


SWRKGRIHIDILELDS






GTLAWMITLSDGLHNFIDGLAIGASFTVSVFQGISTSVAILCEEFPHELGD
SEQ ID No 615


FVILLNAGMSIQQ






GHNEVIGVCRVGPDAADPHGREHWAEMLANPRKPVEHWHQLVEEKTV
SEQ ID No 616


TSFTKGSKGLSEKENSE






PSLSTSNKNIYEVEPTVSVVQEGCGHNSSYIQNAYDLPRNSHIPGHYDLL
SEQ ID No 617


PVRQSPANGPSQDKQS






DEARLERCCLRRLRRREEEAAEARAGPTERGAQGSPARALGPRGRLQ
SEQ ID No 618


RGRRRLRDVVDNPHSGLAGK






DELSIDSCCRDRYFRRKELSETLDFKKDTEDQESQHESEQDFSQGPCPT
SEQ ID No 619


VRQKLWNILEKPGSSTAAR






KETKVKELKRAKTVLTVIKWKGEKSKYPQGRFWKQLQVAMPVKKSPRR
SEQ ID No 620


SSSDEQGLSYSSLKNV






LSYNHHRLEEHEAETYEDGFTGNPSSLSQIPETNSEETTVIFEQLHSFVV
SEQ ID No 621


DDDGFIEDKYIDIHELCEEN






DESSSSPGRQMSSSDGGPPGQSDTDSSVEESDFDTMPDIESDKNIIRTK
SEQ ID No 622


MFLYLSDLSRKDRRIVSKKYK






RIIQEKKKHAVASDPRHLRNKGSPIIYSEVKVASTPVSGSLFLASSAPHR
SEQ ID No 623





AEDHLDGCCKRRYLQKIEEFAEMVEREEEDDALDSEGRDSEGPAEGEG
SEQ ID No 624


RLGRCMRRLRDMVERPHSGLPGK






EDPWIGSESDKFILLGYLDQLRKDPALLSSEAVLPDLTDELAPVFLLRWF
SEQ ID No 625


YSASDYISDCWDSIFHNNWRE






MDRKWYFLCNSWLSINVGDCVLDKVFPVATEQDRKQFSHLFFMKTSAG
SEQ ID No 626


FQDGHIWYSIFSRCARSSFTRVQR






VPSDPSVEEMRKVVCEQKLRPNIPNRWQSCEALRVMAKIMRECWYAN
SEQ ID No 627


GAARLTALRIKKTLSQLSQQEGIKM






CSDFQEDIVFPFSLGWSSLVHRFLGPRNAQRVLLGLSEPIFQLPRSLAST
SEQ ID No 628


PTAPTTPATPDNASQEELMITL






RIPLLGDEEEGSEDEGESTHLLPENENELEKFIHSVIISKRSKNIKKKLKEE
SEQ ID No 629


QNSVTENKTKNASHNGKMEDL






SKIPQITLNFVDLKGDPFLASPTSDREIIAPKIKERTHNVTEKVTQVLSLGA
SEQ ID No 630


DVLPEYKLQAPRIHRWTILHY






DHCIFTQRKITGPSQRSKRPSTDTSVCIELPNAEPRALSPAHEHHSQALM
SEQ ID No 631


GSSRETTALSQTQLASSNVPAAGI






PRARIMQRKRGLEWFVCDGWKFLCTSCCGWLINICRRKKELKARTVWL
SEQ ID No 632


GCPEKCEEKHPRNSIKNQKYNVFTFI






SPRHYYSGYSSSPEYSSESTHKIWERFRPYKKHHREEVYMAAGHALRK
SEQ ID No 633


KVQFAKDEDLHDILDYWKGVSAQQKL






SPQYHSLSYSSSPEYTCRASQSIWERFRLSRRRHKEEEEFMAAGHALR
SEQ ID No 634


KKVQFAKDEDLHDILDYWKGVSAQHKS






MAFNAKVSDPLIGGTYMTLLNTVSNLGGNWPSTVALWLVDPLTVKECVG
SEQ ID No 635


ASNQNCRTPDAVELCKKLGGSCVTALD






YYPHGHSHSLGLDLNLGLGSGTFHSLGNALVHGGELEMGHGGTHGFG
SEQ ID No 636


YGVGHGLSHIHGDGYGVNHGGHYGHGGGH






SFHKVKPQDPQGQEATDSEYSEIKIHKRETAETQACLRNHNPSSKEVRG
SEQ ID No 637





NNSTSANRNVYEVEPTVSVVQGVFSNNGRLSQDPYDLPKNSHIPCHYD
SEQ ID No 638


LLPVRDSSSSPKQEDSGGSSSNSSSSSE






RREFRKALKSLLWRIASPSITSMRPFTATTKPEHEDQGLQAPAPPHAAAE
SEQ ID No 639


PDLLYYPPGVVVYSGGRYDLLPSSSAY






NELFIDSCCSNRYQERKEENHEKDWDQKSHDVSTDSSFEESSLFEKELE
SEQ ID No 640


KFDTLRFGQLRKKIWIRMENPAYCLSAK






NEFFIDSCCSYSYHGRKVEPEQEKWDEQSDQESTTSSFDEILAFYNDAS
SEQ ID No 641


KFDGQPLGNFRRQLWLALDNPGYSVLSR






DATDQESLELKPTSRAGIKQKGLLLSSSLMHSESELDSDDAIFTWPDREK
SEQ ID No 642


GKLLHGQNGSVPNGQTPLKARSPREEIL






SRGASIPGTPPTAGRVVSLSPEDAPGPSLRRSGGCSPSSDTVFGPGAP
SEQ ID No 643


AAAGAEACRRENRGTLYGTRSFTVSVAQKR






NKTFSPAQRHGNSGITMMRKKAKFSLRENPVEETKGEAFSDGNIEVKLC
SEQ ID No 644


EQTEEKKKLKRHLALFRSELAENSPLDSGH






YESHRAGCEKYEGPYPQHPFYSSASGDVIGGLSREEIRQMYESSELSRE
SEQ ID No 645


EIQERMRVLELYANDPEFAAFVREQQVEEV






FKNSDKEDDQEHPSEKQPSGAESGTLARASLALPTSSLSRTASQSSSH
SEQ ID No 646


RGWEILRQNTLGHLNLGLNLSEGDGEEVYHF






QDLKGDDTAVRDAHSKRDTKCQPQGSSGEEKGTPTTLRGGEASERKR
SEQ ID No 647


PDSGCSTSKDTKYQSVYVISEEKDECVIATEV






DHCVFIQRKISRPSQRPKTPLTDTSVYTELPNAEPRSKVVSCPRAPQSGL
SEQ ID No 648


EGVF






RDLPPLSSSEMEEFLTQESKKHENEFNEEVALTEIYKYIVKYFDEILNKLE
SEQ ID No 649


RERGLEEAQKQLLHVKVLFDEKKKCKWM






LGSPTSPGPGHYLRCDSTQPLLAGLTPSPKSYENLWFQASPLGTLVTPA
SEQ ID No 650


PSQEDDCVFGPLLNFPLLQGIRVHGMEALGSF






LSQPGPTLPKTHVKTASLGLAGKARSPLLPVSVPTAPEVSEESHKPTED
SEQ ID No 651


SANVYEQDDLSEQMASLEGLMKQLNAITGSAF






ATECGQGEEKSEGPLGSQESESCGLRKEEKEPHADKDFCQEKQVAYC
SEQ ID No 652


PSGKPEGLNYACLTHSGYGDGSD






KELILAVDGVLSVHSLHIWSLTMNQVILSAHVATAASRDSQVVRREIAKAL
SEQ ID No 653


SKSFTMHSLTIQMESPVDQDPDCLFCEDPCD






TSFPRLPEDEPAPAAPLRGRKDEDAFLGDPDTDPDSFLKSARLQRLPSS
SEQ ID No 654


SSEMGSQDGSPLRETRKDPFSAAAAECSCRQDG






LEKERELQQLGITEYLRKNIAQLQPDMEAHYPGAHEELKLMETLMYSRP
SEQ ID No 655


RKVLVEQTKNEYFELKANLHAEPDYLEVLEQQT






KNSLKEANHDGDFGITLAELRALMELRSTDALRKIQESYGDVYGICTKLK
SEQ ID No 656


TSPNEGLSGNPADLERREAVFGKNFIPPKKPKT






YNCLDFPAGVVPVTTVTAEDEAQMEHYRGYFGDIWDKMLQKGMKKSV
SEQ ID No 657


GLPVAVQCVALPWQEELCLRFMREVERLMTPEKQSS






PAFDLLSRKMLGCPINDLNVILLFLRANISELISFSWLSVLCVLKDTTTQKH
SEQ ID No 658


NIDTVVDFMTLLAGLEPSKPKHLTNSACDEHP






SRRFQAAFQNVISSFHKQWHSQHDPQLPPAQRNIFLTECHFVELTEDIG
SEQ ID No 659


PQFPCQSSMHNSHLPAALSSEQMSRTNYQSFHFNKT






ELKTTRFHPNRQSSMYTVTRMESMTVVFDPNDADTTRSSRKKRATPRD
SEQ ID No 660


PSFNGCSRRNSKSASATSSFISSPYTSVDEYS






SRQCKQFAKDLLDQTRSSRELEIILNYRDDNSLIEEQSGNDLARLKLAIKY
SEQ ID No 661


RQKEFVAQPNCQQLLASRWYDEFPGWRRRHWAVK






VRKKQKAQHRCMRRVGRTGSRRSGYAFSHQEGFGELIMSGKNMRLSS
SEQ ID No 662


LALSSFTTRSSSSWIESLRRKKSDSASSPSGGADKPLKG






LLKLMFVNPPELPEQTTKALPVRFLFTDYNRLSSVGGETSLAEMIATLSD
SEQ ID No 663


ACEREFGFLATRLFRVFKTEDTQGKKKWKKTCCLPS






PPYLGKLDVSFQRACQCEGKDNRIPLLKEVFEAFPNTPINIDIKVNNNVLI
SEQ ID No 664


KKVSELVKRYNREHLTVWGNANYEIVEKCYKENSD






VVAAMQARHAHVPQLRWETMDVRKLDFPSASFDVVLEKGTLDALLAGE
SEQ ID No 665


RDPWTVSSEGVHTVDQVLSEVGFQKGTRQLLGSRTQLE






SAEVQAVLRKFDELDAVMSRLPHHSESRQEHERISRIHEEFKKKKNDPT
SEQ ID No 666


FLEKKERCDYLKNKLSHIKQRIQEYDKVMNWDVQGYS






AERVKELPSAGLVHYNFCTLPKRQFAPSYESRRQNQDRINKTVLYGTPR
SEQ ID No 667


KCFVGQSKPNHPLLQAKPQSEPDYLEVLEKQTAISQL






NLPPNPKRQQRKPKGNKNSILATEQEITYAELNLQKASQDFQGNDKTYH
SEQ ID No 668


CKDLPSAPEK






EKPESRTSIHNFMAHPEFRIEDSQPHIPLIDDTDLEEDAALKQNSSPPSSL
SEQ ID No 669


NKNNSAIDSGINLTTDTSKSATSSSPGSPIHSLETSL






EKPESRSSIHNFMTHPEFRIEDSEPHIPLIDDTDAEDDAPTKRNSSPPPSP
SEQ ID No 670


NKNNNAVDSGIHLTIEMNKSATSSSPGSPLHSLETSL






QGDPQRSPSSCNDLYATVKDFEKTPNSTLPPAGRPSEEPEPDYEAIQTL
SEQ ID No 671


NREEEKATLGTNGHHGLVPKENDYESISDLQQGRDITRL






KVAMIEPGYFKTAVTSKERFLKSFLEIWDRSSPEVKEAYGEKFVADYKKS
SEQ ID No 672


AEQMEQKCTQDLSLVTNCMEHALIACHPRTRYSAGWDAK






EKPESKTSIHNFMATPEFLINDYTHNIPLIDDTDVDENEERLRAPPPPSPN
SEQ ID No 673


QNNNAIDSGIYLTTHVTKSATSSVFSSSPGSPLHSVETSL






PAAPLAGPALPARRLSRASRPLSASQPSLPHGAPGPAASTRPASSSTPR
SEQ ID No 674


LGPTPAARAAAPSPDRRDSASPGAAGGLDPQDSARSRLSSNL






SKHFRKGFRTICAGLLGRAPGRASGRVCAAARGTHSGSVLERESSDLLH
SEQ ID No 675


MSEAAGALRPCPGASQPCILEPCPGPSWQGPKAGDSILTVDVA






SNAKIAYKQNKANTAQEQQYGSHEENLPADLEALQREIRMAQERLDLAV
SEQ ID No 676


QAYSHQNNPHGPREKKAKVGSKAGSNKSTASSKSGDGKTSVWI






QNEEESGEPEQAAGDAPPPYSSISAESAAYFDYKDESGFPKPPSYNVAT
SEQ ID No 677


TLPSYDEAERTKAEATIPLVPGRDEDFVGRDDFDDADQLRIGNDG






EGDPQTQLQDDKDPMLILRGRVPEGRALDSEVDPDPEGDLGVRGPVFG
SEQ ID No 678


EPSAPPHTSGVSLGESRSSEVDVSDLGSRNYSARTDFYCLVSKDDM






LLGDFLRACFVRFMNYCWCWDLEAGFPSYAEFDISGNVLGLIFNQGMIW
SEQ ID No 679


MGSFYAPGLVGINVLRLLTSMYFQCWAVMSSNVPHERVFKASRSNN






TIEPVQQAGCSATRLPGDGQTSAGDASLQDPPSYPPVQVIRARVSSGSS
SEQ ID No 680


SEVSSINSDLEWDPEDVNLEGSKENVELLGSQVHQDSVRTAHLSDDD






RRTLKQAFADCTVILCEHRIEAMLECQQFLVIEENKVRQYDSIQKLLNERS
SEQ ID No 681


LFRQAISPSDRVKLFPHRNSSKCKSKPQIAALKEETEEEVQDTRL






VKAFHSSLHESIQKPYNQKSIHSFMTHPEFAIEEELPRTPLLDEEEEENPD
SEQ ID No 682


KASKFGTRVLLLDGEVTPYANTNNNAVDCNQVQLPQSDSSLQSLETSV






NLPKGKKPAPQAAEPNNHTEYASIQTSPQPASEDTLTYADLDMVHLNRT
SEQ ID No 683


PKQPAPKPEPSFSEYASVQVPRK






TLQLAGTSPQKATTKLSSAQVDQVEVEYVTMASLPKEDISYASLTLGAED
SEQ ID No 684


QEPTYCNMGHLSSHLPGRGPEEPTEYSTISRP






ETGPKHIPLQTLLKFMVDIALGMEYLSNRNFLHRDLAARNCMLRDDMTV
SEQ ID No 685


CVADFGLSKKIYSGDYYRQGRIAKMPVKWIAIESLADRVYTSKSDVWAF



GVTMWEIATRGMTPYPGVQNHEMYDYLLHGHRLKQPEDCLDELYEIMY



SCWRTDPLDRPTFSVLRLQLEKLLESLPDVRNQADVIYVNTQLLESSEGL



AQGSTLAPLDLNIDPDSIIASCTPRAAISVVTAEVHDSKPHEGRYILNGGS



EEWEDLTSAPSAAVTAEKNSVLPGERLVRNGVSWSHSSMLPLGSSLPD



ELLFADDSSEGSEVLM
















TABLE 5





Examples of naturally occurring intracellular domains


between ITIM and ITSM from proteins that have ITIM. *ITSM motif


and vary in length from 7-1882 (Table 4 comprises SEQ ID No 686


to SEQ ID No 717)
















KEEEMAD
SEQ ID No 686





NFHGMNPSKDTS
SEQ ID No 687





HFHKVQPQEPKVTD
SEQ ID No 688





ELIKPHRAAKGAPTS
SEQ ID No 689





SFQMVKPWDSRGQEATD
SEQ ID No 690





QVSSAESHKDLGKKDTE
SEQ ID No 691





SFSEMKSREPKDQEAPST
SEQ ID No 692





SFQGLRLWEPADQEAPST
SEQ ID No 693





NLPKGKKPAPQAAEPNNH
SEQ ID No 694





NHSVIGPNSRLARNVKEAP
SEQ ID No 695





DFQWREKTPEPPVPCVPEQ
SEQ ID No 696





DHLALSRPRRLSTADPADAS
SEQ ID No 697





SPTNNTVYASVTHSNRETEIWTPRENDTI
SEQ ID No 698





DGLRDRRSFHGPYTVQAGLPLNPMGRTGLRGRGSLSCFGPNH
SEQ ID No 699





MRIKMCLIKLCKSKAKSCENDLEMGMLNSKFKKTRYQAGMRNSENLTAN
SEQ ID No 700


NTLSKP






QDLKGDDTAVRDAHSKRDTKCQPQGSSGEEKGTPTTLRGGEASERKR
SEQ ID No 701


PDSGCSTSKD






KQQMEKGPIDAITGEARYSLSEDKLIRQQIDYKTLTLHCVCPENEGSAQV
SEQ ID No 702


PVKVLNCDSITQAKDKLLD






TLQLAGTSPQKATTKLSSAQVDQVEVEYVTMASLPKEDISYASLTLGAED
SEQ ID No 703


QEPTYCNMGHLSSHLPGRGPEEP






EDDSDVEWKFARSKLWLSYFDDGKTLPPPFSLVPSPKSFVYFIMRIVNFP
SEQ ID No 704


KCRRRRLQKDIEMGMGNSKSRLNLFTQSNSRVFESHSFNSILNQP






RKVPSFTFTPTVTYQRGGEAVSSGGRPGLLNISEPAAQPWLADTWPNT
SEQ ID No 705


GNNHNDCSISCCTAGNGNSDSNLTTYSRPADCIANYNNQLDNKQTNLM



LPES






GDQPVYLPTQMLVKFMADIASGMEYLSTKRFIHRDLAARNCMLNENMSV
SEQ ID No 706


CVADFGLSKKIYNGDYYRQGRIAKMPVKWIAIESLADRVYTSKSDVWSF



GVTMWEIATRGQ






ETGPKHIPLQTLLKFMVDIALGMEYLSNRNFLHRDLAARNCMLRDDMTV
SEQ ID No 707


CVADFGLSKKIYSGDYYRQGRIAKMPVKWIAIESLADRVYTSKSDVWAF



GVTMWEIATRGM






FEFCDLGDLKAYLRSEQEHMRGDSQTMLLQRMACEVAAGLAAMHKLHF
SEQ ID No 708


LHSDLALRNCFLTSDLNVKVGDYGIGFSRYKEDYIETDDKKVFPLRWTAP



ELVTSFQDRLLTADQ






LEAPVGREARKWLQLAVFCSPLVPGQSHLQLRIYFLNNTPCALQWALTN
SEQ ID No 709


EQPHGGRLRGPCQLFDFNGARGDQCLKLTYISEGWENVDDSSCQLVP



HLHIWHGKCPFRSFCFRRKAADENEDCSALTNEIIVTMHTFQDGLE






QRSLYDRPASYKKKSMLDSEVKNLLSDDNSEGLTLLDLLSFTYQVARGM
SEQ ID No 710


EFLASKNCVHRDLAARNVLLAQGKIVKICDFGLARDIMHDSNYVSKGSTF



LPVKWMAPESIFDNLYTTLSDVWSYGILLWEIFSLGGTPYPGMMVDS






KECAGEPLFSLFCAIKQQMEKGPIDAITGEARYSLSEDKLIRQQIDYKTLV
SEQ ID No 711


LSCVSPDNANSPEVPVKILNCDTITQVKEKILDAIFKNVPCSHRPKAADMD



LEWRQGSGARMILQDEDITTKIENDWKRLNTLAHYQVPDGSVVALVSKQV






TVTESYTTSDTLKPSVHVHDNRPASNVVVTERVVGPISGADLHGMLEMP
SEQ ID No 712


DLRDGSNVIVTERVIAPSSSLPTSLTIHHPRESSNVVVTERVIQPTSGMIG



SLSMHPELANAHNVIVTERVVSGAGVTGISGTTGISGGIGSSGLVGTSMG



AGSGALSGAGISGGGIGLSSLGGTASIGHMRSSSDHHFNQTIGSASPST



ARSRI






NPEYFSAADVYVPDEWEVAREKITMSRELGQGSFGMVYEGVAKGVVKD
SEQ ID No 713


EPETRVAIKTVNEAASMRERIEFLNEASVMKEFNCHHVVRLLGVVSQGQ



PTLVIMELMTRGDLKSYLRSLRPEMENNPVLAPPSLSKMIQMAGEIADG



MAYLNANKFVHRDLAARNCMVAEDFTVKIGDFGMTRDIYETDYYRKGG



KGLLPVRWMSPESLKDGVF






GGAYVGPTQNRILRLSKELGIETYKVNVSERLVQYVKGKTYPFRGAFPP
SEQ ID No 714


VWNPIAYLDYNNLWRTIDNMGKEIPTDAPWEAQHADKWDKMTMKELID



KICWTKTARRFAYLFVNINVTSEPHEVSALWFLWYVKQCGGTTRIFSVTN



GGQERKFVGGSGQVSERIMDLLGDQVKLNHPVTHVDQSSDNIIIETLNH



EHYECKYVINAIPPTLTAKIHFRPELPAERNQLIQRLPMGAVIKCMMYYKE



AFWKKKDYCGCMIIEDEDAPISITLDDTKPDGSLPAIMGFILARKADRLAK



LHKEIRKKKICELYAKVLGSQEALHPVHYEEKNWCEEQYSGGCYTAYFP



PGIM






GGSYVGPTQNRILRLAKELGLETYKVNEVERLIHHVKGKSYPFRGPFPPV
SEQ ID No 715


WNPITYLDHNNFWRTMDDMGREIPSDAPWKAPLAEEWDNMTMKELLD



KLCWTESAKQLATLFVNLCVTAETHEVSALWFLWYVKQCGGTTRIISTTN



GGQERKFVGGSGQVSERIMDLLGDRVKLERPVIYIDQTRENVLVETLNH



EMYEAKYVISAIPPTLGMKIHFNPPLPMMRNQMITRVPLGSVIKCIVYYKE



PFWRKKDYCGTMIIDGEEAPVAYTLDDTKPEGNYAAIMGFILAHKARKLA



RLTKEERLKKLCELYAKVLGSLEALEPVHYEEKNWCEEQYSGGCYTTYF



PPGIL






KGKKFIVVCGNITVDSVTAFLRNFLRDKSGEINTEIVFLGETPPSLELETIF
SEQ ID No 716


KCYLAYTTFISGSAMKWEDLRRVAVESAEACLIIANPLCSDSHAEDISNIM



RVLSIKNYDSTTRIIIQILQSHNKVYLPKIPSWNWDTGDNIICFAELKLGFIA



QGCLVPGLCTFLTSLFVEQNKKVMPKQTWKKHFLNSMKNKILTQRLSDD



FAGMSFPEVARLCFLKMHLLLIAIEYKSLFTDGFCGLILNPPPQVRIRKNTL



GFFIAETPKDVRRALFYCSVCHDDVFIPELITNCGCKSRSRQHITVPSVKR



MKKCLKGISSRISGQDSPPRVSASTSSISNFTTRTLQHDVEQDSDQLDSS



GMFHWCKPTSLDKVTLKRTGKSKYKFRNHIVACVFGDAHSAPMGLRNF



VMPLRASNYTRKELKDIVFIGSLDYLQREWRFLWNFPQIYILPGCALYSG



DLHAANIEQCSMCAVLSPPPQPSSNQTLVDTEAIMATLTIGSLQIDSSSD



PSPSVSEETPGYTNGHNEKSNCRKVPILTELKNPSNIHFIEQLGGLEGSL



QETNLHLSTAFSTGTVFSGSFLDSLLATAFYNYHVLELLQMLVTGGVSSQ



LEQHLDKDKVYGVADSCTSLLSGRNRCKLGLLSLHETILSDVNPRNTFG



QLFCGSLDLFGILCVGLYRIIDEEELNPENKRFVITRPANEFKLLPSDLVFC



AIPFSTACYKRNEEFSLQKSYEIVNKASQTTETHSDTNCPPTIDSVTE






ASLIRGNRSNCALFSTNLDWLVSKLDRLEASSGILEVLYCVLIESPEVLNII
SEQ ID No 717


QENHIKSIISLLDKHGRNHKVLDVLCSLCVCNGVAVRSNQDLITENLLPGR



ELLLQTNLINYVTSIRPNIFVGRAEGTTQYSKWYFEVMVDEVTPFLTAQA



THLRVGWALTEGYTPYPGAGEGWGGNGVGDDLYSYGFDGLHLWTGH



VARPVTSPGQHLLAPEDVISCCLDLSVPSISFRINGCPVQGVFESFNLDG



LFFPVVSFSAGVKVRFLLGGRHGEFKFLPPPGYAPCHEAVLPRERLHLE



PIKEYRREGPRGPHLVGPSRCLSHTDFVPCPVDTVQIVLPPHLERIREKL



AENIHELWALTRIEQGWTYGPVRDDNKRLHPCLVDFHSLPEPERNYNLQ



MSGETLKTLLALGCHVGMADEKAEDNLKKTKLPKTYMMSNGYKPAPLD



LSHVRLTPAQTTLVDRLAENGHNVWARDRVGQGWSYSAVQDIPARRNP



RLVPYRLLDEATKRSNRDSLCQAVRTLLGYGYNIEPPDQEPSQVENQSR



CDRVRIFRAEKSYTVQSGRWYFEFEAVTTGEMRVGWARPELRPDVELG



ADELAYVFNGHRGQRWHLGSEPFGRPWQPGDVVGCMIDLTENTIIFTLN



GEVLMSDSGSETAFREIEIGDGFLPVCSLGPGQVGHLNLGQDVSSLRFF



AICGLQEGFEPFAINMQRPVTTWFSKGLPQFEPVPLEHPHYEVSRVDGT



VDTPPCLRLTHRTWGSQNSLVEMLFLRLSLPVQFHQHFRCTAGATPLAP



PGLQPPAEDEARAAEPDPDYENLRRSAGGWSEAENGKEGTAKEGAPG



GTPQAGGEAQPARAENEKDATTEKNKKRGFLFKAKKVAMMTQPPATPT



LPRLPHDVVPADNRDDPEIILNTT
















TABLE 6





Examples of naturally occurring N-terminal flanking regions of


ITSM only intracellular domains that could vary in length from


0-2002 (Table 6 comprises SEQ ID No 718 to SEQ ID No 805)
















V






AM






NLMSY
SEQ ID No 718





SRFKRQ
SEQ ID No 719





MDDSDTP
SEQ ID No 720





YGKKRNR
SEQ ID No 721





KSQWIKE
SEQ ID No 722





CRGLAPEE
SEQ ID No 723





RLCSAMKQ
SEQ ID No 724





YRKREWIKE
SEQ ID No 725





RKMKRSSSEIK
SEQ ID No 726





FCNMRRPAHADIK
SEQ ID No 727





LRTVKRANGGELK
SEQ ID No 728





MEQHVGIDVLKRDP
SEQ ID No 729





LEQHVDPHVLQNKP
SEQ ID No 730





RNKDVKDAIRKIIN
SEQ ID No 731





VDFRPPPQGPSGPEV
SEQ ID No 732





DRYFALVQPFRLTRWR
SEQ ID No 733





VRMTSEIETNIVAVERI
SEQ ID No 734





MERLWGLFQRAQQLSPRSSQ
SEQ ID No 735





MAEPQAESEPLLGGARGGGGDWPAGL
SEQ ID No 736





PETKGVALPETMKDAENLGRKAKPKEN
SEQ ID No 737





MEDEAVLDRGASFLKHVCDEEEVEGHH
SEQ ID No 738





YKMYGSEMLHKRDPLDEDEDTDISYKKLKEEEMAD
SEQ ID No 739





RHVSDLHGLTELILLPPPCPASFNADEDDRVDILGPQPESHQQLSASSH
SEQ ID No 740





CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPV
SEQ ID No 741


PCVPEQ






RRKSIKKKRALRRFLETELVEPLTPSGTAPNQAQLRILKETELKRVKVLGS
SEQ ID No 742


GAFG






RIRQKKAQGSTSSTRLHEPEKNAREITQDTNDITYADLNLPKGKKPAPQA
SEQ ID No 743


AEPNNH






AVTISLAYSVKKMMKDNNLVRHLDACETMGNATAICSDKTGTLTTNRMT
SEQ ID No 744


VVQSYLGD






CCRKKRREEKYEKEVHHDIREDVPPPKSRTSTARSYIGSNHSSLGSMSP
SEQ ID No 745


SNMEGYSK






KRRQQKIRKYTMRRLLQETELVEPLTPSGAMPNQAQMRILKETELRKVK
SEQ ID No 746


VLGSGAFG






KYLQKPMYEVQWKVVEEINGNNYVYIDPTQLPYDHKWEFPRNRLSFGK
SEQ ID No 747


TLGAGAFGKVVEA






YTTYPLLKESALILLQTVPKQIDIRNLIKELRNVEGVEEVHELHVWQLAGS
SEQ ID No 748


RIIATAHIKCEDP






AANAIAQSCQPSFYDGTIIVKKLPYLPRILGRNIGSHHVRVEHFMNHSITTL
SEQ ID No 749


AKDTPLEEVVKVVTSTDV






WLHRRLPPQPIRPLPRFAPLVKTEPQRPVKEEEPKIPGDLDQEPSLLYAD
SEQ ID No 750


LDHLALSRPRRLSTADPADAS






KKYQPYKVIKQKLEGRPETEYRKAQTFSGHEDALDDFGIYEFVAFPDVS
SEQ ID No 751


GVSRIPSRSVPASDCVSGQDLHS






MDEINNKIEEEKLVKANITLWEANMIKAYNASFSENSTGPPFFVHPADVP
SEQ ID No 752


RGPCWETMVGQEFVRLTVSDVL






KTHRRKAARTAVGRNDTHPTTGSASPKHQKKSKLHGPTETSSCSGAAP
SEQ ID No 753


TVEMDEELHYASLNFHGMNPSKDTS






RVKTRRKKAAQPVQNTDDVNPVMVSGSRGHQHQFQTGIVSDHPAEAG
SEQ ID No 754


PISEDEQELHYAVLHFHKVQPQEPKVTD






IVLRRRRKRVNTKRSSRAFRAHLRAPLKGNCTHPEDMKLCTVIMKSNGS
SEQ ID No 755


FPVNRRRVEAARRAQELEMEMLSSTSPPER






KARRKQAAGRPEKMDDEDPIMGTITSGSRKKPWPDSPGDQASPPGDA
SEQ ID No 756


PPLEEQKELHYASLSFSEMKSREPKDQEAPST






KICRKEARKRAAAEQDVPSTLGPISQGHQHECSAGSSQDHPPPGAATY
SEQ ID No 757


TPGKGEEQELHYASLSFQGLRLWEPADQEAPST






QRVVCQRYAGANGPFPHEYVSGTPHVPLNFIAPGGSQHGPFTGIACGK
SEQ ID No 758


SMMSSVSLMGGRGGVPLYDRNHVTGASSSSSSSTKA






VRSCRKKSARPAAGVGDTGIEDANAVRGSASQGPLTEPWAEDSPPDQP
SEQ ID No 759


PPASARSSVGEGELQYASLSFQMVKPWDSRGQEATD






FVAKIARPKNRAFSIRFTDTAVVAHMDGKPNLIFQVANTRPSPLTSVRVS
SEQ ID No 760


AVLYQERENGKLYQTSVDFHLDGISSDECPFFIFPL






QLRRRGKTNHYQTTVEKKSLTIYAQVQKPGPLQKKLDSFPAQDPCTTIY
SEQ ID No 761


VAATEPVPESVQETNSI






ILAKISRPKKRAKTITFSKNAVISKRGGKLCLLIRVANLRKSLLIGSHIYGKL
SEQ ID No 762


LKTTVTPEGETIILDQININFVVDAGNENLFFISPL






FLAKIARPKKRAETIRFSQHAVVASHNGKPCLMIRVANMRKSLLIGCQVT
SEQ ID No 763


GKLLQTHQTKEGENIRLNQVNVTFQVDTASDSPFLILPL






WFLKRERQEEYIEEKKRVDICRETPNICPHSGENTEYDTIPHTNRTILKED
SEQ ID No 764


PAN






KCYFLRKAKAKQMPVEMSRPAVPLLNSNNEKMSDPNMEANSHYGHND
SEQ ID No 765


DVRNHAMKPINDNKEPLNSDVQYTEVQVSSAESHKDLGKKDTE






LRKRRDSLSLSTQRTQGPAESARNLEYVSVSPTNNTVYASVTHSNRETE
SEQ ID No 766


IWTPRENDTI






RLFKRRQGRIFPEGSCLNTFTKNPYAASKKTIYTYIMASRNTQPAESRIYD
SEQ ID No 767


EILQSKVLPSKEEPVN






RRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYD
SEQ ID No 768


NDPDLCFRMQEGSEVYSNPCLEENKPGIVYASLNHSVIGPNSRLARNVK



EAP






KYRHKRFAVSEQGNIPHSHDWVWLGNEVELLENPVDITLPSEECTTMID
SEQ ID No 769


RGLQFEERNFLLNGSSQKTFHSQLLRPSDYVYEKEIKNEPMNSSGPKRK



RVKF






NSSYQEIEDDSDVEWKFARSKLWLSYFDDGKTLPPPFSLVPSPKSFVYFI
SEQ ID No 770


MRIVNFPKCRRRRLQKDIEMGMGNSKSRLNLFTQSNSRVFESHSFNSIL



NQP






WRMMKYQQKAAGMSPEQVLQPLEGDLCYADLTLQLAGTSPQKATTKLS
SEQ ID No 771


SAQVDQVEVEYVTMASLPKEDISYASLTLGAEDQEPTYCNMGHLSSHLP



GRGPEEP






NNSYQEIEEDADVEWKFARAKLWLSYFDEGRTLPAPFNLVPSPKSFYYLI
SEQ ID No 772


MRIKMCLIKLCKSKAKSCENDLEMGMLNSKFKKTRYQAGMRNSENLTAN



NTLSKP






QSVFNKRKSRVRHYLVKCPQNSSGETVTSVTSLAPLQPKKGKRQKEKP
SEQ ID No 773


DIPPAVPAKAPIAPTFHKPKLLKPQRKVTLPKIAEENLTYAELELIKPHRAA



KGAPTS






YRHRKKRNGLTSTYAGIRKVPSFTFTPTVTYQRGGEAVSSGGRPGLLNI
SEQ ID No 774


SEPAAQPWLADTWPNTGNNHNDCSISCCTAGNGNSDSNLTTYSRPAD



CIANYNNQLDNKQTNLMLPES






RYQRWKSKLYSIVCGKSTPEKEGELEGTTTKPLAPNPSFSPTPGFTPTL
SEQ ID No 775


GFSPVPSSTFTSSSTYTPGDCPNFAAPRREVAPPYQGADPILATALASD



PIPNPLQKWEDSAHKPQSLDTDDPA






VRLRLQKHRPPADPCRGETETMNNLANCQREKDISVSIIGATQIKNTNKK
SEQ ID No 776


ADFHGDHSADKNGFKARYPAVDYNLVQDLKGDDTAVRDAHSKRDTKC



QPQGSSGEEKGTPTTLRGGEASERKRPDSGCSTSKD






RAWVVFKLSSAPRLHEQRVRDIQKQVREWKEQGSKTFMCTGRPGWLT
SEQ ID No 777


VSLRVGKYKKTHKNIMINLMDILEVDTKKQIVRVEPLVTMGQVTALLTSIG



WTLPVLPELDDLTVGGLIMGTGIESSSHKYGLFQHIC






TRDLVDDMGRHKSDRAINNRPCQILMGKSFKQKKWQDLCVGDVVCLRK
SEQ ID No 778


DNIVPADMLLLASTEPSSLCYVETVDIDGETNLKFRQALMVTHKELATIKK



MASFQGTVTCEAPNSRMHHFVGCLEWNDKKYSLDIGNLLLRGCRIRNTD






VFDPLGGKMAPYSSAGPSHLDSHDSSQLLNGLKTAATSVWETRIKLLCC
SEQ ID No 779


CIGKDDHTRVAFSSTAELFSTYFSDTDLVPSDIAAGLALLHQQQDNIRNN



QEPAQVVCHAPGSSQEADLDAELENCHHYMQFAAAAYGWPLYIYRNPL



TGLCRIGGDCCRSRT






WRRKRKEKQSETSPKEFLTIYEDVKDLKTRRNHEQEQTFPGGGSTIYSM
SEQ ID No 780


IQSQSSAPTSQEPAYTLYSLIQPSRKSGSRKRNHSPSFNS






RKRNNSRLGNGVLYASVNPEYFSAADVYVPDEWEVAREKITMSRELGQ
SEQ ID No 781


GSFGMVYEGVAKGVVKDEPETRVAIKTVNEAASMRERIEFLNEASVMKE



FNCHHVVRLLGVVSQGQPTLVIMELMTRGDLKSYLRSLRPEMENNPVLA



PPSLSKMIQMAGEIADGMAYLNANKFVHRDLAARNCMVAEDFTVKIGDF



GMTRDIYETDYYRKGGKGLLPVRWMSPESLKDGVF






NKCGRRNKFGINRPAVLAPEDGLAMSLHFMTLGGSSLSPTEGKGSGLQ
SEQ ID No 782


GHIIENPQYFSDACVHHIKRRDIVLKWELGEGAFGKVFLAECHNLLPEQD



KMLVAVKALKEASESARQDFQREAELLTMLQHQHIVRFFGVCTEGRPLL



MVFEYMRHGDLNRFLRSHGPDAKLLAGGEDVAPGPLGLGQLLAVASQV



AAGMVYLAGLHFVHRDLATRNCLVGQGLVVKIGDFGMSRDIYS






KLARHSKFGMKGPASVISNDDDSASPLHHISNGSNTPSSSEGGPDAVIIG
SEQ ID No 783


MTKIPVIENPQYFGITNSQLKPDTFVQHIKRHNIVLKRELGEGAFGKVFLA



ECYNLCPEQDKILVAVKTLKDASDNARKDFHREAELLTNLQHEHIVKFYG



VCVEGDPLIMVFEYMKHGDLNKFLRAHGPDAVLMAEGNPPTELTQSQM



LHIAQQIAAGMVYLASQHFVHRDLATRNCLVGENLLVKIGDFGMSRDVYS






NCVSCCKDPEIDFKEFEDNFDDEIDFTPPAEDTPSVQSPAEVFTLSVPNI
SEQ ID No 784


SLPAPSQFQPSVEGLKSQVARHSLNYIQEIGNGWFGKVLLGEIYTGTSVA



RVIVKELKASANPKEQDTFLKNGEPYYILQHPNILQCVGQCVEAIPYLLVF



EFCDLGDLKAYLRSEQEHMRGDSQTMLLQRMACEVAAGLAAMHKLHFL



HSDLALRNCFLTSDLNVKVGDYGIGFSRYKEDYIETDDKKVFPLRWTAPE



LVTSFQDRLLTADQ






YKRKTQDADRTLKRLQLQMDNLESRVALECKEAFAELQTDINELTNHMD
SEQ ID No 785


EVQIPFLDYRTYAVRVLFPGIEAHPVLKELDTPPNVEKALRLFGQLLHSRA



FVLTFIHTLEAQSSFSMRDRGTVASLTMVALQSRLDYATGLLKQLLADLIE



KNLESKNHPKLLLRRTESVAEKMLTNWFTFLLHKFLKECAGEPLFLLYCA



IKQQMEKGPIDAITGEARYSLSEDKLIRQQIDYKTLTLHCVCPENEGSAQV



PVKVLNCDSITQAKDKLLD






KRKGRCSVPAFCSSQAEAPADTPEPTAGHTLYSVLSQGYEKLDTPLRPA
SEQ ID No 786


RQQPTPTSDSSSDSNLTTEEDEDRPEVHKPISGRYEVFDQVTQEGAGH



DPAPEGQADYDPVTPYVTEVESVVGENTMYAQVFNLQGKTPVSQKEES



SA






KRVQETKFGNAFTEEDSELVVNYIAKKSFCRRAIELTLHSLGVSEELQNK
SEQ ID No 787


LEDVVIDRNLLILGKILGEGEFGSVMEGNLKQEDGTSLKVAVKTMKLDNS



SQREIEEFLSEAACMKDFSHPNVIRLLGVCIEMSSQGIPKPMVILPFMKY



GDLHTYLLYSRLETGPKHIPLQTLLKFMVDIALGMEYLSNRNFLHRDLAA



RNCMLRDDMTVCVADFGLSKKIYSGDYYRQGRIAKMPVKWIAIESLADR



VYTSKSDVWAFGVTMWEIATRGM






SRQQRRREARGRGDASGLKRNSERKTPEGRASPAPGSGHPEGPGAHL
SEQ ID No 788


DMNSLDRAQAAKNKGNKYFKAGKYEQAIQCYTEAISLCPTEKNVDLSTF



YQNRAAAFEQLQKWKEVAQDCTKAVELNPKYVKALFRRAKAHEKLDNK



KECLEDVTAVCILEGFQNQQSMLLADKVLKLLGKEKAKEKYKNREPLMP



SPQFIKSYFSSFTDDIISQPMLKGEKSDEDKDKEGEALEVKENSGYLKAK



QYMEEENYDKIISECSKEIDAEGKYMAEALLLRA






LRKRRKETRFGQAFDSVMARGEPAVHFRAARSFNRERPERIEATLDSLG
SEQ ID No 789


ISDELKEKLEDVLIPEQQFTLGRMLGKGEFGSVREAQLKQEDGSFVKVA



VKMLKADIIASSDIEEFLREAACMKEFDHPHVAKLVGVSLRSRAKGRLPIP



MVILPFMKHGDLHAFLLASRIGENPFNLPLQTLIRFMVDIACGMEYLSSRN



FIHRDLAARNCMLAEDMTVCVADFGLSRKIYSGDYYRQGCASKLPVKWL



ALESLADNLYTVQSDVWAFGVTMWEIMTRGQ






HRRKKETRYGEVFEPTVERGELVVRYRVRKSYSRRTTEATLNSLGISEE
SEQ ID No 790


LKEKLRDVMVDRHKVALGKTLGEGEFGAVMEGQLNQDDSILKVAVKTM



KIAICTRSELEDFLSEAVCMKEFDHPNVMRLIGVCFQGSERESFPAPVVIL



PFMKHGDLHSFLLYSRLGDQPVYLPTQMLVKFMADIASGMEYLSTKRFI



HRDLAARNCMLNENMSVCVADFGLSKKIYNGDYYRQGRIAKMPVKWIAI



ESLADRVYTSKSDVWSFGVTMWEIATRGQ






KRIELDDSISASSSSQGLSQPSTQTTQYLRADTPNNATPITSYPTLRIEKN
SEQ ID No 791


DLRSVTLLEAKGKVKDIAISRERITLKDVLQEGTFGRIFHGILIDEKDPNKE



KQAFVKTVKDQASEIQVTMMLTESCKLRGLHHRNLLPITHVCIEEGEKPM



VILPYMNWGNLKLFLRQCKLVEANNPQAISQQDLVHMAIQIACGMSYLA



RREVIHKDLAARNCVIDDTLQVKITDNALSRDLFPMDYHCLGDNENRPVR



WMALESLVNNEFSSASDVWAFGVTLWELMTLGQ






NCRTWWQVLDSLLNSQRKRLHNAASKLHKLKSEGFMKVLKCEVELMAR
SEQ ID No 792


MAKTIDSFTQNQTRLVVIIDGLDACEQDKVLQMLDTVRVLFSKGPFIAIFA



SDPHIIIKAINQNLNSVLRDSNINGHDYMRNIVHLPVFLNSRGLSNARKFL



VTSATNGDVPCSDTTGIQEDADRRVSQNSLGEMTKLGSKTALNRRDTY



RRRQMQRTITRQMSFDLTKLLVTEDWFSDISPQTMRRLLNIVSVTGRLLR



ANQISFNWDRLASWINLTEQWPYRTSWLILYLEETEGIPDQMTLK






MFNYTFQQVQEHTDQIWKFQRHDLIEEYHGRPAAPPPFILLSHLQLFIKR
SEQ ID No 793


VVLKTPAKRHKQLKNKLEKNEEAALLSWEIYLKENYLQNRQFQQKQRPE



QKIEDISNKVDAMVDLLDLDPLKRSGSMEQRLASLEEQVAQTAQALHWI



VRTLRASGFSSEADVPTLASQKAAEEPDAEPGGRKKTEEPGDSYHVNA



RHLLYPNCPVTRFPVPNEKVPWETEFLIYDPPFYTAERKDAAAMDPMGD



TLEPLSTIQYNVVDGLRDRRSFHGPYTVQAGLPLNPMGRTGLRGRGSLS



CFGPNH






AYKRKSRESDLTLKRLQMQMDNLESRVALECKEAFAELQTDIHELTSDL
SEQ ID No 794


DGAGIPFLDYRTYTMRVLFPGIEDHPVLRDLEVPGYRQERVEKGLKLFA



QLINNKVFLLSFIRTLESQRSFSMRDRGNVASLIMTVLQSKLEYATDVLKQ



LLADLIDKNLESKNHPKLLLRRTESVAEKMLTNWFTFLLYKFLKECAGEPL



FSLFCAIKQQMEKGPIDAITGEARYSLSEDKLIRQQIDYKTLVLSCVSPDN



ANSPEVPVKILNCDTITQVKEKILDAIFKNVPCSHRPKAADMDLEWRQGS



GARMILQDEDITTKIENDWKRLNTLAHYQVPDGSVVALVSKQV






RWHCPRRLLGACWTLNGQEEPVSQPTPQLENEVSRQHLPATLPEMVA
SEQ ID No 795


FYQELHTPTQGQTMVRQLMHKLLVFSAREVDHRGGCLMLQDTGISLLIP



PGAVAVGRQERVSLILVWDLSDAPSLSQAQGLVSPVVACGPHGASFLK



PCTLTFKHCAEQPSHARTYSSNTTLLDAKVWRPLGRPGAHASRDECRIH



LSHFSLYTCVLEAPVGREARKWLQLAVFCSPLVPGQSHLQLRIYFLNNTP



CALQWALTNEQPHGGRLRGPCQLFDFNGARGDQCLKLTYISEGWENV



DDSSCQLVPHLHIWHGKCPFRSFCFRRKAADENEDCSALTNEIIVTMHT



FQDGLE






KQKPRYEIRWRVIESISPDGHEYIYVDPMQLPYDSRWEFPRDGLVLGRV
SEQ ID No 796


LGSGAFGKVVEGTAYGLSRSQPVMKVAVKMLKPTARSSEKQALMSELKI



MTHLGPHLNIVNLLGACTKSGPIYIITEYCFYGDLVNYLHKNRDSFLSHHP



EKPKKELDIFGLNPADESTRSYVILSFENNGDYMDMKQADTTQYVPMLE



RKEVSKYSDIQRSLYDRPASYKKKSMLDSEVKNLLSDDNSEGLTLLDLLS



FTYQVARGMEFLASKNCVHRDLAARNVLLAQGKIVKICDFGLARDIMHD



SNYVSKGSTFLPVKWMAPESIFDNLYTTLSDVWSYGILLWEIFSLGGTPY



PGMMVDS






CCCKQRQPEGLGTRFAPVPEGGEGVMQSWRIEGAHPEDRDVSNICAP
SEQ ID No 797


MTASNTQDRMDSSEIYTNTYAAGGTVEGGVSGVELNTGMGTAVGLMAA



GAAGASGAARKRSSTMGTLRDYADADINMAFLDSYFSEKAYAYADEDE



GRPANDCLLIYDHEGVGSPVGSIGCCSWIVDDLDESCMETLDPKFRTLA



EICLNTEIEPFPSHQACIPISTDLPLLGPNYFVNESSGLTPSEVEFQEEMA



ASEPVVHGDIIVTETYGNADPCVQPTTIIFDPQLAPNVVVTEAVMAPVYDI



QGNICVPAELADYNNVIYAERVLASPGVPDMSNSSTTEGCMGPVMSGNI



LVGPEIQVMQMMSPDLPIGQTVGSTSPMTSRHRV






SNKCDVVVVGGGISGMAAAKLLHDSGLNVVVLEARDRVGGRTYTLRNQ
SEQ ID No 798


KVKYVDLGGSYVGPTQNRILRLAKELGLETYKVNEVERLIHHVKGKSYPF



RGPFPPVWNPITYLDHNNFWRTMDDMGREIPSDAPWKAPLAEEWDNM



TMKELLDKLCWTESAKQLATLFVNLCVTAETHEVSALWFLWYVKQCGG



TTRIISTTNGGQERKFVGGSGQVSERIMDLLGDRVKLERPVIYIDQTREN



VLVETLNHEMYEAKYVISAIPPTLGMKIHFNPPLPMMRNQMITRVPLGSVI



KCIVYYKEPFWRKKDYCGTMIIDGEEAPVAYTLDDTKPEGNYAAIMGFIL



AHKARKLARLTKEERLKKLCELYAKVLGSLEALEPVHYEEKNWCEEQYS



GGCYTTYFPPGIL






MENQEKASIAGHMFDVVVIGGGISGLSAAKLLTEYGVSVLVLEARDRVG
SEQ ID No 799


GRTYTIRNEHVDYVDVGGAYVGPTQNRILRLSKELGIETYKVNVSERLVQ



YVKGKTYPFRGAFPPVWNPIAYLDYNNLWRTIDNMGKEIPTDAPWEAQH



ADKWDKMTMKELIDKICWTKTARRFAYLFVNINVTSEPHEVSALWFLWY



VKQCGGTTRIFSVTNGGQERKFVGGSGQVSERIMDLLGDQVKLNHPVT



HVDQSSDNIIIETLNHEHYECKYVINAIPPTLTAKIHFRPELPAERNQLIQRL



PMGAVIKCMMYYKEAFWKKKDYCGCMIIEDEDAPISITLDDTKPDGSLPA



IMGFILARKADRLAKLHKEIRKKKICELYAKVLGSQEALHPVHYEEKNWC



EEQYSGGCYTAYFPPGIM






CCDCGGAPRSAAGFEPVPECSDGAIHSWAVEGPQPEPRDITTVIPQIPP
SEQ ID No 800


DNANIIECIDNSGVYTNEYGGREMQDLGGGERMTGFELTEGVKTSGMP



EICQEYSGTLRRNSMRECREGGLNMNFMESYFCQKAYAYADEDEGRP



SNDCLLIYDIEGVGSPAGSVGCCSFIGEDLDDSFLDTLGPKFKKLADISLG



KESYPDLDPSWPPQSTEPVCLPQETEPVVSGHPPISPHFGTTTVISESTY



PSGPGVLHPKPILDPLGYGNVTVTESYTTSDTLKPSVHVHDNRPASNVV



VTERVVGPISGADLHGMLEMPDLRDGSNVIVTERVIAPSSSLPTSLTIHHP



RESSNVVVTERVIQPTSGMIGSLSMHPELANAHNVIVTERVVSGAGVTGI



SGTTGISGGIGSSGLVGTSMGAGSGALSGAGISGGGIGLSSLGGTASIG



HMRSSSDHHFNQTIGSASPSTARSRI






NLEGVMNQADAPRPLNWTIRKLCHAAFLPSVRLLKAQKSWIERAFYKRE
SEQ ID No 801


CVHIIPSTKDPHRCCCGRLIGQHVGLTPSISVLQNEKNESRLSRNDIQSE



KWSISKHTQLSPTDAFGTIEFQGGGHSNKAMYVRVSFDTKPDLLLHLMT



KEWQLELPKLLISVHGGLQNFELQPKLKQVFGKGLIKAAMTTGAWIFTGG



VNTGVIRHVGDALKDHASKSRGKICTIGIAPWGIVENQEDLIGRDVVRPY



QTMSNPMSKLTVLNSMHSHFILADNGTTGKYGAEVKLRRQLEKHISLQKI



NTRCLPFFSLDSRLFYSFWGSCQLDSVGIGQGVPVVALIVEGGPNVISIV



LEYLRDTPPVPVVVCDGSGRASDILAFGHKYSEEGGLINESLRDQLLVTI



QKTFTYTRTQAQHLFIILMECMKKKELITVFRMGSEGHQDIDLAILTALLK



GANASAPDQLSLALAWNRVDIARSQIFIYGQQWPVGSLEQAMLDALVLD



RVDFVKLLIENGVSMHRFLTISRLEELYNTRHGPSN






ELFANKRKYTSSYEALKGKKFIVVCGNITVDSVTAFLRNFLRDKSGEINTE
SEQ ID No 802


IVFLGETPPSLELETIFKCYLAYTTFISGSAMKWEDLRRVAVESAEACLIIA



NPLCSDSHAEDISNIMRVLSIKNYDSTTRIIIQILQSHNKVYLPKIPSWNWD



TGDNIICFAELKLGFIAQGCLVPGLCTFLTSLFVEQNKKVMPKQTWKKHF



LNSMKNKILTQRLSDDFAGMSFPEVARLCFLKMHLLLIAIEYKSLFTDGFC



GLILNPPPQVRIRKNTLGFFIAETPKDVRRALFYCSVCHDDVFIPELITNCG



CKSRSRQHITVPSVKRMKKCLKGISSRISGQDSPPRVSASTSSISNFTTR



TLQHDVEQDSDQLDSSGMFHWCKPTSLDKVTLKRTGKSKYKFRNHIVA



CVFGDAHSAPMGLRNFVMPLRASNYTRKELKDIVFIGSLDYLQREWRFL



WNFPQIYILPGCALYSGDLHAANIEQCSMCAVLSPPPQPSSNQTLVDTE



AIMATLTIGSLQIDSSSDPSPSVSEETPGYTNGHNEKSNCRKVPILTELKN



PSNIHFIEQLGGLEGSLQETNLHLSTAFSTGTVFSGSFLDSLLATAFYNYH



VLELLQMLVTGGVSSQLEQHLDKDKVYGVADSCTSLLSGRNRCKLGLLS



LHETILSDVNPRNTFGQLFCGSLDLFGILCVGLYRIIDEEELNPENKRFVIT



RPANEFKLLPSDLVFCAIPFSTACYKRNEEFSLQKSYEIVNKASQTTETH



SDTNCPPTIDSVTE






QFEELVYLWMERQKSGGNYSRHRAQTEKHVVLCVSSLKIDLLMDFLNEF
SEQ ID No 803


YAHPRLQDYYVVILCPTEMDVQVRRVLQIPLWSQRVIYLQGSALKDQDL



MRAKMDNGEACFILSSRNEVDRTAADHQTILRAWAVKDFAPNCPLYVQI



LKPENKFHVKFADHVVCEEECKYAMLALNCICPATSTLITLLVHTSRGQE



GQESPEQWQRMYGRCSGNEVYHIRMGDSKFFREYEGKSFTYAAFHAH



KKYGVCLIGLKREDNKSILLNPGPRHILAASDTCFYINITKEENSAFIFKQE



EKRKKRAFSGQGLHEGPARLPVHSIIASMGTVAMDLQGTEHRPTQSGG



GGGGSKLALPTENGSGSRRPSIAPVLELADSSALLPCDLLSDQSEDEVT



PSDDEGLSVVEYVKGYPPNSPYIGSSPTLCHLLPVKAPFCCLRLDKGCK



HNSYEDAKAYGFKNKLIIVSAETAGNGLYNFIVPLRAYYRSRKELNPIVLL



LDNKPDHHFLEAICCFPMVYYMEGSVDNLDSLLQCGIIYADNLVVVDKES



TMSAEEDYMADAKTIVNVQTMFRLFPSLSITTELTHPSNMRFMQFRAKD



SYSLALSKLEKRERENGSNLAFMFRLPFAAGRVFSISMLDTLLYQSFVKD



YMITITRLLLGLDTTPGSGYLCAMKITEGDLWIRTYGRLFQKLCSSSAEIPI



GIYRTESHVFSTSESQISVNVEDCEDTREVKGPWGSRAGTGGSSQGRH



TGGGDPAEHPLLRRKSLQWARRLSRKAPKQAGRAAAAEWISQQRLSLY



RRSERQELSELVKNRMKHLGLPT






MSGGASATGPRRGPPGLEDTTSKKKQKDRANQESKDGDPRKETGSRY
SEQ ID No 804


VAQAGLEPLASGDPSASASHAAGITGSRHRTRLFFPSSSGSASTPQEEQ



TKEGACEDPHDLLATPTPELLLDWRQSAEEVIVKLRVGVGPLQLEDVDA



AFTDTDCVVRFAGGQQWGGVFYAEIKSSCAKVQTRKGSLLHLTLPKKVP



MLTWPSLLVEADEQLCIPPLNSQTCLLGSEENLAPLAGEKAVPPGNDPV



SPAMVRSRNPGKDDCAKEEMAVAADAATLVDEPESMVNLAFVKNDSYE



KGPDSVVVHVYVKEICRDTSRVLFREQDFTLIFQTRDGNFLRLHPGCGP



HTTFRWQVKLRNLIEPEQCTFCFTASRIDICLRKRQSQRWGGLEAPAAR



VGGAKVAVPTGPTPLDSTPPGGAPHPLTGQEEARAVEKDKSKARSEDT



GLDSVATRTPMEHVTPKPETHLASPKPTCMVPPMPHSPVSGDSVEEEE



EEEKKVCLPGFTGLVNLGNTCFMNSVIQSLSNTRELRDFFHDRSFEAEIN



YNNPLGTGGRLAIGFAVLLRALWKGTHHAFQPSKLKAIVASKASQFTGY



AQHDAQEFMAFLLDGLHEDLNRIQNKPYTETVDSDGRPDEVVAEEAWQ



RHKMRNDSFIVDLFQGQYKSKLVCPVCAKVSITFDPFLYLPVPLPQKQKV



LPVFYFAREPHSKPIKFLVSVSKENSTASEVLDSLSQSVHVKPENLRLAE



VIKNRFHRVFLPSHSLDTVSPSDTLLCFELLSSELAKERVVVLEVQQRPQ



VPSVPISKCAACQRKQQSEDEKLKRCTRCYRVGYCNQLCQKTHWPDH



KGLCRPENIGYPFLVSVPASRLTYARLAQLLEGYARYSVSVFQPPFQPG



RMALESQSPGCTTLLSTGSLEAGDSERDPIQPPELQLVTPMAEGDTGLP



RVWAAPDRGPVPSTSGISSEMLASGPIEVGSLPAGERVSRPEAAVPGY



QHPSEAMNAHTPQFFIYKIDSSNREQRLEDKGDTPLELGDDCSLALVWR



NNERLQEFVLVASKELECAEDPGSAGEAARAGHFTLDQCLNLFTRPEVL



APEEAWYCPQCKQHREASKQLLLWRLPNVLIVQLKRFSFRSFIWRDKIN



DLVEFPVRNLDLSKFCIGQKEEQLPSYDLYAVINHYGGMIGGHYTACARL



PNDRSSQRSDVGWRLFDDSTVTTVDESQVV






MADGGEGEDEIQFLRTDDEVVLQCTATIHKEQQKLCLAAEGFGNRLCFL
SEQ ID No 805


ESTSNSKNVPPDLSICTFVLEQSLSVRALQEMLANTVEKSEGQVDVEKW



KFMMKTAQGGGHRTLLYGHAILLRHSYSGMYLCCLSTSRSSTDKLAFDV



GLQEDTTGEACWWTIHPASKQRSEGEKVRVGDDLILVSVSSERYLHLSY



GNGSLHVDAAFQQTLWSVAPISSGSEAAQGYLIGGDVLRLLHGHMDEC



LTVPSGEHGEEQRRTVHYEGGAVSVHARSLWRLETLRVAWSGSHIRW



GQPFRLRHVTTGKYLSLMEDKNLLLMDKEKADVKSTAFTFRSSKEKLDV



GVRKEVDGMGTSEIKYGDSVCYIQHVDTGLWLTYQSVDVKSVRMGSIQ



RKAIMHHEGHMDDGISLSRSQHEESRTARVIRSTVFLFNRFIRGLDALSK



KAKASTVDLPIESVSLSLQDLIGYFHPPDEHLEHEDKQNRLRALKNRQNL



FQEEGMINLVLECIDRLHVYSSAAHFADVAGREAGESWKSILNSLYELLA



ALIRGNRKNCAQFSGSLDWLISRLERLEASSGILEVLHCVLVESPEALNIIK



EGHIKSIISLLDKHGRNHKVLDVLCSLCVCHGVAVRSNQHLICDNLLPGR



DLLLQTRLVNHVSSMRPNIFLGVSEGSAQYKKWYYELMVDHTEPFVTAE



ATHLRVGWASTEGYSPYPGGGEEWGGNGVGDDLFSYGFDGLHLWSG



CIARTVSSPNQHLLRTDDVISCCLDLSAPSISFRINGQPVQGMFENFNIDG



LFFPVVSFSAGIKVRFLLGGRHGEFKFLPPPGYAPCYEAVLPKEKLKVEH



SREYKQERTYTRDLLGPTVSLTQAAFTPIPVDTSQIVLPPHLERIREKLAE



NIHELWVMNKIELGWQYGPVRDDNKRQHPCLVEFSKLPEQERNYNLQM



SLETLKTLLALGCHVGISDEHAEDKVKKMKLPKNYQLTSGYKPAPMDLSF



IKLTPSQEAMVDKLAENAHNVWARDRIRQGWTYGIQQDVKNRRNPRLV



PYTLLDDRTKKSNKDSLREAVRTLLGYGYNLEAPDQDHAARAEVCSGT



GERFRIFRAEKTYAVKAGRWYFEFETVTAGDMRVGWSRPGCQPDQEL



GSDERAFAFDGFKAQRWHQGNEHYGRSWQAGDVVGCMVDMNEHTM



MFTLNGEILLDDSGSELAFKDFDVGDGFIPVCSLGVAQVGRMNFGKDVS



TLKYFTICGLQEGYEPFAVNTNRDITMWLSKRLPQFLQVPSNHEHIEVTRI



DGTIDSSPCLKVTQKSFGSQNSNTDIMFYRLSMPIECAEVFSKTVAGGLP



GAGLFGPKNDLEDYDADSDFEVLMKTAHGHLVPDRVDKDKEATKPEFN



NHKDYAQEKPSRLKQRFLLRRTKPDYSTSHSARLTEDVLADDRDDYDFL



MQTS
















TABLE 7





Naturally occurring C-terminal flanking regions of


ITIM.*ITSM intracellular domains varying in length from 1-2890


(Table 7 comprises SEQ ID No 806 to SEQ ID No 836)
















V






SRP






RTQ






KIHK
SEQ ID No 806





KTSK
SEQ ID No 807





KIHR
SEQ ID No 808





CVRS
SEQ ID No 809





QYSK
SEQ ID No 810





LFEENKL
SEQ ID No 811





KAENIIMMETAQTSL
SEQ ID No 812





YVISEEKDECVIATEV
SEQ ID No 813





NHSKESKPTFSRATALDNV
SEQ ID No 814





RKAVPDAVESRYSRTEGSLDGT
SEQ ID No 815





KIHTGQPLRGPGFGLQLEREMSGMVPK
SEQ ID No 816





VFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL
SEQ ID No 817





QTSPQPASEDTLTYADLDMVHLNRTPKQPAPKPEPSFSEYASVQVPRK
SEQ ID No 818





YSYQPRTNSLSFPKQIAWNQSRTNSIISSQIPLGDNAKENERKTSDEVYD
SEQ ID No 819


EDPFAYSEPL






MKRLIKRYVLKAQVDKENDEVNEGELKEIKQDISSLRYELLEDKSQATEE
SEQ ID No 820


LAILIHKLSEKLNPSMLRCE






IRQPVGRIFFAGTETATKWSGYMEGAVEAGERAAREVLNGLGKVTEKDI
SEQ ID No 821


WVQEPESKDVPAVEITHTFWERNLPS






LRQPVDRIYFAGTETATHWSGYMEGAVEAGERAAREILHAMGKIPEDEI
SEQ ID No 822


WQSEPESVDVPAQPITTTFLERHLPSV






MKRLIKRYVLKAQVDRENDEVNEGELKEIKQDISSLRYELLEEKSQATGE
SEQ ID No 823


LADLIQQLSEKFGKNLNKDHLRVNKGKDI






LFYRRRNSPVERPPRAGHSEHHPDLGPAAEAAASQASRIWQELEAEEE
SEQ ID No 824


PVPEGSGPLGPWGPQDWVGPLPRGPTTPDEGCLRY






LRFQASEEESWAAPPPVSQPPPCNRLPPELFEQLRMLLEPNSITGNDW
SEQ ID No 825


RRLASHLGLCGMKIRFLSCQRSPAAAILELFEEQNGSLQELHYLMTVME



RLDCASAIQNYLSGTHGGSPGPERGGARDNQGLELDEKL






ENSEIYDYLRQGNRLKQPADCLDGLYALMSRCWELNPQDRPSFTELRE
SEQ ID No 826


DLENTLKALPPAQEPDEILYVNMDEGGGYPEPPGAAGGADPPTQPDPK



DSCSCLTAAEVHPAGRYVLCPSTTPSPAQPADRGSPAAPGQEDGA






TRWRRNEDGAICRKSIKKMLEVLVVKLPLSEHWALPGGSREPGEMLPR
SEQ ID No 827


KLKRILRQEHWPSFENLLKCGMEVYKGYMDDPRNTDNAWIETVAVSVH



FQDQNDVELNRLNSNLHACDSGASIRWQVVDRRIPLYANHKTLLQKAAA



EFGAHY






WSFGVVLWEIATLAEQPYQGLSNEQVLRFVMEGGLLDKPDNCPDMLFE
SEQ ID No 828


LMRMCWQYNPKMRPSFLEIISSIKEEMEPGFREVSFYYSEENKLPEPEE



LDLEPENMESVPLDPSASSSSLPLPDRHSGHKAENGPGPGVLVLRASFD



ERQPYAHMNGGRKNERALPLPQSSTC






KSGYRMAKPDHATSEVYEIMVKCWNSEPEKRPSFYHLSEIVENLLPGQY
SEQ ID No 829


KKSYEKIHLDFLKSDHPAVARMRVDSDNAYIGVTYKNEEDKLKDWEGGL



DEQRLSADSGYIIPLPDIDPVPEEEDLGKRNRHSSQTSEESAIETGSSSS



TFIKREDETIEDIDMMDDIGIDSSDLVEDSFL






QNHEMYDYLLHGHRLKQPEDCLDELYEIMYSCWRTDPLDRPTFSVLRL
SEQ ID No 830


QLEKLLESLPDVRNQADVIYVNTQLLESSEGLAQGSTLAPLDLNIDPDSII



ASCTPRAAISVVTAEVHDSKPHEGRYILNGGSEEWEDLTSAPSAAVTAE



KNSVLPGERLVRNGVSWSHSSMLPLGSSLPDELLFADDSSEGSEVLM






CETLQFLDCICGSTTGGLGLLGLYINEKNVALINQTLESLTEYCQGPCHE
SEQ ID No 831


NQNCIATHESNGIDIITALILNDINPLGKKRMDLVLELKNNASKLLLAIMESR



HDSENAERILYNMRPKELVEVIKKAYMQGEVEFEDGENGEDGAASPRN



VGHNIYILAHQLARHNKELQSMLKPGGQVDGDEALEFYAKHTAQIEIVRL



DRTMEQIVFPVPSICEFLTKESKLRIYYTTERDEQGSKINDFFLRSEDLFN



EMNWQKKLRAQPVLYWCARNMS






CETLQFLDCICGSTTGGLGLLGLYINEKNVALVNQNLESLTEYCQGPCHE
SEQ ID No 832


NQTCIATHESNGIDIIIALILNDINPLGKYRMDLVLQLKNNASKLLLAIMESR



HDSENAERILFNMRPRELVDVMKNAYNQGLECDHGDDEGGDDGVSPK



DVGHNIYILAHQLARHNKLLQQMLKPGSDPDEGDEALKYYANHTAQIEIV



RHDRTMEQIVFPVPNICEYLTRESKCRVFNTTERDEQGSKVNDFFQQTE



DLYNEMKWQKKIRNNPALFWFSRHIS






NNSTVSRTSASKYENMIRYTGSPDSLRSRTPMITPDLESGVKMWHLVKN
SEQ ID No 833


HEHGDQKEGDRGSKMVSEIYLTRLLATKGTLQKFVDDLFETIFSTAHRG



SALPLAIKYMFDFLDEQADKHGIHDPHVRHTWKSNCLPLRFWVNMIKNP



QFVFDIHKNSITDACLSVVAQTFMDSCSTSEHRLGKDSPSNKLLYAKDIP



SYKNWVERYYSDIGKMPAISDQDMNAYLAEQSRMHMNEFNTMSALSEI



FSYVGKYSEEILGPLDHDDQCGKQKLAYKLEQVITLMSLDS






CETLQFLDIMCGSTTGGLGLLGLYINEDNVGLVIQTLETLTEYCQGPCHE
SEQ ID No 834


NQTCIVTHESNGIDIITALILNDISPLCKYRMDLVLQLKDNASKLLLALMES



RHDSENAERILISLRPQELVDVIKKAYLQEEERENSEVSPREVGHNIYILA



LQLSRHNKQLQHLLKPVKRIQEEEAEGISSMLSLNNKQLSQMLKSSAPA



QEEEEDPLAYYENHTSQIEIVRQDRSMEQIVFPVPGICQFLTEETKHRLF



TTTEQDEQGSKVSDFFDQSSFLHNEMEWQRKLRSMPLIYWFSRRMT






PYSQRPKAEDMDLEWRQGRMTRIILQDEDVTTKIECDWKRLNSLAHYQ
SEQ ID No 835


VTDGSLVALVPKQVSAYNMANSFTFTRSLSRYESLLRTASSPDSLRSRA



PMITPDQETGTKLWHLVKNHDHADHREGDRGSKMVSEIYLTRLLATKGT



LQKFVDDLFETVFSTAHRGSALPLAIKYMFDFLDEQADQRQISDPDVRHT



WKSNCLPLRFWVNVIKNPQFVFDIHKNSITDACLSVVAQTFMDSCSTSE



HRLGKDSPSNKLLYAKDIPNYKSWVERYYRDIAKMASISDQDMDAYLVE



QSRLHASDFSVLSALNELYFYVTKYRQEILTALDRDASCRKHKLRQKLEQ



IISLVSSDS






DLSNKINEMKTFNSPNLKDGRFVNPSGQPTPYATTQLIQSNLSNNMNNG
SEQ ID No 836


SGDSGEKHWKPLGQQKQEVAPVQYNIVEQNKLNKDYRANDTVPPTIPY



NQSYDQNTGGSYNSSDRGSSTSGSQGHKKGARTPKVPKQGGMNWAD



LLPPPPAHPPPHSNSEEYNISVDESYDQEMPCPVPPARMYLQQDELEEE



EDERGPTPPVRGAASSPAAVSYSHQSTATLTPSPQEELQPMLQDCPEE



TGHMQHQPDRRRQPVSPPPPPRPISPPHTYGYISGPLVSDMDTDAPEE



EEDEADMEVAKMQTRRLLLRGLEQTPASSVGDLESSVTGSMINGWGSA



SEEDNISSGRSSVSSSDGSFFTDADFAQAVAAAAEYAGLKVARRQMQD



AAGRRHFHASQCPRPTSPVSTDSNMSAAVMQKTRPAKKLKHQPGHLR



RETYTDDLPPPPVPPPAIKSPTAQSKTQLEVRPVVVPKLPSMDARTDRS



SDRKGSSYKGREVLDGRQVVDMRTNPGDPREAQEQQNDGKGRGNKA



AKRDLPPAKTHLIQEDILPYCRPTFPTSNNPRDPSSSSSMSSRGSGSRQ



REQANVGRRNIAEMQVLGGYERGEDNNEELEETES
















TABLE 8





Examples of naturally occurring C-terminal flanking regions


of ITSM only intracellular domains that could vary in length from


1-2890 (Table 8 comprises SEQ ID No 837 to SEQ ID No 925)
















L






V






PR






RIN






RTQ






SRP






KIHK
SEQ ID No 837





KTSK
SEQ ID No 838





KIHR
SEQ ID No 839





CVRS
SEQ ID No 840





QYSK
SEQ ID No 841





HYTQQ
SEQ ID No 842





LGPKPQG
SEQ ID No 843





LFEENKL
SEQ ID No 844





VKADTYCA
SEQ ID No 845





QTSEPSGT
SEQ ID No 846





QSCALPTDAL
SEQ ID No 847





AKNALLRWRV
SEQ ID No 848





SKNRLLSIKT
SEQ ID No 849





QHIPAQQQDHPE
SEQ ID No 850





AHHRFYTKRLTFWT
SEQ ID No 851





AHHRFYAKRMTLWT
SEQ ID No 852





KHRHWYPFNFVIEQ
SEQ ID No 853





AHHRFYAERLAGWPC
SEQ ID No 854





KAENIIMMETAQTSL
SEQ ID No 855





YVISEEKDECVIATEV
SEQ ID No 856





RKAVPDAVESRYSRTEGSLDGT
SEQ ID No 857





RKPQVVPPPQQNDLEIPESPTYENFT
SEQ ID No



2028





GKSQPKAQNPARLSRKELENFDVYS
SEQ ID No



2029





KIHTGQPLRGPGFGLQLEREMSGMVPK
SEQ ID No 858





IYAGFDTKIMKNCGKIHLKRTKLDLLMNKL
SEQ ID No 859





ASALKSHRTRGHGRGDCCGRSLGDSCCFSAK
SEQ ID No 860





FTLVLEEIRQGFFTDEDTHLVKKFTLYVGDNWNKCD
SEQ ID No 861





VFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL
SEQ ID No 862





PSEDFERTPQSPTLPPAKVAAPNLSRMGAIPVMIPAQSKDGSIV
SEQ ID No 863





LPEDGGPYTNSILFDSDDNIKWVCQDMGLGDSQDFRDYMESLQDQM
SEQ ID No 864





QTSPQPASEDTLTYADLDMVHLNRTPKQPAPKPEPSFSEYASVQVPRK
SEQ ID No 865





SYHASGHSVAYKPGGFKASTGFGSNTKNKKIYDGGARTEDEVQSYPSK
SEQ ID No 866


HDYV






QVGPGAAARWDLCIDQAVVFIEDAIQYRSINHRVDASSMWLYRRYYSNV
SEQ ID No 867


CQR






EGPRKGHLEEEEEDGEEGAETLAHFCPMELRGPEPLGSRPRQPNLIPW
SEQ ID No 868


AAAGRRAAP






QKPGPLQKKLDSFPAQDPCTTIYVAATEPVPESVQETNSITVYASVTLPES
SEQ ID No 869





YSYQPRTNSLSFPKQIAWNQSRTNSIISSQIPLGDNAKENERKTSDEVYD
SEQ ID No 870


EDPFAYSEPL






DPFEMAAYLKDGYRIAQPINCPDELFAVMACCWALDPEERPKFQQLVQ
SEQ ID No 871


CLTEFHAALGAYV






THSNRETEIWTPRENDTITIYSTINHSKESKPTFSRATALDNV
SEQ ID No 872





MKRLIKRYVLKAQVDKENDEVNEGELKEIKQDISSLRYELLEDKSQATEE
SEQ ID No 873


LAILIHKLSEKLNPSMLRCE






PPSHHQLTLPDPSHHGLHSTPDSPAKPEKNGHAKDHPKIAKIFEIQTMPN
SEQ ID No 874


GKTRTSLKTMSRRKLSQQKEKKATQ






IRQPVGRIFFAGTETATKWSGYMEGAVEAGERAAREVLNGLGKVTEKDI
SEQ ID No 875


WVQEPESKDVPAVEITHTFWERNLPS






FNLQGKTPVSQKEESSATIYCSIRKPQVVPPPQQNDLEIPESPTYENFT
SEQ ID No 876





LRQPVDRIYFAGTETATHWSGYMEGAVEAGERAAREILHAMGKIPEDEI
SEQ ID No 877


WQSEPESVDVPAQPITTTFLERHLPSV






PHTNRTILKEDPANTVYSTVEIPKKMENPHSLLTMPDTPRLFAYENVI
SEQ ID No 878





MKRLIKRYVLKAQVDRENDEVNEGELKEIKQDISSLRYELLEEKSQATGE
SEQ ID No 879


LADLIQQLSEKFGKNLNKDHLRVNKGKDI






LFYRRRNSPVERPPRAGHSEHHPDLGPAAEAAASQASRIWQELEAEEE
SEQ ID No 880


PVPEGSGPLGPWGPQDWVGPLPRGPTTPDEGCLRY






ANLTASDVMNRVNLGYLQDEMNDHQNTLSYVLINPPPDTRLEPSDIVYLI
SEQ ID No 881


RSDPLAHVASSSQSRKSSCSHKLSSCNPETRDETQL






MASRNTQPAESRIYDEILQSKVLPSKEEPVNTVYSEVQFADKMGKASTQ
SEQ ID No 882


DSKPPGTSSYEIVI






ENVPPLRWKEFVRRLGLSDHEIDRLELQNGRCLREAQYSMLATWRRRT
SEQ ID No 883


PRREATLELLGRVLRDMDLLGCLEDIEEALCGPAALPPAPSLLR






LIGDFLRACFVRFCNYCWCWDLEYGYPSYTEFDISGNVLALIFNQGMIW
SEQ ID No 884


MGSFFAPSLPGINILRLHTSMYFQCWAVMCCNVPEARVFKASRSNN






ESTESQILVGIVQRAQLVQALQAEPPSRAPGHQQCLQDILARGCPTEPV
SEQ ID No 885


TLTLFSETTLHQAQNLFKLLNLQSLFVTSRGRAVGCVSWVEMKKAISNLT



NPPAPK






AKTIKDVFHNHGIHATTIQPEFASVGSKSSVVPCELACRTQCALKQCCGT
SEQ ID No 886


LPQAPSGKDAEKTPAVSISCLELSNNLEKKPRRTKAENIPAVVIEIKNMPN



KQPESSL






TPSSPLATLLQHENPSHFELVVFLSAMQEGTGEICQRRTSYLPSEIMLHH
SEQ ID No 887


CFASLLTRGSKGEYQIKMENFDKTVPEFPTPLVSKSPNRTDLDIHINGQSI



DNFQISETGLTE






GGRTMLPIRWMPPESILYRKFTTESDVWSFGVVLWEIFTYGKQPWYQLS
SEQ ID No 888


NTEAIDCITQGRELERPRACPPEVYAIMRGCWQREPQQRHSIKDVHARL



QALAQAPPVYLDVLG






GGHTMLPIRWMPPESIMYRKFTTESDVWSLGVVLWEIFTYGKQPWYQL
SEQ ID No 889


SNNEVIECITQGRVLQRPRTCPQEVYELMLGCWQREPHMRKNIKGIHTL



LQNLAKASPVYLDILG






LNPPPSPATDPSLYNMDMFYSSNIPATARPYRPYIIRGMAPPTTPCSTDV
SEQ ID No 890


CDSDYSASRWKASKYYLDLNSDSDPYPPPPTPHSQYLSAEDSCPPSPA



TERSYFHLFPPPPSPCTDSS






DHNSPFFHMAAETLLQQDFELVVFLDGTVESTSATCQVRTSYVPEEVLW
SEQ ID No 891


GYRFAPIVSKTKEGKYRVDFHNFSKTVEVETPHCAMCLYNEKDVRARM



KRGYDNPNFILSEVNETDDTKM






DETSPLKDLPLRSGEGDFELVLILSGTVESTSATCQVRTSYLPEEILWGY
SEQ ID No 892


EFTPAISLSASGKYIADFSLFDQVVKVASPSGLRDSTVRYGDPEKLKLEE



SLREQAEKEGSALSVRISNV






LRFQASEEESWAAPPPVSQPPPCNRLPPELFEQLRMLLEPNSITGNDW
SEQ ID No 893


RRLASHLGLCGMKIRFLSCQRSPAAAILELFEEQNGSLQELHYLMTVME



RLDCASAIQNYLSGTHGGSPGPERGGARDNQGLELDEKL






TRWRRNEDGAICRKSIKKMLEVLVVKLPLSEHWALPGGSREPGEMLPR
SEQ ID No 894


KLKRILRQEHWPSFENLLKCGMEVYKGYMDDPRNTDNAWIETVAVSVH



FQDQNDVELNRLNSNLHACDSGASIRWQVVDRRIPLYANHKTLLQKAAA



EFGAHY






ENAEIYNYLIGGNRLKQPPECMEDVYDLMYQCWSADPKQRPSFTCLRM
SEQ ID No 895


ELENILGQLSVLSASQDPLYINIERAEEPTAGGSLELPGRDQPYSGAGDG



SGMGAVGGTPSDCRYILTPGGLAEQPGQAEHQPESPLNETQRLLLLQQ



GLLPHSSC






WSFGVVLWEIATLAEQPYQGLSNEQVLRFVMEGGLLDKPDNCPDMLFE
SEQ ID No 896


LMRMCWQYNPKMRPSFLEIISSIKEEMEPGFREVSFYYSEENKLPEPEE



LDLEPENMESVPLDPSASSSSLPLPDRHSGHKAENGPGPGVLVLRASFD



ERQPYAHMNGGRKNERALPLPQSSTC






KSGYRMAKPDHATSEVYEIMVKCWNSEPEKRPSFYHLSEIVENLLPGQY
SEQ ID No 897


KKSYEKIHLDFLKSDHPAVARMRVDSDNAYIGVTYKNEEDKLKDWEGGL



DEQRLSADSGYIIPLPDIDPVPEEEDLGKRNRHSSQTSEESAIETGSSSS



TFIKREDETIEDIDMMDDIGIDSSDLVEDSFL






QNHEMYDYLLHGHRLKQPEDCLDELYEIMYSCWRTDPLDRPTFSVLRL
SEQ ID No 898


QLEKLLESLPDVRNQADVIYVNTQLLESSEGLAQGSTLAPLDLNIDPDSII



ASCTPRAAISVVTAEVHDSKPHEGRYILNGGSEEWEDLTSAPSAAVTAE



KNSVLPGERLVRNGVSWSHSSMLPLGSSLPDELLFADDSSEGSEVLM






PDPYKSSILSLIKFKENPHLIIMNVSDCIPDAIEVVSKPEGTKIQFLGTRKSL
SEQ ID No 899


TETELTKPNYLYLLPTEKNHSGPGPCICFENLTYNQAASDSGSCGHVPV



SPKAPSMLGLMTSPENVLKALEKNYMNSLGEIPAGETSLNYVSQLASPM



FGDKDSLPTNPVEAPHCSEYKMQMAVSLRLALPPPTENSSLSSITLLDP



GEHYC






PNPENCKALQFQKSVCEGSSALKTLEMNPCTPNNVEVLETRSAFPKIED
SEQ ID No 900


TEIISPVAERPEDRSDAEPENHVVVSYCPPIIEEEIPNPAADEAGGTAQVI



YIDVQSMYQPQAKPEEEQENDPVGGAGYKPQMHLPINSTVEDIAAEEDL



DKTAGYRPQANVNTWNLVSPDSPRSIDSNSEIVSFGSPCSINSRQFLIPP



KDEDSPKSNGGGWSFTNFFQNKPND






RDVKKGNLPPDYRISLIDIGLVIEYLMGGAYRCNYTRKRFRTLYHNLFGP
SEQ ID No 901


KRPKALKLLGMEDDIPLRRGRKTTKKREEEVDIDLDDPEINHFPFPFHEL



MVWAVLMKRQKMALFFWQHGEEAMAKALVACKLCKAMAHEASENDM



VDDISQELNHNSRDFGQLAVELLDQSYKQDEQLAMKLLTYELKNWSNAT



CLQLAVAAKHRDFIAHTCSQMLLTDMWMGRLRMRK






KDLKTRRNHEQEQTFPGGGSTIYSMIQSQSSAPTSQEPAYTLYSLIQPSR
SEQ ID No 902


KSGSRKRNHSPSFNSTIYEVIGKSQPKAQNPARLSRKELENFDVYS






GNANAAKPDLDKVISLKEANVKLRANALIKRGSMYMQQQQPLLSTQDFN
SEQ ID No 903


MAADIDPQNADVYHHRGQLKILLDQVEEAVADFDECIRLRPESALAQAQ



KCFALYRQAYTGNNSSQIQAAMKGFEEVIKKFPRCAEGYALYAQALTDQ



QQFGKADEMYDKCIDLEPDNATTYVHKGLLQLQWKQDLDRGLELISKAI



EIDNKCDFAYETMGTIEVQRGNMEKAIDMFNKAINLAKSEMEMAHLYSLC



DAAHAQTEVAKKYGLKPPTL






ENEAPWVTDKRPPPDWPSKGKIQFNNYQVRYRPELDLVLRGITCDIGSM
SEQ ID No 904


EKIGVVGRTGAGKSSLTNCLFRILEAAGGQIIIDGVDIASIGLHDLREKLTII



PQDPILFSGSLRMNLDPFNNYSDEEIWKALELAHLKSFVASLQLGLSHEV



TEAGGNLSIGQRQLLCLGRALLRKSKILVLDEATAAVDLETDNLIQTTIQN



EFAHCTVITIAHRLHTIMDSDKVMVLDNGKIIECGSPEELLQIPGPFYFMA



KEAGIENVNSTKF






CETLQFLDCICGSTTGGLGLLGLYINEKNVALINQTLESLTEYCQGPCHE
SEQ ID No 905


NQNCIATHESNGIDIITALILNDINPLGKKRMDLVLELKNNASKLLLAIMESR



HDSENAERILYNMRPKELVEVIKKAYMQGEVEFEDGENGEDGAASPRN



VGHNIYILAHQLARHNKELQSMLKPGGQVDGDEALEFYAKHTAQIEIVRL



DRTMEQIVFPVPSICEFLTKESKLRIYYTTERDEQGSKINDFFLRSEDLFN



EMNWQKKLRAQPVLYWCARNMS






CETLQFLDCICGSTTGGLGLLGLYINEKNVALVNQNLESLTEYCQGPCHE
SEQ ID No 906


NQTCIATHESNGIDIIIALILNDINPLGKYRMDLVLQLKNNASKLLLAIMESR



HDSENAERILFNMRPRELVDVMKNAYNQGLECDHGDDEGGDDGVSPK



DVGHNIYILAHQLARHNKLLQQMLKPGSDPDEGDEALKYYANHTAQIEIV



RHDRTMEQIVFPVPNICEYLTRESKCRVFNTTERDEQGSKVNDFFQQTE



DLYNEMKWQKKIRNNPALFWFSRHIS






NNSTVSRTSASKYENMIRYTGSPDSLRSRTPMITPDLESGVKMWHLVKN
SEQ ID No 907


HEHGDQKEGDRGSKMVSEIYLTRLLATKGTLQKFVDDLFETIFSTAHRG



SALPLAIKYMFDFLDEQADKHGIHDPHVRHTWKSNCLPLRFWVNMIKNP



QFVFDIHKNSITDACLSWAQTFMDSCSTSEHRLGKDSPSNKLLYAKDIP



SYKNWVERYYSDIGKMPAISDQDMNAYLAEQSRMHMNEFNTMSALSEI



FSYVGKYSEEILGPLDHDDQCGKQKLAYKLEQVITLMSLDS






CETLQFLDIMCGSTTGGLGLLGLYINEDNVGLVIQTLETLTEYCQGPCHE
SEQ ID No 908


NQTCIVTHESNGIDIITALILNDISPLCKYRMDLVLQLKDNASKLLLALMES



RHDSENAERILISLRPQELVDVIKKAYLQEEERENSEVSPREVGHNIYILA



LQLSRHNKQLQHLLKPVKRIQEEEAEGISSMLSLNNKQLSQMLKSSAPA



QEEEEDPLAYYENHTSQIEIVRQDRSMEQIVFPVPGICQFLTEETKHRLF



TTTEQDEQGSKVSDFFDQSSFLHNEMEWQRKLRSMPLIYWFSRRMT






LADGSFVRCTPSENSDLFYAVPWSCGTLGFLVAAEIRIIPAKKYVKLRFEP
SEQ ID No 909


VRGLEAICAKFTHESQRQENHFVEGLLYSLDEAVIMTGVMTDEAEPSKL



NSIGNYYKPWFFKHVENYLKTNREGLEYIPLRHYYHRHTRSIFWELQDIIP



FGNNPIFRYLFGWMVPPKISLLKLTQGETLRKLYEQHHVVQDMLVPMKC



LQQALHTFQNDIHVYPIWLCPFILPSQPGLVHPKGNEAELYIDIGAYGEPR



VKHFEARSCMRQLEKFVRSVHGFQMLYADCYMNREEFWEMFDGSLYH



KLREKLGCQDAFPEVYDKICKAARH






NPEYFSASDMYVPDEWEVPREQISIIRELGQGSFGMVYEGLARGLEAGE
SEQ ID No 910


ESTPVALKTVNELASPRECIEFLKEASVMKAFKCHHWRLLGVVSQGQP



TLVIMELMTRGDLKSHLRSLRPEAENNPGLPQPALGEMIQMAGEIADGM



AYLAANKFVHRDLAARNCMVSQDFTVKIGDFGMTRDVYETDYYRKGGK



GLLPVRWMAPESLKDGIFTTHSDVWSFGVVLWEIVTLAEQPYQGLSNEQ



VLKFVMDGGVLEELEGCPLQLQELMSRCWQPNPRLRPSFTHILDSIQEE



LRPSFRLLSFYYSPECRGARGSLPTTDAEPDSSPTPRDCSPQNGGPGH






PAPSALTPKILDLLVHAISINSAYTTKILPPEKEGALPRQVGNKTECALLGF
SEQ ID No 911


VLDLKRDFQPVREQIPEDKLYKVYTFNSVRKSMSTVIRMPDGGFRLFSK



GASEILLKKCTNILNSNGELRGFRPRDRDDMVRKIIEPMACDGLRTICIAY



RDFSAGQEPDWDNENEVVGDLTCIAVVGIEDPVRPEVPEAIRKCQRAGI



TVRMVTGDNINTARAIAAKCGIIQPGEDFLCLEGKEFNRRIRNEKGEIEQE



RLDKVWPKLRVLARSSPTDKHTLVKGIIDSTTGEQRQVVAVTGDGTNDG



PALKKADVGFAMGIAGTDVAKEASDIILTDDNFTSIVKAVMWGRNVYDSI






GGDQLNCHFGSILHTTGLQYRDFIHVSFHDKVYELPFLVALDHRKESVVV
SEQ ID No 912


AVRGTMSLQDVLTDLSAESEVLDVECEVQDRLAHKGISQAARYVYQRLI



NDGILSQAFSIAPEYRLVIVGHSLGGGAAALLATMLRAAYPQVRCYAFSP



PRGLWSKALQEYSQSFIVSLVLGKDVIPRLSVTNLEDLKRRILRVVAHCN



KPKYKILLHGLWYELFGGNPNNLPTELDGGDQEVLTQPLLGEQSLLTRW



SPAYSFSSDSPLDSSPKYPPLYPPGRIIHLQEEGASGRFGCCSAAHYSA



KWSHEAEFSKILIGPKMLTDHMPDILMRALDSVVSDRAACVSCPAQGVS



SVDVA






PYSQRPKAEDMDLEWRQGRMTRIILQDEDVTTKIECDWKRLNSLAHYQ
SEQ ID No 913


VTDGSLVALVPKQVSAYNMANSFTFTRSLSRYESLLRTASSPDSLRSRA



PMITPDQETGTKLWHLVKNHDHADHREGDRGSKMVSEIYLTRLLATKGT



LQKFVDDLFETVFSTAHRGSALPLAIKYMFDFLDEQADQRQISDPDVRHT



WKSNCLPLRFWVNVIKNPQFVFDIHKNSITDACLSVVAQTFMDSCSTSE



HRLGKDSPSNKLLYAKDIPNYKSWVERYYRDIAKMASISDQDMDAYLVE



QSRLHASDFSVLSALNELYFYVTKYRQEILTALDRDASCRKHKLRQKLEQ



IISLVSSDS






KSDAAMTVAVKMLKPSAHLTEREALMSELKVLSYLGNHMNIVNLLGACTI
SEQ ID No 914


GGPTLVITEYCCYGDLLNFLRRKRDSFICSKQEDHAEAALYKNLLHSKES



SCSDSTNEYMDMKPGVSYVVPTKADKRRSVRIGSYIERDVTPAIMEDDE



LALDLEDLLSFSYQVAKGMAFLASKNCIHRDLAARNILLTHGRITKICDFG



LARDIKNDSNYVVKGNARLPVKWMAPESIFNCVYTFESDVWSYGIFLWE



LFSLGSSPYPGMPVDSKFYKMIKEGFRMLSPEHAPAEMYDIMKTCWDA



DPLKRPTFKQIVQLIEKQISESTNHIYSNLANCSPNRQKPVVDHSVRINSV



GSTASSSQPLLVHDDV






HVPKSYRRRRRHKRKTGHKEKKEKERISENYSDKSDIENADESSSSILKP
SEQ ID No 915


LISPAAERIRFILGEEDDSPAPPQLFTELDELLAVDGQEMEWKETARWIK



FEEKVEQGGERWSKPHVATLSLHSLFELRTCMEKGSIMLDREASSLPQL



VEMIVDHQIETGLLKPELKDKVTYTLLRKHRHQTKKSNLRSLADIGKTVSS



ASRMFTNPDNGSPAMTHRNLTSSSLNDISDKPEKDQLKNKFMKKLPRD



AEASNVLVGEVDFLDTPFIAFVRLQQAVMLGALTEVPVPTRFLFILLGPKG



KAKSYHEIGRAIATLMSDEVFHDIAYKAKDRHDLIAGIDEFLDEVIVLPPGE



WDPAIRIEPPKSLPSSDKRKNMYSGGENVQMNGDTPHDGGHGGGGHG



DCEELQRTGRFCGGLIKDIKRKAPFFASDFYDALNIQ






WIPDGENVKIPVAIKVLRENTSPKANKEILDEAYVMAGVGSPYVSRLLGIC
SEQ ID No 916


LTSTVQLVTQLMPYGCLLDHVRENRGRLGSQDLLNWCMQIAKGMSYLE



DVRLVHRDLAARNVLVKSPNHVKITDFGLARLLDIDETEYHADGGKVPIK



WMALESILRRRFTHQSDVWSYGVTVWELMTFGAKPYDGIPAREIPDLLE



KGERLPQPPICTIDVYMIMVKCWMIDSECRPRFRELVSEFSRMARDPQR



FVVIQNEDLGPASPLDSTFYRSLLEDDDMGDLVDAEEYLVPQQGFFCPD



PAPGAGGMVHHRHRSSSTRSGGGDLTLGLEPSEEEAPRSPLAPSEGA



GSDVFDGDLGMGAAKGLQSLPTHDPSPLQRYSEDPTVPLPSETDGYVA



PLTCSPQPEYVNQPDVRPQPPSPREGPLPAARPAGATLERPKTLSPGK



NGVVKDVFAFGGAVENPEYLTPQGGAAPQPHPPPAFSPAFDNLYYWD



QDPPERGAPPSTFKGTPTAENPEYLGLDVPV






IMDPDEVPLDEQCERLPYDASKWEFARERLKLGKSLGRGAFGKVVQAS
SEQ ID No 917


AFGIKKSPTCRTVAVKMLKEGATASEYKALMTELKILTHIGHHLNVVNLLG



ACTKQGGPLMVIVEYCKYGNLSNYLKSKRDLFFLNKDAALHMEPKKEKM



EPGLEQGKKPRLDSVTSSESFASSGFQEDKSLSDVEEEEDSDGFYKEPI



TMEDLISYSFQVARGMEFLSSRKCIHRDLAARNILLSENNVVKICDFGLAR



DIYKNPDYVRKGDTRLPLKWMAPESIFDKIYSTKSDVWSYGVLLWEIFSL



GGSPYPGVQMDEDFCSRLREGMRMRAPEYSTPEIYQIMLDCWHRDPK



ERPRFAELVEKLGDLLQANVQQDGKDYIPINAILTGNSGFTYSTPAFSED



FFKESISAPKFNSGSSDDVRYVNAFKFMSLERIKTFEELLPNATSMFDDY



QGDSSTLLASPMLKRFTWTDSKPKASLKIDLRVTSKSKESGLSDVSRPS



FCHSSCGHVSEGKRRFTYDHAELERKIACCSPPPDYNSVVLYSTPPI






IMDPGEVPLEEQCEYLSYDASQWEFPRERLHLGRVLGYGAFGKVVEAS
SEQ ID No 918


AFGIHKGSSCDTVAVKMLKEGATASEHRALMSELKILIHIGNHLNVVNLLG



ACTKPQGPLMVIVEFCKYGNLSNFLRAKRDAFSPCAEKSPEQRGRFRA



MVELARLDRRRPGSSDRVLFARFSKTEGGARRASPDQEAEDLWLSPLT



MEDLVCYSFQVARGMEFLASRKCIHRDLAARNILLSESDVVKICDFGLAR



DIYKDPDYVRKGSARLPLKWMAPESIFDKVYTTQSDVWSFGVLLWEIFS



LGASPYPGVQINEEFCQRLRDGTRMRAPELATPAIRRIMLNCWSGDPKA



RPAFSELVEILGDLLQGRGLQEEEEVCMAPRSSQSSEEGSFSQVSTMAL



HIAQADAEDSPPSLQRHSLAARYYNWVSFPGCLARGAETRGSSRMKTF



EEFPMTPTTYKGSVDNQTDSGMVLASEEFEQIESRHRQESGFSCKGPG



QNVAVTRAHPDSQGRRRRPERGARGGQVFYNSEYGELSEPSEEDHCS



PSARVTFFTDNSY






VMDPDELPLDEHCERLPYDASKWEFPRDRLKLGKPLGRGAFGQVIEAD
SEQ ID No 919


AFGIDKTATCRTVAVKMLKEGATHSEHRALMSELKILIHIGHHLNVVNLLG



ACTKPGGPLMVIVEFCKFGNLSTYLRSKRNEFVPYKTKGARFRQGKDYV



GAIPVDLKRRLDSITSSQSSASSGFVEEKSLSDVEEEEAPEDLYKDFLTL



EHLICYSFQVAKGMEFLASRKCIHRDLAARNILLSEKNVVKICDFGLARDI



YKDPDYVRKGDARLPLKWMAPETIFDRVYTIQSDVWSFGVLLWEIFSLG



ASPYPGVKIDEEFCRRLKEGTRMRAPDYTTPEMYQTMLDCWHGEPSQ



RPTFSELVEHLGNLLQANAQQDGKDYIVLPISETLSMEEDSGLSLPTSPV



SCMEEEEVCDPKFHYDNTAGISQYLQNSKRKSRPVSVKTFEDIPLEEPE



VKVIPDDNQTDSGMVLASEELKTLEDRTKLSPSFGGMVPSKSRESVASE



GSNQTSGYQSGYHSDDTDTTVYSSEEAELLKLIEIGVQTGSTAQILQPDS



GTTLSSPPV






FEPTVERGELVVRYRVRKSYSRRTTEATLNSLGISEELKEKLRDVMVDR
SEQ ID No 920


HKVALGKTLGEGEFGAVMEGQLNQDDSILKVAVKTMKIAICTRSELEDFL



SEAVCMKEFDHPNVMRLIGVCFQGSERESFPAPVVILPFMKHGDLHSFL



LYSRLGDQPVYLPTQMLVKFMADIASGMEYLSTKRFIHRDLAARNCMLN



ENMSVCVADFGLSKKIYNGDYYRQGRIAKMPVKWIAIESLADRVYTSKS



DVWSFGVTMWEIATRGQTPYPGVENSEIYDYLRQGNRLKQPADCLDGL



YALMSRCWELNPQDRPSFTELREDLENTLKALPPAQEPDEILYVNMDEG



GGYPEPPGAAGGADPPTQPDPKDSCSCLTAAEVHPAGRYVLCPSTTPS



PAQPADRGSPAAPGQEDGA






WVPEGETVKIPVAIKILNETTGPKANVEFMDEALIMASMDHPHLVRLLGV
SEQ ID No 921


CLSPTIQLVTQLMPHGCLLEYVHEHKDNIGSQLLLNWCVQIAKGMMYLE



ERRLVHRDLAARNVLVKSPNHVKITDFGLARLLEGDEKEYNADGGKMPI



KWMALECIHYRKFTHQSDVWSYGVTIWELMTFGGKPYDGIPTREIPDLL



EKGERLPQPPICTIDVYMVMVKCWMIDADSRPKFKELAAEFSRMARDPQ



RYLVIQGDDRMKLPSPNDSKFFQNLLDEEDLEDMMDAEEYLVPQAFNIP



PPIYTSRARIDSNRSEIGHSPPPAYTPMSGNQFVYRDGGFAAEQGVSVP



YRAPTSTIPEAPVAQGATAEIFDDSCCNGTLRKPVAPHVQEDSSTQRYS



ADPTVFAPERSPRGELDEEGYMTPMRDKPKQEYLNPVEENPFVSRRKN



GDLQALDNPEYHNASNGPPKAEDEYVNEPLYLNTFANTLGKAEYLKNNI



LSMPEKAKKAFDNPDYWNHSLPPRSTLQHPDYLQEYSTKYFYKQNGRI



RPIVAENPEYLSEFSLKPGTVLPPPPYRHRNTVV






DLSNKINEMKTFNSPNLKDGRFVNPSGQPTPYATTQLIQSNLSNNMNNG
SEQ ID No 922


SGDSGEKHWKPLGQQKQEVAPVQYNIVEQNKLNKDYRANDTVPPTIPY



NQSYDQNTGGSYNSSDRGSSTSGSQGHKKGARTPKVPKQGGMNWAD



LLPPPPAHPPPHSNSEEYNISVDESYDQEMPCPVPPARMYLQQDELEEE



EDERGPTPPVRGAASSPAAVSYSHQSTATLTPSPQEELQPMLQDCPEE



TGHMQHQPDRRRQPVSPPPPPRPISPPHTYGYISGPLVSDMDTDAPEE



EEDEADMEVAKMQTRRLLLRGLEQTPASSVGDLESSVTGSMINGWGSA



SEEDNISSGRSSVSSSDGSFFTDADFAQAVAAAAEYAGLKVARRQMQD



AAGRRHFHASQCPRPTSPVSTDSNMSAAVMQKTRPAKKLKHQPGHLR



RETYTDDLPPPPVPPPAIKSPTAQSKTQLEVRPVVVPKLPSMDARTDRS



SDRKGSSYKGREVLDGRQVVDMRTNPGDPREAQEQQNDGKGRGNKA



AKRDLPPAKTHLIQEDILPYCRPTFPTSNNPRDPSSSSSMSSRGSGSRQ



REQANVGRRNIAEMQVLGGYERGEDNNEELEETES






EPQDGCHPGDSVERSVTCLPSASDENENQLDGDGHEHLTSSDSAMGK
SEQ ID No 923


PQVSEQDSLNNNESCTLSCEVAAGENLQNTLCEASRDEQAFLGKDKKIP



GKRSPRSKKGTAKKIPPGLFSGDIAPLMQEKVLSAVTYAVDDEEAAEVN



ANEQPEAPKLVLQSLFSLIRGEVEQLDSRALPLCLHQIAESYFQEEDYEK



AMKFIQLERLYHEQLLANLSAIQEQWETKWKTVQPHTVTALRNSEKGFN



GEDFERLTKICATHQDPLLSKHKIAAVEKSQERKCSTQLLVSEDPKEGGA



TTKESESKTCLGTESSKESQHTVEPLGSSPCCHQMDVQTDSPSLSVTA



GKDHMEELLCSAEATLALHTQSSETAGSPSGPDSSEDACEDDSRLQLA



QTEACQDVARIEGIAEDPKVFLSSKSKTEPLISPGCDRIPPALISEGKYSQ



AQRKELRLPLRDASEALPTDQLENNELNELQQPDLTDSDGKSPQAQAD



SDGSENVLCGNNQISDLGILLPEVCMAPEEKGDKDDQLNKETEDYLNSL



LEGCLKDTEDSLSYEDNQDDDSDLLQDLSPEEASYSLQENLPSDESCLS



LDDLAKRIEIAEVVPTEGLVSILKKRNDTVGDHPAQMQHKPSKRRVRFQE



IDDSLDQDEVGGGS






SKNIPTTKDVEPLLEIDGDIRNFEVFLSSRTPVLVARDVKVFLPCTVNLDP
SEQ ID No 924


KLREIIADVRAAREQISIGGLAYPPLPLHEGPPRAPSGYSQPPSVCSSTSF



NGPFAGGVVSPQPHSSYYSGMTGPQHPFYNRPFFAPYLYTPRYYPGG



SQHLISRPSVKTSLPRDQNNGLEVIKEDAAEGLSSPTDSSRGSGPAPGP



VVLLNSLNVDAVCEKLKQIEGLDQSMLPQYCTTIKKANINGRVLAQCNID



ELKKEMNMNFGDWHLFRSTVLEMRNAESHVVPEDPRFLSESSSGPAPH



GEPARRASHNELPHTELSSQTPYTLNFSFEELNTLGLDEGAPRHSNLSW



QSQTRRTPSLSSLNSQDSSIEISKLTDKVQAEYRDAYREYIAQMSQLEG



GPGSTTISGRSSPHSTYYMGQSSSGGSIHSNLEQEKGKDSEPKPDDGR



KSFLMKRGDVIDYSSSGVSTNDASPLDPITEEDEKSDQSGSKLLPGKKS



SERSSLFQTDLKLKGSGLRYQKLPSDEDESGTEESDNTPLLKDDKDRKA



EGKVERVPKSPEHSAEPIRTFIKAKEYLSDALLDKKDSSDSGVRSSESSP



NHSLHNEVADDSQLEKANLIELEDDSHSGKRGIPHSLSGLQDPIIARMSIC



SEDKKSPSECSLIASSPEENWPACQKAYNLNRTPSTVTLNNNSAPANRA



NQNFDEMEGIRETSQVILRPSSSPNPTTIQNENLKSMTHKRSQRSSYTR



LSKDPPELHAAASSESTGFGEERESIL






WSLGVTLWELFDNAAQPYSNLSNLDVLNQVIRERDTKLPKPQLEQPYSD
SEQ ID No 925


RWYEVLQFCWLSPEKRPAAEDVHRLLTYLRLQSQRDSEVDFEQQWNA



LKPNTNSRDSSNNAAFPILDHFARDRLGREMEEVLTVTETSQGLSFEYV



WEAAKHDHFDERSRGHLDEGLSYTSIFYPVEVFESSLSDPGPGKQDDS



GQDVPLRVPGVVPVFDAHNLSVGSDYYIQLEEKSGSNLELDYPPALLTT



DMDNPERTGPELSQLTALRSVELEESSTDEDFFQSSTDPKDSSLPGDLH



VTSGPESPFNNIFNDVDKSEDLPSHQKIFDLMELNGVQADFKPATLSSSL



DNPKESVITGHFEKEKPRKIFDSEPLCLSDNLMHQDNFDPLNVQELSENF



LFLQEKNLLKGSLSSKEHINDLQTELKNAGFTEAMLETSCRNSLDTELQF



AENKPGLSLLQENVSTKGDDTDVMLTGDTLSTSLQSSPEVQVPPTSFET



EETPRRVPPDSLPTQGETQPTCLDVIVPEDCLHQDISPDAVTVPVEILST



DARTHSLDNRSQDSPGESEETLRLTESDSVLADDILASRVSVGSSLPEL



GQELHNKPFSEDHHSHRRLEKNLEAVETLNQLNSKDAAKEAGLVSALSS



DSTSQDSLLEDSLSAPFPASEPSLETPDSLESVDVHEALLDSLGSHTPQK



LVPPDKPADSGYETENLESPEWTLHPAPEGTADSEPATTGDGGHSGLP



PNPVIVISDAGDGHRGTEVTPETFTAGSQGSYRDSAYFSDNDSEPEKRS



EEVPGTSPSALVLVQEQPLPEPVLPEQSPAAQDSCLEARKSQPDESCLS



ALHNSSDLELRATPEPAQTGVPQQVHPTEDEASSPWSVLNAELSSGDD



FETQDDRPCTLASTGTNTNELLAYTNSALDKSLSSHSEGPKLKEPDIEGK



YLGKLGVSGMLDLSEDGMDADEEDENSDDSDEDLRAFNLHSLSSESED



ETEHPVPIILSNEDGRHLRSLLKPTAANAPDPLPEDWKKEKKAVTFFDDV



TVYLFDQETPTKELGPCGGEACGPDLSGPAPASGSPYLSRCINSESSTD



EEGGGFEWDDDFSPDPFMSKTTSNLLSSKPSLQTSKYFSPPPPARSTE



QSWPHSAPYSRFSISPANIASFSLTHLTDSDIEQGGSSEDGEKD









In some embodiments, variants of the sequence ((L1-ITIM-L2)n-(L3-ITSM-LA)m)p have at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% amino acid sequence identity with said sequence.


In some embodiments, variants of the sequence ((L1-ITIM-L2)n-(L3-ITSM-LA)m)p have at least 95% amino acid sequence identity with said sequence.


In some embodiments, variants of the sequence ((L1-ITIM-L2)n-(L3-ITSM-L4)m)p have at least 99% amino acid sequence identity with said sequence.


In some embodiments, variants of the sequence ((L1-ITIM-L2)n-(L3-ITSM-L4)m)p have substantially the same activity as the non-variant sequence. In some embodiments, substantially the same activity refers to at least 80%, 85%, 90%, 95% of the activity of the non-variant sequence.


In some embodiments, substantially the same activity refers to at least 80%, 85%, 90%, 95% of the activity of the non-variant sequence as measured by monitoring the luciferase activity in reporter cells comprising a P-CAR and an N-CAR comprising the intracellular domain to be tested and incorporating inducible NFAT- or NfkB-regulated luciferase expression, such as for example as disclosed in Example 3 below.


Transmembrane Domain of the N-CAR

With respect to the transmembrane domain, in various embodiments, a N-CAR can be designed to comprise a transmembrane domain that is attached to the extracellular domain of the N-CAR. A transmembrane domain can include one or more additional amino acids adjacent to the transmembrane region, e.g., one or more amino acid associated with the extracellular region of the protein from which the transmembrane was derived (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 up to 15 amino acids of the extracellular region) and/or one or more additional amino acids associated with the intracellular region of the protein from which the transmembrane protein is derived (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 up to 15 amino acids of the intracellular region). In one aspect, the transmembrane domain is one that is associated with one of the other domains of the N-CAR. In some instances, the transmembrane domain can be selected or modified by amino acid substitution to avoid binding of such domains to the transmembrane domains of the same or different surface membrane proteins, e.g., to minimize interactions with other members of the receptor complex. In one aspect, the transmembrane domain is capable of homodimerization with another CAR on the CAR T-cell surface. In a different aspect the amino acid sequence of the transmembrane domain may be modified or substituted so as to minimize interactions with the binding domains of the native binding partner present in the same CAR T-Cell.


The transmembrane domain may be derived either from a natural or from a recombinant source. Where the source is natural, the domain may be derived from any membrane-bound or transmembrane protein. In one aspect the transmembrane domain is capable of signaling to the intracellular domain(s) whenever the N-CAR has bound to a target. A transmembrane domain of particular use in this invention may include at least the transmembrane region(s) of e.g., the alpha, beta or zeta chain of the T-cell receptor, PD-1, 4-1BB, OX40, ICOS, CTLA-4, LAG3, 2B4, BTLA4, TIM-3, TIGIT, SIRPA, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137, CD154.


In some embodiment, the transmembrane domain of the N-CAR includes at least the transmembrane region(s) of PD-1 or CD28alpha.


In some embodiments, the transmembrane domain can be attached to the extracellular domain of the N-CAR, via a hinge, e.g., a hinge from a human protein. For example, in one embodiment, the hinge can be a human Ig (immunoglobulin) hinge, e.g., a PD-1 hinge, an IgG4 hinge, or a CD8alpha hinge.


In some embodiments, the transmembrane domain may be recombinant, in which case it will comprise predominantly hydrophobic residues such as leucine and valine. In one aspect a triplet of phenylalanine, tryptophan and valine can be found at each end of a recombinant transmembrane domain.


Optionally, a short oligo- or polypeptide linker, between 2 and 10 amino acids in length may form the linkage between the transmembrane domain and the cytoplasmic region of the N-CAR. A glycine-serine doublet provides a particularly suitable linker. For example, in one aspect, the linker comprises the amino acid sequence of GGGGSGGGGS. In some embodiments, the linker is encoded by a nucleotide sequence of GGTGGCGGAGGTTCTGGAGGTGGAGGTTCC.


Extracellular Domain of the N-CAR

The antigen binding domain can be any domain that binds to the off-tissue antigen including but not limited to a monoclonal antibody, a recombinant antibody, a human antibody, a humanized antibody, and a functional fragment thereof, including but not limited to a single-domain antibody such as a heavy chain variable domain (VH), a light chain variable domain (VL) and a variable domain (VHH) of camelid derived nanobody, and to an alternative scaffold known in the art to function as antigen binding domain, such as a recombinant fibronectin domain, and the like. In some instances, it is beneficial for the antigen binding domain to be derived from the same species in which the N-CAR will ultimately be used in. For example, for use in humans, it may be beneficial for the antigen binding domain of the N-CAR to comprise human or humanized residues for the antigen binding domain of an antibody or antibody fragment.


A humanized antibody can be produced using a variety of techniques known in the art, including but not limited to, CDR-grafting (see, e.g., European Patent No. EP 239,400; International Publication No. WO 91/09967; and U.S. Pat. Nos. 5,225,539, 5,530,101, and 5,585,089, each of which is incorporated herein in its entirety by reference), veneering or resurfacing (see, e.g., European Patent Nos. EP 592,106 and EP 519,596; Padlan, 1991, Molecular Immunology, 28 (4/5): 489-498; Studnicka et al., 1994, Protein Engineering, 7 (6): 805-814; and Roguska et al., 1994, PNAS, 91:969-973, each of which is incorporated herein by its entirety by reference), chain shuffling (see, e.g., U.S. Pat. No. 5,565,332, which is incorporated herein in its entirety by reference), and techniques disclosed in, e.g., U.S. Patent Application Publication No. US2005/0042664, U.S. Patent Application Publication No. US2005/0048617, U.S. Pat. Nos. 6,407,213, 5,766,886, International Publication No. WO 9317105, Tan et al., J. Immunol., 169:1119-25 (2002), Caldas et al., Protein Eng., 13 (5): 353-60 (2000), Morea et al., Methods, 20 (3): 267-79 (2000), Baca et al., J. Biol. Chem., 272 (16): 10678-84 (1997), Roguska et al., Protein Eng., 9 (10): 895-904 (1996), Couto et al., Cancer Res., 55 (23 Supp): 5973s-5977s (1995), Couto et al., Cancer Res., 55 (8): 1717-22 (1995), Sandhu J S, Gene, 150 (2): 409-10 (1994), and Pedersen et al., J. Mol. Biol., 235 (3): 959-73 (1994), each of which is incorporated herein in its entirety by reference. Often, framework residues in the framework regions will be substituted with the corresponding residue from the CDR donor antibody to alter, for example improve, antigen binding. These framework substitutions are identified by methods well-known in the art, e.g., by modeling of the interactions of the CDR and framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at particular positions. (Sec, e.g., Queen et al., U.S. Pat. No. 5,585,089; and Riechmann et al., 1988, Nature, 332:323, which are incorporated herein by reference in their entireties.).


In some aspects, the portion of an N-CAR that comprises an antibody fragment is humanized with retention of high affinity for the target antigen and other favorable biological properties. According to one aspect of the invention, humanized antibodies and antibody fragments are prepared by a process of analysis of the parental sequences and various conceptual humanized products using three-dimensional models of the parental and humanized sequences. Three-dimensional immunoglobulin models are commonly available and are familiar to those skilled in the art. Computer programs are available which illustrate and display probable three-dimensional conformational structures of selected candidate immunoglobulin sequences. Inspection of these displays permits analysis of the likely role of the residues in the functioning of the candidate immunoglobulin sequence, e.g., the analysis of residues that influence the ability of the candidate immunoglobulin to bind the target antigen. In this way, FR residues can be selected and combined from the recipient and import sequences so that the desired antibody or antibody fragment characteristic, such as increased affinity for the target antigen, is achieved. In general, the CDR residues are directly and most substantially involved in influencing antigen binding.


In some embodiments, the antibody binding domain is a fragment, e.g., a single chain variable fragment (scFv). In some embodiments, the antibody binding domain is a Fv, a Fab, a (Fab′)2, or a bi-functional (e.g. bi-specific) hybrid antibody (e.g., Lanzavecchia et al., Eur. J. Immunol. 17, 105 (1987)). In some embodiments, the antigen binding domain of the N-CAR of the invention binds an off-tissue antigen with wild-type or enhanced affinity.


In some instances, scFvs can be prepared according to method known in the art (see, for example, Bird et al., (1988) Science 242:423-426 and Huston et al., (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883). ScFv molecules can be produced by linking VH and VL regions together using flexible polypeptide linkers. The scFv molecules comprise a linker (e.g., a Ser-Gly linker) with an optimized length and/or amino acid composition. The linker length can greatly affect how the variable regions of a scFv fold and interact. In fact, if a short polypeptide linker is employed (e.g., between 5-10 amino acids) intrachain folding is prevented. Interchain folding is also required to bring the two variable regions together to form a functional epitope binding site. For examples of linker orientation and size see, e.g., Hollinger et al. 1993 Proc Natl Acad. Sci. U.S.A. 90:6444-6448, U.S. Patent Application Publication Nos. 2005/0100543, 2005/0175606, 2007/0014794, and PCT publication Nos. WO2006/020258 and WO2007/024715, is incorporated herein by reference.


An scFv can comprise a linker of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, or more amino acid residues between its VL and VH regions. The linker sequence may comprise any naturally occurring amino acid. In some embodiments, the linker sequence comprises amino acids glycine and serine. In another embodiment, the linker sequence comprises sets of glycine and serine repeats such as (Gly4Ser)n, where n is a positive integer equal to or greater than 1. In one embodiment, the linker can be (Gly4Ser)4 or (Gly4Ser)3. Variation in the linker length may retain or enhance activity, giving rise to superior efficacy in activity studies.


In a preferred embodiment, the antigen binding domain of the N-CAR comprises an scFv.


The off-tissue antigen recognized by the antigen binding domain of the N-CAR is preferably an antigen that is not present or present at low level on the tumour cells targeted by the P-CAR.


The below table provide examples of combinations of N-CAR and P-CAR antigens.













P-CAR



Antigen
N-CAR Antigen







CD33
Antigens specifically expressed in dendritic cells and/or haema-



topoetic stem cells such as ITGAX, CD1E, CD34, CD1C,



CD123, CD141


FLT3
Antigens specifically expressed in haematopoetic stem cells



such as CD34 or specifically expressed in Brain cerebellum such



as ZP2, GABRA6, CRTAM, GRM4, MDGA1


MSLN
Antigens specifically expressed in lung such as SFTPC, ROS1,



SLC6A4, AGTR2


MUC16
Antigens specifically expressed in salivary gland such as



LRRC26, HTR3A, TMEM211, MRGPRX3


MUC17
Antigens specifically expressed in colon & small intestine such



as MEP1B, TMIGD1, CEACAM20, ALPI









N-CAR antigens could also include antigens that are independent of the antigen that the P-CAR is targeting and that are down-regulated in tumor of interest, but present in all normal tissues of concern. Examples of such antigens for pancreatic ductal adenocarcinoma are TMPRSS11B, CYP17A1 and ATP4B and examples of such antigens for kidney clear cell carcinoma are GP2, MUC21, CLCA4 and SLC27A6.


The present invention encompasses a recombinant DNA construct comprising sequences encoding an N-CAR as defined above, wherein the N-CAR comprises an extracellular domain such as an antibody fragment that binds specifically to an off-tumor antigen, and wherein the sequence of the extracellular domain is contiguous with and in the same reading frame as a nucleic acid sequence encoding a transmembrane domain and an intracellular domain. In some embodiments, an exemplary N-CAR construct comprises an optional leader sequence, an extracellular off-tissue antigen binding domain, a hinge, a transmembrane domain, and an intracellular inhibitory signaling domain.


The present invention includes retroviral and lentiviral vector constructs expressing an N-CAR that can be directly transduced into a cell.


The present invention also includes an RNA construct that can be directly transfected into a cell. A method for generating mRNA for use in transfection involves in vitro transcription (IVT) of a template with specially designed primers, followed by polyA addition, to produce a construct containing 3′ and 5′ untranslated sequence (“UTR”), a 5′ cap and/or Internal Ribosome Entry Site (IRES), the nucleic acid to be expressed, and a polyA tail, typically 50-2000 bases in length. RNA so produced can efficiently transfect different kinds of cells. In one embodiment, the template includes sequences for the N-CAR. In an embodiment, an RNA N-CAR vector is transduced into a T-cell by electroporation.


In some embodiments, the invention relates to an isolated immune cell comprising an N-CAR as defined herein. In some embodiments, the invention further relates to immune cells comprising an N-CAR as defined herein and a P-CAR. In some embodiments, said immune cell is a T-cell. In some embodiments, said T-cell is a human T-cell.


The term “positive signaling Chimeric Antigen Receptor” or alternatively a “P-CAR” refers to a recombinant polypeptide construct comprising at least an extracellular domain comprising an antigen binding domain, a transmembrane domain and an intracellular domain (also referred to herein as a “cytoplasmic signaling domain” or “an intracellular signaling domain”) comprising a functional signaling domain derived from a stimulatory molecule as defined below. In some embodiments, the stimulatory molecule is the zeta chain associated with the T-cell receptor complex. In some embodiments, the cytoplasmic signaling domain further comprises one or more functional signaling domains derived from at least one costimulatory molecule as defined below. In some embodiments, the costimulatory molecule is chosen from 4-1BB (i.e., CD137), CD27 and/or CD28. In some embodiments, the P-CAR comprises a chimeric fusion protein comprising an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising a functional signaling domain derived from a stimulatory molecule. In some embodiments, the P-CAR comprises a chimeric fusion protein comprising an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising a functional signaling domain derived from a co-stimulatory molecule and a functional signaling domain derived from a stimulatory molecule. In some embodiments, the P-CAR comprises a chimeric fusion protein comprising an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising two functional signaling domains derived from one or more co-stimulatory molecule(s) and a functional signaling domain derived from a stimulatory molecule. In some embodiments, the P-CAR comprises a chimeric fusion protein comprising an extracellular antigen recognition domain, a transmembrane domain and an intracellular signaling domain comprising at least two functional signaling domains derived from one or more co-stimulatory molecule(s) and a functional signaling domain derived from a stimulatory molecule. In some embodiments the P-CAR comprises an optional leader sequence at the amino-terminus (N-ter) of the P-CAR fusion protein. In some embodiments, the P-CAR further comprises a leader sequence at the N-terminus of the extracellular antigen recognition domain, wherein the leader sequence is optionally cleaved from the antigen recognition domain (e.g., aa scFv) during cellular processing and localization of the P-CAR to the cellular membrane.


The extracellular portion of a P-CAR comprising an antibody or antibody fragment thereof may exist in a variety of forms where the antigen binding domain is expressed as part of a contiguous polypeptide chain including, for example, a single domain antibody fragment (sdAb), a single chain antibody (scFv) and a humanized antibody (Harlow et al., 1999, In: Using Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, NY; Harlow et al., 1989, In: Antibodies: A Laboratory Manual, Cold Spring Harbor, New York; Houston et al, 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; Bird et al., 1988, Science 242:423-426).


The term “stimulatory molecule,” refers to a molecule expressed by a T-cell that provides the positive cytoplasmic signaling sequence(s) that regulate positive activation of the TCR complex in a stimulatory way for at least some aspect of the T-cell signaling pathway. In some embodiments, the positive signal is initiated by, for instance, binding of a TCR/CD3 complex with an MHC molecule loaded with peptide, and which leads to mediation of a T-cell response, including, but not limited to, proliferation, activation, differentiation, and the like. A positive cytoplasmic signaling sequence (also referred to as a “positive signaling domain” or positive intracellular signaling domain) that acts in a stimulatory manner may contain a signaling motif which is known as immunoreceptor tyrosine-based activation motif or ITAM. Examples of an ITAM containing positive cytoplasmic signaling sequence includes, but is not limited to, those derived from TCR zeta (or CD3zeta), FcR gamma, FcR beta, CD3 gamma, CD3 delta, CD3 epsilon, CD5, CD22, CD79a, CD79b, CD278 (also known as “ICOS”) and CD66d.


In some aspect, the intracellular signaling domain of the P-CAR can comprise a positive intracellular signaling domain. The positive intracellular signaling domain generates a signal that promotes an immune effector function of the P-CAR containing cell, e.g., a P-CAR T-cell. Examples of immune effector function, e.g., in a P-CAR T-cell, include cytolytic activity and helper activity, including the secretion of cytokines.


The term “costimulatory molecule” refers to the cognate binding partner on a T-cell that specifically binds with a costimulatory ligand, thereby mediating a costimulatory response by the T-cell, such as, but not limited to, proliferation. Costimulatory molecules are cell surface molecules other than antigen receptors or their ligands that are required for an efficient immune response. Costimulatory molecules include, but are not limited to an MHC class I molecule, BTLA and a Toll ligand receptor, as well as OX40, CD2, CD27, CD28, CDS, ICAM-1, LFA-1 (CD11a/CD18) and 4-IBB (CD137).


A costimulatory intracellular signaling domain can be the intracellular portion of a costimulatory molecule. A costimulatory molecule can be represented in the following protein families: TNF receptor proteins, Immunoglobulin-like proteins, cytokine receptors, integrins, signaling lymphocytic activation molecules (SLAM proteins), and activating NK cell receptors. Examples of such molecules include CD27, CD28, 4-1BB (CD137), OX40, GITR, CD30, CD40, ICOS, BAFFR, HVEM, lymphocyte function-associated antigen-1 (LFA-1), CD2, CD7, LIGHT, NKG2C, SLAMF7, NKp80, CD160, B7-H3, and a ligand that specifically binds with CD83, and the like.


P-CARs and immune cells comprising them have been extensively disclosed and can be prepared by the skilled person according to known methods. For example, methodologies to prepare P-CAR and cells comprising such P-CARs are disclosed in U.S. Pat. No. 7,446,190, WO2008/121420, U.S. Pat. No. 8,252,592, US20140024809, WO2012/079000, WO2014153270, WO2012/099973, WO2014/011988, WO2014/011987, WO2013/067492, WO2013/070468, WO2013/040557, WO2013/126712, WO2013/126729, WO 2013/126726, WO2013/126733, U.S. Pat. No. 8,399,645, US20130266551, US20140023674, WO2014039523, U.S. Pat. Nos. 7,514,537, 8,324,353, WO2010/025177, U.S. Pat. No. 7,446,179, WO2010/025177, WO2012/031744, WO2012/136231A1, WO2012/050374A2, WO2013074916, WO2009/091826A3, WO2013/176915 or WO/2013/059593 which are all incorporated herein in their entirety by reference. Immune cells comprising a P-CAR and a N-CAR can be prepared by the skilled person according to the methodologies disclosed in the above mentioned references. In a preferred embodiment, immune cells comprising a P-CAR and a N-CAR can be prepared by the skilled person according to the methodologies disclosed in WO2013/176915.


In some embodiments, the method of engineering T-cells of invention can comprise:

    • (a) modifying T-cells by inactivating at least:
      • A first gene expressing a target for an immunosuppressive agent, and
      • A second gene encoding a component of the T-cell receptor (TCR)
    • (b) Expanding said cells, optionally in presence of said immunosuppressive agent.


An immunosuppressive agent is an agent that suppresses immune function by one of several mechanisms of action. In other words, an immunosuppressive agent is a role played by a compound which is exhibited by a capability to diminish the extent and/or voracity of an immune response. As non-limiting example, an immunosuppressive agent can be a calcineurin inhibitor, a target of rapamycin, an interleukin-2 u-chain blocker, an inhibitor of inosine monophosphate dehydrogenase, an inhibitor of dihydrofolic acid reductase, a corticosteroid or an immunosuppressive antimetabolite.


In a particular embodiment, the genetic modification step of the method relies on the inactivation of one gene selected from the group consisting of CD52, GR, TCR alpha and TCR beta. In another embodiment, the genetic modification step of the method relies on the inactivation of two genes selected from the group consisting of CD52 and GR, CD52 and TCR alpha, CDR52 and TCR beta, GR and TCR alpha, GR and TCR beta, TCR alpha and TCR beta. In another embodiment, the genetic modification step of the method relies on the inactivation of more than two genes. The genetic modification is preferably operated ex-vivo.


In some embodiments, the method of engineering T-cells of invention can comprise

    • (a) Providing a T-cell, preferably from a cell culture or from a blood sample;
    • (b) Selecting a gene in said T-cell expressing a target for an immunosuppressive agent;
    • (c) Transforming said T cell with nucleic acid encoding a rare-cutting endonuclease able to selectively inactivate by DNA cleavage, preferably by double-strand break respectively: said gene encoding a target for said immunosuppressive agent, and at least one gene encoding a component of the T-cell receptor (TCR);
    • (d) Expressing said rare-cutting endonucleases into said T-cells;
    • (e) Sorting the transformed T-cells, which do not express TCR on their cell surface;
    • (f) Expanding said cells, optionally in presence of said immunosuppressive agent.


In some embodiment, the method to engineer cell of the invention further comprises one or more additional genomic modification step. By additional genomic modification step, can be intended the introduction into cells to engineer of one or more protein of interest. Said protein of interest can be a P-CAR and/or an N-CAR.


In some embodiment the P-CAR is a Multi-chain Chimeric Antigen Receptor particularly adapted to the production and expansion of engineered T-cells, the multi-chain CAR comprising at least two of the following components:

    • a) one polypeptide comprising the transmembrane domain of FcsRI alpha chain and an extracellular ligand-binding domain,
    • b) one polypeptide comprising a part of N- and C-terminal cytoplasmic tail and the transmembrane domain of FccRI beta chain and/or
    • c) two polypeptide s comprising each a part of intracytoplasmic tail and the transmembrane domain of FccRI gamma chain, whereby different polypeptides multimerize together spontaneously to form dimeric, trimeric or tetrameric CAR.


Example of tetrameric P-CARs are illustrated in FIG. 3 of WO2013176915 and different versions of multichain P-CARs are represented in FIG. 4 of WO2013176915. Such P-CAR can be expressed in a T-Cell obtained using the above disclosed method together with a N-CAR according to the present disclosure to obtain a T-cell according to the invention.


In some embodiment the invention relates to an immune cell comprising a N-CAR as defined herein and a P-CAR as defined in any of U.S. Pat. No. 7,446,190, WO2008/121420, U.S. Pat. No. 8,252,592, US20140024809, WO2012/079000, WO2014153270, WO2012/099973, WO2014/011988, WO2014/011987, WO2013/067492, WO2013/070468, WO2013/040557, WO2013/126712, WO2013/126729, WO 2013/126726, WO2013/126733, U.S. Pat. No. 8,399,645, US20130266551, US20140023674, WO2014039523, U.S. Pat. Nos. 7,514,537, 8,324,353, WO2010/025177, U.S. Pat. No. 7,446,179, WO2010/025177, WO2012/031744, WO2012/136231A1, WO2012/050374A2, WO2013074916, WO/2009/091826A3, WO2013/176915 or WO/2013/059593.


In some embodiments, the immune cell comprises an N-CAR as defined herein and a multi-chain P-CAR as defined in WO2014/039523.


In some embodiments, the immune cell of the invention is activated when the P-CAR antigen binding domain binds to its antigen. In some embodiments, such activation is reduced when the N-CAR antigen binding domain binds to its antigen. In some embodiments such reduction of activation is increased, preferably by at least 5%, 10%, 15%, 20% or 30% in an immune cell comprising an N-CAR according to the invention as compared to the same immune cell comprising an N-CAR comprising the full intracellular domain of PD-1. In some embodiments such reduction of activation is increased, preferably by at least 5%, 10%, 15%, 20% or 30% in an immune cell comprising an N-CAR according to the invention as compared to the same immune cell comprising an N-CAR comprising the full intracellular domain of CTLA-4.


In some embodiments, the activation is reduced by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% when the N-CAR and P-CAR antigen binding domains both binds to their respective antigens as compared to when only the CAR antigen binding domain binds to its antigen.


In some embodiments, the level of activation of the immune cell is measured by determining cytokine production. In some embodiments, the level of activation of the immune cell is measured by monitoring IFNgamma production by ELISA and/or FACS and/or luminex assay. In some embodiments, the level of activation of the immune cell is measured by monitoring TNFalpha production by ELISA and/or luminex assay.


In some embodiments, the level of activation of the immune cell is measured by monitoring degranulation, for example by measuring CD107a levels by FACS.


In some embodiments, the level of activation of the immune cell is measured by monitoring the ability of the immune cell to kill target cells.


In some embodiments, the level of activation of the immune cell is measured by monitoring the luciferase activity in reporter cells incorporating inducible NFAT- or NfkB-regulated luciferase expression, such as for example as disclosed in Example 3 below.


In some embodiments, the negative signal of the N-CAR is short-termed and reversible to ensure that the immune cells comprising a P-CAR and an N-CAR according to the invention may be activated when it encounters only P-CAR antigen, despite prior inactivation in a off-tissue setting that has both P-CAR and N-CAR antigens.


EXAMPLES
Example 1-Identification of Inhibitory Domains to be Used in N-CARs

There are several receptors, i.e. CTLA-4, PD-1, BTLA, TIM-3, LAG3 that are known to provide a negative signal to attenuate or abrogate T-cell signaling. The intracellular signaling components of PD-1 were studied to identify motifs that may be responsible for its activity. PD-1 contains both an immunoreceptor tyrosine-based inhibitory motif (ITIM) and immunoreceptor tyrosine-based switch motif (ITSM) and data suggests that the ITSM domain plays a significant role in recruiting phosphatases (i.e. SHP2) that enable inactivation of upstream signaling components, like CD3zeta (see Riley JL., Immunol Rev. 2009 May; 229 (1): 114-25; or Yokosuka T et al., J Exp Med. 2012 Jun. 4; 209 (6): 1201-17). Other receptors and molecules with ITSMs were identified and analyzed to help understand the functional role of this sequence motif with the intention to utilize it in providing a negative signal that attenuates or abrogates T-cell activation caused by engagement of the P-CAR. Protein sequences were downloaded from swissprot database restricting to sequences that were annotated as being cytoplasmic. Each of these cytoplasmic sequences was searched for the patterns of interest (ITIM motif, ITSM motif or ITIM and ITSM motif).


Example 2-Design of N-CARs

N-CARs comprising at least one ITSM, alone or in combination with one or more ITIMs or other inhibitory domain such as those of TIM-3, LAG-3 or CTLA4 are prepared in an effort to generate effective NOT gates.


In particular, the following N-CARs are prepared:

    • N-CARs comprising multiple tandems PD-1 ITIM-ITSM;
    • N-CARs comprising multiple tandems PD-1 ITSM;
    • N-CARs comprising single or multiple non-PD1 natural ITSM or ITIM-ITSM;
    • N-CARs comprising synthetic ITSM or ITIM-ITSM;
    • N-CARS comprising at least one ITSM and signaling domains from other inhibitory receptors such as TIM-3, LAG-3 or CTLA4.


Example 3—Activity of T-Cells Comprising a P-CAR and a N-CAR in Immortalized Human T-Cells

An experimental model is used to test the N-CARs designed according to Example 2. The model consists of a positive signaling CAR (P-CAR) construct containing from the N-terminus, a signaling domain or secretory signal domain (e.g. CD8 secretory signal sequence), anti-CD-19 single-chain antibody, hinge (e.g. CD8alpha), transmembrane (e.g CD8alpha), and positive intracellular signaling domains (e.g. 41BB and CD3zeta). The P-CAR is followed by or preceded by a fluorescent marker (e.g. EGFP) or antibiotic resistance gene separated from the P-CAR by either a P2A or IRES (see for example Table 9).


This construct is constructed using standard molecular biology methods and transduced into T-cell receptor (TCR) negative or an NFAT- or NfkB-regulated luciferase reporter Jurkat cell-line. These cells are purified using bulk FACS sorting using the fluorescent marker or by selection in the appropriate antibiotic followed by flow cytometry to confirm surface CAR expression, and tested for activity against differentially expressing CD19 cell-lines to establish activation, proliferation, and cytokine release, and degranulation/cytotoxicity thresholds. Once an appropriate P-CAR cell line has been identified, these cells are transduced with a plasmid containing the negative signaling CAR (N-CAR) construct containing from the N-terminus, a signaling domain (e.g. CD8 secretory signal sequence), anti-PSMA single-chain antibody, hinge (e.g. truncated PD-1 extracellular domain), transmembrane (e.g. PD-1), and negative intracellular signaling domains to be evaluated (native or modified ITSMs optionally in combination with ITIMs or other inhibitory signaling domains) followed by or preceded by a fluorescent marker (e.g. mCherry) or antibiotic-resistance gene separated from the N-CAR by either a P2A or IRES. Multiple versions of these N-CAR constructs are constructed, using standard site-directed and cassette mutagenesis. The T-cells comprising a P-CAR and a N-CAR (also named P-CAR+/N-CAR+T-cells or NOT GATE CAR T-Cells) are purified by bulk FACS sorting on both fluorescent markers (e.g. EGFP and mCherry) or by sequential selection in appropriate antibiotics followed by dual-color flow cytometry to detect surface expression of both CARs, and tested first for retention of P-CAR activity on CD19 expressing cells and then the potency of negative signal on cells expressing both CD19 and PSMA. The N-CAR candidates are characterized by their ability to attenuate positive signal from P-CAR on varying levels of both the P-CAR and N-CAR antigens by monitoring NFAT- or NfkB-regulated luciferase reporter activity, cytokine production (IFNgamma by ELISA/FACS), degranulation (CD107a levels) and killing of target cells (by FACS). Reversibility and the kinetics of reversibility of the N-CAR signal are tested by first incubating the P-CAR+/N-CAR+T-cells with cells expressing both CD19 and PSMA, purifying them followed by incubation with CD19 cells. The cytokine production and cytotoxicity of these cells are compared to cells that were directly incubated with CD19 cells.


Experiment and Results

Jurkat cells (clone E6-1 ATCC #TIB-152) were maintained at a density of 0.4-2×106 cells/mL in RPMI 1640 (Life Technologies) containing 10% fetal bovine serum (hyclone), 1 mM sodium pyruvate, 1×glutaMAX, 1× nonessential amino acids (Mediatech), and 25 mM HEPES buffer. 293T cells (clone HEK-293T/17, ATCC CRL-11268) were maintained subconfluently in DMEM containing 4.5 g/L glucose, 10% fetal bovine serum, 1 mM sodium pyruvate, 1×glutaMAX, 1× nonessential amino acids, and 25 mM HEPES.


Lentiviral particles (LV) were produced by transient transfection of sub-confluent 293T cells in 6-well plates with a transfer vector (pLVX) encoding the CAR or protein of interest, an HIV-1 gag pol packaging plasmid (psPAX2), and a VSV-G expression plasmid (pMD2.G) at a 4:3:1 ratio, using Lipofectamine 2000 (Invitrogen). The following day the media was replaced, and 48 h after transfection the LV was harvested and filtered through a 0.45 um Millex-HV syringe filter (Millipore). Fresh LV supernatant was used immediately to transduce sub-confluent Jurkat or 293T cells by diluting LV sup in an equal volume of cell culture medium.


Artificial antigen-presenting cells (AAPCs) were prepared by sequential LV transduction of 293T cells. Subconfluent 293T cells were transfected with pLVX expression constructs encoding either codon-optimized full-length human CD19 (NP_001171569), full-length human PSMA (NP_004467), or empty vector. The pLVX vectors comprised a puromycin-resistance gene followed by a P2A sequence and the target antigen. Transduced 293 Ts were subsequently selected in puromycin-containing media, and maintained as pools of expressing clones. Surface antigen expression was determined by flow cytometry, using APC-conjugated goat F(ab′)2-anti-human PSMA (clone LN1-17, BioLegend cat #342504) or BV421-conjugated mouse-anti-human CD19 (clone HIB19, BD Biosciences cat #562440). Cells were sorted by FACS into populations of CD19 low-expressing or high-expressing clones, PSMA low-expressing or high-expressing clones, and dual CD19 low/PSMA high-expressers or dual CD19 high/PSMA high-expressers.


For determination of T cell activation, a luciferase reporter assay was established in Jurkat cells. Jurkat cells were transduced to stably express a firefly luciferase gene under the control of a minimal (m) CMV promoter and tandem repeats of either the NFkB or NFAT transcriptional response element (TRE) [(Qiagen Cignal Lentivirus]. Transcription factors recognizing these TREs play important roles in T cell signal transduction pathways and are integral in the transcriptional regulation of cytokine genes and other genes critical for the immune response. Upon T cell receptor activation, luciferase reporter activity is modulated and can be measured by quantitative luminometry.


Reporter Jurkat cells (either NFAT-Luc or NFkB-Luc) were subsequently transduced to stably express different combinations of P- and N-CARs. pLVX-CAR encoding constructs comprised an antibiotic resistance gene (puromycin resistance for P-CARS and blasticidin resistance for N-CARs) followed by a P2A sequence and the P- or N-CAR.


In particular, N-FAT-Luc and NFkB-Luc Jurkat cells expressing P-CAR1 or P-CAR2 and an N-CAR comprising an intracellular domain selected from the sequences listed in Table 10 were prepared.


P-CAR1 comprises a ScFv from anti-CD19 antibody FMC63 (see Nicholson et al, (1997), Mol. Immunol. 34:1157-1165), a CD8 alpha hinge and transmembrane domain, and an intracellular domain comprising a 4-1BB and CD3zeta intracellular signaling domains.


P-CAR2 comprises a ScFv from anti-CD19 antibody SJ25C1 (see US2013063097), a CD28 hinge and transmembrane domain, and an intracellular domain comprising a CD28 and CD3zeta intracellular signaling domains.


The specific sequences of P-CAR1 and P-CAR2 are listed in Table 9.










TABLE 9







P-CAR1
MALPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRASQDISKYLN


(SEQ ID
WYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFC


No 2019)
QQGNTLPYTFGGGTKLEITGGGGSGGGGSGGGGSEVKLQESGPGLVAPSQS



LSVTCTVSGVSLPDYGVSWIRQPPRKGLEWLGVIWGSETTYYNSALKSRLTIIK



DNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSTTT



PAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIYIWAPLAGTC



GVLLLSLVITLYCKRGRKKLLYIFKQPFMRPVQTTQEEDGCSCRFPEEEEGGC



ELRVKFSRSADAPAYKQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKP



RRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDT



YDALHMQALPPR





P-CAR2
MALPVTALLLPLALLLHAEVKLQQSGAELVRPGSSVKISCKASGYAFSSYWMN


(SEQ ID
VVVKQRPGQGLEWIGQIYPGDGDTNYNGKFKGQATLTADKSSSTAYMQLSGL


No 2020)
TSEDSAVYFCARKTISSVVDFYFDYWGQGTTVTVSSGGGGSGGGGSGGGGS



DIELTQSPKFMSTSVGDRVSVTCKASQNVGTNVAWYQQKPGQSPKPLIYSAT



YRNSGVPDRFTGSGSGTDFTLTITNVQSKDLADYFCQQYNRYPYTSGGGTKL



EIKRAAAIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVLVVVG



GVLACYSLLVTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPR



DFAAYRSRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPE



MGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLST



ATKDTYDALHMQALPPR









The tested N-CARs comprise an amino acid sequence of SEQ ID No 1999 (ScPv from the anti-PSMA antibody J591 (see WO2004/098535), PD1 hinge and transmembrane domain) and an intracellular domain selected from the sequences listed in Table 10. A CAR comprising only SEQ ID No 1999 (no inhibitory intracellular domain) was used as control (OPD1).










TABLE 10





N-CAR NAME
Intracelullar domain







PD1
CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC



VPEQTEYATIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL



(SEQ ID No 2000)





BTLA
RRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYDND



PDLCFRMQEGSEVYSNPCLEENKPGIVYASLNHSVIGPNSRLARNVKEAPT



EYASICVRS (SEQ ID No 2001)





CD244
WRRKRKEKQSETSPKEFLTIYEDVKDLKTRRNHEQEQTFPGGGSTIYSMIQ



SQSSAPTSQEPAYTLYSLIQPSRKSGSRKRNHSPSFNSTIYEVIGKSQPKAQ



NPARLSRKELENFDVYS (SEQ ID No 2002)





PD1-CTLA4
CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC



VPEQTEYATIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPLAVS



LSKMLKKRSPLTTGVYVKMPPTEPECEKQFQPYFIPIN (SEQ ID No 2003)





PD1-LAG3
CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC



VPEQTEYATIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPLHL



WRRQWRPRRFSALEQGIHPPQAQSKIEELEQEPEPEPEPEPEPEPEPEPE



QL (SEQ ID No 2004)





PD1-PD1
CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC



VPEQTEYATIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPLCS



RAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPCVP



EQTEYATIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL (SEQ



ID No 2005)





PD1-TIM3
CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC



VPEQTEYATIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPLFK



WYSHSKEKIQNLSLISLANLPPSGLANAVAEGIRSEENIYTIEENVYEVEEPN



EYYCYVSSRQQPSQPLGCRFAMP (SEQ ID No 2006)





CD300LF
WRMMKYQQKAAGMSPEQVLQPLEGDLCYADLTLQLAGTSPQKATTKLSS



AQVDQVEVEYVTMASLPKEDISYASLTLGAEDQEPTYCNMGHLSSHLPGR



GPEEPTEYSTISRP (SEQ ID No 2007)





LY9
KRKGRCSVPAFCSSQAEAPADTPEPTAGHTLYSVLSQGYEKLDTPLRPAR



QQPTPTSDSSSDSNLTTEEDEDRPEVHKPISGRYEVFDQVTQEGAGHDPA



PEGQADYDPVTPYVTEVESVVGENTMYAQVFNLQGKTPVSQKEESSATIY



CSIRKPQVVPPPQQNDLEIPESPTYENFT (SEQ ID No 2008)





PECAM
KCYFLRKAKAKQMPVEMSRPAVPLLNSNNEKMSDPNMEANSHYGHNDDV



RNHAMKPINDNKEPLNSDVQYTEVQVSSAESHKDLGKKDTETVYSEVRKA



VPDAVESRYSRTEGSLDGT (SEQ ID No 2009)





SIGLEC9
VRSCRKKSARPAAGVGDTGIEDANAVRGSASQGPLTEPWAEDSPPDQPP



PASARSSVGEGELQYASLSFQMVKPWDSRGQEATDTEYSEIKIHR (SEQ



ID No 2010)





SIRPA
RIRQKKAQGSTSSTRLHEPEKNAREITQDTNDITYADLNLPKGKKPAPQAAE



PNNHTEYASIQTSPQPASEDTLTYADLDMVHLNRTPKQPAPKPEPSFSEYA



SVQVPRK (SEQ ID No 2011)





PD1-L2-ITSM
CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC



VPEQTEYATIDFQWREKTPEPPVPCVPEQTEYATIVFPSGMGTSSPARRGS



ADGPRSAQPLRPEDGHCSWPL (SEQ ID No 2012)





PD1-L2-ITSM-
CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC


L2-ITSM
VPEQTEYATIDFQWREKTPEPPVPCVPEQTEYATIDFQWREKTPEPPVPCV



PEQTEYATIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL (SEQ



ID No 2013)





PD1 (ITSM mut
CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC


1)
VPEQTEYSEIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL



(SEQ ID No 2014)





PD1 (ITSM mut
CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC


2)
VPEQTEYSEVVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL



(SEQ ID No 2015)





PD1 (ITSM
CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC


mut3)
VPEQTEYASIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL



(SEQ ID No 2016)





PD1-KIR2DL2
CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC



VPEQTEYATIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPLHR



WCSNKKNAAVMDQESAGNRTANSEDSDEQDPQEVTYTQLNHCVFTQRKI



TRPSQRPKTPPTDIIVYAELPNAESRSKVVSCP (SEQ ID No 2017)









Three days after transduction, Jurkat cells were placed into antibiotic selection media to select for pools of stable CAR-expressing clones.


Dual cell surface expression of P-CAR1 (Table 9) and N-CARs listed in Table 10 assessed by multicolor flow cytometry in transduced NFAT-luciferase reporter Jurkat cells is shown in FIGS. 1 and 2. Dual cell surface expression of P-CAR1 (Table 9) and N-CARs listed in Table 10 assessed by multicolor flow cytometry in transduced NFkB-luciferase reporter Jurkat cells is shown in FIGS. 3 and 4. Dual cell surface expression of P-CAR2 (Table 9) and N-CARs listed in Table 10 assessed by multicolor flow cytometry in transduced NFAT-luciferase reporter Jurkat cells is shown in FIGS. 6 and 7. Dual cell surface expression of P-CAR2 and N-CARs listed in Table 10 assessed by multicolor flow cytometry in transduced NFkB-luciferase reporter Jurkat cells is shown in FIGS. 8 and 9.


Cells were sequentially transduced with P-CAR and N-CAR lentivirus, and selected for antibiotic-resistant clones after each transduction. Intracellular domains of the various N-CARs are shown above each dot plot. P-CAR expression was detected using a recombinant human CD19-mouse IgG Fc fusion protein followed by APC-conjugated F(ab′)2 goat anti-mouse Fcγ (shown on x axis), and N-CAR expression was detected with a biotinylated recombinant human PSMA-human IgG1 Fc fusion protein followed by PE-conjugated streptavidin (y axis).


In Vitro T Cell Activation Assay

For coculture assays, effector Jurkat cells expressing different combinations of P- and N-CARs were cocultured with AAPCs expressing either CD19 (on-target), both CD19 and PSMA (off-target), or neither antigen (empty vector transduced). AAPC target cells were plated at a density of 20,000 cells per well in tissue culture-treated flat-bottom white 96-well plates (Corning COSTAR). Plates were incubated at 37° C. in 5% CO2 for 24 hours, after which time media was removed and 100,000 Control ΔPD1- or test N-CAR-transduced luciferase reporter Jurkat cells expressing P-CAR1 or P-CAR2 were added to each well in a volume of 100 uL. After a 16-hour incubation at 37° C., 100 uL Bright-Glo luciferase substrate (Promega) was added per well, plates were shaken for 2 minutes, and relative luciferase units (RLU) quantified on a Perkin Elmer EnVision Multilabel Reader. Each Jurkat cell line was tested in sextuplicate and results presented as a ratio of the mean RLU value from coculture with off-target AAPCs to the mean RLU from coculture with target AAPCs.



FIGS. 5A, 5B and 5C show the inhibitory effect of various N-CARs on P-CAR1 induced T cell activation. Control ΔPD1- or test N-CAR-transduced luciferase reporter Jurkat cells expressing P-CAR1 were incubated with either CD19-expressing AAPCs or dual CD19+PSMA-expressing AAPCs, and luciferase activity was assessed 16 h later. Data are expressed as a ratio of the mean RLU from co-culture with CD19+PSMA AAPCs/CD19 AAPCs. n=6 replicates per sample; data shown are the means+SEM. FIGS. 5A/5C and 5B show results using NFAT-luciferase reporter and NFkB-luciferase reporter Jurkat cells, respectively.



FIGS. 10A and 10B show the inhibitory effect of various N-CARs on P-CAR2 induced T cell activation. Control ΔPD1- or test N-CAR-transduced luciferase reporter Jurkat cells expressing P-CAR2 were incubated with either CD19-expressing or dual PSMA/CD19-expressing AAPCs, and luciferase activity was assessed 16 h later. Data are expressed as a ratio of the mean RLU from co-culture with CD19+PSMA AAPCs/CD19 AAPCs. n=6 replicates per sample; data shown are the means+SEM. FIGS. 10A and 10B show results using NFAT-luciferase reporter and NFkB-luciferase reporter Jurkat cells, respectively.


Example 4—Activity of P-CAR+/N-CAR+T-Cells in Primary Human T-Cells

The N-CAR designed according to example 2 are also optionally tested in primary human T-cells to ensure that the results from example 3 obtained with Jurkat T-cells translate to primary cells. This can be done by first transducing N-CAR constructs into primary human T-cells obtained according to methods known to the skilled person and monitoring the attenuation of T-cell activation by anti-CD3/CD28 stimulation in the absence and presence of N-CAR antigen. In addition, the P-CAR and N-CAR constructs disclosed in example 3 can also be transduced into primary human T-cells and tested on CD19, PSMA, and CD19/PSMA cells.


Example 5—Activity of T-Cells Comprising P-CAR and N-CAR in Xenograft Studies

P-CAR and N-CAR constructs as disclosed in Example 3 can be transduced into primary human T-cells and tested for efficacy in xenograft studies in NSG animals transplanted with tumors expressing, either only CD19 or both CD19 and PSMA. NSG mice are transplanted with luciferase labeled 105-106 cells expressing either CD19 or CD19 and PSMA. A few days after engraftment, these animals are infused with 104-106 P-CAR+/N-CAR+T-cells intravenously. The animals are dosed with luciferin prior to imaging on the IVIS imaging system routinely to monitor tumor load.


The invention is further illustrated by the following embodiments:

    • 1. An inhibitory chimeric antigen receptor (N-CAR) comprising
    • an extracellular domain comprising an antigen binding domain,
    • a transmembrane domain,
    • an intracellular domain, and,
    • wherein the intracellular domain comprises an Immunoreceptor Tyrosine-based Switch Motif ITSM, wherein said ITSM is a sequence of amino acid TX1YX2X3X4, wherein
    • X1 is an amino acid
    • X2 is an amino acid
    • X3 is an amino acid and
    • X4 is V or I.
    • 2. The N-CAR according to embodiment 1, wherein when the extracellular domain is a scFv against PSMA, then the intracellular domain is not the intracellular domain of human PD-1.
    • 3. The N-CAR according to embodiment 1 or 2, wherein the extracellular domain does not bind to PMSA.
    • 4. The N-CAR according to any one of embodiments 1 to 3, wherein the intracellular domain does not comprise the full intracellular domain of PD-1.
    • 5. The N-CAR according to any one of embodiments 1 to 4, wherein ITSM motif is not TEYATI.
    • 5.1 The N-CAR according to any one of embodiments 1 to 5, wherein the intracellular domain is not the intracellular domain of human PD1.
    • 5.2 The N-CAR according to any one of embodiments 1 to 5, wherein the intracellular domain is not the intracellular domain of human BTLA.
    • 5.3 The N-CAR according to any one of embodiments 1 to 5, wherein the intracellular domain is not the intracellular domain of human CD244.
    • 5.4 The N-CAR according to any one of embodiments 1 to 5, wherein the intracellular domain is not SEQ ID No 2000, SEQ ID No 2001 or SEQ ID No 2002.
    • 6. The N-CAR according to any one of embodiments 1 to 5.4, wherein the intracellular domain comprises the sequence
    • ((L1-ITIM-L2)n-(L3-ITSM-LA)m)p, wherein
    • n is 0, 1 or an integer greater than 1;
    • m is 1 or an integer greater than 1;
    • p is 1 or an integer greater than 1;
    • L1 is absent or comprises one or more, preferably one, sequences selected from the group consisting of:
      • (a) a naturally occurring N-terminal flanking region of an ITIM only intracellular domains or a fragment thereof;
      • (b) a naturally occurring N-terminal flanking region of an ITIM.*ITSM intracellular domains or a fragment thereof;
      • (c) a naturally occurring intracellular domain from a known inhibitory receptor, wherein the said intracellular domain is N-terminally flanking to a sequence in (c) above, or a fragment thereof; and,
      • (d) a non-naturally occurring sequence comprising between 1 and 500 amino acids;
    • each of L2 and L3 is absent or comprises one or more, preferably one, sequences selected from the group consisting of:
      • (e) a naturally occurring C-terminal flanking region of an ITIM only intracellular domain or a fragment thereof;
      • (f) a naturally occurring N-terminal flanking region of an ITSM only intracellular domain or a fragment thereof;
      • (g) a naturally occurring intracellular domain between ITIM and ITSM from proteins that have ITIM.*ITSM motif or a fragment thereof;
      • (h) a naturally occurring intracellular domain from a known inhibitory receptor wherein the said intracellular domain is N-terminally flanking to a sequence in (f) or (g) above, or a fragment thereof; and
      • (i) a non-naturally occurring sequence comprising between 1 and 500 amino acids; and
    • L4 is absent or comprises one or more, preferably one, sequences selected from the group consisting of:
      • (j) a naturally occurring C-terminal flanking region of an ITIM.*ITSM intracellular domain or a fragment thereof;
      • (k) a naturally occurring C-terminal flanking region of an ITSM only intracellular domain or a fragment thereof;
      • (l) a naturally occurring intracellular domain from a known inhibitory receptor wherein the said intracellular domain is C-terminally flanking to a sequence in (j) or (k) above; or a fragment thereof and
      • (m) a non-naturally occurring sequence comprising between 1 and 500 amino acids,
    • the ITIM is the sequence X5X6YX7X8X9, wherein
    • X5 is S, V, I or L,
    • X6 is an amino acid,
    • X7 is an amino acid,
    • X8 is an amino acid, and,
    • X9 is V, I or L, and
    • the ITSM is the sequence TX1YX2X3X4, wherein
    • X1 is an amino acid,
    • X2 is an amino acid,
    • X3 is an amino acid, and,
    • X4 is V or I,
    • or a variant thereof.
    • 7. The N-CAR according to embodiment 6, wherein
    • L1 is absent or comprises one or more, preferably one, sequences selected from the group consisting of:
      • (a) a naturally occurring N-terminal flanking region of ITIM only intracellular domains selected from the sequences shown in Table 3 or a fragment thereof;
      • (b) a naturally occurring N-terminal flanking region of ITIM.*ITSM intracellular selected from the sequences shown in Table 1 or a fragment thereof;
      • (c) a naturally occurring intracellular domain from a known inhibitory receptor selected from the sequences shown in Table 2 or a fragment thereof, wherein said intracellular domain is N-terminally flanking to a sequence in (b) above, or a fragment thereof; and
      • (d) a non-naturally occurring sequence comprising between 1 and 500 amino acids;
    • each of L2 and L3 is absent or comprises one or more, preferably one, sequences selected from the group consisting of:
      • (e) a naturally occurring C-terminal flanking region of ITIM only intracellular domains selected from the sequences shown in Table 4 or a fragment thereof;
      • (f) a naturally occurring N-terminal flanking region of ITSM only intracellular domains selected from the sequences shown in Table 6, or a fragment thereof;
      • (g) a naturally occurring intracellular domain between ITIM and ITSM from proteins that have ITIM.*ITSM motif selected from the sequences shown in Table 5, or a fragment thereof;
      • (h) a naturally occurring intracellular domain from a known inhibitory receptor selected from the sequences shown in Table 2 or a fragment thereof wherein said intracellular domain is N-terminally flanking to a sequence in (f) or (g) above, or a fragment thereof; and
      • (i) a non-naturally occurring sequence comprising between 1 and 500 amino acids; and
    • L4 is absent or comprises one or more, preferably one, sequences selected from the group consisting of:
      • (j) a naturally occurring C-terminal flanking region of ITIM.*ITSM intracellular domains selected from the sequences shown in Table 7, or a fragment thereof;
      • (k) a naturally occurring C-terminal flanking region of ITSM only intracellular domains selected from the sequences shown in Table 8, or a fragment thereof;
      • (l) a naturally occurring intracellular domain from a known inhibitory receptor selected from the sequences shown in Table 2 or a fragment thereof wherein said intracellular domain is C-terminally flanking to a sequence in (1) above, or a fragment thereof; and,
      • (m) a non-naturally occurring sequence comprising between 1 and 500 amino acids.
    • 8. The N-CAR according to embodiment 6 or 7 wherein the intracellular domain comprises the sequence (L1-ITIM-L2-L3-ITSM-L4)p wherein
    • p is 1, 2, 3, 4 or 5;
    • L1 is a naturally occurring N-terminal flanking region of an ITIM only intracellular domain or a fragment thereof such as, for example, any of the sequences shown in Table 3 or a fragment thereof;
    • L2 is absent;
    • L3 is a naturally occurring a naturally occurring intracellular domain between ITIM and ITSM from proteins that have ITIM.*ITSM motif or a fragment thereof such as, for example, any of the sequences shown in Table 5 or a fragment thereof;
    • L4 is a naturally occurring C-terminal flanking region of an ITIM.*ITSM intracellular domain or a fragment thereof such as, for example, any of the sequences shown in Table 7 or a fragment thereof; or a naturally occurring C-terminal flanking region of an ITSM only intracellular domain such as, for example, any of the sequences shown in Table 8 or a fragment thereof.
    • 9. The N-CAR according to any one of embodiments 6 to 8 wherein L1 is absent or comprises one or more, preferably one, sequences or selected from the group consisting of:
      • (a) a naturally occurring N-terminal flanking region of ITIM only intracellular domains selected from









YKMYGSEMLHKRDPLDEDEDTD





DHWALTQRTARAVSPQSTKPMAES





CSRAARGTIGARRTGQPLKEDPSAVPVFS





HRQNQIKQGPPRSKDEEQKPQQRPDLAVDVLERTADKATVNGLPEKDRET





DTSALAAGSSQE





KTHRRKAARTAVGRNDTHPTTGSASPKHQKKSKLHGPTETSSCSGAAPTV





EMDEE





LTRKKKALRIHSVEGDLRRKSAGQEEWSPSAPSPPGSCVQAEAAPAGLCG





EQRGEDCAELHDYFNV





KCYFLRKAKAKQMPVEMSRPAVPLLNSNNEKMSDPNMEANSHYGHNDDVR





NHAMKPINDNKEPLNSD





RRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYDN





DPDLCFRMQEGSEVYSNPCLEENKPG





WRMMKYQQKAAGMSPEQVLQPLEGDLCYADLTLQLAGTSPQKATTKLSSA





QVDQVEVEYVTMASLPKED





KRVQETKFGNAFTEEDSELVVNYIAKKSFCRRAIELTLHSLGVSEELQNK





LEDVVIDRNLLILGKILGEGEFGSVMEGNLKQEDGTSLKVAVKTMKLDNS





SQREIEEFLSEAACMKDFSHPNVIRLLGVCIEMSSQGIPKPMVILPFMKY





GDLHTY










      • (b) a naturally occurring N-terminal flanking region of ITIM.*ITSM intracellular domains selected from














YKMYGSEMLHKRDPLDEDEDTD





WRMMKYQQKAAGMSPEQVLQPLEGD





CSRAARGTIGARRTGQPLKEDPSAVPVFS





RIRQKKAQGSTSSTRLHEPEKNAREITQDTND





KTHRRKAARTAVGRNDTHPTTGSASPKHQKKSKLHGPTETSSCSGAAPTV





EMDEE





KCYFLRKAKAKQMPVEMSRPAVPLLNSNNEKMSDPNMEANSHYGHNDDVR





NHAMKPINDNKEPLNSD





RRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYDN





DPDLCFRMQEGSEVYSNPCLEENKPG





KRVQETKFGNAFTEEDSELVVNYIAKKSFCRRAIELTLHSLGVSEELQNK





LEDVVIDRNLLILGKILGEGEFGSVMEGNLKQEDGTSLKVAVKTMKLDNS





SQREIEEFLSEAACMKDFSHPNVIRLLGVCIEMSSQGIPKPMVILPFMKY





GDLHTY










      • (c) a naturally occurring intracellular domain from a known inhibitory receptor selected from the sequences shown in table 2, wherein said intracellular domain is N-terminally flanking to a sequence in (b) above; and

      • (d) a non-naturally occurring sequence comprising between 1 and 500 amino acids.



    • 10. A N-CAR according to any one of embodiments 6 to 9 wherein each of L2 and L3 is absent or comprises one or more, preferably one, sequences selected from the group consisting of:
      • (e) a naturally occurring C-terminal flanking region of ITIM only intracellular domains selected from;












GNCSFFTETG





NFHGMNPSKDTSTEYSEVRTQ





KEEEMADTSYGTVKAENIIMMETAQTSL





NHSVIGPNSRLARNVKEAPTEYASICVRS





DHWALTQRTARAVSPQSTKPMAESITYAAVARH





QVSSAESHKDLGKKDTETVYSEVRKAVPDAVESRYSRTEGSLDGT





DFQWREKTPEPPVPCVPEQTEYATIVFPSGMGTSSPARRGSADGPRSAQP





LRPEDGHCSWPL





NLPKGKKPAPQAAEPNNHTEYASIQTSPQPASEDTLTYADLDMVHLNRTP





KQPAPKPEPSFSEYASVQVPRK





TLQLAGTSPQKATTKLSSAQVDQVEVEYVTMASLPKEDISYASLTLGAED





QEPTYCNMGHLSSHLPGRGPEEPTEYSTISRP





ETGPKHIPLQTLLKFMVDIALGMEYLSNRNFLHRDLAARNCMLRDDMTVC





VADFGLSKKIYSGDYYRQGRIAKMPVKWIAIESLADRVYTSKSDVWAFGV





TMWEIATRGMTPYPGVQNHEMYDYLLHGHRLKQPEDCLDELYEIMYSCWR





TDPLDRPTFSVLRLQLEKLLESLPDVRNQADVIYVNTQLLESSEGLAQGS





TLAPLDLNIDPDSIIASCTPRAAISVVTAEVHDSKPHEGRYILNGGSEEW





EDLTSAPSAAVTAEKNSVLPGERLVRNGVSWSHSSMLPLGSSLPDELLFA





DDSSEGSEVLM










      • (f) a naturally occurring N-terminal flanking region of ITSM only intracellular domains selected from;














YKMYGSEMLHKRDPLDEDEDTDISYKKLKEEEMAD





CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC





VPEQ





RIRQKKAQGSTSSTRLHEPEKNAREITQDTNDITYADLNLPKGKKPAPQA





AEPNNH





KTHRRKAARTAVGRNDTHPTTGSASPKHQKKSKLHGPTETSSCSGAAPTV





EMDEELHYASLNFHGMNPSKDTS





KCYFLRKAKAKQMPVEMSRPAVPLLNSNNEKMSDPNMEANSHYGHNDDVR





NHAMKPINDNKEPLNSDVQYTEVQVSSAESHKDLGKKDTE





RRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYDN





DPDLCFRMQEGSEVYSNPCLEENKPGIVYASLNHSVIGPNSRLARNVKEA





P





WRMMKYQQKAAGMSPEQVLQPLEGDLCYADLTLQLAGTSPQKATTKLSSA





QVDQVEVEYVTMASLPKEDISYASLTLGAEDQEPTYCNMGHLSSHLPGRG





PEEP





WRRKRKEKQSETSPKEFLTIYEDVKDLKTRRNHEQEQTFPGGGSTIYSMI





QSQSSAPTSQEPAYTLYSLIQPSRKSGSRKRNHSPSFNS





VRSCRKKSARPAAGVGDTGIEDANAVRGSASQGPLTEPWAEDSPPDQPPP





ASARSSVGEGELQYASLSFQMVKPWDSRGQEATD





NKCGRRNKFGINRPAVLAPEDGLAMSLHFMTLGGSSLSPTEGKGSGLQGH





IIENPQYFSDACVHHIKRRDIVLKWELGEGAFGKVFLAECHNLLPEQDKM





LVAVKALKEASESARQDFQREAELLTMLQHQHIVRFFGVCTEGRPLLMVF





EYMRHGDLNRFLRSHGPDAKLLAGGEDVAPGPLGLGQLLAVASQVAAGMV





YLAGLHFVHRDLATRNCLVGQGLVVKIGDFGMSRDIYS





KLARHSKFGMKGPASVISNDDDSASPLHHISNGSNTPSSSEGGPDAVIIG





MTKIPVIENPQYFGITNSQLKPDTFVQHIKRHNIVLKRELGEGAFGKVFL





AECYNLCPEQDKILVAVKTLKDASDNARKDFHREAELLTNLQHEHIVKFY





GVCVEGDPLIMVFEYMKHGDLNKFLRAHGPDAVLMAEGNPPTELTQSQML





HIAQQIAAGMVYLASQHFVHRDLATRNCLVGENLLVKIGDFGMSRDVYS





KRKGRCSVPAFCSSQAEAPADTPEPTAGHTLYSVLSQGYEKLDTPLRPAR





QQPTPTSDSSSDSNLTTEEDEDRPEVHKPISGRYEVFDQVTQEGAGHDPA





PEGQADYDPVTPYVTEVESVVGENTMYAQVFNLQGKTPVSQKEESSA





KRVQETKFGNAFTEEDSELVVNYIAKKSFCRRAIELTLHSLGVSEELQNK





LEDVVIDRNLLILGKILGEGEFGSVMEGNLKQEDGTSLKVAVKTMKLDNS





SQREIEEFLSEAACMKDFSHPNVIRLLGVCIEMSSQGIPKPMVILPFMKY





GDLHTYLLYSRLETGPKHIPLQTLLKFMVDIALGMEYLSNRNFLHRDLAA





RNCMLRDDMTVCVADFGLSKKIYSGDYYRQGRIAKMPVKWIAIESLADRV





YTSKSDVWAFGVTMWEIATRGM










      • (g) a naturally occurring intracellular domain between ITIM and ITSM from proteins that have ITIM.*ITSM motif selected from;














KEEEMAD





NFHGMNPSKDTS





QVSSAESHKDLGKKDTE





NLPKGKKPAPQAAEPNNH





NHSVIGPNSRLARNVKEAP





DFQWREKTPEPPVPCVPEQ





TLQLAGTSPQKATTKLSSAQVDQVEVEYVTMASLPKEDISYASLTLGAED





QEPTYCNMGHLSSHLPGRGPEEP





ETGPKHIPLQTLLKFMVDIALGMEYLSNRNFLHRDLAARNCMLRDDMTVC





VADFGLSKKIYSGDYYRQGRIAKMPVKWIAIESLADRVYTSKSDVWAFGV





TMWEIATRGM










      • (h) a naturally occurring intracellular domain from known inhibitory receptors selected from the sequences shown in table 2 wherein said intracellular domain is N-terminally flanking to a sequence in (f) or (g) above; and

      • (i) a non-naturally occurring sequence comprising between 1 and 500 amino acids; and



    • 11. The N-CAR according to according to any one of embodiments 6 to 10 wherein LA is absent or comprises one or more, preferably one, sequences selected from the group consisting of:
      • (j) a naturally occurring C-terminal flanking region of ITIM.*ITSM intracellular domains selected from:












SRP





RTQ





CVRS





KAENIIMMETAQTSL





RKAVPDAVESRYSRTEGSLDGT





VFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL





QTSPQPASEDTLTYADLDMVHLNRTPKQPAPKPEPSFSEYASVQVPRK





QNHEMYDYLLHGHRLKQPEDCLDELYEIMYSCWRTDPLDRPTFSVLRLQL





EKLLESLPDVRNQADVIYVNTQLLESSEGLAQGSTLAPLDLNIDPDSIIA





SCTPRAAISVVTAEVHDSKPHEGRYILNGGSEEWEDLTSAPSAAVTAEKN





SVLPGERLVRNGVSWSHSSMLPLGSSLPDELLFADDSSEGSEVLM










      • (k) a naturally occurring C-terminal flanking region of ITSM only intracellular domain selected from:














RTQ





SRP





KIHR





CVRS





KAENIIMMETAQTSL





RKAVPDAVESRYSRTEGSLDGT





RKPQVVPPPQQNDLEIPESPTYENFT





GKSQPKAQNPARLSRKELENFDVYS





VFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL





QTSPQPASEDTLTYADLDMVHLNRTPKQPAPKPEPSFSEYASVQVPRK





FNLQGKTPVSQKEESSATIYCSIRKPQVVPPPQQNDLEIPESPTYENFT





GGRTMLPIRWMPPESILYRKFTTESDVWSFGVVLWEIFTYGKQPWYQLSN





TEAIDCITQGRELERPRACPPEVYAIMRGCWQREPQQRHSIKDVHARLQA





LAQAPPVYLDVLG





GGHTMLPIRWMPPESIMYRKFTTESDVWSLGVVLWEIFTYGKQPWYQLSN





NEVIECITQGRVLQRPRTCPQEVYELMLGCWQREPHMRKNIKGIHTLLQN





LAKASPVYLDILG





QNHEMYDYLLHGHRLKQPEDCLDELYEIMYSCWRTDPLDRPTFSVLRLQL





EKLLESLPDVRNQADVIYVNTQLLESSEGLAQGSTLAPLDLNIDPDSIIA





SCTPRAAISVVTAEVHDSKPHEGRYILNGGSEEWEDLTSAPSAAVTAEKN





SVLPGERLVRNGVSWSHSSMLPLGSSLPDELLFADDSSEGSEVLM





KDLKTRRNHEQEQTFPGGGSTIYSMIQSQSSAPTSQEPAYTLYSLIQPSR





KSGSRKRNHSPSFNSTIYEVIGKSQPKAQNPARLSRKELENFDVYS










      • (l) a naturally occurring intracellular domain from a known inhibitory receptor selected from the sequences shown in table 2 wherein said intracellular domain is C-terminally flanking to a sequence in (j) or (k) above; and

      • (m) a non-naturally occurring sequence comprising between 1 and 500 amino acids.



    • 11.1. The N-CAR according to embodiment 6 wherein the intracellular domain comprises the following sequence:

    • ((L1-ITIM-L2)n-(L3-ITSM-L4) m) P, wherein

    • n is 0;

    • m is 1;

    • p is 1;

    • L3 comprises one sequence selected from
      • (f) a naturally occurring N-terminal flanking region of an ITSM only intracellular domain such as, for example, any of the sequences shown in Table 6 below or a fragment thereof; or,
      • (i) a non-naturally occurring sequence comprising between 1 and 500 amino acids;

    • and

    • L4 comprises one or more, preferably one or two, sequences selected from the group consisting of:
      • (k) a naturally occurring C-terminal flanking region of an ITSM only intracellular domain such as, for example, any of the sequences shown in Table 8 below or a fragment thereof;
      • (l) a naturally occurring intracellular domain from a known inhibitory receptor such as any of the sequences shown in table 2 or a fragment thereof wherein said intracellular domain is C-terminally flanking to a sequence in (k) above; and
      • (m) a non-naturally occurring sequence comprising between 1 and 500 amino acids, and, wherein.

    • 11.2. The N-CAR according to embodiment 6 wherein the intracellular domain comprises the following sequence:

    • ((L1-ITIM-L2)n-(L3-ITSM-L4)m)p, wherein

    • n is 0;

    • m is 1;

    • p is 1;

    • L3 is selected from












YKMYGSEMLHKRDPLDEDEDTDISYKKLKEEEMAD





CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC





VPEQ





RIRQKKAQGSTSSTRLHEPEKNAREITQDTNDITYADLNLPKGKKPAPQA





AEPNNH





KTHRRKAARTAVGRNDTHPTTGSASPKHQKKSKLHGPTETSSCSGAAPTV





EMDEELHYASLNFHGMNPSKDTS





KCYFLRKAKAKQMPVEMSRPAVPLLNSNNEKMSDPNMEANSHYGHNDDVR





NHAMKPINDNKEPLNSDVQYTEVQVSSAESHKDLGKKDTE





RRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYDN





DPDLCFRMQEGSEVYSNPCLEENKPGIVYASLNHSVIGPNSRLARNVKEA





P





WRMMKYQQKAAGMSPEQVLQPLEGDLCYADLTLQLAGTSPQKATTKLSSA





QVDQVEVEYVTMASLPKEDISYASLTLGAEDQEPTYCNMGHLSSHLPGRG





PEEP





WRRKRKEKQSETSPKEFLTIYEDVKDLKTRRNHEQEQTFPGGGSTIYSMI





QSQSSAPTSQEPAYTLYSLIQPSRKSGSRKRNHSPSFNS





VRSCRKKSARPAAGVGDTGIEDANAVRGSASQGPLTEPWAEDSPPDQPPP





ASARSSVGEGELQYASLSFQMVKPWDSRGQEATD





NKCGRRNKFGINRPAVLAPEDGLAMSLHFMTLGGSSLSPTEGKGSGLQGH





IIENPQYFSDACVHHIKRRDIVLKWELGEGAFGKVFLAECHNLLPEQDKM





LVAVKALKEASESARQDFQREAELLTMLQHQHIVRFFGVCTEGRPLLMVF





EYMRHGDLNRFLRSHGPDAKLLAGGEDVAPGPLGLGQLLAVASQVAAGMV





YLAGLHFVHRDLATRNCLVGQGLVVKIGDFGMSRDIYS





KLARHSKFGMKGPASVISNDDDSASPLHHISNGSNTPSSSEGGPDAVIIG





MTKIPVIENPQYFGITNSQLKPDTFVQHIKRHNIVLKRELGEGAFGKVFL





AECYNLCPEQDKILVAVKTLKDASDNARKDFHREAELLTNLQHEHIVKFY





GVCVEGDPLIMVFEYMKHGDLNKFLRAHGPDAVLMAEGNPPTELTQSQML





HIAQQIAAGMVYLASQHFVHRDLATRNCLVGENLLVKIGDFGMSRDVYS





KRKGRCSVPAFCSSQAEAPADTPEPTAGHTLYSVLSQGYEKLDTPLRPAR





QQPTPTSDSSSDSNLTTEEDEDRPEVHKPISGRYEVFDQVTQEGAGHDPA





PEGQADYDPVTPYVTEVESVVGENTMYAQVFNLQGKTPVSQKEESSA





KRVQETKFGNAFTEEDSELVVNYIAKKSFCRRAIELTLHSLGVSEELQNK





LEDVVIDRNLLILGKILGEGEFGSVMEGNLKQEDGTSLKVAVKTMKLDNS





SQREIEEFLSEAACMKDFSHPNVIRLLGVCIEMSSQGIPKPMVILPFMKY





GDLHTYLLYSRLETGPKHIPLQTLLKFMVDIALGMEYLSNRNFLHRDLAA





RNCMLRDDMTVCVADFGLSKKIYSGDYYRQGRIAKMPVKWIAIESLADRV





YTSKSDVWAFGVTMWEIATRGM








    • and L4 comprises one sequence selected from the group consisting of

    • (k)












RTQ





SRP





KIHR





CVRS





KAENIIMMETAQTSL





RKAVPDAVESRYSRTEGSLDGT





RKPQVVPPPQQNDLEIPESPTYENFT





GKSQPKAQNPARLSRKELENFDVYS





VFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL





QTSPQPASEDTLTYADLDMVHLNRTPKQPAPKPEPSFSEYASVQVPRK





FNLQGKTPVSQKEESSATIYCSIRKPQVVPPPQQNDLEIPESPTYENFT





GGRTMLPIRWMPPESILYRKFTTESDVWSFGVVLWEIFTYGKQPWYQLSN





TEAIDCITQGRELERPRACPPEVYAIMRGCWQREPQQRHSIKDVHARLQA





LAQAPPVYLDVLG





GGHTMLPIRWMPPESIMYRKFTTESDVWSLGVVLWEIFTYGKQPWYQLSN





NEVIECITQGRVLQRPRTCPQEVYELMLGCWQREPHMRKNIKGIHTLLQN





LAKASPVYLDILG





QNHEMYDYLLHGHRLKQPEDCLDELYEIMYSCWRTDPLDRPTFSVLRLQL





EKLLESLPDVRNQADVIYVNTQLLESSEGLAQGSTLAPLDLNIDPDSIIA





SCTPRAAISVVTAEVHDSKPHEGRYILNGGSEEWEDLTSAPSAAVTAEKN





SVLPGERLVRNGVSWSHSSMLPLGSSLPDELLFADDSSEGSEVLM





KDLKTRRNHEQEQTFPGGGSTIYSMIQSQSSAPTSQEPAYTLYSLIQPSR





KSGSRKRNHSPSFNSTIYEVIGKSQPKAQNPARLSRKELENFDVYS










      • and optionally

      • (l) a naturally occurring intracellular domain from a known inhibitory receptor such as any of the sequences shown in table 2 or a fragment thereof wherein said intracellular domain is C-terminally flanking to a sequence in (k) above.



    • 11.3. The N-CAR according to embodiment 6 wherein the intracellular domain comprises the following sequence: ((L1-ITIM-L2)n-(L3-ITSM-L4) m) P, wherein

    • n is 0;

    • m is 1;

    • p is 1;

    • L3 is selected from












CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC





VPEQ





RIRQKKAQGSTSSTRLHEPEKNAREITQDTNDITYADLNLPKGKKPAPQA





AEPNNH





KCYFLRKAKAKQMPVEMSRPAVPLLNSNNEKMSDPNMEANSHYGHNDDVR





NHAMKPINDNKEPLNSDVQYTEVQVSSAESHKDLGKKDTE





RRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYDN





DPDLCFRMQEGSEVYSNPCLEENKPGIVYASLNHSVIGPNSRLARNVKEA





P





WRMMKYQQKAAGMSPEQVLQPLEGDLCYADLTLQLAGTSPQKATTKLSSA





QVDQVEVEYVTMASLPKEDISYASLTLGAEDQEPTYCNMGHLSSHLPGRG





PEEP





WRRKRKEKQSETSPKEFLTIYEDVKDLKTRRNHEQEQTFPGGGSTIYSMI





QSQSSAPTSQEPAYTLYSLIQPSRKSGSRKRNHSPSFNS





VRSCRKKSARPAAGVGDTGIEDANAVRGSASQGPLTEPWAEDSPPDQPPP





ASARSSVGEGELQYASLSFQMVKPWDSRGQEATD





KRKGRCSVPAFCSSQAEAPADTPEPTAGHTLYSVLSQGYEKLDTPLRPAR





QQPTPTSDSSSDSNLTTEEDEDRPEVHKPISGRYEVFDQVTQEGAGHDPA





PEGQADYDPVTPYVTEVESVVGENTMYAQVFNLQGKTPVSQKEESSA








    • L4 comprises one sequence selected from the group consisting of

    • (k)












SRP





KIHR





CVRS





RKAVPDAVESRYSRTEGSLDGT





RKPQVVPPPQQNDLEIPESPTYENFT





GKSQPKAQNPARLSRKELENFDVYS





VFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL





QTSPQPASEDTLTYADLDMVHLNRTPKQPAPKPEPSFSEYASVQVPRK










      • and optionally

      • (l) a naturally occurring intracellular domain from a known inhibitory receptor selected from the sequences shown in table 2, preferably KIR2DL2, or a fragment thereof wherein said intracellular domain is C-terminally flanking to a sequence in (k) above.



    • 11.4. The N-CAR according to embodiment 6 wherein the intracellular domain comprises the following sequence:





((L1-ITIM-L2)n-(L3-ITSM-L4)m)p, wherein

    • n is 0;
    • m is 1;
    • p is 1;
    • L3 is selected from









CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC





VPEQ








    • and L4 comprises

    • (k)














VFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL










      • and

      • (l) a naturally occurring intracellular domain from a known inhibitory receptor selected from the sequences shown in table 2, preferably KIR2DL2, or a fragment thereof wherein said intracellular domain is C-terminally flanking to a sequence in (k) above.



    • 11.5. The N-CAR according to embodiment 6 wherein the intracellular domain comprises the following sequence:

    • ((L1-ITIM-L2)n-(L3-ITSM-L4)m)p, wherein

    • n is 0;

    • m is 1;

    • p is 1;

    • L3 is selected from












WRMMKYQQKAAGMSPEQVLQPLEGDLCYADLTLQLAGTSPQKATTKLSSA





QVDQVEVEYVTMASLPKEDISYASLTLGAEDQEPTYCNMGHLSSHLPGRG





PEEP






L4 comprises a sequence selected from

    • (k)









SRP










      • and optionally

      • (l) a naturally occurring intracellular domain from a known inhibitory receptor selected from the sequences shown in table 2 or a fragment thereof wherein said intracellular domain is C-terminally flanking to a sequence in (k) above.



    • 11.6. The N-CAR according to embodiment 6 wherein the intracellular domain comprises the following sequence:

    • ((L1-ITIM-L2)n-(L3-ITSM-L4)m)p, wherein

    • n is 0;

    • m is 1;

    • p is 1 or 2;

    • L3 comprises one sequence selected from
      • (i) a non-naturally occurring sequence comprising between 1 and 500 amino acids; and

    • L4 comprises one or more, preferably one or two, sequences selected from:
      • (m) a non-naturally occurring sequence comprising between 1 and 500 amino acids.

    • 11.7. The N-CAR according to embodiment 6 wherein the intracellular domain is selected from SEQ ID No 2000, SEQ ID No 2001, SEQ ID No 2002, SEQ ID No 2003, SEQ ID No 2004, SEQ ID No 2005, SEQ ID No 2006, SEQ ID No 2007, SEQ ID No 2008, SEQ ID No 2009, SEQ ID No 2010, SEQ ID No 2011, SEQ ID No 2012, SEQ ID No 2013, SEQ ID No 2014, SEQ ID No 2015, SEQ ID No 2016 and SEQ ID No 2017.

    • 12. The N-CAR according to any one of embodiments 6 to 11.7 wherein the non-naturally occurring sequence of (d), (i) and (m) comprises between 1 and 400, 1 and 300, 1 and 200, 1 and 100, 10 and 100, 10 and 80, 10 and 60, 10 and 40, 100 and 200, 100 and 300 or 100 and 400.

    • 13. The N-CAR according to any one of embodiments 6 to 11.7 wherein the non-naturally occurring sequence of (d) or (i) is a Glycine/Serine linker (GlyxSer)n where x=1, 2, 3, 4 or 5 and n is 1 to 100.

    • 14. The N-CAR according to embodiment 13 wherein the non-naturally occurring sequence of (d) or (i) is a Glycine/Serine linker (Gly-Gly-Gly-Ser)n or (Gly-Gly-Gly-Gly-Ser)n, where n is 1 to 100, 1 to 80, 1 to 50, 1 to 20 or 1 to 10.

    • 15. The N-CAR according to embodiment 14 wherein the non-naturally occurring sequence of (d) or (i) is a (Gly4Ser)4 or (Gly4Ser)3.

    • 16. The ICAR according to any one of embodiments 6 to 15 wherein the intracellular domain comprises the sequence (L1-ITIM-L2-L3-ITSM-L4) P wherein p is 1, 2, 3, 4 or 5;

    • L1 is a naturally occurring N-terminal flanking region of ITIM only intracellular domains selected from the following sequences;












YKMYGSEMLHKRDPLDEDEDTD





DHWALTQRTARAVSPQSTKPMAES





CSRAARGTIGARRTGQPLKEDPSAVPVFS





HRQNQIKQGPPRSKDEEQKPQQRPDLAVDVLERTADKATVNGLPEKDRET





DTSALAAGSSQE





KTHRRKAARTAVGRNDTHPTTGSASPKHQKKSKLHGPTETSSCSGAAPTV





EMDEE





LTRKKKALRIHSVEGDLRRKSAGQEEWSPSAPSPPGSCVQAEAAPAGLCG





EQRGEDCAELHDYFNV





KCYFLRKAKAKQMPVEMSRPAVPLLNSNNEKMSDPNMEANSHYGHNDDVR





NHAMKPINDNKEPLNSD





RRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYDN





DPDLCFRMQEGSEVYSNPCLEENKPG





WRMMKYQQKAAGMSPEQVLQPLEGDLCYADLTLQLAGTSPQKATTKLSSA





QVDQVEVEYVTMASLPKED





KRVQETKFGNAFTEEDSELVVNYIAKKSFCRRAIELTLHSLGVSEELQNK





LEDVVIDRNLLILGKILGEGEFGSVMEGNLKQEDGTSLKVAVKTMKLDNS





SQREIEEFLSEAACMKDFSHPNVIRLLGVCIEMSSQGIPKPMVILPFMKY





GDLHTY








    • L2 is absent;

    • L3 is a naturally occurring intracellular domain between ITIM and ITSM from proteins that have ITIM.*ITSM motif selected from the following sequences:












KEEEMAD





NFHGMNPSKDTS





QVSSAESHKDLGKKDTE





NLPKGKKPAPQAAEPNNH





NHSVIGPNSRLARNVKEAP





DFQWREKTPEPPVPCVPEQ





TLQLAGTSPQKATTKLSSAQVDQVEVEYVTMASLPKEDISYASLTLGAED





QEPTYCNMGHLSSHLPGRGPEEP





ETGPKHIPLQTLLKFMVDIALGMEYLSNRNFLHRDLAARNCMLRDDMTVC





AVDFGLSKKIYSGDYYRQGRIAKMPVKWIAIESLADRVYTSKSDVWAFGV





TMWEIATRGM








    • L4 is a naturally occurring C-terminal flanking region of ITIM.*ITSM intracellular domains selected from the following sequences:












SRP





RTQ





CVRS





KAENIIMMETAQTSL





RKAVPDAVESRYSRTEGSLDGT





VFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL





QTSPQPASEDTLTYADLDMVHLNRTPKQPAPKPEPSFSEYASVQVPRK





QNHEMYDYLLHGHRLKQPEDCLDELYEIMYSCWRTDPLDRPTFSVLRLQL





EKLLESLPDVRNQADVIYVNTQLLESSEGLAQGSTLAPLDLNIDPDSIIA





SCTPRAAISVVTAEVHDSKPHEGRYILNGGSEEWEDLTSAPSAAVTAEKN





SVLPGERLVRNGVSWSHSSMLPLGSSLPDELLFADDSSEGSEVLM







or a naturally occurring C-terminal flanking region of ITSM only intracellular domains selected from the following sequences:









RTQ





SRP





CVRS





KAENIIMMETAQTSL





RKAVPDAVESRYSRTEGSLDGT





VFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL





QTSPQPASEDTLTYADLDMVHLNRTPKQPAPKPEPSFSEYASVQVPRK





FNLQGKTPVSQKEESSATIYCSIRKPQVVPPPQQNDLEIPESPTYENFT





GGRTMLPIRWMPPESILYRKFTTESDVWSFGVVLWEIFTYGKQPWYQLSN





TEAIDCITQGRELERPRACPPEVYAIMRGCWQREPQQRHSIKDVHARLQA





LAQAPPVYLDVLG





GGHTMLPIRWMPPESIMYRKFTTESDVWSLGVVLWEIFTYGKQPWYQLSN





NEVIECITQGRVLQRPRTCPQEVYELMLGCWQREPHMRKNIKGIHTLLQN





LAKASPVYLDILG





QNHEMYDYLLHGHRLKQPEDCLDELYEIMYSCWRTDPLDRPTFSVLRLQL





EKLLESLPDVRNQADVIYVNTQLLESSEGLAQGSTLAPLDLNIDPDSIIA





SCTPRAAISVVTAEVHDSKPHEGRYILNGGSEEWEDLTSAPSAAVTAEKN





SVLPGERLVRNGVSWSHSSMLPLGSSLPDELLFADDSSEGSEVLM





KDLKTRRNHEQEQTFPGGGSTIYSMIQSQSSAPTSQEPAYTLYSLIQPSR





KSGSRKRNHSPSFNSTIYEVIGKSQPKAQNPARLSRKELENFDVYS.








    • 17. The N-CAR according to any one of the preceding embodiments wherein the term amino acid refers to glycine, alanine, valine, leucine, isoleucine, phenylalanine, proline, serine, threonine, tyrosine, cysteine, methionine, lysine, arginine, histidine, tryptophan, aspartic acid, glutamic acid, asparagine or glutamine.

    • 18. The N-CAR according to any one of the preceding embodiments wherein X1 is E, V or I.

    • 19. The N-CAR any one of the preceding embodiments wherein X1 is E.

    • 20. The N-CAR any one of the preceding embodiments wherein X2 is S or A.

    • 21. The N-CAR any one of the preceding embodiments wherein X2 is A.

    • 22. The N-CAR any one of the preceding embodiments wherein X3 is E, S, T, Q or V.

    • 23. The N-CAR any one of the preceding embodiments wherein X3 is E.

    • 24. The N-CAR any one of the preceding embodiments wherein X3 is T.

    • 25. The N-CAR any one of the preceding embodiments wherein X2 is I.

    • 26. The N-CAR according to any one of embodiments 7 to 25 wherein X5 is L, V or I

    • 27. The N-CAR according to any one of embodiments 7 to 26 wherein X5 is L.

    • 28. The N-CAR according to any one of embodiments 7 to 26 wherein X5 is V

    • 29. The N-CAR according to any one of embodiments 7 to 26 wherein X5 is I.

    • 30. The N-CAR according to any one of embodiments 7 to 29 wherein X6 is A, H, Q, T, D, V, L or E.

    • 31. The N-CAR according to any one of embodiments 7 to 30 wherein X6 is H.

    • 32. The N-CAR according to any one of embodiments 7 to 30 wherein X6 is D.

    • 33. The N-CAR according to any one of embodiments 7 to 32 wherein X7 is A, G, T, V or E.

    • 34. The N-CAR according to any one of embodiments 7 to 33 wherein X7 is A.

    • 35. The N-CAR according to any one of embodiments 7 to 33 wherein X7 is G.

    • 36. The N-CAR according to any one of embodiments 7 to 35 wherein X8 is V, S, D or E.

    • 37. The N-CAR according to any one of embodiments 7 to 36 wherein X8 is S or E.

    • 38. The N-CAR according to any one of embodiments 7 to 37 wherein X8 is E.

    • 39. The N-CAR according to any one of embodiments 7 to 38 wherein X9 is L or V.

    • 40. The N-CAR according to any one of embodiments 7 to 38 wherein X9 is L.

    • 41. The N-CAR according to any one of embodiments 7 to 40 wherein X5 is L or V, X8 is E and X9 is L.

    • 42. The N-CAR any one of the preceding embodiments wherein the ITSM, or at least one of the ITSMs when several ITSMs are present in the intracellular domain, is selected from TAYELV, TAYGLI, TAYNAV, TCYGLV, TCYPDI, TDYASI, TDYDLV, TDYLSI, TDYQQV, TDYYRV, TEYASI, TEYATI, TEYDTI, TEYPLV, TEYSEI, TEYSEV, TEYSTI, TEYTKV, TFYHVV, TFYLLI, TFYNKI, TFYPDI, TGYEDV, TGYLSI, THYKEI, TIYAQV, TIYAVV, TIYCSI, TIYEDV, TIYERI, TIYEVI, TIYHVI, TIYIGV, TIYLKV, TIYSMI, TIYSTI, TIYTYI, TKYFHI, TKYMEI, TKYQSV, TKYSNI, TKYSTV, TLYASV, TLYAVV, TLYFWV, TLYHLV, TLYPMV, TLYPPI, TLYRDI, TLYRDV, TLYSKI, TLYSLI, TLYSPV, TMYAQV, TMYCQV, TNYKAV, TNYNLV, TPYAGI, TPYPGV, TPYVDI, TQYGRV, TQYNQV, TRYAYV, TRYGEV, TRYHSV, TRYKTI, TRYLAI, TRYMAI, TRYQKI, TRYQQI, TRYSNI, TRYSPI, TSYGTV, TSYMEV, TSYQGV, TSYTTI, TTYRSI, TTYSDV, TTYVTI, TVYAQI, TVYASV, TVYEVI, TVYGDV, TVYKGI, TVYQRV, TVYSEV, TVYSTV, TYYHSI, TYYLQI, or TYYYSV.

    • 43. The N-CAR any one of the preceding embodiments wherein the ITSM, or at least one of the ITSMs when several ITSMs are present in the intracellular domain is TEYASI.

    • 44. The N-CAR any one of the preceding embodiments wherein the ITSM, or at least one of the ITSMs when several ITSMs are present in the intracellular domain is TEYSEI.

    • 44.1 The N-CAR any one of the preceding embodiments wherein the ITSM, or at least one of the ITSMs when several ITSMs are present in the intracellular domain is TEYSTI.

    • 45. The N-CAR any one of the preceding embodiments wherein the ITSM, or at least one of the ITSMs when several ITSMs are present in the intracellular domain is TVYSEV.

    • 46. The N-CAR according to any one of embodiments 7 to 45 wherein the ITIM, or at least one of the ITIMs when several ITSMs are present in the intracellular domain is selected from LSYRSL, LPYYDL, LPYYDL, LLYSRL, LLYSRL, LIYTLL, LLYADL, ISYTTL, VTYSAL, IHYSEL, VDYVIL, LHYASL, LDYDYL, VDYDFL, VTYSTL, IIYSEV, LEYLCL, VLYGQL, VPYTPL, ISYPML, ISYPML, ISYPML, VSYTNL, LLYEMV, VDYNLV, ITYFAL, VHYQSV, VPYVMV, IPYRTV, IAYSLL, VCYGRL, LKYLYL, LLYEHV, ITYSLL, VLYSEL, IWYNIL, ISYKGL, IDYYNL, LEYLQL, LKYRGL, VLYASV, LQYLSL, LFYRHL, VQYKAV, LSYSSL, LSYTKV, VQYSTV, VKYNPV, VVYSEV, VVYSEV, IIYSEV, LEYVSV, LAYHTV, VQYLRL, VTYTQL, IVYTEL, VTYTQL, IVYAEL, VTYAQL, IVYTEL, VTYAQL, IVYTEL, VTYAQL, VTYAQL, VTYAQL, ILYTEL, VTYAQL, VTYAQL, ITYAAV, VTYAQL, ITYAAV, VIYIDV, VTYAEV, VTYAQL, VTYAQL, VTYAPV, VTYAQL, VTYAKV, VTYARL, VTYAQL, ILYHTV, LLYSRL, VLYAML, VIYAQL, LVYENL, LCYADL, ISYASL, LTYVLL, VTYVNL, VRYSIV, VFYRQV, VFYRQV, LKYMEV, LKYMEV, VDYGEL, LSYMDL, VLYTAV, VQYTEV, IVYASL, VEYLEV, LEYVDL, ITYADL, LTYADL, ITYADL, LTYADL, VIYENV, VIYENV, VIYENV, VIYENV, LAYYTV, VSYSAV, LVYDKL, LNYMVL, LNYACL, LDYINV, LHYATL, LHYASL, LHYASL, LHYAVL, IQYAPL, IQYASL, IQYASL, LLYLLL, VVYSQV, VIYSSV, VVYSQV, VIYSSV, VVYYRV, VPYVEL, LDYDKL, LPYYDL, LSYPVL, VAYSQV, LFYWDV, LFYWDV, LIYSQV, or LDYEFL.

    • 47. The N-CAR according to any one of embodiments 7 to 45 wherein the ITIM, or at least one of the ITIMs when several ITSMs are present in the intracellular domain is selected IAYGDI, IAYRDL, IAYSLL, IAYSRL, ICYALL, ICYDAL, ICYPLL, ICYQLI, IDYILV, IDYKTL, IDYTQL, IDYYNL, IEYCKL, IEYDQI, IEYGPL, IEYIRV, IEYKSL, IEYKTL, IEYSVL, IEYWGI, IFYGNV, IFYHNL, IFYKDI, IFYQNV, IFYRLI, IGYDIL, IGYDVL, IGYICL, IGYKAI, IGYLEL, IGYLPL, IGYLRL, IGYPFL, IGYSDL, IHYRQI, IHYSEL, IIYAFL, IIYHVI, IIYMFL, IIYNLL, IIYNNL, IIYSEV, IKYCLV, IKYKEL, IKYLAL, IKYTCI, ILYADI, ILYAFL, ILYCSV, ILYEGL, ILYELL, ILYFQI, ILYHTV, ILYLQV, ILYSIL, ILYSVL, ILYTEL, ILYTIL, IMYTLV, INYCSV, INYKDI, INYTTV, INYVLL, IPYDVL, IPYLLV, IPYRTV, IPYSQL, IPYSRI, IPYTQI, IQYAPL, IQYASL, IQYERL, IQYGII, IQYGNV, IQYGRV, IQYNVV, IQYRSI, IQYTEL, IQYWGI, IRYANL, IRYLDL, IRYPLL, IRYRLL, IRYRTI, ISYASL, ISYCGV, ISYEPI, ISYFQI, ISYGLI, ISYKKL, ISYLPL, ISYPML, ISYTTL, ITYAAV, ITYADL, ITYAEL, ITYAEV, ITYASV, ITYDLI, ITYENV, ITYQLL, ITYSLL, IVYAEL, IVYALV, IVYASL, IVYEIL, IVYFIL, IVYHML, IVYLCI, IVYRLL, IVYSAL, IVYSWV, IVYTEL, IVYYIL, IWYENL, IWYFVV, IWYNIL, IYYLGV, LAYALL, LAYARI, LAYDSV, LAYFGV, LAYHRL, LAYKDL, LAYKRI, LAYPPL, LAYQTL, LAYREV, LAYRII, LAYRLL, LAYSQL, LAYSSV, LAYTLL, LAYWGI, LAYYTV, LCYADL, LCYAIL, LCYFHL, LCYHPI, LCYKEI, LCYKFL, LCYMII, LCYRKI, LCYRVL, LCYSTV, LCYTLV, LDYASI, LDYCEL, LDYDKI, LDYDKL, LDYDYL, LDYDYV, LDYEFL, LDYINV, LDYNNL, LDYPHV, LDYSPV, LDYVEI, LDYWGI, LEYAPV, LEYIPL, LEYKTI, LEYLCL, LEYLKL, LEYLQI, LEYLQL, LEYQRL, LEYVDL, LEYVSV, LEYYQI, LFYAQL, LFYCSV, LFYERV, LFYGFL, LFYKYV, LFYLLL, LFYNKV, LFYRHL, LFYTLL, LFYWDV, LFYWKL, LGYGNV, LGYKEL, LGYLQL, LGYPLI, LGYPWV, LGYSAL, LGYSDL, LGYVTL, LHYAKI, LHYALV, LHYANL, LHYARL, LHYASI, LHYASL, LHYASV, LHYATI, LHYATL, LHYAVL, LHYDVV, LHYEGL, LHYETI, LHYFEI, LHYFVV, LHYGAI, LHYILI, LHYINL, LHYKRI, LHYLDL, LHYLNI, LHYLTI, LHYLVI, LHYMAI, LHYMII, LHYMNI, LHYMTI, LHYMTL, LHYMTV, LHYMVI, LHYNML, LHYPAL, LHYPDL, LHYPII, LHYPIL, LHYPLL, LHYPML, LHYPNV, LHYPSI, LHYPTI, LHYPTL, LHYPTV, LHYPVI, LHYPVL, LHYRII, LHYRTI, LHYSII, LHYSSI, LHYSTI, LHYSTL, LHYSVI, LHYTAI, LHYTAL, LHYTII, LHYTKV, LHYTLI, LHYTSI, LHYTTI, LHYTTV, LHYTVI, LHYTVL, LHYTVV, LHYVSI, LHYVTI, LHYVVI, LIYEKL, LIYENV, LIYKDL, LIYNSL, LIYSGL, LIYTLL, LIYTVL, LIYWEI, LKYCEL, LKYDKL, LKYESL, LKYFTI, LKYHTV, LKYILL, LKYIPI, LKYKHV, LKYLYL, LKYMEV, LKYMTL, LKYPAI, LKYPDV, LKYPEL, LKYQPI, LKYRGL, LKYRLL, LLYADL, LLYAPL, LLYAVV, LLYCAI, LLYEHV, LLYELL, LLYEQL, LLYGQI, LLYIRL, LLYKAL, LLYKFL, LLYKLL, LLYKTV, LLYMVV, LLYNAI, LLYNIV, LLYNVI, LLYPAI, LLYPLI, LLYPNI, LLYPSL, LLYPTI, LLYPVI, LLYPVV, LLYQIL, LLYQNI, LLYRLL, LLYRVI, LLYSII, LLYSLI, LLYSPV, LLYSRL, LLYSTI, LLYSVI, LLYSVV, LLYTTI, LLYTVI, LLYTVV, LLYVII, LLYVIL, LLYVTI, LLYWGI, LLYYLL, LLYYVI, LMYDNV, LMYMVV, LMYQEL, LMYRGI, LNYACL, LNYATI, LNYEVI, LNYGDL, LNYHKL, LNYMVL, LNYNIV, LNYPVI, LNYQMI, LNYSGV, LNYSVI, LNYTIL, LNYTTI, LNYVPI, LPYADL, LPYALL, LPYFNI, LPYFNV, LPYHDL, LPYKLI, LPYKTL, LPYLGV, LPYLKV, LPYPAL, LPYQVV, LPYRTV, LPYVEI, LPYYDL, LQYASL, LQYERI, LQYFAV, LQYFSI, LQYHNI, LQYIGL, LQYIKI, LQYLSL, LQYMIV, LQYPAI, LQYPLL, LQYPLV, LQYPSI, LQYPTL, LQYPVL, LQYRAV, LQYSAI, LQYSSI, LQYSVI, LQYTIL, LQYTLI, LQYTMI, LQYYQV, LRYAAV, LRYAGL, LRYAPL, LRYASI, LRYATI, LRYATV, LRYAVL, LRYCGI, LRYELL, LRYETL, LRYGAL, LRYGPI, LRYGTL, LRYHHI, LRYHSI, LRYHVL, LRYIAI, LRYIFV, LRYITV, LRYKEV, LRYKKL, LRYKMV, LRYKSL, LRYKVI, LRYLAI, LRYLDL, LRYLTI, LRYLTV, LRYMSI, LRYMVI, LRYNCI, LRYNGL, LRYNII, LRYNIL, LRYNKI, LRYNSL, LRYNVI, LRYNVL, LRYPFL, LRYPII, LRYPIL, LRYPLL, LRYPNI, LRYPSI, LRYPTI, LRYPTL, LRYPVI, LRYPVL, LRYQKL, LRYQMI, LRYQNL, LRYRLI, LRYRVI, LRYSAI, LRYSDL, LRYSII, LRYSMI, LRYSSI, LRYSTI, LRYSTL, LRYSVI, LRYSVL, LRYSVV, LRYTAI, LRYTIL, LRYTLI, LRYTMI, LRYTNL, LRYTPV, LRYTSI, LRYTSV, LRYTTI, LRYTTV, LRYTVI, LRYVEV, LRYVTI, LRYVTV, LSYDSL, LSYEDV, LSYFGV, LSYILI, LSYISV, LSYKQV, LSYKRL, LSYLDV, LSYMDL, LSYNAL, LSYNDL, LSYNKL, LSYNQL, LSYPVL, LSYQEV, LSYQPV, LSYQTI, LSYRSL, LSYRSV, LSYSII, LSYSSL, LSYSTL, LSYTKV, LSYTSI, LSYTTI, LSYVLI, LTYADL, LTYAEL, LTYAQV, LTYARL, LTYCDL, LTYCGL, LTYCVL, LTYEEL, LTYEFL, LTYGEV, LTYGRL, LTYKAL, LTYLRL, LTYMTL, LTYNTL, LTYPGI, LTYQSV, LTYSSV, LTYTTV, LVYDAI, LVYDKL, LVYDLV, LVYENL, LVYGQL, LVYHKL, LVYQEV, LVYRKV, LVYRNL, LVYSEI, LVYTNV, LVYWEI, LVYWKL, LVYWRL, LWYEGL, LWYKYI, LWYNHI, LWYTMI, LYYCQL, LYYGDL, LYYKKV, LYYLLI, LYYPKV, LYYRRV, LYYSTI, LYYVRI, LYYVVI, SAYATL, SAYCPL, SAYPAL, SAYQAL, SAYQTI, SAYRSV, SAYTAL, SAYTPL, SAYVVL, SCYAAV, SCYCII, SCYCLL, SCYDFL, SCYEEL, SCYEKI, SCYHIL, SCYPYI, SCYRIL, SCYRTL, SDYCNL, SDYEDL, SDYENV, SDYESV, SDYFIV, SDYHTL, SDYLAI, SDYLDI, SDYLEL, SDYQDL, SDYQRL, SDYSVI, SDYTHL, SEYASV, SEYEEL, SEYFEL, SEYGEL, SEYITL, SEYKAL, SEYKEL, SEYKGI, SEYLAI, SEYLEI, SEYMVI, SEYQSI, SEYRPI, SEYSEI, SEYSSI, SEYTPI, SEYTYV, SFYAAL, SFYDSL, SFYKGL, SFYLYV, SFYNAV, SFYPSV, SFYQQI, SFYQQL, SFYSAL, SFYSDI, SFYSKL, SFYSRV, SFYWNV, SFYYLI, SGYAQL, SGYATL, SGYEKL, SGYQLV, SGYQRI, SGYRRL, SGYSHL, SGYSQL, SGYTLI, SGYTRI, SGYYRV, SHYADV, SHYFPL, SHYIDI, SHYKRL, SHYQVV, SIYAPL, SIYATL, SIYEEL, SIYEEV, SIYELL, SIYEVL, SIYGDL, SIYKKL, SIYLNI, SIYLVI, SIYRYI, SIYSWI, SKYKEI, SKYKIL, SKYKSL, SKYLAV, SKYLGV, SKYNIL, SKYQAV, SKYSDI, SKYSSL, SKYVGL, SKYVSL, SLYANI, SLYAQV, SLYAYI, SLYDDL, SLYDFL, SLYDNL, SLYDSI, SLYDYL, SLYEGL, SLYEHI, SLYELL, SLYHCL, SLYHKL, SLYIGI, SLYKKL, SLYKNL, SLYLAI, SLYLGI, SLYNAL, SLYNLL, SLYRNI, SLYSDV, SLYTCV, SLYTTL, SLYVAI, SLYVDV, SLYVSI, SLYYAL, SLYYNI, SLYYPI, SMYDGL, SMYEDI, SMYNEI, SMYQSV, SMYTWL, SMYVSI, SNYENL, SNYGSL, SNYGTI, SNYLVL, SNYQEI, SNYRLL, SNYRTL, SNYSDI, SNYSLL, SPYAEI, SPYATL, SPYEKV, SPYGDI, SPYGGL, SPYNTL, SPYPGI, SPYPGV, SPYQEL, SPYRSV, SPYSRL, SPYTDV, SPYTSV, SPYVVI, SQYCVL, SQYEAL, SQYKRL, SQYLAL, SQYLRL, SQYMHV, SQYSAV, SQYTSI, SQYWRL, SRYAEL, SRYATL, SRYESL, SRYGLL, SRYLSL, SRYMEL, SRYMRI, SRYPPV, SRYQAL, SRYQQL, SRYRFI, SRYRFV, SRYSAL, SRYSDL, SRYTGL, SRYVRL, SSYDEL, SSYEAL, SSYEIV, SSYEPL, SSYGRL, SSYGSI, SSYGSL, SSYHII, SSYHIL, SSYHKL, SSYHNI, SSYIKV, SSYNSV, SSYQEI, SSYRKV, SSYRRV, SSYSDI, SSYTPL, SSYTRL, SSYTSV, SSYTTI, SSYVKL, STYAEV, STYAGI, STYAHL, STYALV, STYAPI, STYDHV, STYDKV, STYDQV, STYDRI, STYEEL, STYEYL, STYILV, STYLPL, STYMAV, STYQTL, STYRKL, STYSQL, STYTSI, STYYQV, SVYATL, SVYCFL, SVYCNL, SVYDSV, SVYDTI, SVYEKV, SVYEML, SVYGSV, SVYPII, SVYQPI, SVYRKV, SVYSHL, SVYSRV, SVYTAL, SVYTEL, SVYWKV, SWYDSI, SWYFTV, SYYKAI, SYYLKL, SYYSFV, SYYVTI, VAYADL, VAYARI, VAYARV, VAYDQL, VAYGHV, VAYKQV, VAYKRL, VAYNLL, VAYQRV, VAYSGV, VAYSQV, VCYCIV, VCYGLV, VCYGRL, VCYIVV, VCYLLV, VDYDCI, VDYDFL, VDYFTI, VDYFVL, VDYGEL, VDYILV, VDYIQV, VDYKNI, VDYMSI, VDYNLV, VDYPDV, VDYSDL, VDYSSV, VDYTTL, VDYVDV, VDYVGV, VDYVIL, VDYVQV, VEYAPL, VEYDPL, VEYGTI, VEYHRL, VEYLEV, VEYQLL, VEYRPL, VEYSSI, VEYSTV, VFYAEI, VFYLAV, VFYRQV, VFYVGV, VFYYVI, VFYYVL, VGYETI, VHYALL, VHYARL, VHYETL, VHYGGV, VHYHSL, VHYIPV, VHYKEI, VHYLQV, VHYNSL, VHYQSV, VHYRSL, VIYAQL, VIYDRL, VIYENV, VIYEPL, VIYERL, VIYIDV, VIYKKI, VIYKRI, VIYPFL, VIYPNI, VIYSDL, VIYSML, VIYSSV, VIYSWI, VKYADI, VKYARL, VKYATL, VKYEGL, VKYGDL, VKYGSV, VKYLLV, VKYNPV, VKYPPI, VKYQRL, VKYQVI, VKYSEV, VKYSNV, VKYSRL, VKYSTL, VKYVDL, VLYADI, VLYAML, VLYASV, VLYCLL, VLYCLV, VLYCVL, VLYDCL, VLYFHI, VLYFTV, VLYGDL, VLYGQL, VLYPMV, VLYPRL, VLYPRV, VLYSEL, VLYSRV, VLYTAV, VLYTIL, VMYDAV, VNYESI, VNYSAL, VNYSKI, VNYSSI, VPYALL, VPYDTL, VPYEDV, VPYEEL, VPYKTI, VPYLRV, VPYNDL, VPYPAL, VPYQEL, VPYRLL, VPYSEL, VPYTLL, VPYTPL, VPYTTL, VPYVEL, VPYVMV, VPYVSL, VQYKAV, VQYKEI, VQYNIV, VQYRPV, VQYSQI, VQYSTV, VQYTEV, VQYYNI, VRYARL, VRYDNL, VRYGRI, VRYKKL, VRYKRV, VRYLDV, VRYRTI, VRYSDI, VRYTQL, VRYVCL, VSYAEL, VSYASV, VSYEPI, VSYGDI, VSYIGL, VSYILV, VSYMML, VSYNNI, VSYNNL, VSYQEI, VSYQPI, VSYSAV, VSYSFL, VSYSLV, VSYSPV, VSYTML, VSYTNL, VSYTPL, VSYVKI, VSYVLL, VTYADL, VTYAEL, VTYAEV, VTYAKV, VTYAPV, VTYAQL, VTYATL, VTYATV, VTYGNI, VTYITI, VTYQII, VTYQIL, VTYQLL, VTYSAL, VTYSTL, VTYTLL, VTYTQL, VTYVNL, VVYADI, VVYEDV, VVYFCL, VVYKTL, VVYQKL, VVYSEV, VVYSQV, VVYSVV, VVYTVL, VVYYRI, VYYHWL or VYYLPL.

    • 48. The N-CAR according to any one of the preceding embodiments wherein the intracellular domain comprises several ITSMs having the same amino acid sequence.

    • 49. The N-CAR according to any one of the preceding embodiments wherein the intracellular domain comprises several ITSMs having different amino acid sequences.

    • 50. The N-CAR any one of the preceding embodiments wherein the intracellular domain comprises several ITIMs having the same amino acid sequence.

    • 51. The N-CAR any one of the preceding embodiments wherein the intracellular domain comprises several ITIMs having different amino acid sequences.

    • 52. The N-CAR according to any one of embodiments 7 to 51 wherein p is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20.

    • 53. The N-CAR according to any one of embodiments 7 to 51 wherein p is 1.

    • 54. The N-CAR according to any one of embodiments 7 to 51 wherein p is 2.

    • 55. The N-CAR according to any one of embodiments 7 to 51 wherein p is 3.

    • 56. The N-CAR according to any one of embodiments 7 to 51 wherein p is 4.

    • 57. The N-CAR according to any one of embodiments 7 to 51 wherein p is 5.

    • 58. The N-CAR according to any one of embodiments 7 to 57 wherein n is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.

    • 59. The N-CAR according to any one of embodiments 7 to 57 wherein n is 0.

    • 60. The N-CAR according to any one of embodiments 7 to 57 wherein n is 1.

    • 61. The N-CAR according to any one of embodiments 7 to 57 wherein n is 2.

    • 62. The N-CAR according to any one of embodiments 7 to 57 wherein n is 3.

    • 63. The N-CAR according to any one of embodiments 7 to 62 wherein m is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20.

    • 64. The N-CAR according to any one of embodiments 7 to 62 wherein m is 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.

    • 65. The N-CAR according to any one of embodiments 7 to 62 wherein m is 1, 2, 3, 4 or 5.

    • 66. The N-CAR according to any one of embodiments 7 to 62 wherein m is 1.

    • 67. The N-CAR according to any one of embodiments 7 to 62 wherein m is 2.

    • 68. The N-CAR according to any one of embodiments 7 to 62 wherein m is 3.

    • 69. The N-CAR according to any one of embodiments 7 to 62 wherein m is 4.

    • 70. The N-CAR according to any one of embodiments 7 to 62 wherein m is 5.

    • 71. The N-CAR according to any one of embodiments 7 to 51 wherein n is 0, m is 1 to 6 and p is 1 and ITSM is TEYATI.

    • 72. The N-CAR according to any one of embodiments 7 to 51 wherein n is 0, m is 1 to 6 and p is 1 and ITSM is TEYSEI.

    • 73. The N-CAR according to any one of embodiments 7 to 51 wherein n is 0, m is 1 to 6 and p is 1 and ITSM is TEYASI.

    • 74. The N-CAR according to any one of embodiments 7 to 51 wherein n is 1, m is 1 and p is 1 to 5 and ITIM is VDYGEL and ITSM is TEYATI.

    • 75. The N-CAR according to any one of embodiments 7 to 51 wherein n is 1, m is 1 and p is 1 to 5 and ITIM is LX6YAX8L wherein X6 is selected from H or Q and X8 is V or S, and ITSM is TEYSEI.

    • 76. The N-CAR according to any one of embodiments 1 to 75 wherein the intracellular domain comprises several ITSMs having the same amino acid sequence.

    • 77. The N-CAR according to any one of embodiments 1 to 75 wherein the intracellular domain comprises several ITSMs having different amino acid sequences.

    • 78. The N-CAR according to any one of embodiments 1 to 75 wherein the intracellular domain comprises several ITIMs having the same amino acid sequence.

    • 79. The N-CAR according to any one of embodiments 1 to 75 wherein the intracellular domain comprises several ITIMs having different amino acid sequences.

    • 80. The N-CAR according to any one of embodiments 1 to 79, wherein the antigen binding domain is a single chain variable fragment (scFv).

    • 81. The N-CAR according to any one of embodiments 1 to 79, wherein the antigen binding domain is a Fv, a Fab, or a (Fab′)2.

    • 82. The N-CAR according to any one of embodiments 1 to 81, wherein the antigen binding domain binds to ITGAX, CDIE, CD34, CDIC, CD123 or CD141.

    • 83. The N-CAR according to any one of embodiments 1 to 81, wherein the antigen binding domain binds to ZP2, GABRA6, CRTAM or GRM4, or MDGA1.

    • 84. The N-CAR according to any one of embodiments 1 to 81, wherein the antigen binding domain binds to SFTPC, ROS1, SLC6A4 or AGTR2.

    • 85. The N-CAR according to any one of embodiments 1 to 81, wherein the antigen binding domain binds to LRRC26, HTR3A, TMEM211 or MRGPRX3.

    • 86. The N-CAR according to any one of embodiments 1 to 81, wherein the antigen binding domain binds to MEPIB, TMIGD1, CEACAM20, or ALPI.

    • 87. The N-CAR according to any one of embodiments 1 to 81, wherein the antigen binding domain binds to TMPRSS11B, CYP17A1 or ATP4B.

    • 88. The N-CAR according to any one of embodiments 1 to 81, wherein the antigen binding domain binds to GP2, MUC21, CLCA4 and SLC27A6.

    • 89. The N-CAR according to any one of embodiments 1 to 81, wherein the antigen binding domain binds to a cell-surface protein present in normal tissue but not present or present at lower level on a tumor

    • 90. The N-CAR according to any one of embodiments 1 to 81 wherein the antigen binding domain binds to an off-tissue antigen.

    • 91. The N-CAR according to any one of embodiments 1 to 90 wherein the transmembrane domain comprises the transmembrane region(s) of the alpha, beta or zeta chain of the T-cell receptor, PD-1, 4-1BB, OX40, ICOS, CTLA-4, LAG3, 2B4, BTLA4, TIM-3, TIGIT, SIRPA, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137 or CD154.

    • 92. The N-CAR according to any one of embodiments 1 to 91 wherein the transmembrane domain comprises the transmembrane region of PD-1.

    • 93. The N-CAR according to any one of embodiments 1 to 92 wherein the transmembrane domain comprises the transmembrane region(s) of CD8 alpha.

    • 94. The N-CAR according to any one of embodiments 1 to 93 wherein the transmembrane domain is attached to the extracellular domain of the N-CAR via a hinge.

    • 95. The N-CAR according to embodiment 94 wherein the hinge is a human immunoglobulin hinge.

    • 96. The N-CAR according to embodiment 94 wherein the hinge is an IgG4 hinge, a CD8 alpha hinge or a PD-1 hinge.

    • 96.1 The N-CAR according to embodiment 94 wherein the hinge is a PD-1 hinge.

    • 97. An isolated immune cell comprising a P-CAR comprising,

    • an extracellular domain comprising an antigen binding domain,

    • a transmembrane domain

    • an intracellular domain

    • and an N-CAR according to any one of embodiments 1 to 96.

    • 98. The immune cell according to embodiment 97, wherein the antigen to which the antigen binding domain of the P-CAR binds is CD33 and the antigen to which the antigen binding domain of the N-CAR binds is ITGAX, CDIE, CD34, CDIC, CD123, or CD141.

    • 99. The immune cell according to embodiment 97, wherein the antigen to which the antigen binding domain of the P-CAR binds is FLT3 and the antigen to which the antigen binding domain of the N-CAR binds is ZP2, GABRA6, CRTAM, GRM4 or MDGA1.

    • 100. The immune cell according to embodiment 97, wherein the antigen to which the antigen binding domain of the P-CAR binds is MSLN and the antigen to which the antigen binding domain of the N-CAR binds is SFTPC, ROS1, SLC6A4 or AGTR2.

    • 101. The immune cell according to embodiment 97, wherein the antigen to which the antigen binding domain of the P-CAR binds is MUC16 and the antigen to which the antigen binding domain of the N-CAR binds is LRRC26, HTR3A, TMEM211 or MRGPRX3.

    • 102. The immune cell according to embodiment 97, wherein the antigen to which the antigen binding domain of the P-CAR binds is MUC17 and the antigen to which the antigen binding domain of the N-CAR binds is MEPIB, TMIGD1, CEACAM20 or ALPI.

    • 103. The immune cell according to embodiment 97, wherein the antigen to which the antigen binding domain of the P-CAR binds is present in tumor cells of pancreatic ductal adenocarcinoma and the antigen to which the antigen binding domain of the N-CAR binds is TMPRSS11B, CYP17A1 or ATP4B.

    • 104. The immune cell according to embodiment 97, wherein the antigen to which the antigen binding domain of the P-CAR binds is present in tumor cells of kidney clear cell carcinoma and the antigen to which the antigen binding domain of the N-CAR binds is GP2, MUC21, CLCA4 and SLC27A6.

    • 105. The immune cell according to any one of embodiments 97 to 104 wherein the immune cell is a T-cell.

    • 106. The immune cell according to embodiment 105 wherein the T-cell is a human T-cell.

    • 107. The immune cell according to any one of embodiments 97 to 106 for its use as a medicament.

    • 108. The immune cell according to any one of embodiments 97 to 106 for its use for the treatment of cancer.

    • 109. The immune cell according to any one of embodiments 97 to 106 derived from inflammatory T-lymphocytes, cytotoxic T-lymphocytes, regulatory T-lymphocytes or helper T-lymphocytes.

    • 110. A method of engineering an immune cell according to any one of embodiments 97 to 109 comprising: (a) Providing an immune cell; (b) expressing the N-CAR and the P-CAR at the surface of said cells.

    • 111. A method of engineering an immune cell of embodiment 110 comprising: (a) providing an immune cell; (b) introducing into said cell at least one polynucleotide encoding the N-CAR and at least one polynucleotide encoding the P-CAR; (c) expressing said polynucleotides into said cell.

    • 112. A method for treating a patient in need thereof comprising: a) providing an immune cell according to any one of embodiments 97 to 109, and; b) administrating said T-cells to said patient.

    • 113. The method for treating a patient of embodiment 112 wherein said immune cells are recovered from donors.

    • 114. The method for treating a patient of embodiment 113 wherein said immune cells are recovered from patients.

    • 115. The immune cell according to any one of embodiments 97 to 109 wherein the reduction of activation of the immune cells when both the P-CAR and N-CAR bind to their respective antigens is increased, preferably by at least 5%, 10%, 15%, 20% or 30% as compared to the same immune cell comprising an N-CAR comprising the full intracellular domain of PD-1.

    • 116. The immune cell according to any one of embodiments 97 to 109 wherein the reduction of activation of the immune cells when both the P-CAR and N-CAR bind to their respective antigens is increased, preferably by at least 5%, 10%, 15%, 20% or 30% as compared to the same immune cell comprising an N-CAR comprising the full intracellular domain of CTLA-4.

    • 117. The immune cell according to any one of embodiments 97 to 109 wherein the activation of the immune cells is reduced by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% when the N-CAR and P-CAR antigen binding domains both binds to their respective antigens as compared to when only the P-CAR antigen binding domain binds to its antigen.

    • 118. The immune cell according to any one of embodiments 115 to 117 wherein the level of activation of the immune cell is determined by measuring cytokine production.

    • 119. The immune cell according to embodiment 118 wherein the cytokine is IFNgamma or TNFalpha.

    • 120. The immune cell according to embodiment 118 or 119 wherein the cytokine production is measured by ELISA and/or FACS and/or luminex.

    • 121. The immune cell according to any one of embodiments 115 to 117 wherein the level of activation of the immune cell is determined by the level of degranulation.

    • 122. The immune cell according to embodiment 121 wherein degranulation is measured by measuring expression of CD107a by FACS.

    • 123. The immune cell according to embodiment 115 to 117 wherein the level of activation of the immune cell is measured by monitoring the ability of the immune cell to kill target cells.

    • 124. The immune cell according to any one of embodiments 115 to 117 wherein the level of activation of the immune cell is determined by monitoring the luciferase activity in reporter cells incorporating inducible NFAT- or NfkB-regulated luciferase expression.

    • 125. The immune cell according to any one of embodiments 115 to 117 wherein the level of activation of the immune cell is determined by monitoring the luciferase activity in reporter cells incorporating inducible NFAT- or NfkB-regulated luciferase expression as disclosed in Example 3.

    • 126. A polynucleotide comprising a nucleic acid sequence encoding an N-CAR according to any one of embodiments 1 to 96.

    • 127. A vector comprising a polynucleotide according to embodiment 124.




Claims
  • 1-25. (canceled)
  • 26. A chimeric antigen receptor (CAR) comprising an extracellular domain comprising an antigen binding domain, a transmembrane domain, and an intracellular domain, wherein the intracellular domain comprises an Immunoreceptor Tyrosine-based Inhibitory Motif (ITIM), wherein said ITIM is a sequence of amino acids selected from the group consisting of SEQ ID NO: 1971, SEQ ID NO: 1974, and SEQ ID NO: 1631.
  • 27. The CAR according to claim 26, wherein the antigen binding domain is a single chain variable fragment (scFv).
  • 28. The CAR according to claim 26, wherein the antigen binding domain binds to PSMA, ITGAX, CDIE, CD34, CD1C, CD123, CD141, ZP2, GABRA6, CRTAM, GRM4, MDGA1, SFTPC, ROS1, SLC6A4, AGTR2, LRRC26, HTR3A, TMEM211, MRGPRX3, MEP1B, TMIGD1, CEACAM20, ALPI, TMPRSS11B, CYP17A1, ATP4B, GP2, MUC21, CLCA4 or SLC27A6.
  • 29. The CAR according to claim 26, wherein the transmembrane domain comprises the transmembrane region(s) of the alpha, beta or zeta chain of the T-cell receptor, PD-1, 4-1BB, OX40, ICOS, CTLA-4, LAG3, 2B4, BTLA4, TIM-3, TIGIT, SIRPA, CD28, CD3 epsilon, CD45, CD4, CD5, CD8, CD9, CD16, CD22, CD33, CD37, CD64, CD80, CD86, CD134, CD137 or CD154.
  • 30. The CAR according to claim 26, wherein the transmembrane domain comprises the transmembrane region of PD-1 or CD8 alpha.
  • 31. The CAR according to claim 26, wherein the transmembrane domain is attached to the extracellular domain of the CAR via a hinge.
  • 32. The CAR according to claim 31, wherein the hinge is an IgG4 hinge, a CD8 alpha hinge or a PD-1 hinge.
  • 33. The CAR according to claim 26, wherein said ITIM is VTYAEV (SEQ ID NO: 1971).
  • 34. The CAR according to claim 26, wherein said ITIM is VTYAQL (SEQ ID NO: 1974).
  • 35. The CAR according to claim 26, wherein said ITIM is TEYSEV (SEQ ID NO: 1631).
  • 36. An isolated immune cell, comprising: a first CAR comprising an extracellular domain comprising an antigen binding domain, a transmembrane domain, and an intracellular domain; anda second CAR, wherein the second CAR is a CAR according to claim 26.
  • 37. The immune cell according to claim 36, wherein: the antigen to which the antigen binding domain of the first CAR binds is CD33 and the antigen to which the antigen binding domain of the second CAR binds is ITGAX, CDIE, CD34, CD1C, CD123, or CD141, or,the antigen to which the antigen binding domain of the first CAR binds is FLT3 and the antigen to which the antigen binding domain of the second CAR binds is ZP2, GABRA6, CRTAM, GRM4 or MDGA1, or,the antigen to which the antigen binding domain of the first CAR binds is MSLN and the antigen to which the antigen binding domain of the second CAR binds is SFTPC, ROS1, SLC6A4 or AGTR2, or,the antigen to which the antigen binding domain of the first CAR binds is MUC16 and the antigen to which the antigen binding domain of the second CAR binds is LRRC26, HTR3A, TMEM211 or MRGPRX3, or,the antigen to which the antigen binding domain of the first CAR binds is MUC17 and the antigen to which the antigen binding domain of the second CAR binds is MEPIB, TMIGD1, CEACAM20 or ALPI, or,the antigen to which the antigen binding domain of the first CAR binds is present in tumor cells of pancreatic ductal adenocarcinoma and the antigen to which the antigen binding domain of the second CAR binds is TMPRSS11B, CYP17A1 or ATP4B,the antigen to which the antigen binding domain of the first CAR binds is present in tumor cells of kidney clear cell carcinoma and the antigen to which the antigen binding domain of the second CAR binds is GP2, MUC21, CLCA4 and SLC27A6.
  • 38. The immune cell according to claim 36, wherein the immune cell is a human T-cell.
  • 39. A method of engineering an immune cell according to claim 36 comprising: (a) providing an immune cell; and (b) expressing the second CAR and the first CAR at the surface of said cells.
  • 40. A polynucleotide comprising a nucleic acid sequence encoding a CAR according to claim 26.
  • 41. A vector comprising a polynucleotide according to claim 40.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 17/385,805, filed on Jul. 26, 2021, which is a divisional of U.S. application Ser. No. 15/525,906, filed on May 10, 2017, issued as U.S. Pat. No. 11,072,644 on Jul. 27, 2021, which is a 371 application of PCT Application No. PCT/IB2015/058650, filed on Nov. 9, 2015, which claims priority to, and the benefit of, U.S. Provisional Application No. 62/081,960, filed on Nov. 19, 2014, and U.S. Provisional Application No. 62/078,927, filed on Nov. 12, 2014, the contents of each of which is hereby incorporated by reference in its entirety.

Provisional Applications (2)
Number Date Country
62081960 Nov 2014 US
62078927 Nov 2014 US
Divisions (1)
Number Date Country
Parent 15525906 May 2017 US
Child 17385805 US
Continuations (1)
Number Date Country
Parent 17385805 Jul 2021 US
Child 18607387 US