Hydrocarbons, such as fossil fuels and natural gas, are extracted from underground wellbores extending deeply below the surface using complex machinery and explosive devices. Once the wellbore is established by placement of cases after drilling, a perforating gun assembly, or train or string of multiple perforating gun assemblies, is lowered into the wellbore and positioned adjacent one or more hydrocarbon reservoirs in underground formations. The perforating gun may have explosive charges which are ignited to create holes in the casing and to blast through the formation so that the hydrocarbons can flow through the casing. Once the perforating gun(s) is properly positioned, a surface signal actuates an ignition of a fuse, which in turn initiates a detonating cord, which detonates the shaped charges to penetrate/perforate the casing and thereby allow formation fluids to flow through the perforations thus formed and into a production string. The surface signal may travel from the surface along electrical wires that run from the surface to one or more initiators, such as ignitors or detonators positioned within the perforating gun assembly.
Assembly of a perforating gun requires assembly of multiple parts, which may include at least the following components: a housing or outer gun barrel within which is positioned an electrical wire for communicating from the surface to initiate ignition, of an initiator and/or a detonator, a detonating cord, one or more charges and, where necessary, one or more boosters. Assembly may include threaded insertion of one component into another by screwing or twisting the components into place, optionally by use of a tandem adapter. Since the electrical wire must extend through much of the perforating gun assembly, the wire may become easily twisted and crimped during assembly. In addition, when a wired detonator is used it must be manually connected to the electrical wire, which may lead to multiple problems. Due to the rotating assembly of parts, the wires can become torn, twisted and/or crimped/nicked, the wires may be inadvertently disconnected, or even mis-connected in error during assembly. This may lead to costly delays in extracting the hydrocarbons. Additionally, there is a significant safety risk associated with physically and manually wiring live explosives.
Accordingly, there may be a need for an initiator that would allow for reliable detonation of perforating guns without requiring physically and manually wiring live explosives.
Additionally, in certain applications, hydraulic fracturing may produce optimal results when perforations are oriented in the direction of maximum principle stress or the preferred fracture plane (PFP). Perforations oriented in the direction of the PFP create stable perforation tunnels and transverse fractures (perpendicular to the wellbore) that begin at the wellbore face and extend far into the formation. However, if fractures are not oriented in the direction of maximum stress, tortuous, non-transverse fractures may result, creating a complex near-wellbore flow path that can affect the connectivity of the fracture network, increase the chance of premature screen-out, and impede hydrocarbon flow. Accordingly, there may be a need for equipment that can allow for orientation verification of the perforating guns to ensure that perforations are formed in the preferred fracture plane.
An exemplary embodiment of an initiator head may include a housing extending in an axial direction, a circuit board provided in an interior space of the housing, a line-in terminal provided on a first side of the housing in the axial direction and accessible from an exterior of the housing, and a fuse displaced from the circuit board in the axial direction. A thickness direction of the circuit board may be substantially parallel with the axial direction. The line-in terminal may be in electrical communication with the circuit board. The fuse may be in electrical communication with the circuit board. The circuit board may be configured to activate the fuse in response to a control signal received at the line-in terminal.
An exemplary embodiment of an initiator may include an initiator shell extending in an axial direction and a head connected to the initiator shell at a first end of the initiator shell in the axial direction. The initiator shell may include a shell wall defining a shell interior and an explosive provided within the shell interior. The head may include a circuit board provided in an interior space of the head and a line-in terminal accessible from an exterior of the head. A thickness direction of the circuit board may be substantially parallel with the axial direction. The line-in terminal may be in electrical communication with the circuit board. The circuit board may be configured to activate the explosive in response to a control signal received at the line-in terminal.
An exemplary embodiment of an initiator system may include an initiator holder and an initiator received within the initiator holder. The initiator may include an initiator shell extending in an axial direction and a head connected to the initiator shell at a first end of the initiator shell in the axial direction. The initiator shell may include a shell wall formed in a hollow tube shape defining a shell interior and an explosive provided within the shell interior. The head may include a circuit board provided in an interior space of the head and a line-in terminal provided on a first side of the head in the axial direction and accessible from an exterior of the head. A thickness direction of the circuit board may substantially parallel with the axial direction. The line-in terminal may be in electrical communication with the circuit board. The circuit board may be configured to activate the explosive in response to a control signal received at the line-in terminal.
A more particular description will be rendered by reference to exemplary embodiments that are illustrated in the accompanying figures. Understanding that these drawings depict exemplary embodiments and do not limit the scope of this disclosure, the exemplary embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Various features, aspects, and advantages of the exemplary embodiments will become more apparent from the following detailed description, along with the accompanying drawings in which like numerals represent like components throughout the figures and detailed description. The various described features are not necessarily drawn to scale in the drawings but are drawn to emphasize specific features relevant to some embodiments.
The headings used herein are for organizational purposes only and are not meant to limit the scope of the disclosure or the claims. To facilitate understanding, reference numerals have been used, where possible, to designate like elements common to the figures.
Reference will now be made in detail to various embodiments. Each example is provided by way of explanation and is not meant as a limitation and does not constitute a definition of all possible embodiments.
As seen in
As further seen in
The first housing piece 230 and the second housing piece 240 may be dimensioned such that the first housing piece 230 and the second housing piece 240 fit snugly together so as not to separate under normal operating conditions. Alternatively, the first housing piece 230 and the second housing piece 240 may be provided with a coupling mechanism such as hook or protrusion and a complementary recess, so that the first housing piece 230 and the second housing piece 240 may snap together. Alternatively, the first outer peripheral wall 234 and the second outer peripheral wall 244 may be complementarily threaded so that the first housing piece 230 and the second housing piece 240 may screw together. Alternatively, the first housing piece 230 and the second housing piece 240 may be bonded together with adhesive.
In an exemplary embodiment, the line-in terminal 212, the line-out terminal 214, the ground terminal 216, and the fuse 260 may be in electrical communication with the circuit board 210. The line-in terminal 212 may be provided on a first side of the circuit board 210 in the axial direction, and thereby the line-in terminal 212 may be provided on a first side of the housing 201 in the axial direction (i.e., to the left in
As further seen in
In an exemplary embodiment, one of the surface mounted components 270 may be one selected from a group consisting of a temperature sensor, an orientation sensor, a safety circuit, and a capacitor. Readings from one of these components may be used by a microprocessor on circuit board 210 to determine when it is appropriate to activate the fuse 260. The temperature sensor may be configured to measure temperature of the wellbore environment and provide a signal corresponding to the temperature to the circuit board 210. The orientation sensor may include, but is not limited to, an accelerometer, a gyroscope, and/or a magnetometer. The orientation sensor may be configured to determine an orientation of the initiator head 200 within the wellbore, which, if the orientation of the initiator head is fixed relative to a charge holder, can be used to determine an orientation of the charge(s) in the perforating gun. In an exemplary embodiment, the orientation sensor may determine an orientation of the initiator head 200 relative to gravity. Alternatively, the orientation sensor may determine an orientation of the initiator head relative an ambient magnetic field. The safety circuit may provide additional safety precautions to prevent unintentional activation of the initiator 100. The capacitor may be used to store a voltage to activate the fuse 260. The size of the interior space 202 may allow for a larger capacity capacitor to be used. This allows a larger discharge voltage for activating the fuse 260, which may help to ensure more reliable activation of the fuse 260.
As seen in
As seen in
The fuse connector assembly 600 may include a mounting block 606, the first discharge connector 602 extending through the mounting block 606, and the second discharge connector 604 extending through the mounting block 606. The mounting block 606 may be formed of an insulating material and may facilitate connection and/or fastening of the fuse connector assembly 600 to the circuit board 210. Further, the mounting block 606 may provide mechanical strength and support for the fuse connector assembly 600. When the fuse connector assembly 600 is connected to the circuit board 210, the first discharge connector 602 and the second discharge connector 604 may extend from the circuit board 210 into the stem 250.
The first discharge connector 602 may further include a first base portion 620 and a second base portion 630 extending from the first body portion 610 at a second end of the first body portion 610. The first discharge connector 602 may further include a first arm portion 622 extending from the first base portion 620 and a second arm portion 632 extending from the second base portion 630. The first arm portion 622 may be bent or inclined in a direction toward the second arm portion 632. Similarly, the second arm portion 632 may be bent or inclined in a direction toward the first arm portion 622. The first discharge connector 602 may further include a first tip portion 624 at an end of the first arm portion 622 and a second tip portion 634 at an end of the second arm portion 632. The first tip portion 624 may be bent or inclined in a direction away from the second tip portion 634. Similarly, the second tip portion 634 may be bent or inclined in a direction away from the first tip portion 624.
A first contact portion 626 may be formed between the first arm portion 622 and the first tip portion 624, and a second contact portion 636 may be formed between the second arm portion 632 and the second tip portion 634. The first contact portion 626 may be resiliently biased toward the second contact portion 636 based on the connection between the first base portion 620 and the first arm portion 622. Similarly, the second contact portion 636 may be resiliently biased toward the first contact portion 626 based on the connection between the second base portion 630 and the second arm portion 632. The first contact portion 626 may be in contact with the second contact portion 636. Alternatively, there may be a gap between the first contact portion 626 and the second contact portion 636. In an exemplary embodiment, a size of the gap may be less than a thickness of the first fuse terminal 262.
The first discharge connector 602 may be configured to receive, and make electrical contact with, the first fuse terminal 262. Similarly, the second discharge connector 604 may be configured to receive, and make electrical contact with, the second fuse terminal 264. For example, during assembly of the initiator head 200, the circuit board 210 and the fuse 260 may be pushed together in the axial direction 302, thereby bringing the first fuse terminal 262 into contact with the first tip portion 624 and the second tip portion 634. Further relative motion between the fuse 260 and the circuit board 210 may cause the first fuse terminal 262 to deflect the first tip portion 624 and the second tip portion 634 away from each other. The first fuse terminal 262 may then be in contact with the first contact portion 626 and the second contact portion 636, i.e., sandwiched between the first contact portion 626 and the second contact portion 636. The resilient bias of the first contact portion 626 and the second contact portion 636 may help to maintain contact, and thus electrical communication, between the first contact portion 626, the second contact portion 636, and the first fuse terminal 262. It will be understood that contact between the second discharge connector 604 and the second fuse terminal 264 may be achieved in a similar way. The window 253 may allow for visual confirmation of the connection between the first discharge connector 602 and the first fuse terminal 262 and between the second discharge connector 604 and the second fuse terminal 264.
The fuse connector assembly 700 may include a mounting block 706, the first discharge connector 702 extending through the mounting block 706, and the second discharge connector 704 extending through the mounting block 706. The mounting block 706 may be formed of an insulating material and may facilitate connection and/or fastening of the fuse connector assembly 700 to the circuit board 210. Further, the mounting block 706 may provide mechanical strength and support for the fuse connector assembly 700. When the fuse connector assembly 700 is connected to the circuit board 210, the first discharge connector 702 and the second discharge connector 704 may extend from the circuit board 210 into the stem 250.
The first discharge connector 702 may further include a first base portion 720 and a second base portion 730 extending from the first body portion 710 at a second end of the first body portion 710. The first discharge connector 702 may further include a first arm portion 722 extending from the first base portion 720 and a second arm portion 732 extending from the second base portion 730. The first arm portion 722 may be bent or inclined in a direction away from the second arm portion 732. Similarly, the second arm portion 732 may be bent or inclined in a direction away from the first arm portion 722. The first discharge connector 702 may further include a first tip portion 724 at an end of the first arm portion 722 and a second tip portion 734 at an end of the second arm portion 732. The first tip portion 724 may be bent or inclined in a direction toward the second tip portion 734 and back toward the first body portion 710. Similarly, the second tip portion 734 may be bent or inclined in a direction toward the first tip portion 724 and back toward the first body portion 710.
A first contact portion 726 may be formed at an end of the first tip portion 724, and a second contact portion 736 may be formed at an end of the second tip portion 734. The first contact portion 726 may be resiliently biased toward the second contact portion 736 based on the connection between the first base portion 720 and the first arm portion 722. Similarly, the second contact portion 736 may be resiliently biased toward the first contact portion 726 based on the connection between the second base portion 730 and the second arm portion 732. The first contact portion 726 may be in contact with the second contact portion 736. Alternatively, there may be a gap between the first contact portion 726 and the second contact portion 736. In an exemplary embodiment, a size of the gap may be less than a thickness of the first fuse terminal 262.
The first discharge connector 702 may be configured to receive, and make electrical contact with, the first fuse terminal 262. Similarly, the second discharge connector 704 may be configured to receive, and make electrical contact with, the second fuse terminal 264. For example, during assembly of the initiator head 200, the circuit board 210 and the fuse 260 may be pushed together in the axial direction 302, thereby bringing the first fuse terminal 262 into contact with the first tip portion 724 and the second tip portion 734. Further relative motion between the fuse 260 and the circuit board 210 may cause the first fuse terminal 262 to deflect the first tip portion 724 and the second tip portion 734 away from each other. The first fuse terminal 262 may then be in contact with the first contact portion 726 and the second contact portion 736, i.e., sandwiched between the first contact portion 726 and the second contact portion 736. The resilient bias of the first contact portion 726 and the second contact portion 736 may help to maintain contact, and thus electrical communication, between the first contact portion 726, the second contact portion 736, and the first fuse terminal 262. It will be understood that contact between the second discharge connector 704 and the second fuse terminal 264 may be achieved in a similar way. The window 253 may allow for visual confirmation of the connection between the first discharge connector 702 and the first fuse terminal 262 and between the second discharge connector 704 and the second fuse terminal 264.
In an exemplary embodiment, the initiator shell 300 may include a shell wall 310 and a shell crimp 312 crimped around the stem 250. The shell wall 310 may extend in the axial direction 302 and may be formed of a deep-drawn metal. Non-limiting examples of the metal used for the shell wall 310 may include aluminum, copper, steel, tin, or brass. Plastics may also be used a material for the shell wall 310. The shell wall 310 may define a shell interior 320. A primary explosive 322 may be provided within the shell interior 320. In an exemplary embodiment, the circuit board 210 may be configured to activate the primary explosive 322, and in some embodiments the primary explosive 322 and the secondary explosive 324, in response to a control signal received at the line-in terminal 212. For example, the primary explosive 322 may be arranged such that the fuse 260 is within an operable distance of the primary explosive 322. Being within an operable distance means that the fuse 260 is provided close enough to the primary explosive 322 that the primary explosive 322 is ignited and/or detonated when the fuse 260 is activated. In other words, by activating the fuse 260 in response to a control signal, the circuit board 210 may activate the primary explosive 322.
The secondary explosive 324 may abut the primary explosive 322 and seal the primary explosive 322 within a non-mass explosive (NME) body 330. The primary explosive 322 and the secondary explosive 324 may have a total thickness of about 3 mm to about 30 mm in an exemplary embodiment. Alternatively, the total thickness may be about 3 mm to about 10 mm. The secondary explosive 324 may be configured as a layer of an explosive material. According to an exemplary embodiment, the primary explosive 322 may include at least one of lead azide, silver azide, lead styphnate, tetracene, nitrocellulose, BAX, and a lead azide free primary explosive as described in USPGP 2019/0256438, herein incorporated by reference.
Each of the primary explosive 322 and the secondary explosive 324 may have a safe temperature rating of above 150° C. (with the exception of PETN, which has a rating of approximately 120° C.). The secondary explosive 324 may include a material that is less sensitive to initiation, as compared to the primary explosive 322. The secondary explosive 324 may include at least one of PETN, RDX, HMX, HNS and PYX. In an embodiment, the secondary explosive 324 may be less sensitive to initiation than PETN.
The primary explosive 322 and the secondary explosive 324 may be provided within the NME body 330. The NME body 330 may help to avoid an unintentional initiation of the primary explosive 322 or the main load explosive 332 by an external mechanical force. The NME body 330 may be composed of an electrically conductive, electrically dissipative or electrostatic discharge (ESD) safe synthetic material. According to an exemplary embodiment, the non-mass-explosive body 330 may be formed of a metal, such as cast-iron, zinc, machinable steel or aluminum. Alternatively, the NME body 330 may be formed from a plastic material. While the NME body 330 may be made using various processes, the selected process utilized for making the NME body 330 is based, at least in part, by the type of material from which it is made. For instance, when the NME body 330 is made from a plastic material, the selected process may include an injection molding process. When the NME body 330 is made from a metallic material, the NME body 330 may be formed using any conventional CNC machining or metal casting processes.
The initiator shell 300 may further include a main load explosive 332 provided adjacent the primary explosive 322, and in embodiment including a secondary explosive 324, adjacent the secondary explosive 324. The main load explosive 332 includes compressed secondary explosive materials. According to an aspect, the main load explosive 332 may include one or more of cyclotrimethylenetrinitramine (RDX), octogen/cyclotetramethylenetetranitramine (HMX), hexanitrostilbene (HNS), pentaerythritol tetranitrate (PETN), 2,6-Bis(picrylamino)-3,5-dinitropyridine (PYX), and 1,3,5-triaminio-2,4,6-trinitobenzene (TATB). The type of explosive material used may be based at least in part on the operational conditions in the wellbore and the temperature downhole to which the explosive may be exposed.
In an exemplary embodiment shown in
As seen in
As further seen in
As further seen in the exemplary embodiment of
It will be understood from the exemplary embodiments shown in
This disclosure, in various embodiments, configurations and aspects, includes components, methods, processes, systems, and/or apparatuses as depicted and described herein, including various embodiments, sub-combinations, and subsets thereof. This disclosure contemplates, in various embodiments, configurations and aspects, the actual or optional use or inclusion of, e.g., components or processes as may be well-known or understood in the art and consistent with this disclosure though not depicted and/or described herein.
The phrases “at least one,” “one or more,” and “and/or” are open-ended expressions that are both conjunctive and disjunctive in operation. For example, each of the expressions “at least one of A, B and C,” “at least one of A, B, or C,” “one or more of A, B, and C,” “one or more of A, B, or C,” and “A, B, and/or C” means A alone, B alone, C alone, A and B together, A and C together, B and C together, or A, B, and C together.
In this specification and the claims that follow, reference will be made to a number of terms that have the following meanings. The terms “a” (or “an”) and “the” refer to one or more of that entity, thereby including plural referents unless the context clearly dictates otherwise. As such, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. Furthermore, references to “one embodiment”, “some embodiments”, “an embodiment” and the like are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term such as “about” is not to be limited to the precise value specified. In some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Terms such as “first,” “second,” “upper,” “lower,” etc. are used to identify one element from another, and unless otherwise specified are not meant to refer to a particular order or number of elements.
As used herein, the terms “may” and “may be” indicate a possibility of an occurrence within a set of circumstances; a possession of a specified property, characteristic or function; and/or qualify another verb by expressing one or more of an ability, capability, or possibility associated with the qualified verb. Accordingly, usage of “may” and “may be” indicates that a modified term is apparently appropriate, capable, or suitable for an indicated capacity, function, or usage, while taking into account that in some circumstances the modified term may sometimes not be appropriate, capable, or suitable. For example, in some circumstances an event or capacity can be expected, while in other circumstances the event or capacity cannot occur—this distinction is captured by the terms “may” and “may be.”
As used in the claims, the word “comprises” and its grammatical variants logically also subtend and include phrases of varying and differing extent such as for example, but not limited thereto, “consisting essentially of” and “consisting of.” Where necessary, ranges have been supplied, and those ranges are inclusive of all sub-ranges therebetween. It is to be expected that the appended claims should cover variations in the ranges except where this disclosure makes clear the use of a particular range in certain embodiments.
The terms “determine,” “calculate,” and “compute,” and variations thereof, as used herein, are used interchangeably and include any type of methodology, process, mathematical operation or technique.
This disclosure is presented for purposes of illustration and description. This disclosure is not limited to the form or forms disclosed herein. In the Detailed Description of this disclosure, for example, various features of some exemplary embodiments are grouped together to representatively describe those and other contemplated embodiments, configurations, and aspects, to the extent that including in this disclosure a description of every potential embodiment, variant, and combination of features is not feasible. Thus, the features of the disclosed embodiments, configurations, and aspects may be combined in alternate embodiments, configurations, and aspects not expressly discussed above. For example, the features recited in the following claims lie in less than all features of a single disclosed embodiment, configuration, or aspect. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate embodiment of this disclosure.
Advances in science and technology may provide variations that are not necessarily express in the terminology of this disclosure although the claims would not necessarily exclude these variations.
This application claims priority to U.S. Provisional Application No. 62/945,942 filed Dec. 10, 2019, U.S. Provisional Application No. 63/001,766 filed Mar. 30, 2020, and U.S. Provisional Application No. 63/003,222, filed Mar. 31, 2020, the contents of each of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2020/085622 | 12/10/2020 | WO |
Number | Date | Country | |
---|---|---|---|
63003222 | Mar 2020 | US | |
63001766 | Mar 2020 | US | |
62945942 | Dec 2019 | US |