This invention relates generally to systems and methods for remote patient monitoring, and more particularly, to systems and methods for remote patient monitoring with percutaneously implanted sensors.
Frequent monitoring of patients permits the patients' physician to detect worsening symptoms as they begin to occur, rather than waiting until a critical condition has been reached. As such, home monitoring of patients with chronic conditions is becoming increasingly popular in the health care industry for the array of benefits it has the potential to provide. Potential benefits of home monitoring are numerous and include: better tracking and management of chronic disease conditions, earlier detection of changes in the patient condition, and reduction of overall health care expenses associated with long term disease management. The home monitoring of a number of diverse “chronic diseases” is of interest, where such diseases include diabetes, dietary disorders such as anorexia and obesity, depression, anxiety, epilepsy, respiratory diseases, AIDS and other chronic viral conditions, conditions associated with the long term use of immunosuppressant's, e.g., in transplant patients, asthma, chronic hypertension, chronic use of anticoagulants, and the like.
Of particular interest in the home monitoring sector of the health care industry is the remote monitoring of patients with heart failure (HF), also known as congestive heart failure. HF is a syndrome in which the heart is unable to efficiently pump blood to the vital organs. Most instances of HF occur because of a decreased myocardial capacity to contract (systolic dysfunction). However, HF can also result when an increased pressure-stroke-volume load is imposed on the heart, such as when the heart is unable to expand sufficiently during diastole to accommodate the ventricular volume, causing an increased pressure load (diastolic dysfunction).
In either case, HF is characterized by diminished cardiac output and/or damming back of blood in the venous system. In HF, there is a shift in the cardiac function curve and an increase in blood volume caused in part by fluid retention by the kidneys. Indeed, many of the significant morphologic changes encountered in HF are distant from the heart and are produced by the hypoxic and congestive effects of the failing circulation upon other organs and tissues. One of the major symptoms of HF is edema, which has been defined as the excessive accumulation of interstitial fluid, either localized or generalized.
HF is the most common indication for hospitalization among adults over 65 years of age, and the rate of admission for this condition has increased progressively over the past two decades. It has been estimated that HF affects more than 3 million patients in the U.S. (O'Connell, J. B. et al., J. Heart Lung Transpl., 13(4):S107-112 (1993)).
In the conventional management of HF patents, where help is sought only in crisis, a cycle occurs where patients fail to recognize early symptoms and do not seek timely help from their care-givers, leading to emergency department admissions (Miller, P. Z., Home monitoring for congestive heartfailure patients, Caring Magazine, 53-54 (August 1995)). Recently, a prospective, randomized trial of 282 patients was conducted to assess the effect of the intervention on the rate of admission, quality of life, and cost of medical care. In this study, a nurse-directed, multi-disciplinary intervention (which consisted of comprehensive education of the patient and family, diet, social-service consultation and planning, review of medications, and intensive assessment of patient condition and follow-up) resulted in fewer readmissions than the conventional treatment group and a concomitant overall decrease in the cost of care (Rich, M. W. et al., New Engl. J. Med., 333:1190-95 (1995)). Similarly, comprehensive discharge planning and a home follow-up program was shown to decrease the number of readmissions and total hospital charges in an elderly population (Naylor, M. et al., Amer. College Physicians, 120:999-1006 (1994)). Therefore, home monitoring is of particular interest in the HF management segment of the health care industry.
Another area in which home-monitoring is of particular interest is in the remote monitoring of a patient parameter that provides information on the titration of a drug, particularly with drugs that have a consequential effect following administration, such as insulin, anticoagulants, ACE inhibitors, beta-blockers, diuretics and the like.
Although a number of different home monitoring systems have been developed, there is continued interest in the development of new monitoring systems. Of particular interest would be the development of a system that provides for improved patient compliance, ease of use, etc. Of more particular interest would be the development of such a system that is particularly suited for use in the remote monitoring of patients suffering from HF.
Subcutaneous implantation of sensors has been achieved with an insertion and tunneling tool. The tunneling tool includes a stylet and a peel-away sheath. The tunneling tool is inserted into an incision and the stylet is withdrawn once the tunneling tool reaches a desired position. An electrode segment is inserted into the subcutaneous tunnel and the peel-away sheath is removed. In another delivery device, a pointed tip is inserted through the skin and a plunger is actuated to drive the sensor to its desired location.
In other delivery systems, an implant trocar includes a cannula for puncturing the skin and an obturator for delivering the implant. A spring element received within the cannula prevents the sensor from falling out during the implant process. Another sensor delivery device includes an injector that has a tubular body divided into two adjacent segments with a hollow interior bore. A pair of laterally adjacent tines extend longitudinally from the first segment to the distal end of the tubular body. A plunger rod has an exterior diameter just slightly larger than the interior diameter of the tubular body. With the second segment inserted beneath the skin, the push rod is advanced longitudinally through the tubular body, thereby pushing the sensor through the bore. As the implant and rod pass through the second segment, the tines are forced radially away from each other, thereby dilating or expanding the incision, and facilitating implant. The instrument is removed from the incision following implantation.
For the above and other reasons, it would be desirable to provide an improved percutaneous sensor device for physiological monitoring.
In a first aspect, embodiments of the present invention provide an injectable detecting device for use in physiological monitoring is provided. The device comprises a plurality of sensors axially spaced along a body that provide an indication of at least one physiological event of a patient, a monitoring unit within the body coupled to the plurality of sensors configured to receive data from the plurality of sensors and create processed patient data, a power source within the body coupled to the monitoring unit, and a communication antenna external to the body coupled to the monitoring unit configured to transfer data to/from other devices.
In many embodiments, the monitoring unit includes a processor. In many embodiments, the processor includes program instructions for evaluating values received from the sensors with respect to acceptable physiological ranges for each value received by the processor and determine variances.
In many embodiments, the monitoring unit includes logic resources that determine heart failure status and predict impending decompensation.
In many embodiments, the monitoring unit is configured to perform one or more of, data compression, prioritizing of sensing by a sensor, cycling sensors, monitoring all or some of sensor data by all or a portion of the sensors, sensing by the sensors in real time, noise blanking to provide that sensor data is not stored if a selected noise level is determined, low-power of battery caching and decimation of old sensor data.
In many embodiments, the monitoring unit includes a notification device configured to provide notification when values received from the plurality of sensors are not within acceptable physiological ranges.
In many embodiments, the monitoring unit is configured to serve as a communication hub for multiple medical devices, coordinating sensor data and therapy delivery while transmitting and receiving data from a remote monitoring system.
In many embodiments, the monitoring unit is configured to deactivate selected sensors to reduce redundancy.
In many embodiments, each of a sensor is selected from at least one of, bioimpedance, heart rate, heart rhythm, HRV, HRT, heart sounds, respiratory sounds, respiratory rate and respiratory rate variability, blood pressure, activity, posture, wake/sleep, orthopnea, temperature, heat flux and an accelerometer.
In many embodiments, each of a sensor is an activity sensor selected from at least one of, ball switch, accelerometer, minute ventilation, HR, bioimpedance noise, skin temperature/heat flux, BP, muscle noise and posture.
In many embodiments, the sensors are made of at least a material selected from, silicone, polyurethane, Nitinol, titanium, a biocompatible material, ceramics and a bioabsorbable material.
In many embodiments, at least a portion of sensors of the plurality of sensors have an insulative material selected from, PEEK, ETFE, PTFE, and polyimide, silicon, polyurethane.
In many embodiments, at least a portion of sensors of the plurality of sensors have openings or an absorbent material configured to sample a hydration level or electrolyte level in a surrounding tissue site of the plurality of sensors.
In many embodiments, the plurality of sensors includes current delivery electrodes and sensing electrodes.
In many embodiments, the outputs of the plurality of sensors is used to calculate and monitor blended indices. The blended indices include at least one of, heart rate (HR) or respiratory rate (RR) response to activity, HR/RR response to posture change, HR+RR, HR/RR+bioimpedance, and/or minute ventilation/accelerometer.
In many embodiments, the body and antenna are injectable in the patient by at least one of, catheter delivery, blunt tunneling, insertion with a needle, by injection, with a gun or syringe device with a stiffening wire stylet, guidewire, or combination of stylet or guidewire with a catheter.
In many embodiments, the body is flexible.
In many embodiments, at least a portion of the body has a drug eluting coating.
In many embodiments, the power source comprises a rechargeable battery transcutaneously chargeable with an external unit.
a) illustrates one embodiment of an implanted sensor device of the present invention that is injectable and includes multiple sensors, power and communication and a communication antenna.
b) illustrates the insertion of the device of
c) illustrates the device of
d) illustrates the implanted sensor device of
e) illustrates the implanted sensor device of
f) illustrates a patient laying on top of a matt that has coils, where downloading of patient data and recharging can occur via the matt.
g) illustrates the patient laying on top of the matt from
h) is a close up view of
i) illustrates a patient with an implanted device, such as a pacing device, and the implanted device of
The present invention is directed to a heart failure patient management system consisting of one or more subcutaneously injectable devices inserted below the patient's skin. The system continuously monitors physiological parameters, communicates wirelessly with a remote center, and provides alerts when necessary.
The heart failure patient management system monitors physiological parameters and uses a proprietary algorithm to determine heart failure status and predict impending decompensation. The one or more injectable devices communicate with a remote center, preferably via an intermediate device in the patient's home. In some embodiments, the injectable device monitoring unit receives the data and applies the prediction algorithm. When a flag is raised, the center may communicate with the patient, hospital, nurse, and/or physician to allow for therapeutic intervention to prevent decompensation.
The injectable devices would perform the following functions: initiation, programming, measuring, storing, analyzing, communicating, predicting, and displaying.
The system contains one or more injectable devices, each consisting of a hermetically sealed package containing and contains a power source, memory, logic, wireless communication capabilities, and a subset of the following physiological sensors: bioimpedance, heart rate (ave, min, max), heart rhythm, HRV, HRT, heart sounds (e.g. S3), respiratory sounds, blood pressure, activity, posture, wake/sleep, orthopnea, and temperature/heat flux. The activity sensor may be one of the following: ball switch, accelerometer, minute ventilation, HR, bioimpedance noise, skin temperature/heat flux, BP, muscle noise, and posture.
The injectable devices may communicate directly with each other, allow for coordinated sensing between the units. The injectable devices may also communicate with an external unit (either adherent, wearable, or non-wearable) or with an implantable device, such as a cardiac rhythm management device.
The injectable devices wirelessly communicates with a remote center. Such communication may occur directly (via a cellular or Wi-Fi network), or indirectly through an intermediate device. The intermediate device may consist of multiple devices which communicate wired or wirelessly to relay data to the remote center.
The injectable devices may have a rechargeable battery, which is transcutaneously charged with an external unit.
The injectable device package may contain one or more features to allow for tissue anchoring. Such features may include passive or actively-deployed barbs or anchors, tissue adhesion pads, and/or suture loops. Tissue adhesion pads (or grooves or holes) may be designed to be small enough to stabilize the device while allowing for easy extraction.
The injectable devices may use one or more of the following component technologies: flex circuits, thin film resistors, and organic transistors.
The injectable devices may have one of the following form factors: cylinder, dog-bone, half dog-bone, trapezoidal cross-section, semicircular cross-section, star-shaped cross-section, v-shaped cross-section, helical/spiral, fin electrodes, and linear device with a radius of curvature to match radius of implant site.
The injectable devices may be constructed of one or more of the following materials: silicone, polyurethane, Nitinol, a biocompatible material, and a bioabsorbable material. The electrodes may use one or more of the following metal conductors: platinum, MP35N, MP35N/Ag core, platinum/tantalum core, stainless steel, and titanium. Insulative materials may include one or more of the following: PEEK, ETFE, PTFE, and polyimide. Ceramics may be used to enclose electronics (especially the RF unit, to enable RF transmission).
The injectable devices may contain a drug eluting coating, which would slowly release a drug such as an antibiotic or anti-inflammatory agent.
The injectable devices may contain openings and/or absorbent material, through which the device may sample the hydration level and/or electrolytes in the surrounding tissue.
The injectable devices may include multiple features to enhance physiological sensing performance. Such features may include multiple sensing vectors, including redundant vectors. This configuration would allow the injectable devices to determine the optimal sensing configuration, and electronically reposition each sensing vector.
The injectable device electrodes may be partially masked to minimize contamination of the sensed signal. The size and shape of current delivery electrodes (for bioimpedance) and sensing electrodes would be optimized to maximize sensing performance.
While the present invention is intended for heart failure patient monitoring, the system may be applicable to any human application in which wireless physiological monitoring and prediction is required.
The percutaneous sensing device may be used in conjunction with remote patient monitoring to track a patient's physiological status, detect and predict negative physiological events. In one embodiment, the implanted sensing device includes a plurality of sensors that are used in combination to enhance detection and prediction capabilities as more fully explained below.
In one embodiment, illustrated in
The sensors 14 are subcutaneously inserted with the injectable detecting system 12 that is catheter based, blunt tunneling (with either a separate tunneling tool or a wire-stiffened lead), needle insertion gun or syringe-like injection. The injectable detecting system 12 can be flexible, and be used with a stiffening wire, stylet, catheter or guidewire. The injectable detecting system 12 can include any of the following to assist in subsequent extraction: (i) an isodiametric profile, (ii) a breakaway anchor, (iii) a bioabsorbable material, (iv) coatings to limit tissue in-growth, (v) an electrically activated or fusable anchor, and the like. The injectable detecting system 12 can be modular, containing multiple connected components, a subset of which is easily extractable.
The injectable detecting system 12 can be inserted in the patient in a non-sterile or sterile setting, non-surgical setting or surgical setting, implanted with our without anesthesia and implanted with or without imaging assistance from an imaging system. The injectable detecting system 12 can be anchored in the patient by a variety of means including but not limited to, barbs, anchors, tissue adhesion pads, suture loops, with sensor shapes that conform to adjacent tissue anatomy or provide pressure against the adjacent tissue, with the use of self-expanding materials such as a nitinol anchor and the like.
a) shows one embodiment of the injectable detecting system 12 with sensors 14 that is introduced below the skin surface. The sensor device includes power and communication elements 32, and a communication antenna 34. The antenna may be a self expanding antenna expandable from a first compressed shape to a second expanded shape, such as disclosed in U.S. Provisional Application No. 61/084,567, filed Jul. 29, 2008 entitled “Communication-Anchor Loop For Injectable Device”, the full disclosure of which is incorporated herein by reference.
In one embodiment, illustrated in
In one embodiment, the wireless communication device 16 is configured to receive instructional data from the remote monitoring system and communicate instructions to the injectable detecting system.
As illustrated in
In one embodiment, the energy management device 19 is configured to manage energy by at least one of, a thermo-electric unit, kinetics, fuel cell, nuclear power, a micro-battery and with a rechargeable device.
The system 10 is configured to automatically detect events. The system 10 automatically detects events by at least one of, high noise states, physiological quietness, sensor continuity and compliance. In response to a detected physiological event, patient states are identified when data collection is inappropriate. In response to a detected physiological event, patient states are identified when data collection is desirable. Patient states include, physiological quietness, rest, relaxation, agitation, movement, lack of movement and a patient's higher level of patient activity.
The system uses an intelligent combination of sensors to enhance detection and prediction capabilities, as more fully discloses in U.S. patent application Ser. Nos. 60/972,537 filed Sep. 14, 2008 and 61/055,666 filed May 23, 2008, both titled “Adherent Device with Multiple Physiological Sensors”, incorporated herein by reference, and as more fully explained below.
In one embodiment, the injectable detecting system 12 communicates with the remote monitoring system 18 periodically or in response to a trigger event. The trigger event can include but is not limited to at least one of, time of day, if a memory is full, if an action is patient initiated, if an action is initiated from the remote monitoring system, a diagnostic event of the monitoring system, an alarm trigger, a mechanical trigger, and the like.
The injectable detecting system 12 can continuously, or non-continuously, monitor the patient, alerts are provided as necessary and medical intervention is provided when required. In one embodiment, the wireless communication device 16 is a wireless local area network for receiving data from the plurality of sensors in the injectable detecting system.
A processor 20 is coupled to the plurality of sensors 14 in the injectable detecting system 12. The processor 20 receives data from the plurality of sensors 14 and creates processed patient data. In one embodiment, the processor 20 is at the remote monitoring system 18. In another embodiment, the processor 20 is at the detecting system 12. The processor 20 can be integral with a monitoring unit 22 that is part of the injectable detecting system 12 or part of the remote monitoring system 18.
The processor 20 has program instructions for evaluating values received from the sensors 14 with respect to acceptable physiological ranges for each value received by the processor 20 and determine variances. The processor 20 can receive and store a sensed measured parameter from the sensors 14, compare the sensed measured value with a predetermined target value, determine a variance, accept and store a new predetermined target value and also store a series of questions from the remote monitoring system 18.
As illustrated in
In one embodiment, a memory management device 25 is provided as illustrated in
The injectable detecting system 12 can provide a variety of different functions, including but not limited to, initiation, programming, measuring, storing, analyzing, communicating, predicting, and displaying of a physiological event of the patient. The injectable detecting system 12 can be sealed, such as housed in a hermetically sealed package. In one embodiment, at least a portion of the sealed packages include a power source, a memory, logic resources and a wireless communication device. In one embodiment, an antenna is included that is exterior to the sealed package of the injectable detecting system 12. In one embodiment, the sensors 14 include, flex circuits, thin film resistors, organic transistors and the like. The sensors 14 can include ceramics, titanium PEEK, along with a silicon, PU or other insulative adherent sealant, to enclose the electronics. Additionally, all or part of the injectable detecting system 12 can include drug eluting coatings, including but not limited to, an antibiotic, anti-inflammatory agent and the like.
A wide variety of different sensors 14 can be utilized, including but not limited to, bioimpedance, heart rate, heart rhythm, HRV, HRT, heart sounds, respiration rate, respiration rate variability, respiratory sounds, SpO2, blood pressure, activity, posture, wake/sleep, orthopnea, temperature, heat flux, an accelerometer. glucose sensor, other chemical sensors associated with cardiac conditions, and the like. A variety activity sensors can be utilized, including but not limited to a, ball switch, accelerometer, minute ventilation, HR, bioimpedance noise, skin temperature/heat flux, BP, muscle noise, posture and the like.
The output of the sensors 14 can have multiple features to enhance physiological sensing performance. These multiple features have multiple sensing vectors that can include redundant vectors. The sensors 14 can include current delivery electrodes and sensing electrodes. Size and shape of current delivery electrodes, and the sensing electrodes, can be optimized to maximize sensing performance. The system 10 can be configured to determine an optimal sensing configuration and electronically reposition at least a portion of a sensing vector of a sensing electrode. The multiple features enhance the system's 10 ability to determine an optimal sensing configuration and electronically reposition sensing vectors. In one embodiment, the sensors 14 can be partially masked to minimize contamination of parameters sensed by the sensors 14.
The size and shape of current delivery electrodes, for bioimpedance, and sensing electrodes can be optimized to maximize sensing performance. Additionally, the outputs of the sensors 14 can be used to calculate and monitor blended indices. Examples of the blended indices include but are not limited to, heart rate (HR) or respiratory rate (RR) response to activity, HR/RR response to posture change, HR+RR, HR/RR+bioimpedance, and/or minute ventilation/accelerometer and the like.
The sensors 14 can be cycled in order to manage energy, and different sensors 14 can sample at different times. By way of illustration, and without limitation, instead of each sensor 14 being sampled at a physiologically relevant interval, e.g. every 30 seconds, one sensor 14 can be sampled at each interval, and sampling cycles between available sensors.
By way of illustration, and without limitation, the sensors 14 can sample 5 seconds for every minute for ECG, once a second for an accelerometer sensor, and 10 seconds for every 5 minutes for impedance.
In one embodiment, a first sensor 14 is a core sensor 14 that continuously monitors and detects, and a second sensor 14 verifies a physiological status in response to the core sensor 14 raising a flag. Additionally, some sensors 14 can be used for short term tracking, and other sensors 14 used for long term tracking.
The injectable detecting system 12 is inserted into the patient by a variety of means, including but not limited to, catheter delivery, blunt tunneling, insertion with a needle, by injection, with a gun or syringe device with a stiffening wire and stylet and the like. The sensors 14 can be inserted in the patient in a non-sterile or sterile setting, non-surgical setting or surgical setting, injected with our without anesthesia and injected with or without imaging assistance. The injectable detecting system 12 can be anchored in the patient by a variety of means including but not limited to, barbs, anchors, tissue adhesion pads, suture loops.
The injectable detecting system 12 can come in a variety of different form factors including but not limited to, cylinder, dog-bone, half dog-bone, trapezoidal cross-section, semicircular cross-section, star-shaped cross-section, v-shaped cross-section, L-shaped, canted, W shaped, or in other shapes that assist in their percutaneous delivery, S-shaped, sine-wave shaped, J-shaped, any polygonal shape, helical/spiral, fin electrodes, and linear device with a radius of curvature to match a radius of the injection site and the like. Further, the injectable detecting system 12 can have flexible body configurations. Additionally, the injectable detecting system 12 can be configured to deactivate selected sensors 14 to reduce redundancy.
The sensors 14 can be made of a variety of materials, including but not limited to, silicone, polyurethane, Nitinol, a biocompatible material, a bioabsorbable material and the like. Electrode sensors 14 can have a variety of different conductors, including but not limited to, platinum, MP35N which is a nickel-cobalt-chromium-molybdenum alloy, MP35N/Ag core, platinum/tantalum core, stainless steel, titanium and the like. The sensors 14 can have insulative materials, including but not limited to, polyetheretherketone (PEEK), ethylene-tetrafluoroethylene (ETFE), polytetrafluoroethlene (PTFE), polyimide, silicon, polyurethane, and the like. Further, the sensors 14 can have openings, or an absorbent material, configured to sample a hydration level or electrolyte level in a surrounding tissue site at the location of the sensor 14. The sensor 14 electrodes can be made of a variety of materials, including but not limited to platinum, iridium, titanium, and the like. Electrode coatings can be included, such as iridium oxide, platinum black, TiN, and the like.
The injectable detecting system 12 can include one or more a rechargeable batteries 36 that can be transcutaneously chargeable with an external unit.
Referring to
The external device 38 can be coupled to an auxiliary input of the monitoring unit 22 at the injectable detecting system 12 or to the monitoring system 22 at the remote monitoring system 18. Additionally, an automated reader can be coupled to an auxiliary input in order to allow a single monitoring unit 22 to be used by multiple patients. As previously mentioned above, the monitoring unit 22 can be at the remote monitoring system 18 and each patient can have a patient identifier (ID) including a distinct patient identifier. In addition, the ID identifier can also contain patient specific configuration parameters. The automated reader can scan the patient identifier ID and transmit the patient ID number with a patient data packet such that the main data collection station can identify the patient.
It will be appreciated that other medical treatment devices can also be used. The injectable detecting system 12 can communicate wirelessly with the external devices 38 in a variety of ways including but not limited to, a public or proprietary communication standard and the like. The injectable detecting system 12 can be configured to serve as a communication hub for multiple medical devices, coordinating sensor data and therapy delivery while transmitting and receiving data from the remote monitoring system 18.
In one embodiment, the injectable detecting system 12 coordinate data sharing between the external systems 38 allowing for sensor integration across devices. The coordination of the injectable detecting system 12 provides for new pacing, sensing, defibrillation vectors, and the like.
In one embodiment, the processor 20 is included in the monitoring unit 22 and the external device 38 is in direct communication with the monitoring unit 22.
In another embodiment, illustrated in
Notification can be according to a preset hierarchy. By way of illustration, and without limitation, the preset hierarchy can be, patient notification first and medical provider second, patient notification second and medical provider first, and the like. Upon receipt of a notification, a medical provider, the remote monitoring system 18, or a medical treatment device can trigger a high-rate sampling of physiological parameters for alert verification.
The system 10 can also include an alarm 46, that can be coupled to the notification device 42, for generating a human perceptible signal when values received from the sensors 14 are not within acceptable physiological ranges. The alarm 46 can trigger an event to render medical assistance to the patient, provide notification as set forth above, continue to monitor, wait and see, and the like.
When the values received from the sensors 14 are not within acceptable physiological ranges the notification is provided to at least one of, the patient, a spouse, a family member, a caregiver, a medical provider and from one device to another device, to allow for therapeutic intervention to prevent decompensation.
In another embodiment, the injectable detecting system 12 can switch between different modes, wherein the modes are selected from at least one of, a stand alone mode with communication directly with the remote monitoring system 18, communication with an implanted device, communication with a single implanted device, coordination between different devices (external systems) coupled to the plurality of sensors and different device communication protocols.
By way of illustration, and without limitation, the patient can be a congestive heart failure patient. Heart failure status is determined by a weighted combination change in sensor outputs and be determined by a number of different means, including but not limited to, (i) when a rate of change of at least two sensor outputs is an abrupt change in the sensor outputs as compared to a change in the sensor outputs over a longer period of time, (ii) by a tiered combination of at least a first and a second sensor output, with the first sensor output indicating a problem that is then verified by at least a second sensor output, (iii) by a variance from a baseline value of sensor outputs, and the like. The baseline values can be defined in a look up table.
In another embodiment, heart failure status is determined using three or more sensors by at least one of, (i) when the first sensor output is at a value that is sufficiently different from a baseline value, and at least one of the second and third sensor outputs is at a value also sufficiently different from a baseline value to indicate heart failure status, (ii) by time weighting the outputs of the first, second and third sensors, and the time weighting indicates a recent event that is indicative of the heart failure status and the like.
In one embodiment, the wireless communication device 16 can include a, modem, a controller to control data supplied by the injectable detecting system 12, serial interface, LAN or equivalent network connection and a wireless transmitter. Additionally, the wireless communication device 16 can include a receiver and a transmitter for receiving data indicating the values of the physiological event detected by the plurality of sensors, and for communicating the data to the remote monitoring system 18. Further, the wireless communication device 16 can have data storage for recording the data received from the injectable detecting system 12 and an access device for enabling access to information recording in the data storage from the remote monitoring system 18.
In various embodiments, the remote monitoring system 18 can include a, receiver, a transmitter and a display for displaying data representative of values of the one physiological event detected by the injectable detecting system 12. The remote monitoring system can also include a, data storage mechanism that has acceptable ranges for physiological values stored therein, a comparator for comparing the data received from the injectable detecting system 12 with the acceptable ranges stored in the data storage device and a portable computer. The remote monitoring system 18 can be a portable unit with a display screen and a data entry device for communicating with the wireless communication device 16.
Referring now to
In one embodiment, each signal from a sensor 14 is first passed through a low-pass filter 116, at the injectable detecting system 12 or at the remote monitoring system 18, to smooth the signal and reduce noise. The signal is then transmitted to an analog-to-digital converter 118A, which transforms the signals into a stream of digital data values that can be stored in a digital memory 118B. From the digital memory 118B, data values are transmitted to a data bus 120, along which they are transmitted to other components of the circuitry to be processed and archived. From the data bus 120, the digital data can be stored in a non-volatile data archive memory. The digital data can be transferred via the data bus 120 to the processor 20, which processes the data based in part on algorithms and other data stored in a non-volatile program memory.
The injectable detecting system 12 can also include a power management module 122 configured to power down certain components of the system, including but not limited to, the analog-to-digital converters 118A and 124, digital memories 118B and the non-volatile data archive memory and the like, between times when these components are in use. This helps to conserve battery power and thereby extend the useful life. Other circuitry and signaling modes may be devised by one skilled in the art.
As can be seen in
In one embodiment, the control unit 126 can be a microprocessor, for example, a Pentium or 486 processor. The control unit 126 can be coupled to the sensors 14 directly at the injectable detecting system 12, indirectly at the injectable detecting system 12 or indirectly at the remote monitoring system 18. Additionally the control unit 126 can be coupled to one or more devices, for example, a blood pressure monitor, cardiac rhythm management device, scale, a device that dispenses medication, a device that can indicate the medication has been dispensed, and the like.
The control unit 126 can be powered by AC inputs which are coupled to internal AC/DC converters 134 that generate multiple DC voltage levels. After the control unit 126 has collected the patient data from the sensors 14, the control unit 126 encodes the recorded patient data and transmits the patient data through the wireless communication device 16 to transmit the encoded patient data to a wireless network storage unit 128 at the remote monitoring system 18, as shown in
Every time the control unit 126 plans to transmit patient data to a main data collection station 130, located at the remote monitoring system 18, the control unit 126 attempts to establish a communication link. The communication link can be wireless, wired, or a combination of wireless and wired for redundancy, e.g., the wired link checks to see if a wireless communication can be established. If the wireless communication link 16 is available, the control unit 126 transmits the encoded patient data through the wireless communication device 16. However, if the wireless communication device 16 is not available for any reason, the control unit 126 waits and tries again until a link is established.
Referring now to
The main data collection station 130 can include a communications server 136 that communicates with the wireless network storage unit 128. The wireless network storage unit 128 can be a centralized computer server that includes a unique, password protected mailbox assigned to and accessible by the main data collection station 130. The main data collection station 130 contacts the wireless network storage unit 128 and downloads the patient data stored in a mailbox assigned to the main data collection station 130.
Once the communications server 136 has formed a link with the wireless network storage unit 128, and has downloaded the patient data, the patient data can be transferred to a database server 138. The database server 138 includes a patient database 140 that records and stores the patient data of the patients based upon identification included in the data packets sent by each of the monitoring units 22. For example, each data packet can include an identifier.
Each data packet transferred from the remote monitoring system 18 to the main data collection station 130 does not have to include any patient identifiable information. Instead, the data packet can include the serial number assigned to the specific injectable detecting system 12. The serial number associated with the detecting system 12 can then be correlated to a specific patient by using information stored on the patient database 138. In this manner, the data packets transferred through the wireless network storage unit 128 do not include any patient-specific identification. Therefore, if the data packets are intercepted or improperly routed, patient confidentiality can not be breached.
The database server 138 can be accessible by an application server 142. The application server 142 can include a data adapter 144 that formats the patient data information into a form that can be viewed over a conventional web-based connection. The transformed data from the data adapter 144 can be accessible by propriety application software through a web server 146 such that the data can be viewed by a workstation 148. The workstation 148 can be a conventional personal computer that can access the patient data using proprietary software applications through, for example, HTTP protocol, and the like.
The main data collection station further can include an escalation server 150 that communicates with the database server 138. The escalation server 150 monitors the patient data packets that are received by the database server 138 from the monitoring unit 22. Specifically, the escalation server 150 can periodically poll the database server 138 for unacknowledged patient data packets. The patient data packets are sent to the remote monitoring system 18 where the processing of patient data occurs. The remote monitoring system 18 communicates with a medical provider in the event that an alert is required. The escalation server 150 can be programmed to automatically deliver alerts to a specific medical provider if an alarm message has not been acknowledged within a selected time period after receipt of the data packet.
The escalation server 150 can be configured to generate the notification message to different people by different modes of communication after different delay periods and during different time periods.
The main data collection station 130 can include a batch server 152 connected to the database server 138. The batch server 152 allows an administration server 154 to have access to the patient data stored in the patient database 140. The administration server 154 allows for centralized management of patient information and patient classifications.
The administration server 154 can include a batch server 156 that communicates with the batch server 152 and provides the downloaded data to a data warehouse server 158. The data warehouse server 158 can include a large database 160 that records and stores the patient data.
The administration server 154 can further include an application server 162 and a maintenance workstation 164 that allow personnel from an administrator to access and monitor the data stored in the database 160.
The data packet utilized in the transmission of the patient data can be a variable length ASCII character packet, or any generic data formats, in which the various patient data measurements are placed in a specific sequence with the specific readings separated by commas. The control unit 126 can convert the readings from each sensor 14 into a standardized sequence that forms part of the patient data packet. In this manner, the control unit 126 can be programmed to convert the patient data readings from the sensors 14 into a standardized data packet that can be interpreted and displayed by the main data collection station 130 at the remote monitoring system 18.
Referring now to the flow chart of
After the patient data measurements are complete, the control unit 126 displays the sensor data, including but not limited to blood pressure cuff data and the like, as illustrated by step B. In addition to displaying this data, the patient data can be placed in the patient data packet, as illustrated in step C.
As previously described, the system 10 can take additional measurements utilizing one or more auxiliary or external devices 38 such as those mentioned previously. Since the patient data packet has a variable length, the auxiliary device patient information can be added to the patient data packet being compiled by the remote monitoring unit 22 during patient data acquisition period being described. Data from the external devices 38 is transmitted by the wireless communication device 16 to the remote monitoring system 18 and can be included in the patient data packet.
If the remote monitoring system 18 can be set in either the auto mode or the wireless only mode, the remote monitoring unit 22 can first determine if there can be an internal communication error, as illustrated in step D.
A no communication error can be noted as illustrated in step E. If a communication error is noted the control unit 126 can proceed to wireless communication device 16 or to a conventional modem transmission sequence, as will be described below. However, if the communication device is working, the control unit 126 can transmit the patient data information over the wireless network 16, as illustrated in step F. After the communication device has transmitted the data packet, the control unit 126 determines whether the transmission was successful, as illustrated in step G. If the transmission has been unsuccessful only once, the control unit 126 retries the transmission. However, if the communication device has failed twice, as illustrated in step H, the control unit 126 proceeds to the conventional modem process if the remote monitoring unit 22 was configured in an auto mode.
When the control unit 126 is at the injectable detecting system 12, and the control unit 126 transmits the patient data over the wireless communication device 16, as illustrated in step I, if the transmission has been successful, the display of the remote monitoring unit 22 can display a successful message, as illustrated in step J. However, if the control unit 126 determines in step K that the communication of patient data has failed, the control unit 126 repeats the transmission until the control unit 126 either successfully completes the transmission or determines that the transmission has failed a selected number of times, as illustrated in step L. The control unit 126 can time out the and a failure message can be displayed, as illustrated in steps M and N. Once the transmission sequence has either failed or successfully transmitted the data to the main data collection station, the control unit 126 returns to a start program step O.
As discussed previously, the patient data packets are first sent and stored in the wireless network storage unit 128. From there, the patient data packets are downloaded into the main data collection station 130. The main data collection station 130 decodes the encoded patient data packets and records the patient data in the patient database 140. The patient database 140 can be divided into individual storage locations for each patient such that the main data collection station 130 can store and compile patient data information from a plurality of individual patients.
A report on the patient's status can be accessed by a medical provider through a medical provider workstation that is coupled to the remote monitoring system 18. Unauthorized access to the patient database can be prevented by individual medical provider usernames and passwords to provide additional security for the patient's recorded patient data.
The main data collection station 130 and the series of work stations 148 allow the remote monitoring system 18 to monitor the daily patient data measurements taken by a plurality of patients reporting patient data to the single main data collection station 130. The main data collection station 130 can be configured to display multiple patients on the display of the workstations 148. The internal programming for the main data collection station 130 can operate such that the patients are placed in a sequential top-to-bottom order based upon whether or not the patient can be generating an alarm signal for one of the patient data being monitored. For example, if one of the patients monitored by monitoring system 130 has a blood pressure exceeding a predetermined maximum amount, this patient can be moved toward the top of the list of patients and the patient's name and/or patient data can be highlighted such that the medical personnel can quickly identify those patients who may be in need of medical assistance. By way of illustration, and without limitation, the following paragraphs is a representative order ranking method for determining the order which the monitored patients are displayed:
Alarm Display Order Patient Status Patients are then sorted 1 Medical Alarm Most alarms violated to least alarms violated, then oldest to newest 2 Missing Data Alarm Oldest to newest 3 Late Oldest to newest 4 Reviewed Medical Alarms Oldest to newest 5 Reviewed Missing Data Oldest to newest Alarms 6 Reviewed Null Oldest to newest 7 NDR Oldest to newest 8 Reviewed NDR Oldest to newest
As listed in the above, the order of patients listed on the display can be ranked based upon the seriousness and number of alarms that are registered based upon the latest patient data information. For example, if the blood pressure of a single patient exceeds the tolerance level and the patient's heart rate also exceeds the maximum level, this patient will be placed above a patient who only has one alarm condition. In this manner, the medical provider can quickly determine which patient most urgently needs medical attention by simply identifying the patient's name at the top of the patient list. The order which the patients are displayed can be configurable by the remote monitoring system 18 depending on various preferences.
As discussed previously, the escalation server 150 automatically generates a notification message to a specified medical provider for unacknowledged data packets based on user specified parameters.
In addition to displaying the current patient data for the numerous patients being monitored, the software of the main data collection station 130 allows the medical provider to trend the patient data over a number of prior measurements in order to monitor the progress of a particular patient. In addition, the software allows the medical provider to determine whether or not a patient has been successful in recording their patient data as well as monitor the questions being asked by the remote monitoring unit 22.
As previously mentioned, the system 10 uses an intelligent combination of sensors to enhance detection and prediction capabilities. Electrocardiogram circuitry can be coupled to the sensors 14, or electrodes, to measure an electrocardiogram signal of the patient. An accelerometer can be mechanically coupled, for example adhered or affixed, to the sensors 14, adherent patch and the like, to generate an accelerometer signal in response to at least one of an activity or a position of the patient. The accelerometer signals improve patient diagnosis, and can be especially useful when used with other signals, such as electrocardiogram signals and impedance signals, including but not limited to, hydration respiration, and the like. Mechanically coupling the accelerometer to the sensors 14, electrodes, for measuring impedance, hydration and the like can improve the quality and/or usefulness of the impedance and/or electrocardiogram signals. By way of illustration, and without limitation, mechanical coupling of the accelerometer to the sensors 14, electrodes, and to the skin of the patient can improve the reliability, quality and/or accuracy of the accelerometer measurements, as the sensor 14, electrode, signals can indicate the quality of mechanical coupling of the patch to the patient so as to indicate that the device is connected to the patient and that the accelerometer signals are valid. Other examples of sensor interaction include but are not limited to, (i) orthopnea measurement where the breathing rate is correlated with posture during sleep, and detection of orthopnea, (ii) a blended activity sensor using the respiratory rate to exclude high activity levels caused by vibration (e.g. driving on a bumpy road) rather than exercise or extreme physical activity, (iii) sharing common power, logic and memory for sensors, electrodes, and the like.
While the invention is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail. It should be understood, however, that there is no intention to limit the invention to the specific form or forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention.
The present application claims the benefit under 35 USC 119(e) of U.S. Provisional Application Nos. 60/972,329, 60/972,336, 60/972,354 and 60/972,537, all filed Sep. 14, 2007, and 61/055,666 filed May 23, 2008; the full disclosures of which are incorporated herein by reference in their entirety. The subject matter of the present application is related to the following applications: 60/972,512; 60/972,616; 60/972,363; 60/972,343; 60/972,581; 60/972,629; 60/972,316; 60/972,333; 60/972,359; 60/972,336; 60/972,340 all of which were filed on Sep. 14, 2007; 61/046,196 filed Apr. 18, 2008; 61/047,875 filed Apr. 25, 2008; 61/055,645, 61/055,656, 61/055,662, all filed May 23, 2008; and 61/079,746 filed Jul. 10, 2008. The following applications are being filed concurrently with the present application, on Sep. 12, 2008: U.S. patent application Ser. No. 12/209,279 entitled “Multi-Sensor Patient Monitor to Detect Impending Cardiac Decompensation Prediction”; U.S. patent application Ser. No. 12/209,288 entitled “Adherent Device with Multiple Physiological Sensors”; U.S. patent application Ser. No. 12/209,479 entitled “Injectable Physiological Monitoring System”; U.S. patent application Ser. No. 12/209,262 entitled “Adherent Device for Cardiac Rhythm Management”; U.S. patent application Ser. No. 12/209,268 entitled “Adherent Device for Respiratory Monitoring”; U.S. patent application Ser. No. 12/209,269 entitled “Adherent Athletic Monitor”; U.S. patent application Ser. No. 12/209,259 entitled “Adherent Emergency Monitor”; U.S. patent application Ser. No. 12/209,273 entitled “Adherent Device with Physiological Sensors”; U.S. patent application Ser. No. 12/209,276 entitled “Medical Device Automatic Start-up upon Contact to Patient Tissue”; U.S. patent application Ser. No. 12/210,078 entitled “System and Methods for Wireless Body Fluid Monitoring”; U.S. patent application Ser. No. 12/209,265 entitled “Adherent Cardiac Monitor with Advanced Sensing Capabilities”; U.S. patent application Ser. No. 12/209,292 entitled “Adherent Device for Sleep Disordered Breathing”; U.S. patent application Ser. No. 12/209,278 entitled “Dynamic Pairing of Patients to Data Collection Gateways”; U.S. patent application Ser. No. 12/209,508 entitled “Adherent Multi-Sensor Device with Implantable Device Communications Capabilities”; U.S. patent application Ser. No. 12/209,528 entitled “Data Collection in a Multi-Sensor Patient Monitor”; U.S. patent application Ser. No. 12/209,271 entitled “Adherent Multi-Sensor Device with Empathic Monitoring”; U.S. patent application Ser. No. 12/209,274 entitled “Energy Management for Adherent Patient Monitor”; and U.S. patent application Ser. No. 12/209,294 entitled “Tracking and Security for Adherent Patient Monitor.”
Number | Name | Date | Kind |
---|---|---|---|
834261 | Chambers | Oct 1906 | A |
2087124 | Smith et al. | Jul 1937 | A |
2184511 | Bagno et al. | Dec 1939 | A |
3170459 | Phipps et al. | Feb 1965 | A |
3232291 | Parker | Feb 1966 | A |
3370459 | Cescati | Feb 1968 | A |
3517999 | Weaver | Jun 1970 | A |
3620216 | Szymanski | Nov 1971 | A |
3677260 | Funfstuck et al. | Jul 1972 | A |
3805769 | Sessions | Apr 1974 | A |
3845757 | Weyer | Nov 1974 | A |
3874368 | Asrican | Apr 1975 | A |
3882853 | Gofman et al. | May 1975 | A |
3942517 | Bowles et al. | Mar 1976 | A |
3972329 | Kaufman | Aug 1976 | A |
4008712 | Nyboer | Feb 1977 | A |
4024312 | Korpman | May 1977 | A |
4077406 | Sandhage et al. | Mar 1978 | A |
4121573 | Crovella et al. | Oct 1978 | A |
4141366 | Cross, Jr. et al. | Feb 1979 | A |
RE30101 | Kubicek et al. | Sep 1979 | E |
4185621 | Morrow | Jan 1980 | A |
4216462 | McGrath et al. | Aug 1980 | A |
4300575 | Wilson | Nov 1981 | A |
4308872 | Watson et al. | Jan 1982 | A |
4358678 | Lawrence | Nov 1982 | A |
4409983 | Albert | Oct 1983 | A |
4450527 | Sramek | May 1984 | A |
4451254 | Dinius et al. | May 1984 | A |
4478223 | Allor | Oct 1984 | A |
4498479 | Martio et al. | Feb 1985 | A |
4522211 | Bare et al. | Jun 1985 | A |
4661103 | Harman | Apr 1987 | A |
4664129 | Helzel et al. | May 1987 | A |
4669480 | Hoffman | Jun 1987 | A |
4673387 | Phillips et al. | Jun 1987 | A |
4681118 | Asai et al. | Jul 1987 | A |
4692685 | Blaze | Sep 1987 | A |
4699146 | Sieverding | Oct 1987 | A |
4721110 | Lampadius | Jan 1988 | A |
4730611 | Lamb | Mar 1988 | A |
4733107 | O'Shaughnessy et al. | Mar 1988 | A |
4781200 | Baker | Nov 1988 | A |
4793362 | Tedner | Dec 1988 | A |
4838273 | Cartmell | Jun 1989 | A |
4838279 | Fore | Jun 1989 | A |
4850370 | Dower | Jul 1989 | A |
4880004 | Baker, Jr. et al. | Nov 1989 | A |
4895163 | Libke et al. | Jan 1990 | A |
4911175 | Shizgal | Mar 1990 | A |
4945916 | Kretschmer et al. | Aug 1990 | A |
4955381 | Way et al. | Sep 1990 | A |
4966158 | Honma et al. | Oct 1990 | A |
4981139 | Pfohl | Jan 1991 | A |
4988335 | Prindle et al. | Jan 1991 | A |
4989612 | Fore | Feb 1991 | A |
5001632 | Hall-Tipping | Mar 1991 | A |
5012810 | Strand et al. | May 1991 | A |
5025791 | Niwa | Jun 1991 | A |
5027824 | Dougherty et al. | Jul 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5063937 | Ezenwa et al. | Nov 1991 | A |
5080099 | Way et al. | Jan 1992 | A |
5083563 | Collins | Jan 1992 | A |
5086781 | Bookspan | Feb 1992 | A |
5113869 | Nappholz et al. | May 1992 | A |
5125412 | Thornton | Jun 1992 | A |
5133355 | Strand et al. | Jul 1992 | A |
5140985 | Schroeder et al. | Aug 1992 | A |
5150708 | Brooks | Sep 1992 | A |
5168874 | Segalowitz | Dec 1992 | A |
5226417 | Swedlow et al. | Jul 1993 | A |
5241300 | Buschmann | Aug 1993 | A |
5257627 | Rapoport | Nov 1993 | A |
5271411 | Ripley et al. | Dec 1993 | A |
5273532 | Niezink et al. | Dec 1993 | A |
5282840 | Hudrlik | Feb 1994 | A |
5291013 | Nafarrate et al. | Mar 1994 | A |
5297556 | Shankar | Mar 1994 | A |
5301677 | Hsung | Apr 1994 | A |
5319363 | Welch et al. | Jun 1994 | A |
5331966 | Bennett et al. | Jul 1994 | A |
5335664 | Nagashima | Aug 1994 | A |
5343869 | Pross et al. | Sep 1994 | A |
5353793 | Bornn | Oct 1994 | A |
5362069 | Hall-Tipping | Nov 1994 | A |
5375604 | Kelly et al. | Dec 1994 | A |
5411530 | Akhtar | May 1995 | A |
5437285 | Verrier et al. | Aug 1995 | A |
5443073 | Wang et al. | Aug 1995 | A |
5449000 | Libke et al. | Sep 1995 | A |
5450845 | Axelgaard | Sep 1995 | A |
5454377 | Dzwonczyk et al. | Oct 1995 | A |
5464012 | Falcone | Nov 1995 | A |
5469859 | Tsoglin et al. | Nov 1995 | A |
5482036 | Diab et al. | Jan 1996 | A |
5503157 | Sramek | Apr 1996 | A |
5511548 | Raizzi et al. | Apr 1996 | A |
5511553 | Segalowitz | Apr 1996 | A |
5518001 | Snell | May 1996 | A |
5523742 | Simkins et al. | Jun 1996 | A |
5529072 | Sramek | Jun 1996 | A |
5544661 | Davis et al. | Aug 1996 | A |
5558638 | Evers et al. | Sep 1996 | A |
5560368 | Berger | Oct 1996 | A |
5564429 | Bornn et al. | Oct 1996 | A |
5564434 | Halperin et al. | Oct 1996 | A |
5566671 | Lyons | Oct 1996 | A |
5575284 | Athan et al. | Nov 1996 | A |
5607454 | Cameron et al. | Mar 1997 | A |
5632272 | Diab et al. | May 1997 | A |
5634468 | Platt et al. | Jun 1997 | A |
5642734 | Ruben et al. | Jul 1997 | A |
5673704 | Marchlinski et al. | Oct 1997 | A |
5678562 | Sellers | Oct 1997 | A |
5687717 | Halpern et al. | Nov 1997 | A |
5718234 | Warden et al. | Feb 1998 | A |
5724025 | Tavori | Mar 1998 | A |
5738107 | Martinsen et al. | Apr 1998 | A |
5748103 | Flach et al. | May 1998 | A |
5767791 | Stoop et al. | Jun 1998 | A |
5769793 | Pincus et al. | Jun 1998 | A |
5772508 | Sugita et al. | Jun 1998 | A |
5772586 | Heinonen et al. | Jun 1998 | A |
5778882 | Raymond et al. | Jul 1998 | A |
5788643 | Feldman | Aug 1998 | A |
5803915 | Kremenchugsky et al. | Sep 1998 | A |
5807272 | Kun | Sep 1998 | A |
5814079 | Kieval et al. | Sep 1998 | A |
5817035 | Sullivan | Oct 1998 | A |
5833603 | Kovacs et al. | Nov 1998 | A |
5836990 | Li | Nov 1998 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5860860 | Clayman | Jan 1999 | A |
5862802 | Bird | Jan 1999 | A |
5862803 | Besson et al. | Jan 1999 | A |
5865733 | Malinouskas et al. | Feb 1999 | A |
5876353 | Riff | Mar 1999 | A |
5904708 | Goedeke | May 1999 | A |
5935079 | Swanson et al. | Aug 1999 | A |
5941831 | Turcott | Aug 1999 | A |
5944659 | Flach et al. | Aug 1999 | A |
5949636 | Johnson et al. | Sep 1999 | A |
5957854 | Besson et al. | Sep 1999 | A |
5957861 | Combs et al. | Sep 1999 | A |
5964703 | Goodman et al. | Oct 1999 | A |
5970986 | Bolz et al. | Oct 1999 | A |
5984102 | Tay | Nov 1999 | A |
5987352 | Klein et al. | Nov 1999 | A |
6007532 | Netherly | Dec 1999 | A |
6027523 | Schmieding | Feb 2000 | A |
6045513 | Stone et al. | Apr 2000 | A |
6047203 | Sackner et al. | Apr 2000 | A |
6047259 | Campbell et al. | Apr 2000 | A |
6049730 | Kristbjarnarson | Apr 2000 | A |
6050267 | Nardella et al. | Apr 2000 | A |
6050951 | Friedman et al. | Apr 2000 | A |
6052615 | Feild et al. | Apr 2000 | A |
6067467 | John | May 2000 | A |
6080106 | Lloyd et al. | Jun 2000 | A |
6081735 | Diab et al. | Jun 2000 | A |
6095991 | Krausman et al. | Aug 2000 | A |
6102856 | Groff et al. | Aug 2000 | A |
6104949 | Pitts Crick et al. | Aug 2000 | A |
6112224 | Peifer et al. | Aug 2000 | A |
6117077 | Del Mar et al. | Sep 2000 | A |
6125297 | Siconolfi | Sep 2000 | A |
6129744 | Boute | Oct 2000 | A |
6141575 | Price | Oct 2000 | A |
6144878 | Schroeppel et al. | Nov 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6181963 | Chin et al. | Jan 2001 | B1 |
6185452 | Schulman et al. | Feb 2001 | B1 |
6190313 | Hinkle | Feb 2001 | B1 |
6190324 | Kieval et al. | Feb 2001 | B1 |
6198394 | Jacobsen et al. | Mar 2001 | B1 |
6198955 | Axelgaard et al. | Mar 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6212427 | Hoover | Apr 2001 | B1 |
6213942 | Flach et al. | Apr 2001 | B1 |
6225901 | Kail, IV | May 2001 | B1 |
6245021 | Stampfer | Jun 2001 | B1 |
6259939 | Rogel | Jul 2001 | B1 |
6272377 | Sweeney et al. | Aug 2001 | B1 |
6277078 | Porat et al. | Aug 2001 | B1 |
6287252 | Lugo | Sep 2001 | B1 |
6289238 | Besson et al. | Sep 2001 | B1 |
6290646 | Cosentino et al. | Sep 2001 | B1 |
6295466 | Ishikawa et al. | Sep 2001 | B1 |
6305943 | Pougatchev et al. | Oct 2001 | B1 |
6306088 | Krausman et al. | Oct 2001 | B1 |
6308094 | Shusterman et al. | Oct 2001 | B1 |
6312378 | Bardy | Nov 2001 | B1 |
6315721 | Schulman et al. | Nov 2001 | B2 |
6327487 | Stratbucker | Dec 2001 | B1 |
6330464 | Colvin et al. | Dec 2001 | B1 |
6336903 | Bardy | Jan 2002 | B1 |
6339722 | Heethaar et al. | Jan 2002 | B1 |
6343140 | Brooks | Jan 2002 | B1 |
6347245 | Lee et al. | Feb 2002 | B1 |
6358208 | Lang et al. | Mar 2002 | B1 |
6385473 | Haines et al. | May 2002 | B1 |
6398727 | Bui et al. | Jun 2002 | B1 |
6400982 | Sweeney et al. | Jun 2002 | B2 |
6409674 | Brockway et al. | Jun 2002 | B1 |
6411853 | Millot et al. | Jun 2002 | B1 |
6416471 | Kumar et al. | Jul 2002 | B1 |
6440069 | Raymond et al. | Aug 2002 | B1 |
6442422 | Duckert | Aug 2002 | B1 |
6450820 | Palsson et al. | Sep 2002 | B1 |
6450953 | Place et al. | Sep 2002 | B1 |
6454707 | Casscells, III et al. | Sep 2002 | B1 |
6454708 | Ferguson et al. | Sep 2002 | B1 |
6459930 | Takehara et al. | Oct 2002 | B1 |
6463328 | John | Oct 2002 | B1 |
6473640 | Erlebacher | Oct 2002 | B1 |
6480733 | Turcott | Nov 2002 | B1 |
6480734 | Zhang et al. | Nov 2002 | B1 |
6490478 | Zhang et al. | Dec 2002 | B1 |
6491647 | Bridger et al. | Dec 2002 | B1 |
6494829 | New, Jr. et al. | Dec 2002 | B1 |
6496715 | Lee et al. | Dec 2002 | B1 |
6512949 | Combs et al. | Jan 2003 | B1 |
6520967 | Cauthen | Feb 2003 | B1 |
6527711 | Stivoric et al. | Mar 2003 | B1 |
6527729 | Turcott | Mar 2003 | B1 |
6544173 | West et al. | Apr 2003 | B2 |
6544174 | West et al. | Apr 2003 | B2 |
6551251 | Zuckerwar et al. | Apr 2003 | B2 |
6551252 | Sackner et al. | Apr 2003 | B2 |
6569160 | Goldin et al. | May 2003 | B1 |
6572557 | Tchou et al. | Jun 2003 | B2 |
6572636 | Hagen et al. | Jun 2003 | B1 |
6577139 | Cooper | Jun 2003 | B2 |
6577893 | Besson et al. | Jun 2003 | B1 |
6577897 | Shurubura et al. | Jun 2003 | B1 |
6579231 | Phipps | Jun 2003 | B1 |
6580942 | Willshire | Jun 2003 | B1 |
6584343 | Ransbury et al. | Jun 2003 | B1 |
6587715 | Singer | Jul 2003 | B2 |
6589170 | Flach et al. | Jul 2003 | B1 |
6595927 | Pitts-Crick et al. | Jul 2003 | B2 |
6595929 | Stivoric et al. | Jul 2003 | B2 |
6600949 | Turcott | Jul 2003 | B1 |
6602201 | Hepp et al. | Aug 2003 | B1 |
6605038 | Teller et al. | Aug 2003 | B1 |
6611705 | Hopman et al. | Aug 2003 | B2 |
6616606 | Petersen et al. | Sep 2003 | B1 |
6622042 | Thacker | Sep 2003 | B1 |
6636754 | Baura et al. | Oct 2003 | B1 |
6641542 | Cho et al. | Nov 2003 | B2 |
6645153 | Kroll et al. | Nov 2003 | B2 |
6649829 | Garber et al. | Nov 2003 | B2 |
6650917 | Diab et al. | Nov 2003 | B2 |
6658300 | Govari et al. | Dec 2003 | B2 |
6659947 | Carter et al. | Dec 2003 | B1 |
6659949 | Lang et al. | Dec 2003 | B1 |
6687540 | Marcovecchio | Feb 2004 | B2 |
6697658 | Al-Ali | Feb 2004 | B2 |
RE38476 | Diab et al. | Mar 2004 | E |
6699200 | Cao et al. | Mar 2004 | B2 |
6701271 | Willner et al. | Mar 2004 | B2 |
6711423 | Colvin, Jr. | Mar 2004 | B2 |
6714813 | Ishigooka et al. | Mar 2004 | B2 |
RE38492 | Diab et al. | Apr 2004 | E |
6721594 | Conley et al. | Apr 2004 | B2 |
6728572 | Hsu et al. | Apr 2004 | B2 |
6748269 | Thompson et al. | Jun 2004 | B2 |
6749566 | Russ | Jun 2004 | B2 |
6751498 | Greenberg et al. | Jun 2004 | B1 |
6760617 | Ward et al. | Jul 2004 | B2 |
6773396 | Flach et al. | Aug 2004 | B2 |
6775566 | Nissila | Aug 2004 | B2 |
6790178 | Mault et al. | Sep 2004 | B1 |
6795722 | Sheraton et al. | Sep 2004 | B2 |
6814706 | Barton et al. | Nov 2004 | B2 |
6816744 | Garfield et al. | Nov 2004 | B2 |
6821249 | Casscells, III et al. | Nov 2004 | B2 |
6824515 | Suorsa et al. | Nov 2004 | B2 |
6827690 | Bardy | Dec 2004 | B2 |
6829503 | Alt | Dec 2004 | B2 |
6858006 | MacCarter et al. | Feb 2005 | B2 |
6871211 | Labounty et al. | Mar 2005 | B2 |
6878121 | Krausman et al. | Apr 2005 | B2 |
6879850 | Kimball | Apr 2005 | B2 |
6881191 | Oakley et al. | Apr 2005 | B2 |
6887201 | Bardy | May 2005 | B2 |
6890096 | Tokita et al. | May 2005 | B2 |
6893396 | Schulze et al. | May 2005 | B2 |
6894204 | Dunshee | May 2005 | B2 |
6906530 | Geisel | Jun 2005 | B2 |
6912414 | Tong | Jun 2005 | B2 |
6936006 | Sabra | Aug 2005 | B2 |
6940403 | Kail, IV | Sep 2005 | B2 |
6942622 | Turcott | Sep 2005 | B1 |
6952695 | Trinks et al. | Oct 2005 | B1 |
6970742 | Mann et al. | Nov 2005 | B2 |
6972683 | Lestienne et al. | Dec 2005 | B2 |
6978177 | Chen et al. | Dec 2005 | B1 |
6980851 | Zhu et al. | Dec 2005 | B2 |
6980852 | Jersey-Willuhn et al. | Dec 2005 | B2 |
6985078 | Suzuki et al. | Jan 2006 | B2 |
6987965 | Ng et al. | Jan 2006 | B2 |
6988989 | Weiner et al. | Jan 2006 | B2 |
6993378 | Wiederhold et al. | Jan 2006 | B2 |
6997879 | Turcott | Feb 2006 | B1 |
7003346 | Singer | Feb 2006 | B2 |
7009362 | Tsukamoto et al. | Mar 2006 | B2 |
7010340 | Scarantino et al. | Mar 2006 | B2 |
7018338 | Vetter et al. | Mar 2006 | B2 |
7020508 | Stivoric et al. | Mar 2006 | B2 |
7027862 | Dahl et al. | Apr 2006 | B2 |
7041062 | Friedrichs et al. | May 2006 | B2 |
7044911 | Drinan et al. | May 2006 | B2 |
7047067 | Gray et al. | May 2006 | B2 |
7050846 | Sweeney et al. | May 2006 | B2 |
7054679 | Hirsh | May 2006 | B2 |
7059767 | Tokita et al. | Jun 2006 | B2 |
7088242 | Aupperle et al. | Aug 2006 | B2 |
7113826 | Henry et al. | Sep 2006 | B2 |
7118531 | Krill | Oct 2006 | B2 |
7127370 | Kelly, Jr. et al. | Oct 2006 | B2 |
7129836 | Lawson et al. | Oct 2006 | B2 |
7130396 | Rogers et al. | Oct 2006 | B2 |
7130679 | Parsonnet et al. | Oct 2006 | B2 |
7133716 | Kraemer et al. | Nov 2006 | B2 |
7136697 | Singer | Nov 2006 | B2 |
7136703 | Cappa et al. | Nov 2006 | B1 |
7142907 | Xue et al. | Nov 2006 | B2 |
7149574 | Yun et al. | Dec 2006 | B2 |
7149773 | Haller et al. | Dec 2006 | B2 |
7153262 | Stivoric et al. | Dec 2006 | B2 |
7156807 | Carter et al. | Jan 2007 | B2 |
7156808 | Quy | Jan 2007 | B2 |
7160252 | Cho et al. | Jan 2007 | B2 |
7160253 | Nissila | Jan 2007 | B2 |
7166063 | Rahman et al. | Jan 2007 | B2 |
7167743 | Heruth et al. | Jan 2007 | B2 |
7184821 | Belalcazar et al. | Feb 2007 | B2 |
7191000 | Zhu et al. | Mar 2007 | B2 |
7194306 | Turcott | Mar 2007 | B1 |
7206630 | Tarler | Apr 2007 | B1 |
7212849 | Zhang et al. | May 2007 | B2 |
7215984 | Diab et al. | May 2007 | B2 |
7215991 | Besson et al. | May 2007 | B2 |
7238159 | Banet et al. | Jul 2007 | B2 |
7248916 | Bardy | Jul 2007 | B2 |
7251524 | Hepp et al. | Jul 2007 | B1 |
7257438 | Kinast | Aug 2007 | B2 |
7261690 | Teller et al. | Aug 2007 | B2 |
7277741 | Debreczeny et al. | Oct 2007 | B2 |
7284904 | Tokita et al. | Oct 2007 | B2 |
7285090 | Stivoric et al. | Oct 2007 | B2 |
7294105 | Islam | Nov 2007 | B1 |
7295877 | Govari | Nov 2007 | B2 |
7295879 | Denker et al. | Nov 2007 | B2 |
7297119 | Westbrook et al. | Nov 2007 | B2 |
7318808 | Tarassenko et al. | Jan 2008 | B2 |
7319386 | Collins, Jr. et al. | Jan 2008 | B2 |
7336187 | Hubbard, Jr. et al. | Feb 2008 | B2 |
7346380 | Axelgaard et al. | Mar 2008 | B2 |
7382247 | Welch et al. | Jun 2008 | B2 |
7384398 | Gagnadre et al. | Jun 2008 | B2 |
7390299 | Weiner et al. | Jun 2008 | B2 |
7395106 | Ryu et al. | Jul 2008 | B2 |
7423526 | Despotis | Sep 2008 | B2 |
7423537 | Bonnet et al. | Sep 2008 | B2 |
7443302 | Reeder et al. | Oct 2008 | B2 |
7450024 | Wildman et al. | Nov 2008 | B2 |
7468032 | Stahmann et al. | Dec 2008 | B2 |
7510699 | Black et al. | Mar 2009 | B2 |
7701227 | Saulnier et al. | Apr 2010 | B2 |
7813778 | Benaron et al. | Oct 2010 | B2 |
7881763 | Brauker et al. | Feb 2011 | B2 |
7942824 | Kayyali et al. | May 2011 | B1 |
8160680 | Boyden et al. | Apr 2012 | B2 |
20010047127 | New, Jr. et al. | Nov 2001 | A1 |
20020019586 | Teller et al. | Feb 2002 | A1 |
20020019588 | Marro et al. | Feb 2002 | A1 |
20020022786 | Takehara et al. | Feb 2002 | A1 |
20020028989 | Pelletier et al. | Mar 2002 | A1 |
20020032581 | Reitberg | Mar 2002 | A1 |
20020045836 | Alkawwas | Apr 2002 | A1 |
20020088465 | Hill | Jul 2002 | A1 |
20020099277 | Harry et al. | Jul 2002 | A1 |
20020116009 | Fraser et al. | Aug 2002 | A1 |
20020123672 | Christophersom et al. | Sep 2002 | A1 |
20020123674 | Plicchi et al. | Sep 2002 | A1 |
20020138017 | Bui et al. | Sep 2002 | A1 |
20020167389 | Uchikoba et al. | Nov 2002 | A1 |
20030009092 | Parker | Jan 2003 | A1 |
20030023184 | Pitts-Crick et al. | Jan 2003 | A1 |
20030028221 | Zhu et al. | Feb 2003 | A1 |
20030028321 | Brunner et al. | Feb 2003 | A1 |
20030051144 | Williams | Mar 2003 | A1 |
20030055460 | Owen et al. | Mar 2003 | A1 |
20030083581 | Taha et al. | May 2003 | A1 |
20030085717 | Cooper | May 2003 | A1 |
20030087244 | McCarthy | May 2003 | A1 |
20030092975 | Casscells, III et al. | May 2003 | A1 |
20030093125 | Zhu et al. | May 2003 | A1 |
20030093298 | Hernandez et al. | May 2003 | A1 |
20030100367 | Cooke | May 2003 | A1 |
20030105411 | Smallwood et al. | Jun 2003 | A1 |
20030135127 | Sackner et al. | Jul 2003 | A1 |
20030143544 | McCarthy | Jul 2003 | A1 |
20030149349 | Jensen | Aug 2003 | A1 |
20030187370 | Kodama | Oct 2003 | A1 |
20030191503 | Zhu et al. | Oct 2003 | A1 |
20030212319 | Magill | Nov 2003 | A1 |
20030221687 | Kaigler | Dec 2003 | A1 |
20030233129 | Matos | Dec 2003 | A1 |
20040006279 | Arad (Abboud) | Jan 2004 | A1 |
20040010303 | Bolea et al. | Jan 2004 | A1 |
20040015058 | Besson et al. | Jan 2004 | A1 |
20040019292 | Drinan et al. | Jan 2004 | A1 |
20040044293 | Burton | Mar 2004 | A1 |
20040049132 | Barron et al. | Mar 2004 | A1 |
20040064133 | Miller et al. | Apr 2004 | A1 |
20040068204 | Imran et al. | Apr 2004 | A1 |
20040073094 | Baker | Apr 2004 | A1 |
20040073126 | Rowlandson | Apr 2004 | A1 |
20040077954 | Oakley et al. | Apr 2004 | A1 |
20040100376 | Lye et al. | May 2004 | A1 |
20040102683 | Khanuja et al. | May 2004 | A1 |
20040106951 | Edman et al. | Jun 2004 | A1 |
20040122489 | Mazar et al. | Jun 2004 | A1 |
20040127790 | Lang et al. | Jul 2004 | A1 |
20040133079 | Mazar et al. | Jul 2004 | A1 |
20040133081 | Teller et al. | Jul 2004 | A1 |
20040134496 | Cho et al. | Jul 2004 | A1 |
20040143170 | DuRousseau | Jul 2004 | A1 |
20040147969 | Mann et al. | Jul 2004 | A1 |
20040152956 | Korman | Aug 2004 | A1 |
20040158132 | Zaleski | Aug 2004 | A1 |
20040167389 | Brabrand | Aug 2004 | A1 |
20040172080 | Stadler et al. | Sep 2004 | A1 |
20040199056 | Husemann et al. | Oct 2004 | A1 |
20040215240 | Lovett et al. | Oct 2004 | A1 |
20040215247 | Bolz | Oct 2004 | A1 |
20040220639 | Mulligan et al. | Nov 2004 | A1 |
20040225199 | Evanyk et al. | Nov 2004 | A1 |
20040225203 | Jemison et al. | Nov 2004 | A1 |
20040243018 | Organ et al. | Dec 2004 | A1 |
20040267142 | Paul | Dec 2004 | A1 |
20050015094 | Keller | Jan 2005 | A1 |
20050015095 | Keller | Jan 2005 | A1 |
20050020935 | Helzel et al. | Jan 2005 | A1 |
20050027175 | Yang | Feb 2005 | A1 |
20050027204 | Kligfield et al. | Feb 2005 | A1 |
20050027207 | Westbrook et al. | Feb 2005 | A1 |
20050027330 | Govari | Feb 2005 | A1 |
20050027918 | Govindarajulu et al. | Feb 2005 | A1 |
20050043675 | Pastore et al. | Feb 2005 | A1 |
20050054944 | Nakada et al. | Mar 2005 | A1 |
20050059867 | Chung | Mar 2005 | A1 |
20050065445 | Arzbaecher et al. | Mar 2005 | A1 |
20050065571 | Imran | Mar 2005 | A1 |
20050070768 | Zhu et al. | Mar 2005 | A1 |
20050070778 | Lackey et al. | Mar 2005 | A1 |
20050079132 | Wang et al. | Apr 2005 | A1 |
20050080346 | Gianchandani et al. | Apr 2005 | A1 |
20050080460 | Wang et al. | Apr 2005 | A1 |
20050080463 | Stahmann et al. | Apr 2005 | A1 |
20050085734 | Tehrani | Apr 2005 | A1 |
20050091338 | de la Huerga | Apr 2005 | A1 |
20050096513 | Ozguz et al. | May 2005 | A1 |
20050107870 | Wang et al. | May 2005 | A1 |
20050113703 | Farringdon et al. | May 2005 | A1 |
20050124878 | Sharony | Jun 2005 | A1 |
20050124901 | Misczynski et al. | Jun 2005 | A1 |
20050124908 | Belalcazar et al. | Jun 2005 | A1 |
20050131288 | Turner et al. | Jun 2005 | A1 |
20050137464 | Bomba | Jun 2005 | A1 |
20050137626 | Pastore et al. | Jun 2005 | A1 |
20050148895 | Misczynski et al. | Jul 2005 | A1 |
20050158539 | Murphy et al. | Jul 2005 | A1 |
20050177038 | Kolpin et al. | Aug 2005 | A1 |
20050187482 | O'Brien et al. | Aug 2005 | A1 |
20050187796 | Rosenfeld et al. | Aug 2005 | A1 |
20050192488 | Bryenton et al. | Sep 2005 | A1 |
20050197654 | Edman et al. | Sep 2005 | A1 |
20050203433 | Singer | Sep 2005 | A1 |
20050203435 | Nakada | Sep 2005 | A1 |
20050203436 | Davies | Sep 2005 | A1 |
20050203637 | Edman et al. | Sep 2005 | A1 |
20050206518 | Welch et al. | Sep 2005 | A1 |
20050215914 | Bornzin et al. | Sep 2005 | A1 |
20050215918 | Frantz et al. | Sep 2005 | A1 |
20050228234 | Yang | Oct 2005 | A1 |
20050228238 | Monitzer | Oct 2005 | A1 |
20050228244 | Banet | Oct 2005 | A1 |
20050239493 | Batkin et al. | Oct 2005 | A1 |
20050240087 | Keenan et al. | Oct 2005 | A1 |
20050251044 | Hoctor et al. | Nov 2005 | A1 |
20050256418 | Mietus et al. | Nov 2005 | A1 |
20050261598 | Banet et al. | Nov 2005 | A1 |
20050261743 | Kroll | Nov 2005 | A1 |
20050267376 | Marossero et al. | Dec 2005 | A1 |
20050267377 | Marossero et al. | Dec 2005 | A1 |
20050267381 | Benditt et al. | Dec 2005 | A1 |
20050273023 | Bystrom et al. | Dec 2005 | A1 |
20050277841 | Shennib | Dec 2005 | A1 |
20050277842 | Silva | Dec 2005 | A1 |
20050277992 | Koh et al. | Dec 2005 | A1 |
20050280531 | Fadem et al. | Dec 2005 | A1 |
20050283197 | Daum et al. | Dec 2005 | A1 |
20050288601 | Wood et al. | Dec 2005 | A1 |
20060004300 | Kennedy | Jan 2006 | A1 |
20060004377 | Keller | Jan 2006 | A1 |
20060009697 | Banet et al. | Jan 2006 | A1 |
20060009701 | Nissila et al. | Jan 2006 | A1 |
20060010090 | Brockway et al. | Jan 2006 | A1 |
20060020218 | Freeman et al. | Jan 2006 | A1 |
20060025661 | Sweeney et al. | Feb 2006 | A1 |
20060030781 | Shennib | Feb 2006 | A1 |
20060030782 | Shennib | Feb 2006 | A1 |
20060031102 | Teller et al. | Feb 2006 | A1 |
20060041280 | Stahmann et al. | Feb 2006 | A1 |
20060047215 | Newman et al. | Mar 2006 | A1 |
20060052678 | Drinan et al. | Mar 2006 | A1 |
20060058543 | Walter et al. | Mar 2006 | A1 |
20060058593 | Drinan et al. | Mar 2006 | A1 |
20060064030 | Cosentino et al. | Mar 2006 | A1 |
20060064040 | Berger et al. | Mar 2006 | A1 |
20060064142 | Chavan et al. | Mar 2006 | A1 |
20060066449 | Johnson | Mar 2006 | A1 |
20060074283 | Henderson et al. | Apr 2006 | A1 |
20060074462 | Verhoef | Apr 2006 | A1 |
20060075257 | Martis et al. | Apr 2006 | A1 |
20060084881 | Korzinov et al. | Apr 2006 | A1 |
20060085049 | Cory et al. | Apr 2006 | A1 |
20060089679 | Zhu et al. | Apr 2006 | A1 |
20060094948 | Gough et al. | May 2006 | A1 |
20060102476 | Niwa et al. | May 2006 | A1 |
20060116592 | Zhou et al. | Jun 2006 | A1 |
20060122474 | Teller et al. | Jun 2006 | A1 |
20060135858 | Nidd et al. | Jun 2006 | A1 |
20060142654 | Rytky | Jun 2006 | A1 |
20060142820 | Von Arx et al. | Jun 2006 | A1 |
20060149168 | Czarnek | Jul 2006 | A1 |
20060155174 | Glukhovsky et al. | Jul 2006 | A1 |
20060155183 | Kroecker et al. | Jul 2006 | A1 |
20060155200 | Ng | Jul 2006 | A1 |
20060161073 | Singer | Jul 2006 | A1 |
20060161205 | Mitrani et al. | Jul 2006 | A1 |
20060161459 | Rosenfeld et al. | Jul 2006 | A9 |
20060173257 | Nagai et al. | Aug 2006 | A1 |
20060173269 | Glossop | Aug 2006 | A1 |
20060195020 | Martin et al. | Aug 2006 | A1 |
20060195039 | Drew et al. | Aug 2006 | A1 |
20060195097 | Evans et al. | Aug 2006 | A1 |
20060195144 | Giftakis et al. | Aug 2006 | A1 |
20060202816 | Crump et al. | Sep 2006 | A1 |
20060212097 | Varadan et al. | Sep 2006 | A1 |
20060224051 | Teller et al. | Oct 2006 | A1 |
20060224072 | Shennib | Oct 2006 | A1 |
20060224079 | Washchuk | Oct 2006 | A1 |
20060235281 | Tuccillo | Oct 2006 | A1 |
20060235316 | Ungless et al. | Oct 2006 | A1 |
20060235489 | Drew et al. | Oct 2006 | A1 |
20060241641 | Albans et al. | Oct 2006 | A1 |
20060241701 | Markowitz et al. | Oct 2006 | A1 |
20060241722 | Thacker et al. | Oct 2006 | A1 |
20060247545 | St. Martin | Nov 2006 | A1 |
20060252999 | Devaul et al. | Nov 2006 | A1 |
20060253005 | Drinan et al. | Nov 2006 | A1 |
20060253044 | Zhang et al. | Nov 2006 | A1 |
20060258952 | Stahmann et al. | Nov 2006 | A1 |
20060264730 | Stivoric et al. | Nov 2006 | A1 |
20060264767 | Shennib | Nov 2006 | A1 |
20060264776 | Stahmann et al. | Nov 2006 | A1 |
20060271116 | Stahmann et al. | Nov 2006 | A1 |
20060276714 | Holt et al. | Dec 2006 | A1 |
20060281981 | Jang et al. | Dec 2006 | A1 |
20060281996 | Kuo et al. | Dec 2006 | A1 |
20060293571 | Bao et al. | Dec 2006 | A1 |
20060293609 | Stahmann et al. | Dec 2006 | A1 |
20070010702 | Wang et al. | Jan 2007 | A1 |
20070010721 | Chen et al. | Jan 2007 | A1 |
20070010750 | Ueno et al. | Jan 2007 | A1 |
20070015973 | Nanikashvili | Jan 2007 | A1 |
20070015976 | Miesel et al. | Jan 2007 | A1 |
20070016089 | Fischell et al. | Jan 2007 | A1 |
20070021678 | Beck et al. | Jan 2007 | A1 |
20070021790 | Kieval et al. | Jan 2007 | A1 |
20070021792 | Kieval et al. | Jan 2007 | A1 |
20070021794 | Kieval et al. | Jan 2007 | A1 |
20070021796 | Kieval et al. | Jan 2007 | A1 |
20070021797 | Kieval et al. | Jan 2007 | A1 |
20070021798 | Kieval et al. | Jan 2007 | A1 |
20070021799 | Kieval et al. | Jan 2007 | A1 |
20070027388 | Chou | Feb 2007 | A1 |
20070027497 | Parnis | Feb 2007 | A1 |
20070032749 | Overall et al. | Feb 2007 | A1 |
20070038038 | Stivoric et al. | Feb 2007 | A1 |
20070038078 | Osadchy | Feb 2007 | A1 |
20070038255 | Kieval et al. | Feb 2007 | A1 |
20070038262 | Kieval et al. | Feb 2007 | A1 |
20070043301 | Martinsen et al. | Feb 2007 | A1 |
20070043303 | Osypka et al. | Feb 2007 | A1 |
20070048224 | Howell et al. | Mar 2007 | A1 |
20070060800 | Drinan et al. | Mar 2007 | A1 |
20070060802 | Ghevondian et al. | Mar 2007 | A1 |
20070073132 | Vosch | Mar 2007 | A1 |
20070073168 | Zhang et al. | Mar 2007 | A1 |
20070073181 | Pu et al. | Mar 2007 | A1 |
20070073361 | Goren et al. | Mar 2007 | A1 |
20070082189 | Gillette | Apr 2007 | A1 |
20070083092 | Rippo et al. | Apr 2007 | A1 |
20070092862 | Gerber | Apr 2007 | A1 |
20070104840 | Singer | May 2007 | A1 |
20070106132 | Elhag et al. | May 2007 | A1 |
20070106137 | Baker, Jr. et al. | May 2007 | A1 |
20070106167 | Kinast | May 2007 | A1 |
20070118039 | Bodecker et al. | May 2007 | A1 |
20070123756 | Kitajima et al. | May 2007 | A1 |
20070123903 | Raymond et al. | May 2007 | A1 |
20070123904 | Stad et al. | May 2007 | A1 |
20070129622 | Bourget et al. | Jun 2007 | A1 |
20070129643 | Kwok et al. | Jun 2007 | A1 |
20070129769 | Bourget et al. | Jun 2007 | A1 |
20070142715 | Banet et al. | Jun 2007 | A1 |
20070142732 | Brockway et al. | Jun 2007 | A1 |
20070149282 | Lu et al. | Jun 2007 | A1 |
20070150008 | Jones et al. | Jun 2007 | A1 |
20070150009 | Kveen et al. | Jun 2007 | A1 |
20070150029 | Bourget et al. | Jun 2007 | A1 |
20070162089 | Mosesov | Jul 2007 | A1 |
20070167753 | Van Wyk et al. | Jul 2007 | A1 |
20070167848 | Kuo et al. | Jul 2007 | A1 |
20070167849 | Zhang et al. | Jul 2007 | A1 |
20070167850 | Russell et al. | Jul 2007 | A1 |
20070172424 | Roser | Jul 2007 | A1 |
20070173705 | Teller et al. | Jul 2007 | A1 |
20070180047 | Dong et al. | Aug 2007 | A1 |
20070180140 | Welch et al. | Aug 2007 | A1 |
20070191723 | Prystowsky et al. | Aug 2007 | A1 |
20070207858 | Breving | Sep 2007 | A1 |
20070208233 | Kovacs | Sep 2007 | A1 |
20070208235 | Besson et al. | Sep 2007 | A1 |
20070208262 | Kovacs | Sep 2007 | A1 |
20070232867 | Hansmann | Oct 2007 | A1 |
20070244403 | Natarajan et al. | Oct 2007 | A1 |
20070249946 | Kumar et al. | Oct 2007 | A1 |
20070250121 | Miesel et al. | Oct 2007 | A1 |
20070255120 | Rosnov | Nov 2007 | A1 |
20070255153 | Kumar et al. | Nov 2007 | A1 |
20070255184 | Shennib | Nov 2007 | A1 |
20070255531 | Drew | Nov 2007 | A1 |
20070260133 | Meyer | Nov 2007 | A1 |
20070260155 | Rapoport et al. | Nov 2007 | A1 |
20070260289 | Giftakis et al. | Nov 2007 | A1 |
20070273504 | Tran | Nov 2007 | A1 |
20070276273 | Watson, Jr | Nov 2007 | A1 |
20070282173 | Wang et al. | Dec 2007 | A1 |
20070299325 | Farrell et al. | Dec 2007 | A1 |
20080004499 | Davis | Jan 2008 | A1 |
20080004904 | Tran | Jan 2008 | A1 |
20080021336 | Dobak, III | Jan 2008 | A1 |
20080024293 | Stylos | Jan 2008 | A1 |
20080024294 | Mazar | Jan 2008 | A1 |
20080033260 | Sheppard et al. | Feb 2008 | A1 |
20080039700 | Drinan et al. | Feb 2008 | A1 |
20080058614 | Banet et al. | Mar 2008 | A1 |
20080058656 | Costello et al. | Mar 2008 | A1 |
20080059239 | Gerst et al. | Mar 2008 | A1 |
20080091089 | Guillory et al. | Apr 2008 | A1 |
20080114220 | Banet et al. | May 2008 | A1 |
20080120784 | Warner et al. | May 2008 | A1 |
20080139934 | McMorrow et al. | Jun 2008 | A1 |
20080146892 | LeBoeuf et al. | Jun 2008 | A1 |
20080167538 | Teller et al. | Jul 2008 | A1 |
20080171918 | Teller et al. | Jul 2008 | A1 |
20080171922 | Teller et al. | Jul 2008 | A1 |
20080171929 | Katims | Jul 2008 | A1 |
20080183052 | Teller et al. | Jul 2008 | A1 |
20080200774 | Luo | Aug 2008 | A1 |
20080214903 | Orbach | Sep 2008 | A1 |
20080220865 | Hsu | Sep 2008 | A1 |
20080221399 | Zhou et al. | Sep 2008 | A1 |
20080221402 | Despotis | Sep 2008 | A1 |
20080224852 | Dicks et al. | Sep 2008 | A1 |
20080228084 | Bedard et al. | Sep 2008 | A1 |
20080275465 | Paul et al. | Nov 2008 | A1 |
20080287751 | Stivoric et al. | Nov 2008 | A1 |
20080287752 | Stroetz et al. | Nov 2008 | A1 |
20080293491 | Wu et al. | Nov 2008 | A1 |
20080294019 | Tran | Nov 2008 | A1 |
20080294020 | Sapounas | Nov 2008 | A1 |
20080318681 | Rofougaran et al. | Dec 2008 | A1 |
20080319279 | Ramsay et al. | Dec 2008 | A1 |
20080319282 | Tran | Dec 2008 | A1 |
20080319290 | Mao et al. | Dec 2008 | A1 |
20090005016 | Eng et al. | Jan 2009 | A1 |
20090018410 | Coene et al. | Jan 2009 | A1 |
20090018456 | Hung | Jan 2009 | A1 |
20090048526 | Aarts | Feb 2009 | A1 |
20090054737 | Magar et al. | Feb 2009 | A1 |
20090062670 | Sterling et al. | Mar 2009 | A1 |
20090073991 | Landrum et al. | Mar 2009 | A1 |
20090076336 | Mazar et al. | Mar 2009 | A1 |
20090076340 | Libbus et al. | Mar 2009 | A1 |
20090076341 | James et al. | Mar 2009 | A1 |
20090076342 | Amurthur et al. | Mar 2009 | A1 |
20090076343 | James et al. | Mar 2009 | A1 |
20090076344 | Libbus et al. | Mar 2009 | A1 |
20090076345 | Manicka et al. | Mar 2009 | A1 |
20090076346 | James et al. | Mar 2009 | A1 |
20090076348 | Manicka et al. | Mar 2009 | A1 |
20090076349 | Libbus et al. | Mar 2009 | A1 |
20090076350 | Bly et al. | Mar 2009 | A1 |
20090076363 | Bly et al. | Mar 2009 | A1 |
20090076364 | Libbus et al. | Mar 2009 | A1 |
20090076397 | Libbus et al. | Mar 2009 | A1 |
20090076401 | Mazar et al. | Mar 2009 | A1 |
20090076405 | Amurthur et al. | Mar 2009 | A1 |
20090076410 | Libbus et al. | Mar 2009 | A1 |
20090076559 | Libbus et al. | Mar 2009 | A1 |
20090177145 | Ohlander et al. | Jul 2009 | A1 |
20090182204 | Semler et al. | Jul 2009 | A1 |
20090234410 | Libbus et al. | Sep 2009 | A1 |
20090292194 | Libbus et al. | Nov 2009 | A1 |
20090306633 | Trovato et al. | Dec 2009 | A1 |
20100056881 | Libbus et al. | Mar 2010 | A1 |
20100191310 | Bly et al. | Jul 2010 | A1 |
20110144470 | Mazar et al. | Jun 2011 | A1 |
20110245711 | Katra et al. | Oct 2011 | A1 |
20110270049 | Katra et al. | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
2003-220574 | Oct 2003 | AU |
1487535 | Dec 2004 | EP |
1579801 | Sep 2005 | EP |
2005-521448 | Jul 2005 | JP |
WO 0079255 | Dec 2000 | WO |
WO 0189362 | Nov 2001 | WO |
WO 02092101 | Nov 2002 | WO |
WO 03082080 | Oct 2003 | WO |
WO 2005051164 | Jun 2005 | WO |
WO 2005104930 | Nov 2005 | WO |
WO 2006008745 | Jan 2006 | WO |
WO 2006102476 | Sep 2006 | WO |
WO 2006111878 | Nov 2006 | WO |
WO 2007041783 | Apr 2007 | WO |
WO 2007106455 | Sep 2007 | WO |
2009116906 | Sep 2009 | WO |
Entry |
---|
Miller, P.Z., Home monitoring for congestive heart failure patients, Caring Magazine, pp. 53-54, Aug. 1995. |
Naylor, M. et al., Comprehensive discharge planning for the hospitalized elderly: a randomized clinical trial, Annals of Internal Medicine, 120(12):999-1006, 1994, Jun. 15, 1994. |
O'Connell, J.B. et al., Economic impact of heart failure in the United States: time for a different approach, J. Heart Lung Transpl. 13:S107-112, 1994. |
Rich, M.W. et al., A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure, New Engl. J. Med., 333(18):1190-95, Nov. 2, 1995. |
U.S. Appl. No. 60/972,537, filed Sep. 14, 2008, Manicka et al. |
U.S. Appl. No. 61/055,666, filed May 23, 2008, Manicka et al. |
U.S. Appl. No. 61/084,567, filed Jul. 29, 2008, Bly. |
AD5934: 250 kSPS 12-Bit Impedance Converter Network Analyzer, Analog Devices, retrieved from the Internet: <<http://www.analog.com/static/imported-files/data—sheets/AD5934.pdf>>, 40 pages. |
Something in the way he moves, The Economist, 2007, retrieved from the Internet: <<http://www.economist.com/science/printerFriendly.cfm?story id=9861412>>. |
Abraham, “New approaches to monitoring heart failure before symptoms appear,” Rev Cardiovasc Med. 2006 ;7 Suppl 1 :33-41. |
Adams, Jr. “Guiding heart failure care by invasive hemodynamic measurements: possible or useful?”, Journal of Cardiac Failure 2002; 8(2):71-73. |
Adamson et al., “Continuous autonomic assessment in patients with symptomatic heart failure: prognostic value of heart rate variability measured by an implanted cardiac resynchronization device ,” Circulation. 2004;110:2389-2394. |
Adamson et al., “Ongoing right ventricular hemodynamics in heart failure,” J Am Coll Cardiol, 2003; 41:565-57. |
Adamson, “Integrating device monitoring into the infrastructure and workflow of routine practice,” Rev Cardiovasc Med. 2006 ;7 Suppl 1:42-6. |
Adhere [presentation], “Insights from the Adhere Registry: Data from over 100,000 patient cases,” 70 pages total. |
Advamed White Sheet, “Health Information Technology: Improving Patient Safety and Quality of Care,” Jun. 2005, 23 pages. |
Aghababian, “Acutely decompensated heart failure: opportunities to improve care and outcomes in the emergency department,” Rev Cardiovasc Med. 2002;3 Suppl 4:S3-9. |
Albert, “Bioimpedance to prevent heart failure hospitalization,” Curr Heart Fail Rep. Sep. 2006;3(3):136-42. |
American Heart Association, “Heart Disease and Stroke Statistics-2006 Update,” 2006, 43 pages. |
American Heart Association, “Heart Disease and Stroke Statistics-2007 Update. A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee,” Circulation 2007; 115;e69-e171. |
Belalcazar et al., “Monitoring lung edema using the pacemaker pulse and skin electrodes,” Physiol. Meas. 2005; 26:S153-S163. |
Bennet, “Development of implantable devices for continuous ambulatory monitoring of central hemodynamic values in heart failure patients,” PACE Jun. 2005; 28:573-584. |
Bourge, “Case studies in advanced monitoring with the chronicle device,” Rev Cardiovasc Med. 2006 ;7 Suppl 1:S56-61. |
Braunschweig, “Continous haemodynamic monitoring during withdrawal of diuretics in patients with congestive heart failure,” European Heart Journal 2002 23(1):59-69. |
Braunschweig, “Dynamic changes in right ventricular pressures during haemodialysis recorded with an implantable haemodynamic monitor ,” Nephrol Dial Transplant 2006; 21:176-183. |
Brennan, “Measuring a Grounded Impedance Profile Using the AD5933,” Analog Devices, retrieved from the internet <<http://http://www.analog.com/static/imported-files/application—notes/427095282381510189AN847—0.pdf>>, 12 pages total. |
Buono et al., “The effect of ambient air temperature on whole-body bioelectrical impedance,” Physiol. Meas. 2004;25:119-123. |
Burkhoff et al., “Heart failure with a normal ejection fraction: Is it really a disorder of diastolic function?” Circulation 2003; 107:656-658. |
Burr et al., “Heart rate variability and 24-hour minimum heart rate,” Biological Research for Nursing, 2006; 7(4):256-267. |
Cardionet, “CardioNet Mobile Cardiac Outpatient Telemetry: Addendum to Patient Education Guide”, CardioNet, Inc., 2007, 2 pages. |
Cardionet, “Patient Education Guide”, CardioNet, Inc., 2007, 7 pages, Undated. |
Charach et al., “Transthoracic monitoring of the impedance of the right lung in patients with cardiogenic pulmonary edema,” Crit Care Med Jun. 2001;29(6):1137-1144. |
Charlson et al., “Can disease management target patients most likely to generate high costs? The Impact of Comorbidity,” Journal of General Internal Medicine, Apr. 2007, 22(4):464-469. |
Chaudhry et al., “Telemonitoring for patients with chronic heart failure: a systematic review,” J Card Fail. Feb. 2007; 13(1): 56-62. |
Chung et al., “White coat hypertension: Not so benign after all?,” Journal of Human Hypertension (2003) 17, 807-809. |
Cleland et al., “The EuroHeart Failure survey programme—a survey on the quality of care among patients with heart failure in Europe—Part 1: patient characteristics and diagnosis,” European Heart Journal 2003 24(5):442-463. |
Cowie et al., “Hospitalization of patients with heart failure. A population-based study,” European Heart Journal 2002 23(11):877-885. |
Dimri, Chapter 1: Fractals in geophysics and seimology: an introduction, Fractal Behaviour of the Earth System, Springer Berlin Heidelberg 2005, pp. 1-22. [Summary and 1st page Only]. |
El-Dawlatly et al., “Impedance cardiography: noninvasive assessment of hemodynamics and thoracic fluid content during bariatric surgery,” Obesity Surgery, May 2005, 15(5):655-658. |
Erdmann, “Editorials: The value of diuretics in chronic heart failure demonstrated by an implanted haemodynamic monitor,” European Heart Journal 2002 23(1):7-9. |
FDA—Medtronic Inc., Chronicle 9520B Implantable Hemodynamic Monitor Reference Manual, 2007, 112 pages. |
FDA Executive Summary Memorandum, prepared for Mar. 1, 2007, meeting of the Circulatory Systems Devices Advisory Panel, P050032 Medtronic, Inc. Chronicle Implantable Hemodynamic Monitor (IHM) System, 23 pages. Retrieved from the Internet: <<http://www.fda.gov/ohrms/dockets/ac/07/briefing/2007-4284b1—02.pdf>>. |
FDA Executive Summary, Medtronic Chronicle Implantable Hemodynamic Monitoring System P050032: Panel Package Sponsor Executive Summary; vol. 1, section 4: Executive Summary. 12 pages total. Retrieved from the Internet: <<http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4284b1—03.pdf>>. |
FDA—Medtronic Chronicle Implantable Hemodynamic Monitoring System P050032: Panel Package Section 11: Chronicle IHM Summary of Safety and Effectiveness, 2007; retrieved from the Internet: <http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4284b1—04.pdf>, 77 pages total. |
FDA, Draft questions for Chronicle Advisory Panel Meeting, 3 pages. Retrieved from the Internet: <<http://www.fda.gov/ohrms/dockets/ac/07/questions/2007-4284q1—draft.pdf>>. |
FDA, References for Mar. 1 Circulatory System Devices Panel, 1 page total. 2007. Retrieved from the Internet: <<http://www.fda.gov/OHRMS/DOCKETS/AC/07/briefing/2007-4284bib1—01.pdf>>. |
FDA Panel Recommendation, “Chronicle Analysis,” Mar. 1, 2007, 14 pages total. |
Fonarow et al., “Risk stratification for in-hospital mortality in acutely decompensated heart failure: classification and regression tree analysis,” JAMA. Feb. 2, 2005;293(5):572-580. |
Fonarow, “How well are chronic heart failure patients being managed?”, Rev Cardiovasc Med. 2006;7 Suppl 1:S3-11. |
Fonarow, “Maximizing Heart Failure Care” [Powerpoint Presentation], downloaded from the Internet <<http://www.medreviews.com/media/MaxHFCore.ppt>>, 130 pages total. |
Fonarow, “Proactive monitoring and management of the chronic heart failure patient,” Rev Cardiovasc Med. 2006; 7 Suppl 1:S1-2. |
Fonarow, “The Acute Decompensated Heart Failure National Registry (ADHERE): opportunities to improve care of patients hospitalized with acute decompensated heart failure,” Rev Cardiovasc Med. 2003;4 Suppl 7:S21-S30. |
Ganion et al., “Intrathoracic impedance to monitor heart failure status: a comparison of two methods in a chronic heart failure dog model,” Congest Heart Fail. Jul.-Aug. 2005;11(4):177-81, 211. |
Gass et al., “Critical pathways in the management of acute decompensated heart failure: A CME-Accredited monograph,” Mount Sinai School of Medicine, 2004, 32 pages total. |
Gheorghiade et al., “Congestion is an important diagnostic and therapeutic target in heart failure,” Rev Cardiovasc Med. 2006 ;7 Suppl 1 :12-24. |
Gilliam, III et al., “Changes in heart rate variability, quality of life, and activity in cardiac resynchronization therapy patients: results of the HF-HRV registry,” Pacing and Clinical Electrophysiology, Jan. 18, 2007; 30(1): 56-64. |
Gilliam, III et al., “Prognostic value of heart rate variability footprint and standard deviation of average 5-minute intrinsic R-R intervals for mortality in cardiac resynchronization therapy patients.,” J Electrocardiol. Oct. 2007;40(4):336-42. |
Gniadecka, “Localization of dermal edema in lipodermatosclerosis, lymphedema, and cardiac insufficiency high-frequency ultrasound examination of intradermal echogenicity,” J Am Acad oDermatol, Jul. 1996; 35(1):37-41. |
Goldberg et al., “Randomized trial of a daily electronic home monitoring system in patients with advanced heart failure: The Weight Monitoring in Heart Failure (WHARF) Trial,” American Heart Journal, Oct. 2003; 416(4):705-712. |
Grap et al., “Actigraphy in the Critically III: Correlation With Activity, Agitation, and Sedation,” American Journal of Critical Care. 2005;14: 52-60. |
Gudivaka et al., “Single—and multifrequency models for bioelectrical impedance analysis of body water compartments,” J Appl Physiol, 1999;87(3):1087-1096. |
Guyton et al., UNIT V: The Body Fluids and Kidneys, Chapter 25: The Body Fluid Compartments: Extracellular and Intracellular Fluids; Interstitial Fluid and Edema, Guyton & Hall Textbook of Medical Physiology 11th Edition, Saunders 2005; pp. 291-306. |
Hadase et al., “Very low frequency power of heart rate variability is a powerful predictor of clinical prognosis in patients with congestive heart Failure,” Circ J 2004; 68(4):343-347. |
Hallstrom et al., “Structural relationships between measures based on heart beat intervals: potential for improved risk assessment,” IEEE Biomedical Engineering 2004, 51(8):1414-1420. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Executive Summary: HFSA 2006 Comprehensive Heart Failure Practice Guideline, Journal of Cardiac Failure 2006;12(1):10-e38. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 12: Evaluation and Management of Patients With Acute Decompensated Heart Failure, Journal of Cardiac Failure 2006;12(1):e86-e103. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 2: Conceptualization and Working Definition of Heart Failure, Journal of Cardiac Failure 2006;12(1):e10-e11. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 3: Prevention of Ventricular Remodeling Cardiac Dysfunction, and Heart Failure Overview, Journal of Cardiac Failure 2006;12(1):e12-e15. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 4: Evaluation of Patients for Ventricular Dysfunction and Heart Failure, Journal of Cardiac Failure 2006;12(1):e16-e25. |
HFSA 2006 Comprehensive Heart Failure Practice Guideline—Section 8: Disease Management in Heart Failure Education and Counseling, Journal of Cardiac Failure 2006;12(1):e58-e68. |
Hunt et al., “ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): Developed in Collaboration With the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: Endorsed by the Heart Rhythm Society,” Circulation. 2005;112:e154-e235. |
Hunt et al., ACC/AHA Guidelines for the Evaluation and Management of Chronic Heart Failure in the Adult: Executive Summary a Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1995 Guidelines for the Evaluation and Management of Heart Failure), Circulation. 2001;104:2996-3007. |
Imhoff et al., “Noninvasive whole-body electrical bioimpedance cardiac output and invasive thermodilution cardiac output in high-risk surgical patients,” Critical Care Medicine 2000; 28(8):2812-2818. |
Jaeger et al., “Evidence for Increased Intrathoracic Fluid Volume in Man at High Altitude,” J Appl Physiol 1979; 47(6): 670-676. |
Jerant et al., “Reducing the cost of frequent hospital admissions for congestive heart failure: a randomized trial of a home telecare intervention,” Medical Care 2001, 39(11):1234-1245. |
Jaio et al., “Variance fractal dimension analysis of seismic refraction signals,” WESCANEX 97: Communications, Power and Computing. IEEE Conference Proceedings., May 22-23, 1997, pp. 163-167 [Abstract Only]. |
Kasper et al., “A randomized trial of the efficacy of multidisciplinary care in heart failure outpatients at high risk of hospital readmission,” J Am Coll Cardiol, 2002; 39:471-480. |
Kaukinen, “Cardiac output measurement after coronary artery bypass grafting using bolus thermodilution, continuous thermodilution, and whole-body impedance cardiography,” Journal of Cardiothoracic and Vascular Anesthesia 2003; 17(2):199-203. |
Kawaguchi et al., “Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations,” Circulation. 2003;107:714-720. |
Kawasaki et al., “Heart rate turbulence and clinical prognosis in hypertrophic cardiomyopathy and myocardial infarction,” Circ J. Jul. 2003;67(7):601-604. |
Kearney et al., “Predicting death due to progressive heart failure in patients with mild-to moderate chronic heart failure,” J Am Coll Cardiol, 2002; 40(10):1801-1808. |
Kitzman et al., “Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure,” JAMA Nov. 2002; 288(17):2144-2150. |
Kööbi et al., “Non-invasive measurement of cardiac output : whole-body impedance cardiography in simultaneous comparison with thermodilution and direct oxygen Fick methods,” Intensive Care Medicine 1997; 23(11):1132-1137. |
Koyama et al., “Evaluation of heart-rate turbulence as a new prognostic marker in patients with chronic heart failure,” Circ J 2002; 66(10):902-907. |
Krumholz et al., “Predictors of readmission among elderly survivors of admission with heart failure,” American Heart Journal 2000; 139 (1):72-77. |
Kyle et al., “Bioelectrical Impedance Analysis—part I: review of principles and methods,” Clin Nutr. Oct. 2004;23(5):1226-1243. |
Kyle et al., “Bioelectrical Impedance Analysis—part II: utilization in clinical practice,” Clin Nutr. Oct. 2004;23(5):1430-1453. |
Lee et al., “Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model,” JAMA 2003;290(19):2581-2587. |
Leier “The Physical Examination in Heart Failure—Part I,” Congest Heart Fail. Jan.- Feb 2007;13(1):41-47. |
LifeShirt® Model 200 Directions for Use, “Introduction”, VivoMetrics, Inc. 9 pages total. |
Liu et al., “Fractal analysis with applications to seismological pattern recognition of underground nuclear explosions,” Singal Processing, Sep. 2000, 80(9):1849-1861. [Abstract Only]. |
Lozano-Nieto, “Impedance ratio in bioelectrical impedance measurements for body fluid shift determination,” Proceedings of the IEEE 24th Annual Northeast Bioengineering Conference, Apr. 9-10, 1998, pp. 24-25. |
Lucreziotti et al., “Five-minute recording of heart rate variability in severe chronic heart failure : Correlates with right ventricular function and prognostic implications,” American Heart Journal 2000; 139(6):1088-1095. |
Lüthje et al., “Detection of heart failure decompensation using intrathoracic impedance monitoring by a triple-chamber implantable defibrillator,” Heart Rhythm Sep. 2005;2(9):997-999. |
Magalski et al., “Continuous ambulatory right heart pressure measurements with an implantable hemodynamic monitor: a multicenter, 12-Month Follow-up Study of Patients With Chronic Heart Failure,” J Card Fail 2002, 8(2):63-70. |
Mahlberg et al., “Actigraphy in agitated patients with dementia: Monitoring treatment outcomes,” Zeitschrift für Gerontologie and Geriatrie, Jun. 2007; 40(3)178-184. [Abstract Only]. |
Matthie et al., “Analytic assessment of the various bioimpedance methods used to estimate body water,” Appl Physiol 1998; 84(5):1801-1816. |
Matthie, “Second generation mixture theory equation for estimating intracellular water using bioimpedance spectroscopy,” J Appl Physiol 2005; 99:780-781. |
McMurray et al., “Heart Failure: Epidemiology, Aetiology, and Prognosis of Heart Failure,” Heart 2000;83:596-602. |
Moser et al., “Improving outcomes in heart failure: its not unusual beyond usual Care,” Circulation. 2002;105:2810-2812. |
Nagels et al., “Actigraphic measurement of agitated behaviour in dementia,” International journal of geriatric psychiatry , 2009; 21(4):388-393. [Abstract Only]. |
Nakamura et al., “Universal scaling law in human behavioral organization,” Physical Review Letters, Sep. 28, 2007; 99(13):138103 (4 pages). |
Nakaya, “Fractal properties of seismicity in regions affected by large, shallow earthquakes in western Japan: Implications for fault formation processes based on a binary fractal fracture network model,” Journal of geophysical research, Jan. 2005; 11(B1):B01310.1-B01310.15. [Abstract Only] . |
Naylor et al., “Comprehensive discharge planning for the hospitalized elderly: a randomized clinical trial ,” Amer. College Physicians 1994; 120(12):999-1006. |
Nesiritide (NATRECOR),, [Presentation] Acutely Decompensated Congestive Heart Failure: Burden of Disease, downloaded from the Internet: <<http://www.huntsvillehospital.org/foundation/events/cardiologyupdate/CHF.ppt.>>, 39 pages. |
Nieminen et al., “EuroHeart Failure Survey II (EHFS II): a survey on hospitalized acute heart failure patients: description of population,” European Heart Journal 2006; 27(22):2725-2736. |
Nijsen et al., “The potential value of three-dimensional accelerometry for detection of motor seizures in severe epilepsy,” Epilepsy Behav. Aug. 2005;7(1):74-84. |
Noble et al., “Diuretic induced change in lung water assessed by electrical impedance tomography,” Physiol. Meas. 2000; 21(1):155-163. |
Noble et al., “Monitoring patients with left ventricular failure by electrical impedance tomography,” Eur J Heart Fail. Dec. 1999;1(4):379-84. |
Ohlsson et al., “Central hemodynamic responses during serial exercise tests in heart failure patients using implantable hemodynamic monitors,” Eur J Heart Fail. Jun. 2003;5(3):253-259. |
Ohlsson et al., “Continuous ambulatory monitoring of absolute right ventricular pressure and mixed venous oxygen saturation in patients with heart failure using an implantable haemodynamic monitor,” European Heart Journal 2001 22(11):942-954. |
Packer et al., “Utility of impedance cardiography for the identification of short-term risk of clinical decompensation in stable patients with chronic heart failure,” J Am Coll Cardiol, 2006; 47(11):2245-2252. |
Palatini et al., “Predictive value of clinic and ambulatory heart rate for mortality in elderly subjects with systolic hypertension” Arch Intern Med. 2002;162:2313-2321. |
Piiria et al., “Crackles in patients with fibrosing alveolitis bronchiectasis, COPD, and Heart Failure,” Chest May 1991; 99(5):1076-1083,. |
Pocock et al., “Predictors of mortality in patients with chronic heart failure,” Eur Heart J 2006; (27): 65-75. |
Poole-Wilson, “Importance of control of fluid volumes in heart failure,” European Heart Journal 2000; 22(11):893-894. |
Raj et al., Letter Regarding Article by Adamson et al, “Continuous Autonomic Assessment in Patients With Symptomatic Heart Failure: Prognostic Value of Heart Rate Variability Measured by an Implanted Cardiac Resynchronization Device”, Circulation 2005;112:e37-e38. |
Ramirez et al., “Prognostic value of hemodynamic findings from impedance cardiography in hypertensive stroke,” AJH 2005; 18(20):65-72. |
Roglieri et al., “Disease management interventions to improve outcomes in congestive heart failure,” Am J Manag Care. Dec. 1997;3(12):1831-1839. |
Sahalos et al., “The electrical impedance of the human thorax as a guide in evaluation of intrathoracic fluid volume,” Phys. Med. Biol. 1986; 31:425-439. |
Saxon et al., “Remote active monitoring in patients with heart failure (rapid-rf): design and rationale,” Journal of Cardiac Failure 2007; 13(4):241-246. |
Scharf et al., “Direct digital capture of pulse oximetry waveforms,” Proceedings of the Twelfth Southern Biomedical Engineering Conference, 1993., pp. 230-232. |
Shabetai, “Monitoring heart failure hemodynamics with an implanted device: its potential to improve outcome,” J Am Coll Cardiol, 2003; 41:572-573. |
Small, “Integrating monitoring into the Infrastructure and Workflow of Routine Practice: OptiVol,” Rev Cardiovasc Med. 2006 ;7 Supp 1: S47-S55. |
Smith et al., “Outcomes in heart failure patients with preserved ejection fraction: mortality, readmission, and functional decline ,” J Am Coll Cardiol, 2003; 41:1510-1518. |
Someren, “Actigraphic monitoring of movement and rest-activity rhythms inaging, Alzheimer's disease, and Parkinson's disease,” IEEE Transactions on Rehabilitation Engineering, Dec. 1997; 5(4):394-398. [Abstract Only]. |
Starling, “Improving care of chronic heart failure: advances from drugs to devices,” Cleveland Clinic Journal of Medicine Feb. 2003; 70(2):141-146. |
Steijaert et al., “The use of multi-frequency impedance to determine total body water and extracellular water in obese and lean female individuals,” International Journal of Obesity Oct. 1997; 21(10):930-934. |
Stewart et al., “Effects of a home-based intervention among patients with congestive heart failure discharged from acute hospital care,” Arch Intern Med. 1998;158:1067-1072. |
Stewart et al., “Effects of a multidisciplinary, home-based intervention on planned readmissions and survival among patients with chronic congestive heart failure: a randomised controlled study,” The Lancet Sep. 1999 354(9184):1077-1083. |
Stewart et al., “Home-based intervention in congestive heart failure: long-term implications on readmission and survival,” Circulation. 2002;105:2861-2866. |
Stewart et al., “Prolonged beneficial effects of a home-based intervention on unplanned readmissions and mortality among patients with congestive heart failure,” Arch Intern Med. 1999;159:257-261. |
Stewart et al., “Trends in Hospitalization for Heart Failure in Scotland, 1990-1996. An Epidemic that has Reached Its Peak?,” European Heart Journal 2001 22(3):209-217. |
Swedberg et al., “Guidelines for the diagnosis and treatment of chronic heart failure: executive summary (update 2005): The Task Force for the Diagnosis and Treatment of Chronic Heart Failure of the European Society of Cardiology,” Eur Heart J. Jun. 2005; 26(11):1115-1140. |
Tang, “Case studies in advanced monitoring: OptiVol,” Rev Cardiovasc Med. 2006;7 Suppl 1:S62-S66. |
The ESCAPE Investigators and ESCAPE Study Coordinators, “Evaluation Study of Congestive Heart Failure and Pulmonary Artery Catheterization Effectiveness,” JAMA 2005;294:1625-1633. |
Tosi et al., “Seismic signal detection by fractal dimension analysis ,” Bulletin of the Seismological Society of America; Aug. 1999; 89(4):970-977. [Abstract Only]. |
Van De Water et al., “Monitoring the chest with impedance,” Chest. 1973;64:597-603. |
Vasan et al., “Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction,” J Am Coll Cardiol, 1999; 33:1948-1955. |
Verdecchia et al., “Adverse prognostic value of a blunted circadian rhythm of heart rate in essential hypertension,” Journal of Hypertension 1998; 16(9):1335-1343. |
Verdecchia et al., “Ambulatory pulse pressure: a potent predictor of total cardiovascular risk in hypertension,” Hypertension. 1998;32:983-988. |
Vollmann et al., “Clinical utility of intrathoracic impedance monitoring to alert patients with an implanted device of deteriorating chronic heart failure,” Euorpean Heart Journal Advance Access published on Feb. 19, 2007, downloaded from the Internet:<<http://eurheartj.oxfordjournals.org/cgi/content/full/ehl506v1>>, 6 pages total. |
Vuksanovic et al., “Effect of posture on heart rate variability spectral measures in children and young adults with heart disease,” International Journal of Cardiology 2005;101(2): 273-278. |
Wang et al., “Feasibility of using an implantable system to measure thoracic congestion in an ambulatory chronic heart failure canine model,” PACE 2005;28(5):404-411. |
Wickemeyer et al., #197—“Association between atrial and ventricular tachyarrhythmias, intrathoracic impedance and heart failure decompensation in CRT-D Patients,” Journal of Cardiac Failure 2007; 13 (6) Suppl.; S131-132. |
Williams et al, “How do different indicators of cardiac pump function impact upon the long-term prognosis of patients with chronic heart failure,” American Heart Journal, 150(5):983.e1-983.e6. |
Wonisch et al., “Continuous haemodynamic monitoring during exercise in patients with pulmonary hypertension,” Int J Cardiol. Jun. 8, 2005;101(3):415-420. |
Wynne et al., “Impedance cardiography: a potential monitor for hemodialysis,” Journal of Surgical Research 2006, 133(1):55-60. |
Yancy “Current approaches to monitoring and management of heart failure,” Rev Cardiovasc Med 2006; 7 Suppl 1:S25-32. |
Ypenburg et al., “Intrathoracic Impedance Monitoring to Predict Decompensated Heart Failure,” Am J Cardiol 2007, 99(4):554-557. |
Yu et al., “Intrathoracic Impedance Monitoring in Patients With Heart Failure: Correlation With Fluid Status and Feasibility of Early Warning Preceding Hospitalization,” Circulation. 2005;112:841-848. |
Zannad et al., “Incidence, clinical and etiologic features, and outcomes of advanced chronic heart failure: The EPICAL Study,” J Am Coll Cardiol, 1999; 33(3):734-742. |
Zile, “Heart failure with preserved ejection fraction: is this diastolic heart failure?” J Am Coll Cardiol, 2003; 41(9):1519-1522. |
U.S. Appl. No. 60/006,600, filed Nov. 13, 1995; inventor: Terry E. Flach. |
U.S. Appl. No. 60/972,316, filed Sep. 12, 2008; inventor: Imad Libbus et al. |
U.S. Appl. No. 60/972,329, filed Sep. 14, 2007; inventor: Yatheendhar Manicka et al. |
U.S. Appl. No. 60/972,333, filed Sep. 14, 2007; inventor: Mark Bly et al. |
U.S. Appl. No. 60/972,336, filed Sep. 14, 2007; inventor: James Kristofer et al. |
U.S. Appl. No. 60/972,340, filed Sep. 14, 2007; inventor: James Kristofer et al. |
U.S. Appl. No. 60/972,343, filed Sep. 14, 2007; inventor: James Kristofer et al. |
U.S. Appl. No. 60/972,354, filed Sep. 14, 2007; inventor: Scott Thomas Mazar et al. |
U.S. Appl. No. 60/972,359, filed Sep. 14, 2007; inventor: Badri Amurthur et al. |
U.S. Appl. No. 60/972,363, filed Sep. 14, 2007; inventor: Badri Amurthur et al. |
U.S. Appl. No. 60/972,512, filed Sep. 14, 2007; inventor: Imad Libbus et al. |
U.S. Appl. No. 60/972,581, filed Sep. 14, 2007; inventor: Imad Libbus et al. |
U.S. Appl. No. 60/972,616, filed Sep. 14, 2007; inventor: Imad Libbus et al. |
U.S. Appl. No. 60/972,629, filed Sep. 14, 2007; inventor: Mark Bly et al. |
U.S. Appl. No. 61/035,970, filed Mar. 12, 2008; inventor: Imad Libbus et al. |
U.S. Appl. No. 61/046,196, filed Apr. 18, 2008; inventor: Scott T. Mazar. |
U.S. Appl. No. 61/047,875, filed Apr. 25, 2008; inventor: Imad Libbus et al. |
U.S. Appl. No. 61/055,645, filed May 23, 2008; inventor: Mark Bly et al. |
U.S. Appl. No. 61/055,656, filed May 23, 2008; inventor: Imad Libbus et al. |
U.S. Appl. No. 61/055,662, filed May 23, 2008; inventor: Imad Libbus et al. |
U.S. Appl. No. 61/079,746, filed Jul. 10, 2008; inventor: Brett Landrum. |
“Acute Decompensated Heart Failure” —Wikipedia Entry, downloaded from: <http://en.wikipedia.org/wiki/Acute—decompensated—heart—failure>, entry page created in 2008, 6 pages total. |
“Heart Failure” —Wikipedia Entry, downloaded from the Internet: <http://en.wikipedia.org/wiki/Heart—failure>, entry page created in 2003, 17 pages total. |
“Corporation, 3M Surgicai Tapes—Choose the Correct Tape” quicksheet (2004). |
Cooley, “The Parameters of Transthoracic Electical Conduction,” Annals of the New York Academy of Sciences, 1970; 170(2):702-713. |
EM Microelectronic—Marin SA, “Plastic Flexible LCD,” [product brochure]; retrieved from the Internet: <<http://www.emmicroelectronic.com/Line.asp?idLine=48>>, copyright 2009, 2 pages total. |
HRV Enterprises, LLC, “Heart Rate Variability Seminars,” downloaded from the Internet: <<http://hrventerprise.com/>> on Apr. 24, 2008, 3 pages total. |
HRV Enterprises, LLC, “LoggerPro HRV Biosignal Analysis,” downloaded from the Internet: <<http://hrventerprise.com/products.html>> on Apr. 24, 2008, 3 pages total. |
Number | Date | Country | |
---|---|---|---|
20090076348 A1 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
61055666 | May 2008 | US | |
60972537 | Sep 2007 | US | |
60972329 | Sep 2007 | US | |
60972354 | Sep 2007 | US | |
60972336 | Sep 2007 | US |