The subject of the disclosure relates generally to a vehicle safety system. More specifically, the disclosure relates to an initialization process for an occupant classification system that measures a weight of a seat occupant.
A vehicle generally contains automatic safety restraint devices activated during a vehicle crash to reduce occupant injury. Examples of such automatic safety restraint devices include air bags, seat belt pretensioners, and deployable knee bolsters. Generally, it is preferable to activate automatic safety restraint devices only when needed to mitigate injury due to the expense in replacing the associated components of the safety restraint system. It also is important to control the deployment force of airbags and the pretension of seatbelts based on the size of the seat occupant to reduce the potential for such activations to harm occupants. For example, when an adult is seated on the vehicle seat, the airbag can be deployed in a normal manner; however, if a small child is seated on the seat, the airbag either should not be deployed or should be deployed with a lower deployment force. To control the airbag deployment and/or seat belt pretension, information related to the weight and/or the position of the seat occupant is determined. The weight and position information can be used to classify the seat occupant into various groups, e.g., adult, child, infant, occupant leaning forward, etc., to control the usage of the safety restraint devices. For example, the amount of gas to be introduced into the airbag, an airbag inflating speed, or a pre-tension of the seat belt may be adjusted according to the classification of the seat occupant. To achieve the classification, sensors are used to measure the weight of the seat occupant.
Exemplary sensors include load sensors arranged near the four corners at the bottom of a seat. Load sensor include data associated with their correct operation. For example, a strain gauge used as a load sensor includes an offset voltage that is generated when the load is zero. A different offset voltage may be associated with each strain gauge. As a result, to accurately measure the load, it is generally necessary to compensate for the offset voltages. The offset voltage for each sensor is stored during a calibration process for use in determining a seat occupant weight and classifying a seat occupant.
Using current occupant classification systems, the occupant classification module is attached to the seat and calibrated at the seat manufacturing plant prior to installation of the seat into the vehicle. It is desirable, however, to integrate the occupant classification module with the vehicle safety system control module that is not attached to the vehicle seat, and thus, is not available at the seat manufacturing plant for calibration of the sensors. As an alternative, calibration of the sensors can be performed after installing the seat in the vehicle, but this process is more difficult due to the reduced accessibility of the seat. Thus, what is needed is a process for calibrating the sensors prior to installation of the seat in the vehicle and initializing an occupant classification module that is not attached to the seat.
An exemplary embodiment of the invention provides a system and a method for initializing an occupant classification module, wherein components associated with the occupant classification module are assembled separately. The sensors associated with the occupant classification module are mounted to a vehicle seat and calibrated. Because the occupant classification module is separate from the vehicle seat, the calibration data is encoded and placed on the seat in machine-readable form. For example, the calibration data is encoded using a bar code. When installing the seat in the vehicle, the calibration data is read using a data reader and stored to a memory accessible by the occupant classification module included as part of a vehicle safety system control module thereby initializing the occupant classification module.
The system includes, but is not limited to, a sensor, a datum, a data reader, and a memory. The sensor and the datum are mounted on an item. The datum is associated with the sensor and is captured on the item in the form of a machine-readable code. The data reader reads the datum and communicates the datum to the memory that stores the datum. The stored datum is used in a module of a product that includes the item.
Another exemplary embodiment of the invention comprises a method of initializing an occupant classification module. The method includes, but is not limited to, receiving a datum from a data reader, wherein the datum is read from a location on an item and is associated with a sensor mounted on the item and storing the received datum in a memory. The stored datum is used in a module of a product that includes the item.
In an exemplary embodiment, the product is a vehicle, the item is a seat, and the module controls a safety system for the vehicle. The safety system includes load sensors mounted in the seat to measure a weight of a seat occupant. The weight of the seat occupant is used to control the deployment of the vehicle safety systems such as an air bag or a seat belt pretensioner.
Other principal features and advantages of the invention will become apparent to those skilled in the art upon review of the following drawings, the detailed description, and the appended claims.
Exemplary embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like numerals will denote like elements.
With reference to
Generally, it is preferable to activate safety restraint devices only when needed to mitigate injury due to the expense in replacing the associated components of the safety restraint system and due to the potential for such activations to harm occupants. As a result, it is important to control the deployment force of airbags and the pretension of seatbelts based on the size of the seat occupant. To control the airbag deployment and/or seat belt pretension, information related to the weight and/or the position of the seat occupant is determined. The weight and position information can be used to classify the seat occupant into various groups, e.g., adult, child, infant, occupant leaning forward, etc., to control the usage of the safety restraint devices.
With reference to
With reference to
Exemplary load sensors 44, 45, 46, 47 include strain gauges arranged near the four corners of the bottom of the seat 30. Associated with each strain gauge is an offset voltage that is generated when the load is zero. Due to the unique characteristics of each strain gauge, a different offset voltage may be associated with each strain gauge. To accurately measure the load, it is preferable to compensate for the different offset voltages for each strain gauge. Additionally, the load measured by the load sensors 44, 45, 46, 47 is the sum of the weight of the seat occupant and the weight of the seat. Therefore, to measure the weight of the seat occupant, the weight of the seat must be subtracted from the total weight. To perform this calculation, the control module 18 stores an offset correction for each load sensor in a memory 70 (see
With reference to
In assembling the vehicle 14, various system components may be manufactured at different locations and shipped to the vehicle assembly plant. For example, the seat 30 generally is manufactured at a seat manufacturing plant and shipped to the vehicle assembly plant. Before shipment of the seat 30, a calibration process is performed as shown with reference to
In an operation 86, the calculation of the weight of a seat occupant is verified. After determination of the offset correction, an object having a known weight is placed on the seat 30, and the weight of the object is calculated. The calculated weight is compared with the known weight to verify that the determination of the weight is correct. In an operation 88, the calibration datum is stored on the item. In an exemplary embodiment, the calibration datum is encoded in a bar code 90 placed on the seat 30 as shown with reference to
As known to those skilled in the art, the calibration datum may include other parameters associated with the sensor operation. For example, the calibration datum may include a sensitivity calibration that defines the sensitivity of the load sensors 44, 45, 46, 47. The sensitivity may differ for each load sensor according to a number of parameters such as the method of fixation of the sensors.
After completion of the calibration and verification process, the seat 30 may be delivered to the vehicle assembly plant. With reference to
With reference to
After initialization, the weight and/or position of the seat occupant can be determined and the occupant classified into one of various occupant classes, e.g., adult, child, infant, close to airbag deployment area, far from airbag deployment area, etc. Vehicle restraint systems can be controlled based on the classification assigned to the occupant. For example, if the classification indicates that an adult is in the seat 30 then the airbag 20a, 20b may be deployed in a normal manner. If the classification indicates that a child or infant is the seat occupant then the airbag 20a, 20b may not be deployed or may be deployed with a lower deployment force.
The foregoing description of exemplary embodiments of the invention have been presented for purposes of illustration and of description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. For example, the seats used in different vehicles may require different sensor mounting configurations that include a different number of sensors, different sensor locations, different types of sensors, etc. Additionally, the load sensors may comprise a force sensitive resistive element, a membrane switch element, a pressure sensitive resistive contact, a pressure pattern sensor, a strain gauge, a bend sensor, a hydrostatic weight sensing element, etc. operatively coupled to one or more seating surface in the seat bottom and/or seat back. The embodiments were chosen and described in order to explain the principles of the invention and as practical applications of the invention to enable one skilled in the art to utilize the invention in various embodiments and with various modifications as suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.