The present disclosure relates generally to the field of automotive protective systems. More specifically, the present disclosure relates to automotive safety systems that are configured to deploy in response to collision events.
The present embodiments will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that the accompanying drawings depict only typical embodiments, and are, therefore, not to be considered limiting of the scope of the disclosure, the embodiments will be described and explained with specificity and detail in reference to the accompanying drawings.
It will be readily understood that the components of the embodiments as generally described and illustrated in the figures herein could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of various embodiments, as represented in the figures, is not intended to limit the scope of the disclosure, as claimed, but is merely representative of various embodiments. While the various aspects of the embodiments are presented in drawings, the drawings are not necessarily drawn to scale unless specifically indicated.
During a vehicle collision event, a number of sensors provide data to an engine control unit (“ECU”) and/or airbag control unit (“ACU”), which determines if threshold conditions have been met for deployment of an automotive safety device such as an airbag (or a plurality of airbags). The ECU/ACU may cause an electrical pulse to be sent to an initiator of an automotive safety device, such as to an initiator of an inflator of an airbag.
An initiator comprises a pyrotechnic relay load which heats or burns. In the case of an airbag assembly, the initiator may ignite a chemical compound within an inflator of an airbag assembly. The chemical compound burns rapidly and produces a volume of inert gas which is directed to fill the airbag itself. In other airbag assembly embodiments, the initiator may produce an volume of gas that increases pressure within a compressed air chamber, thereby bursting the chamber and releasing a larger volume of inflation gas to fill the air bag.
During installation, airbags are typically disposed at an interior of a housing in a packaged state (e.g., are rolled, folded, and/or otherwise compressed) or a compact configuration and may be retained in the packaged state behind a cover. During a collision event, an electrical current is sent to an initiator, which triggers an inflator, which rapidly fills the airbag with inflation gas. The airbag can rapidly transition from a packaged state (e.g., a compact configuration) to a deployed state or an expanded configuration. For example, the expanding airbag can open an airbag cover (e.g., by tearing through a burst seam or opening a door-like structure) to exit the housing. The electrical current may be sent to the initiator by any suitable device or system, and may be in response to and/or influenced by one or more vehicle sensors.
The present disclosure describes embodiments of initiator assemblies in the operation with various types of airbag inflators and airbag assemblies, including, for example, front air bags, inflatable curtains, passenger air bags, side airbags, etc. The disclosed embodiments of initiator assemblies may also be utilized in conjunction with any of a variety of automotive safety devices in addition to inflatable airbag modules, including but not limited to a knee bolster, a seat belt pretensioner, a tether cutter, or any other safety device that may use pyrotechnics.
The airbag cushion 104, which may also be referred to as an inflatable cushion and is shown in the operative (e.g., deployed) state in
The inflator 102 may be associated with a sensor (not shown) which senses a side impact situation and activates the inflator 102 at the appropriate instant. The inflator 102 can be connected by a hose to a duct that forms a part of the airbag cushion 104.
When an accident occurs, such as a side impact, the inflator 102 produces, forms, or otherwise supplies an inflation fluid, which is passed into the hose and then the duct and inflates the airbag cushion 104. The airbag cushion 104 thus moves from its initial stored position within the recess in the doorframe or roof 12 to the operative state shown in
While the example described with reference to
Further, the disclosed embodiments of initiator assemblies may be utilized in conjunction with any of a variety of automotive safety devices in addition to inflatable airbag modules, including but not limited to frontal airbags, inflatable curtains, side airbags, passenger airbags, knee airbags, knee bolsters, seat belt pretensioners, tether cutters, or any other safety devices using pyrotechnics.
The hollow tube 202 may be composed of a metal or metal alloy, such as steel, magnesium alloy, etc., and may be formed by any suitable method, such as stamping, machining, casting, extrusion, etc. The hollow tube 202 includes opposing first and second longitudinal ends, 206 and 208, respectively.
An initiator assembly 300 may be disposed within the inflator 200. The initiator assembly 300 may be positioned in the first longitudinal end 206. In some embodiments, the initiator assembly 300 may be coupled to the first longitudinal end 206 by, for example, an inertial weld. In other embodiments, at least a portion of the initiator assembly 300 may be formed integral to the hollow tube 202 of the inflator 200. The initiator assembly 300 is adapted to inflate (e.g., ignite) and/or release the stored fluid in the inflator 200 upon receipt of an electrical signal, such as may be generated by a sensor (not shown) upon the sensing of a collision.
The initiator assembly 300 may be separated from the chamber 204 by a base dome or housing 216. The base dome 216 may comprise any rupturable device or other temporary closure device that can be position between the initiator assembly 300 and the chamber 204. The base dome 216 may include one or more scored seams to facilitate the rupturing of the base dome 216 after the initiator assembly 300 is fired.
The second longitudinal end 208 of the hollow tube 202 may be enclosed with a burst disk 218. The burst disk 218 may comprise any rupturable device or other temporary closure device that can be positioned over an outlet at the second longitudinal end 208 of the hollow tube 202. In some instances, the burst disk 218 may include one or more scored seams to facilitate the rupturing of the burst disk 218. The burst disk 218 may generally be rupturable to open and enable a compressed gas to exit the chamber 204 and inflate an inflatable airbag cushion, such as the airbag cushion 104 in
The inflator 200 may further include a diffuser assembly 220 disposed at the second longitudinal end 208 of the hollow tube 202. The diffuser assembly 220 may be formed integral with or appropriately coupled to the second longitudinal end 208. For example, the diffuser assembly 220 may be coupled to the second longitudinal end 208 with an inertial weld, or the diffuser assembly 220 may be formed integral with the hollow tube 202. A diffusing material 222 may be disposed within the diffuser assembly 220 for diffusing the gas as the gas is expelled from the inflator 200 to the airbag cushion 104.
As illustrated in
The primary pyrotechnic load 319 and the secondary pyrotechnic load 320 may be one or more of a variety of different pyrotechnic materials. For example, in one embodiment, the primary pyrotechnic load 319 may be Zirconium Potassium Percholate (ZPP) and the secondary pyrotechnic load 320 may be Titanium Hydride Potassium Percholate (THPP), Boron Potassium Nitrate (BKNO3), Cupric Oxide (CuO), or any other suitable composition.
The secondary pyrotechnic load 320 may be formed or shaped to define the void 330 (e.g., cavity, space, hole, crater) within the secondary pyrotechnic load 320. The void 330 formed in the secondary pyrotechnic load 320 includes the tip 332 that aligns with the longitudinal axis A1 of the tubular housing 302 and an open end 334. The shape of the void 330 achieves several benefits for the initiator assembly 300. One benefit of the void 330 is that the void 330 helps reduce variation in the opening of the cruciform 310 of initiator assembly when the secondary pyrotechnic load 320 is ignited. Specifically, the variation in the amount of time to open the cruciform 310 after the pyrotechnic loads 310 and 320 are ignited. The variation is reduced because the burning of the secondary pyrotechnic load 320 generates or creates a consistent initial pressure wave that predictably causes the weakened center 316 of the cruciform 310 to fail. This predictability of the generation of this pressure wave can be consistently reproduced by each initiator, according to the disclosed embodiments. The void 330 can be configured to direct the initial pressure wave toward the tip 332. The alignment of the tip 332 and the weakened center 316 of the cruciform 310 helps create the consistent initial pressure wave since the tip 332 of the void 330 tends burn through the secondary pyrotechnic load 320 disposed at the tip 332 through to the tubular housing 302 before any other location in the secondary pyrotechnic load 320, thereby allowing the pressure generated within the tubular housing to exert force on the weakened center 316 of cruciform 310. The void 330 in the secondary pyrotechnic load 320 also provides an increased burn surface area.
The void 330 may comprise a plurality of distinct geometries. The various distinct geometries discussed therein may be combined in a number of different combinations and still be within the scope of the present disclosure. In the illustrated embodiment of
The void 330 includes sides 336 that extend from an open end 334 to the tip 332. The sides 336 may, in some embodiments be a wall of the secondary pyrotechnic load 320 that defines (and e.g., interfaces) the void 330. In some embodiments, the sides may be a single wall (e.g., having a cylindrical shape, such that the void 330 may have a circular cross-section (e.g., within a transverse plane perpendicular to the longitudinal axis A1). The diameter of the cross-sectional shape may decrease over the length of the void 330 from the open end 334 to the tip 332. In some embodiments, the void 330 may include various types of cross-section shapes, for example, circular, triangular, square, rectangular, and the like. In some embodiments, the cross-sectional shape of the void 330 may transition from the open end 334 to the tip 332. As discussed below in regard to distinct geometries, each geometry may comprise its own distinct cross-sectional shape.
The sides 336 of the void 330 angle toward the second end 308 of the tubular housing 302 and toward a longitudinal axis of the tubular housing 302. The sides 336 of the void 330 transition into a tip portion 380 that comprises a geometry distinct from the sides 336.
In the illustrated embodiment of
The flat portion 350 extends radially inward and is orthogonal to the longitudinal axis A1 of the tubular housing 302. The flat portion 350 may have a circular cross-section. The flat portion 350 is configured to transition to a curved portion 360.
The curved portion 360 comprises sides that comprise an arc or a curve that extends inward toward the longitudinal axis A1 of the tubular housing 302 and toward the second end 308 of the tubular housing 302. In some embodiments, the arc of the curved portion 360 may have a constant radius or chamfer. In some embodiments, the arc of the curved portion 360 may have an exponential curve. The curved portion 360 may have a circular cross-section (e.g., transverse cross-section perpendicular to the longitudinal axis A1). The curved portion 360 is configured to transition into a main portion 370.
The main portion 370 of the void 330 may comprise a frustum shape with a circular cross-sectional shape (e.g., transverse cross-section perpendicular to the longitudinal axis A1). The main portion 370 is configured to transition into the tip portion 380.
In the embodiment of
A distance D1 between the tip 332 of the void 330 and the weakened center 316 of the cruciform 310 may be a predetermined distance. The distance D1 between the tip 332 of the void 330 and the weakened center 316 of the cruciform 310 may be configured to help orient the pressure wave created by the secondary pyrotechnic load 320 because the tip 332 burns through all of the secondary pyrotechnic load 320 at the tip 332 before any other area of the secondary pyrotechnic load 320. In the illustrated embodiment of
The distance D1 between the tip 332 of the void 330 and the weakened center 316 of the cruciform 310 is between 0 and 5 mm. In some embodiments, the distance between the tip 332 of the void 330 and the weakened center 316 of the cruciform 310 is any of less than 4 mm, less than 3 mm, less than 2 mm, and less than 1 mm. In some embodiments, the distance between the tip 332 of the void 330 and the weakened center 316 of the cruciform 310 may be less than 5% of the total length of the secondary pyrotechnic load 320 in a direction parallel to the longitudinal axis A1.
As discussed previously, the void 330 is not limited to the illustrated embodiment of
As discussed previously, the void 330 disposed within the secondary pyrotechnic load 320 helps reduce the variability of the ignition of the initiator assembly 300 and of the initial pressure wave produced by the ignition of the initiator assembly. The void 330 helps orient the pressure wave produced by the secondary pyrotechnic load 320 when the secondary pyrotechnic load 320 is ignited to open the cruciform 310 of the initiator assembly 300.
Throughout this specification, the phrase “coupled to” refers to any form of interaction between two or more entities, including mechanical, electrical, magnetic, electromagnetic, fluid, and thermal interaction. Two components may be coupled to each other even though they are not in direct contact with each other.
The terms “a” and “an” can be described as one, but not limited to one. For example, although the disclosure may recite a tab having “a line of stitches,” the disclosure also contemplates that the tab can have two or more lines of stitches.
Unless otherwise stated, all ranges include both endpoints and all numbers between the endpoints.
Reference throughout this specification to “an embodiment” or “the embodiment” means that a particular feature, structure, or characteristic described in connection with that embodiment is included in at least one embodiment. Thus, the quoted phrases, or variations thereof, as recited throughout this specification are not necessarily all referring to the same embodiment.
Similarly, it should be appreciated that in the above description of embodiments, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure. This method of disclosure, however, is not to be interpreted as reflecting an intention that any claim require more features than those expressly recited in that claim. Rather, as the following claims reflect, inventive aspects lie in a combination of fewer than all features of any single foregoing disclosed embodiment. Thus, the claims following this Detailed Description are hereby expressly incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment. This disclosure includes all permutations of the independent claims with their dependent claims.
Recitation in the claims of the term “first” with respect to a feature or element does not necessarily imply the existence of a second or additional such feature or element. It will be apparent to those having reasonable skill in the art that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2240438 | Durant | Apr 1941 | A |
4690063 | Granier | Sep 1987 | A |
5423261 | Bernardy | Jun 1995 | A |
5794973 | O'Loughlin | Aug 1998 | A |
6206414 | Cook | Mar 2001 | B1 |
7117796 | Bogle | Oct 2006 | B1 |
20050039623 | Furusawa et al. | Feb 2005 | A1 |
20090158953 | Magne | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
39 39 258 | Jun 1991 | DE |
29921493 | May 2000 | DE |
10211347 | Jan 2007 | DE |
10 2007 001 640 | Jul 2008 | DE |
0607671 | Jul 1994 | EP |
404361 | Jan 1934 | GB |
199906786 | Feb 1999 | WO |
2018166720 | Sep 2018 | WO |
Entry |
---|
International Search Report and Written Opinion dated Apr. 30, 2020 for international application PCT/US2020/017775. |
Number | Date | Country | |
---|---|---|---|
20200269801 A1 | Aug 2020 | US |