Injectable ready-to-use solutions containing an antitumor anthracycline glycoside

Abstract
According to the invention there is provided a sterile, pyrogen-free, ready-to-use solution of an anthracycline glycoside, especially doxorubicin, which consists essentially of a physiologically acceptable salt of an anthracycline glycoside dissolved in a physiologically acceptable solvent therefor, which has not been reconstituted from a lyophilizate and which has a pH of from 2.5 to 6.5. The solution of the invention is particularly advantageous for the administration by injection of the anthracycline glycoside drugs, e.g. doxorubicin, in the treatment of both human and animal tumors.
Description

The present invention relates to a stable intravenously injectable ready-to-use solution of an antitumor anthracycline glycoside, e.g. doxorubicin, to a process for preparing such a solution, and provide the same in a sealed container, and to a method for treating tumors by the use of the said ready-to-use solution.
The anthracycline glycoside compounds are a well known class of compounds in the antineoplastic group of agents, wherein doxorubicin is a typical, and the most widely used, representative: Doxorubicin. Anticancer Antibiotics, Federico Arcamone, 1981, Publ: Academic Press, New York, N.Y.; Adriamycin Review, EROTC International Symposium, Brussels, May, 1974, edited by M. Staquet, Publ. Eur. Press Medikon, Ghent, Belg.;
Results of Adriamycin Therapy, Adriamycin Symposium at Frankfurt/Main 1974 edited by M. Ghione, J. Fetzer and H. Maier, publ.: Springer, New York, N.Y.
At present, anthracycline glycoside antitumor drugs, in particular, e.g., doxorubicin, are solely available in the form of lyophilized preparations, which need to be reconstituted before administration.
Both the manufacturing and the reconstitution of such preparations expose the involved personnel (workers, pharmacists, medical personnel, nurses) to risks of contamination which are particularly serious due to the toxicity of the antitumor substances.
The Martindale Extra Pharmacopeia 28th edition, page 175 left column, reports, indeed, about adverse effects of antineaplastic drugs and recommends that "They must be handled with great care and contact with skin and eyes avoided; they should not be inhaled. Care must be taken to avoid extravasation since pain and tissue damage may ensue.".
Similarly, Scand. J. Work Environ Health vol. 10 (2), pages 71-74 (1984), as well as articles on Chemistry Industry, Issue Jul. 4, 1983, page 488, and Drug-Topics-Medical-Economics-Co, Issue Feb. 7, 1983, page 99 report about severe adverse effects observed in medical personnel exposed to use of cytostatic agents, including doxorubicin.
To administer a lyophilized preparation, double handling of the drug is required, the lyophilized cake having to be first reconstituted and then administered and, moreover, in some cases, the complete dissolution of the powder may require prolonged shaking because of solubilization problems.
As the risks connected with the manufacturing and the reconstitution of a lyophilized preparate would be highly reduced if a ready-to-use solution of the drug were available, we have developed a stable, therapeutically acceptable intravenously injectable solution of an anthracycline glycoside drug, e.g. doxorubicin, whose preparation and administration does not require either lyophilization or reconstitution.
According to the present invention, there is provided a sterile, pyrogen-free, anthracycline glycoside solution which consists essentially of a physiologically acceptable salt of an anthracycline glycoside dissolved in a physiologically acceptable solvent therefor, which has not been reconstituted from a lyophilizate and which has a pH of from 2.5 to 6.5.
Preferably the solution of the invention is provided in a sealed container.
Preferably the anthracycline glycoside is chosen from the group consisting of doxorubicin, 4'-epi-doxorubicin (i.e. epirubicin), 4'-desoxy-doxorubicin (i.e. esorubicin), 4'-desoxy-4'-iodo-doxorubicin, daunorubicin and 4-demethoxydaunorubicin (i.e. idarubicin).
A particularly preferred anthracycline glycoside is doxorubicin.
Any physiologically acceptable salt of the anthracycline glycoside may be used for preparing the solution of the invention. Examples of suitable salts may be, for instance, the salts with mineral inorganic acids such as hydrochloric, hydrobromic, sulfuric, phosphoric, nitric and the like, and the salts with certain organic acids such as acetic, succinic, tartaric, ascorbic, citric, glutammic, benzoic, methanesulfonic, ethanesulfonic and the like. The salt with hydrochloric acid is a particularly preferred salt, especially when the anthracycline glycoside is doxorubicin.
Any solvent which is physiologically acceptable and which is able to dissolve the anthracycline glycoside salt may be used. The solution of the invention may also contain one or more additional components such as a co-solubilizing agent (which may be the same as a solvent), a tonicity adjustment agent and a preservative. Examples of solvents, co-solubilizing agents, tonicity adjustment agents and preservatives which can be used for the preparation of the anthracycline glycoside solutions of the invention are hereunder reported.
Suitable solvents and co-solubilizing agents may be, for instance, water; physiological saline; aliphatic amides, e.g. N,N-dimethylacetamide, N-hydroxy-2-ethyl-lactamide and the like; alcohols, e.g. ethanol, benzyl alcohol and the like; glycols and polyalcohols, e.g. propyleneglycol, glycerin and the like; esters of polyalcohols, e.g. diacetine, triacetine and the like; polyglycols and polyethers, e.g. polyethyleneglycol 400, propyleneglycol methylethers and the like; dioxolanes, e.g. isopropylidenglycerin and the like; dimethylisosorbide; pyrrolidone derivatives, e.g. 2-pyrrolidone, N-methyl-2-pyrrolidone, polyvinylpyrrolidone (co-solubilizing agent only) and the like; polyoxyethylenated fatty alcohols, e.g. Brij.sup.R and the like; esters of polyoxyethylenated fatty acids, e.g. Cremophor.sup.R, Myrj.sup.R and the like; polysorbates, e.g. Tweens.sup.R ; polyoxyethylene derivatives of polypropyleneglycols, e.g. Pluronics.sup.R.
A particularly preferred co-solubilizing agent is polyvinylpyrrolidone.
Suitable tonicity adjustment agents may be, for instance, physiologically acceptable inorganic chlorides, e.g. sodium chloride, dextrose, lactose, mannitol and the like.
Preservatives suitable for physiological administration may be, for instance, esters of para-hydroxybenzoic acid (e.g., methyl, ethyl, propyl and butyl esters, or mixtures of them), chlorocresol and the like.
The above mentioned solvents and co-solubilizing agents, tonicity adjustment agents and preservatives can be used alone or as a mixture of two or more of them.
Examples of preferred solvents are water, ethanol, polyethyleneglycol and dimethylacetamide as well as mixtures in various proportions of these solvents. Water is a particularly preferred solvent.
To adjust the pH within the range of from 2.5 to about 5.0 a physiologically acceptable acid may be added as desired. The acid may be any physiologically acceptable acid, e.g., an inorganic mineral acid such as hydrochloric, hydrobromic, sulfuric, phosphoric, nitric and the like, or an organic acid such as acetic, succinic, tartaric, ascorbic, citric, glutammic, benzoic, methanesulphonic, ethanesulfonic and the like, or also an acidic physiologically acceptable buffer solution, e.g., a chloride buffer, an acetate buffer, a phosphate buffer and the like.
For obtaining pH values from about 5 to about 5.5 the addition of the acid is not, usually, necessary, but only addition of a physiologically acceptable buffer solution, e.g., one of those indicated above, may be required, as desired.
For obtaining pH values from about 5.5 to 6.5 the addition of a physiologically acceptable alkalinizing agent, such as sodium hydroxide, a mono, di- or triethanolamine or the like, or preferably, a buffer solution such as a phosphate buffer, a TRIS buffer or the like is required.
The preferred range of pH for the ready-to-use solution of the invention is from 2.5 to 5.5, in particular from about 3 to about 5.2, a pH of about 3 and a pH of about 5 being particularly preferred values.
In the solutions of the invention the concentration of the anthracycline glycoside may vary within broad ranges, preferably from 0.1 mg/ml to 100 mg/ml, in particular from 0.1 mg/ml to 50 mg/ml, most preferably from 1 mg/ml to 20 mg/ml.
The preferred ranges of concentration may be slightly different for different anthracycline glycosides. Thus, for example, preferred concentrations for doxorubicin are from about 2 mg/ml to about 50 mg/ml, preferably from 2 mg/ml to 20 mg/ml, particularly appropriate values being 2 mg/ml and 5 mg/ml. Similar concentrations are preferred also for 4'-epi-doxorubicin, 4'-desoxy-doxorubicin and 4'-desoxy-4'-iodo-doxorubicin. Preferred ranges of concentration for daunorubicin and 4-demethoxy-daunorubicin are from 0.1 mg/ml to 50 mg/ml, preferably from 1 mg/ml to 20 mg/ml, concentrations of 1 mg/ml and 5 mg/ml being particularly appropriate.
Suitable packaging for the anthracycline glycoside solutions may be all approved containers intended for parenteral use, such as plastic and glass containers, ready-to-use syringes and the like. Preferably the container is a sealed glass container, e.g. a vial or an ampoule.
According to a particularly preferred feature of the invention, there is provided a sterile, pyrogen-free, doxorubicin solution which consists essentially of a physiologically acceptable salt of doxorubicin dissolved in a physiologically acceptable solvent therefor, which has not been reconstituted from a lyophilizate and which has a pH of from 2.5 to 6.5.
In the above indicated preferred feature of the invention the physiologically acceptable salt of doxorubicin may be, e.g. the salt with a mineral inorganic acid such as hydrochloric, hydrobromic, sulfuric, phosphoric, nitric and the like, or the salt with an organic acid such as acetic, succinic, tartaric, ascorbic, citric, glutamic, benzoic, methanesulfonic, ethanesulfonic and the like. The hydrochloride salt is a particularly preferred salt.
For the solution hereabove indicated as a preferred feature of the invention suitable solvents, co-solubilizing agents, tonicity adjustment agents and preservatives may be the same as those previously recited in this specification. Water is a particularly preferred solvent.
Also, the physiologically acceptable acid which may be added to adjust the pH to from 2.5 to about 5, if desired, and the alkanilizing agent which may be added to adjust the pH, if desired, to a value from about 5.5 to 6.5 may be one of those previously specified. When it is desired to adjust the pH of the above said preferred solution to a value of from 2.5 to about 5, hydrochloric acid is an especially preferred acid. Preferred pH values for the above said preferred solutions of the invention are from 2.5 to 5.5, in particular from about 3 to about 5.2, the pH values of 3 and 5 being especially preferred.
Though the concentration of doxorubicin in the above preferred feature may vary within the broad range from 0.1 mg/ml to 100 mg/ml, preferred concentrations are from 2 mg/ml to 50 mg/ml, most preferably from 2 mg/ml to 20 mg/ml: examples of especially preferred concentrations of doxorubicin are 2 mg/ml and 5 mg/ml.
The invention also provides a process for producing a sterile, pyrogen-free anthracycline glycoside solution with a pH of from 2.5 to 6.5, which process comprises dissolving a physiologically acceptable salt of the anthracycline glycoside, which salt is not in the form of a lyophilizate, in a physiologically acceptable solvent therefor; optionally adding a physiologically acceptable acid or buffer to adjust the pH within the said range as desired; and passing the resulting solution through a sterilising filter.
One or more additional components such as co-solubilizing agents, tonicity adjustment agents and preservatives, for instance of the kind previously specified, may be added to the solution prior to passing the solution through the sterilising filter.
With the solutions of the invention it is possible to obtain compositions having a very high concentration of the anthracycline glycoside active substance even at 50 mg/ml and more. This constitutes a great advantage over the presently available lyophilized preparates wherein high concentrations of anthracycline glycoside can only be obtained with difficulty because of solubilization problems encountered in reconstitution, mainly with saline. The presence of the excipient, e.g. lactose, in the lyophilized cake, and its generally high proportion in respect of the active substance, even up to 5 parts of excipient per part of active substance, has a negative effect on solubilization so that difficulties may arise in obtaining dissolution of the lyophilized cake, especially for concentrations of anthracycline glycoside higher than 2 mg/ml.
The solutions of the invention are characterized by a good stability. Solutions in various solvents and with different pH's and concentrations have been found to be stable for long periods at temperatures accepted for the storage of pharmaceutical preparations. This is illustrated in the Examples which follow.
Owing to the well known anti-tumor activity of the anthracycline glycoside active drug substance, the pharmaceutical compositions of the invention are useful for treating tumors in both human and animal hosts. Examples of tumors that can be treated are, for instance, sarcomas, including osteogenic and soft tissue sarcomas, carcinomas, e.g., breast-, lung-, bladder-, thyroid-, prostate- and ovarian carcinoma, lymphomas, including Hodgkin and non-Hodgkin lymphomas, neuroblastoma, melanoma, myeloma, Wilms tumor, and leukemias, including acute lymphoblastic leukemia and acute myeloblastic leukemia.
Examples of specific tumours that can be treated are Moloney Sarcoma Virus, Sarcoma 180 Ascites, solid Sarcoma 180, gross transplantable leukemia, L 1210 leukemia and lymphocytic P 388 leukemia.
Thus, according to the invention there is also provided a method of inhibiting the growth of a tumour, in particular one of those indicated above, which comprises administering to a host suffering from said tumour an injectable solution according to the invention containing the active drug substance in an amount sufficient to inhibit the growth of said tumour.
The injectable solutions of the invention are administered by rapid intravenous injection or infusion according to a variety of possible dose schedules. Suitable dose schedule for doxorubicin may be, for example, of 60 to 75 mg of active drug substance per m.sup.2 of body surface given as a single rapid infusion and repeated at 21 days; an alternative schedule may be of 30 mg/m.sup.2 day by intravenous route for 3 days, every 28 days. Suitable dosages for 4'-epi-doxorubicin and 4'-desoxy-doxorubicin may be, for instance, of 75 to 90 mg/m.sup.2 given in a single infusion to be repeated at 21 days, and similar dosages may be useful also for 4'-desoxy-4'-iodo-doxorubicin.
Idarubicin, i.e. 4-demethoxy-daunorubicin, may be, e.g., administered intravenously at a single dose of 13-15 mg/m.sup.2 every 21 days in the treatment of solid tumours, while in the treatment of leukemias a preferred dose schedule is, e.g., of 10-12 mg/m.sup.2 day by intravenous route for 3 days, to be repeated every 15-21 days; similar dosages may be, e.g., followed also for daunorubicin.





The following examples illustrate but do not limit in any way the invention.
With reference to the examples, the stability controls on the ready-to-use solutions were carried out by means of high performance liquid chromatography (HPLC), at the following experimental conditions:
______________________________________Liquid chromatograph: Varian model 5010Spectrophotometric detector: Knauer model 8700Integrating recorder: Varian model CDS 401Injection valve: Rheodyne model 7125 fitted with a 10 mcl sample loopChromatographic column: Waters .mu.-Bondapak C18 (length = 300 mm; inner dia- meter = 3.9 mm; average parti- cle size = 10 mcm)Column temperature: ambient (about 22.degree. C. .+-. 2.degree. C.)Mobile phase: water:acetonitrile (69:31 v/v) adjusted to pH 2 with phosphoric acid, filtered (sintered glass filter, 1 mcm or finer porosity) and deaeratedMobile phase flow rate: 1.5 ml/minAnalytical wavelength: 254 .+-. 1 nmIntegrating recorder: 512sensitivityChart speed: 1 cm/min______________________________________
At these conditions, the peak of the anthracycline glycoside showed a retention time of about 6 minutes.
The obtained results are reported in the Tables accompanying the examples.
The extrapolation of the analytical data in order to determine the time when the 90% of the initial assay could be expected (t.sub.90 value) was made following an Arrhenius plot.
This procedure of analytical data treatment is well known and widely used and described in the art: see, e.g., Chemical Stability of Pharmaceuticals, Kennet A. Connors, Gordon L. Amidon, Lloyd Kennon, Publ. John Wiley and Sons, New York, N.Y., 1979.
The term "teflon" refers to "Teflon.TM.".
EXAMPLE 1
______________________________________Composition for 80 vials (for 1 vial)Doxorubicin.HCl 0.8 g (10 mg)Water for injections 0.4 l (5 ml)q.s. to______________________________________
Doxorubicin.HCl (0.80 g) was dissolved in 90 percent of the amount of water for injections, de-aerated by nitrogen bubbling. The pH of the solution was not adjusted. Further de-aerated water for injections was then added to bring the solution to its final volume (0.40 l).
The solution was filtered through a 0.22.mu. microporous membrane under nitrogen pressure. Volumes of 5 ml of the solution were distributed into type I-colorless glass vials having 5/7 ml capacity. The vials were then closed with chlorobutyl teflon-faced rubber stoppers and sealed with aluminium caps.
The stability of the solutions in the vials was tested. The vials were stored at temperatures of 55.degree. C., 45.degree. C. and 35.degree. C. (accelerated stability controls) and at 4.degree. C. for up to 3 weeks (55.degree. C.), 4 weeks (45.degree. C. and 35.degree. C.) and 12 weeks (4.degree. C.).
The stability data obtained, using high performance liquid chromatography (HPLC) for the determination of potency, are reported in the following Table 1:
TABLE 1__________________________________________________________________________ INITIAL VALUES Concentration: 1.994 mg/ml pH = 5.2 Relative % Assay: 100.0TEMPERATURE4.degree. C. 35.degree. C. 45.degree. C. 55.degree. C.TIME Rel. % Rel. % Rel. % Rel. %(weeks) Conc. mg/ml Assay Conc. mg/ml Assay Conc. mg/ml Assay Conc. mg/ml Assay__________________________________________________________________________1 1.992 99.9 1.917 96.1 1.768 88.7 1.493 75.02 1.843 92.4 1.618 81.1 1.166 58.53 1.774 89.0 1.506 75.5 0.830 41.64 1.974 99.0 1.720 86.3 1.393 69.912 1.980 99.3__________________________________________________________________________ t.sub.go (days) extrapolated according to Arrhenius equation: t.sub.go at 4.degree. C. = 815 days t.sub.go at 8.degree. C. = 480 days
Similar stability data can be observed also for analogous solutions containing either doxorubicin hydrochloride at 5 mg/ml concentration, or 4'-epi-doxorubicin, 4'-desoxy-doxorubicin, 4'-desoxy-4'-iodo-doxorubicin, daunorubicin or 4-demethoxy-daunorubicin, as hydrochloride salts, at both 2 mg/ml and 5 mg/ml concentration.
EXAMPLE 2
______________________________________Composition for 80 vials (for 1 vial)Doxorubicin.HCl 0.8 g (10 mg)Hydrochloric acid 0.1 N pH = 3 (pH = 3)q.s. toWater for injections 0.4 l (5 ml)q.s. to______________________________________
Doxorubicin.HCl (0.8 g) was dissolved in 90 percent of the amount of water for injections, de-aerated by nitrogen bubbling. The hydrochloric acid was then added dropwise to adjust the pH of the solution to 3. Further de-aerated water for injections was then added to bring the solution to its final volume (0.4 l).
The solution was filtered through a 0.22.mu. microporous membrane under nitrogen pressure. Volumes of 5 ml of the solution were distributed into type I-colorless glass vials having 5/7 ml capacity. The vials were then closed with chlorobutyl teflon-faced rubber stoppers and sealed with aluminium caps.
The stability of the solutions in the vials was tested. The vials were stored at temperatures of 55.degree. C., 45.degree. C. and 35.degree. C. (accelerated stability controls) and at 4.degree. C. for up to 3 weeks (55.degree. C.), 4 weeks (45.degree. C. and 35.degree. C.) and 12 weeks (4.degree. C.).
The stability data obtained, using high performance liquid chromatography (HPLC) for the determintion of potency, are reported in the following Table 2:
TABLE 2__________________________________________________________________________ INITIAL VALUES Concentration: 1.992 mg/ml pH = 3.0 Relative % Assay: 100.0TEMPERATURE4.degree. C. 35.degree. C. 45.degree. C. 55.degree. C.TIME Rel. % Rel. % Rel. % Rel. %(weeks) Conc. mg/ml Assay Conc. mg/ml Assay Conc. mg/ml Assay Conc. mg/ml Assay__________________________________________________________________________1 1.995 100.2 1.952 98.0 1.919 96.3 1.493 75.02 1.889 94.8 1.851 92.9 1.036 51.93 1.876 94.2 1.565 78.6 0.730 36.74 1.979 99.4 1.808 90.8 1.393 69.912 1.972 99.0__________________________________________________________________________ t.sub.go (days) extrapolated according to Arrhenius equation: t.sub.go at 4.degree. C. = 3970 days t.sub.go at 8.degree. C. = 2000 days
Similar stability data can be observed also for analogous solutions containing either doxorubicin hydrochloride at 5 mg/ml concentration, or 4'-epi-doxorubicin, 4'-desoxy-doxorubicin, 4'-desoxy-4'-iodo-doxorubicin, daunorubicin or 4-demethoxy-daunorubicin, as hydrochloride salts, at both 2 mg/ml and 5 mg/ml concentration.
EXAMPLE 3
______________________________________Composition for 80 vials (for 1 vial)Doxorubicin.HCl 8.0 g (100 mg)Hydrochloric acid 0.1 N pH = 3 (pH = 3)q.s. toWater for injections 0.4 l (5 ml)q.s. to______________________________________
Doxorubicin.HCl (8.0 g) was dissolved in 90 percent of the amount of water for injections, de-aerated by nitrogen bubbling. The hydrochloric acid was then added dropwise to adjust the pH of the solution to 3. Further de-aerated water for injections was then added to bring the solution to its final volume (0.4 l).
The solution was filtered through a 0.22.mu. microporous membrane under nitrogen pressure. Volumes of 5 ml of the solution were distributed into type I-colorless glass vials having 5/7 ml capacity. The vials were then closed with chlorobutyl teflon-faced rubber stoppers and sealed with aluminium caps.
The stability of the solutions in the vials was tested. The vials were stored at temperatures of 55.degree. C., 45.degree. C. and 35.degree. C. (accelerated stability controls) and at 4.degree. C. for up to 3 weeks (55.degree. C.), 4 weeks (45.degree. C. and 35.degree. C.) and 12 weeks (4.degree. C.).
The stability data obtained, using high performance liquid chromatography (HPLC) for the determination of potency, are reported in the following Table 3:
TABLE 3__________________________________________________________________________ INITIAL VALUES Concentration: 20.06 mg/ml pH = 2.95 Relative % Assay: 100.0TEMPERATURE4.degree. C. 35.degree. C. 45.degree. C. 55.degree. C.TIME Rel. % Rel. % Rel. % Rel. %(weeks) Conc. mg/ml Assay Conc. mg/ml Assay Conc. mg/ml Assay Conc. mg/ml Assay__________________________________________________________________________1 20.06 100.0 19.56 97.5 17.84 88.9 12.31 61.42 18.87 94.1 15.61 77.8 7.09 35.33 18.24 90.9 13.41 66.8 3.13 15.64 19.91 99.2 17.51 87.3 11.07 55.212 19.80 98.7__________________________________________________________________________ t.sub.go (days) extrapolated according to Arrhenius equation: t.sub.go at 4.degree. C. = 3700 days t.sub.go at 8.degree. C. = 1780 days
Similar stability data can be observed for analogous solutions containing 4'-epi-doxorubicin or 4'-desoxy-doxorubicin, as hydrochloride salts, at the same 20 mg/ml concentration.
EXAMPLE 4
______________________________________Composition for 80 vials (for 1 vial)Doxorubicin.HCl 0.80 g (10.0 mg)Polyvinylpyrrolidone 20.00 g (250.0 mg)Water for injections 0.40 l (5.0 ml)q.s. to______________________________________
Doxorubicin.HCl (0.80 g) was dissolved in 90 percent of the amount of water for injections, de-aerated by nitrogen bubbling. The pH of the solution was not adjusted. polyvinylpyrrolidone was added and dissolved under stirring and nitrogen bubbling. Further de-aerated water for injections was then added to bring the solution to its final volume (0.40 l).
The solution was filtered through a 0.22.mu. microporous membrane under nitrogen pressure. Volumes of 5 ml of the solution were distributed into type I-colorless glass vials having 5/7 ml capacity. The vials were then closed with chlorobutyl teflon-faced rubber stoppers and sealed with aluminium caps.
The stability of the solutions in the vials was tested. The vials were stored at temperatures of 55.degree. C., 45.degree. C. and 35.degree. C. (accelerated stability controls) and at 4.degree. C. for up to 3 weeks (55.degree. C.), 4 weeks (45.degree. C. and 35.degree. C.) and 8 weeks (4.degree. C.).
The stability data obtained, using high performance liquid chromatography (HPLC) for the determination of potency, are reported in the following Table 4:
TABLE 4__________________________________________________________________________ INITIAL VALUES Concentration: 1.986 mg/ml pH = 4.6 Relative % Assay: 100.0TEMPERATURE4.degree. C. 35.degree. C. 45.degree. C. 55.degree. C.TIME Rel. % Rel. % Rel. % Rel. %(weeks) Conc. mg/ml Assay Conc. mg/ml Assay Conc. mg/ml Assay Conc. mg/ml Assay__________________________________________________________________________1 1.984 99.9 1.928 97.1 1.797 90.5 1.605 80.82 1.847 93.0 1.616 81.4 1.293 65.13 1.828 92.0 1.527 76.9 1.018 51.34 1.928 97.1 1.797 90.5 1.403 70.78 1.989 100.1__________________________________________________________________________ t.sub.go (days) extrapolated according to Arrhenius equation: t.sub.go at 4.degree. C. = 1460 days t.sub.go at 8.degree. C. = 835 days
Similar stability data can be observed also for analogous solutions containing either doxorubicin hydrochloride at 5 mg/ml concentration, or 4'-epi-doxorubicin, 4'-desoxy-doxorubicin, 4'-desoxy-4'-iodo-doxorubicin, daunorubicin or 4-demethoxy-daunorubicin, as hydrochloride salts, at both 2 mg/ml and 5 mg/ml concentration.
EXAMPLE 5
______________________________________Composition for 80 vials (for 1 vial)Doxorubicin.HCl 0.800 g (10.00 mg)N,N-Dimethylacetamide 0.060 l (0.75 ml)Propylene glycol 0.048 l (0.60 ml)Ethanol 0.012 l (0.15 ml)Hydrochloric acid 0.1 N pH = 3 (pH = 3)q.s. toWater for injections 0.400 l (5.00 ml)q.s. to______________________________________
Doxorubicin.HCl (0.800 g) was dissolved in 90 percent of the amount of water for injections, de-aerated by nitrogen bubbling. N,N-dimethylacetamide, propylene glycol and ethanol were subsequently added under stirring and nitrogen bubbling. The hydrochloric acid was then added dropwise to adjust the pH of the solution to 3. Further de-aerated water for injections was then added to bring the solution to its final volume (0.400 l).
The solution was filtered through a 0.22.mu. microporous membrane under nitrogen pressure. Volumes of 5 ml of the solution were distributed into type I-colorless glass vials having 5/7 ml capacity. The vials were then closed with chlorobutyl teflon-faced rubber stoppers and sealed with aluminium caps.
The stability of the solutions in the vials was tested. The vials were stored at temperatures of 55.degree. C., 45.degree. C. and 35.degree. C. (accelerated stability controls) and at 4.degree. C. for up to 3 weeks (55.degree. C.), 4 weeks (45.degree. C. and 35.degree. C.) and 8 weeks (4.degree. C.).
The stability data obtained, using high performance liquid chromatography (HPLC) for the determination of potency, are reported in the following Table 5:
TABLE 5__________________________________________________________________________INITIAL VALUESConcentration: 2.000 mg/ml pH = 3.03Relative % Assay: 100.0TEMPERATURE4.degree. C. 35.degree. C. 45.degree. C. 55.degree. C.TIME Conc. Rel. % Conc. Rel. % Conc. Rel. % Conc. Rel. %(weeks) mg/ml Assay mg/ml Assay mg/ml Assay mg/ml Assay__________________________________________________________________________1 1.892 94.6 1.735 86.7 1.495 74.72 1.993 99.7 1.927 96.4 1.624 81.2 1.212 60.63 1.908 95.4 1.432 71.6 1.032 51.64 2.00 100.0 1.863 93.2 1.266 63.38 1.960 98.0__________________________________________________________________________ t.sub.90 (days) extrapolated according to Arrhenius equation: t.sub.90 at 4.degree. C. = 4360 days t.sub.90 at 8.degree. C. = 2200 days
Similar stability data can be observed also for analogous solutions containing either doxorubicin hydrochloride at 5 mg/ml concentration, or 4'-epi-doxorubicin, 4'-desoxy-doxorubicin, 4'-desoxy-4'-iodo-doxorubicin, daunorubicin or 4-demethoxy-daunorubicin, as hydrochloride salts, at both 2 mg/ml and 5 mg/ml concentration.
EXAMPLE 6
______________________________________Composition for 80 vials (for 1 vial)______________________________________Doxorubicin.HCl 0.8 g (10.0 mg)Polyvinylpyrrolidone 20.0 g (250.0 mg)Hydrochloric acid 0.1 N q.s. to pH = 3 (pH = 3)Water for injections q.s. to 0.4 l (5.0 ml)______________________________________
Doxorubicin.HCl (0.8 g) was dissolved in 90 percent of the amount of water for injections, de-aerated by nitrogen bubbling. Polyvinylpyrrolidone was added and dissolved under stirring and nitrogen bubbling. The hydrochloric acid was then added dropwise to adjust the pH of the solution to 3. Further de-aerated water for injections was then added to bring the solution to its final volume (0.4 l).
The solution was filtered through a 0.22.mu. microporous membrane under nitrogen pressure. Volumes of 5 ml of the solution were distributed into type I-colourless glass vials having 5/7 ml capacity. The vials were then closed with chlorobutyl teflon-faced rubber stoppers and sealed with aluminium caps.
The stability of the solutions in the vials was tested. The vials were stored at temperatures of 55.degree. C., 45.degree. C. and 35.degree. C. (accelerated stability controls) and at 4.degree. C. for up to 3 weeks (55.degree. C.), 4 weeks (45.degree. C. and 35.degree. C.) and 8 weeks (4.degree. C.).
The stability data obtained, using high performance liquid chromatography (HPLC) for the determination of potency, are reported in the following Table 6;
TABLE 6__________________________________________________________________________INITIAL VALUESConcentration: 1.973 mg/ml pH = 2.71Relative % Assay: 100.0TEMPERATURE4.degree. C. 35.degree. C. 45.degree. C. 55.degree. C.TIME Conc. Rel. % Conc. Rel. % Conc. Rel. % Conc. Rel. %(weeks) mg/ml Assay mg/ml Assay mg/ml Assay mg/ml Assay__________________________________________________________________________1 2.028 102.8 1.944 98.5 1.791 90.8 1.477 74.92 1.885 95.5 1.582 80.2 0.972 49.33 1.840 93.2 1.402 71.0 0.632 32.04 1.913 97.0 1.853 93.9 1.273 64.58 1.972 99.9__________________________________________________________________________ t.sub.90 (days) extrapolated according to Arrhenius equation: t.sub.90 at 4.degree. C. = 5560 days t.sub.90 at 8.degree. C. = 2670 days
Similar stability data can be observed also for analogous solutions containing either doxorubicin hydrochloride at 5 mg/ml concentration, or 4'-epi-doxorubicin, 4'-desoxy-doxorubicin, 4'-desoxy-4'-iodo-doxorubicin, daunorubicin or 4-demethoxy-daunorubicin, as hydrochloride salts, at both 2 mg/ml and 5 mg/ml concentration.
EXAMPLE 7
______________________________________Composition for 80 vials (for 1 vial)______________________________________Doxorubicin.HCl 8.00 g (100.0 mg)N,N-Dimethylacetamide 0.12 l (1.5 ml)Hydrochloric acid 0.1 N q.s. to pH = 3 (pH = 3)Water for injections q.s. to 0.40 l (5.0 ml)______________________________________
Doxorubicin.HCl (8.00 g) was dissolved in 90 percent of the amount of water for injections, de-aerated by nitrogen bubbling. N,N-dimethylacetamide was added under stirring and nitrogen bubbling. The hydrochloric acid was then added dropwise to adjust the pH of the solution to 3. Further de-aerated water for injections was then added to bring the solution to its final volume (0.40 l).
The solution was filtered through a 0.22.mu. microporous membrane under nitrogen pressure. Volumes of 5 ml of the solution were distributed into type I-colourless glass vials having 5/7 ml capacity. The vials were then closed with chlorobutyl teflon-faced rubber stoppers and sealed with aluminium caps.
The stability of the solutions in the vials was tested. The vials were stored at temperatures of 55.degree. C., 45.degree. C. and 35.degree. C. (accelerated stability controls) and at 4.degree. C. for up to 3 weeks (55.degree. C.), 4 weeks (45.degree. C. and 35.degree. C.) and 8 weeks (4.degree. C.).
The stability data obtained, using high performance liquid chromatography (HPLC) for the determination of potency, are reported in the following Table 7:
TABLE 7__________________________________________________________________________INITIAL VALUESConcentration: 19.32 mg/ml pH = 2.96Relative % Assay: 100.0TEMPERATURE4.degree. C. 35.degree. C. 45.degree. C. 55.degree. C.TIME Conc. Rel. % Conc. Rel. % Conc. Rel. % Conc. Rel. %(weeks) mg/ml Assay mg/ml Assay mg/ml Assay mg/ml Assay__________________________________________________________________________1 20.1 103.5 19.14 99.1 17.34 89.8 15.57 80.62 19.20 99.4 15.77 81.6 12.94 67.03 18.06 93.5 14.85 77.9 11.61 60.14 20.03 103.7 17.81 92.2 13.78 71.38 19.99 103.5__________________________________________________________________________ t.sub.90 (days) extrapolated according to Arrhenius equation: t.sub.90 at 4.degree. C. = 1310 days t.sub.90 at 8.degree. C. = 770 days
Similar stability data can be observed for analogous solutions containing 4'-epi-doxorubicin or 4'-desoxy-doxorubicin, as hydrochloride salts, at the same 20 mg/ml concentration.
EXAMPLE 8
______________________________________Composition for 80 vials (for 1 vial)______________________________________Doxorubicin.HCl 0.80 g (10.0 mg)Ethanol 0.12 l (1.5 ml)Hydrochloric acid 0.1 N q.s. to pH = 3 (pH = 3)Water for injections q.s. to 0.40 l (5.0 ml)______________________________________
Doxorubicin.HCl (0.80 g) was dissolved in 90 percent of the amount of water for injections, de-aerated by nitrogen bubbling. Ethanol was added under stirring and nitrogen bubbling. Hydrochloric acid 0.1N was then added dropwise to adjust the pH of the solution to 3. De-aerated water for injections was finally added to bring the solution to its final volume (0.40 l).
The solution was filtered through a 0.22.mu. microporous membrane under nitrogen pressure. Volumes of 5 ml of the solution were distributed into type I-colourless glass vials having 5/7 ml capacity. The vials were then closed with chlorobutyl teflon-faced rubber stoppers and sealed with aluminium caps.
The stability of the solutions in the vials was tested. The vials were stored at temperatures of 55.degree. C., 45.degree. C. and at 35.degree. C. (accelerated stability controls) and at 4.degree. C. for up to 3 weeks (55.degree. C.), 4 weeks (45.degree. C.).
The stability data obtained, using high performance liquid chromatography (HPLC) for the determination of potency, are reported in the following Table 8.
TABLE 8__________________________________________________________________________INITIAL VALUESConcentration: 1.979 mg/ml pH = 3.11Relative % Assay: 100.0TEMPERATURE4.degree. C. 35.degree. C. 45.degree. C. 55.degree. C.TIME Conc. Rel. % Conc. Rel. % Conc. Rel. % Conc. Rel. %(weeks) mg/ml Assay mg/ml Assay mg/ml Assay mg/ml Assay__________________________________________________________________________1 2.010 101.6 1.965 99.3 1.947 98.4 1.750 88.42 1.957 98.9 1.910 96.5 1.645 83.13 1.895 95.8 1.737 87.8 1.356 68.54 1.927 97.3 1.818 91.9 1.678 84.88 1.939 97.9__________________________________________________________________________ t.sub.90 (days) extrapolated according to Arrhenius equation: t.sub.90 at 4.degree. C. = 4360 days t.sub.90 at 8.degree. C. = 2200 days
Similar stability data can be observed also for analogous solutions containing either doxorubicin hydrochloride at 5 mg/ml concentration, or 4'-epi-doxorubicin, 4'-desoxy-doxorubicin, 4'-desoxy-4'-iodo-doxorubicin, daunorubicin or 4-demethoxy-daunorubicin, as hydrochloride salts, at both 2 mg/ml and 5 mg/ml concentration.
EXAMPLE 9
______________________________________Composition for 80 vials (for 1 vial)______________________________________Doxorubicin.HCl 8.000 g (100.00 mg)N,N-Dimethylacetamide 0.060 l (0.75 ml)Propylene glycol 0.048 l (0.60 ml)Ethanol 0.012 l (0.15 ml)Hydrochloric acid 0.1 N q.s. to pH = 3 (pH = 3)Water for injections q.s. to 0.400 l (5.00 ml)______________________________________
Doxorubicin.HCl (8.000 g) was dissolved in 90 percent of the amount of water for injections, de-aerated by nitrogen bubbling. N,N-dimethylacetamide, propylene glycol and ethanol were subsequently added under stirring and nitrogen bubbling. The hydrochloric acid was then added dropwise to adjust the pH of the solution to 3. Further de-aerated water for injections was then added to bring the solution to its final volume (0.400 l).
The solution was filtered through a 0.22.mu. microporous membrane under nitrogen pressure. Volumes of 5 ml of the solution were distributed into type I-colourless glass vials having 5/7 ml capacity. The vials were then closed with chlorobutyl teflon-faced rubber stoppers and sealed with aluminium caps.
The stability of the solutions in the vials was tested. The vials were stored at temperatures of 55.degree. C., 45.degree. C. and 35.degree. C. (accelerated stability controls) and at 4.degree. C. for up to 3 weeks (55.degree. C.), 4 weeks (45.degree. C. and 35.degree. C.) and 8 weeks (4.degree. C.).
The stability data obtained, using high performance liquid chromatography (HPLC) for the determination of potency, are reported in the following Table 9:
TABLE 9__________________________________________________________________________INITIAL VALUESConcentration: 20.07 mg/ml pH = 2.99Relative % Assay: 100.0TEMPERATURE4.degree. C. 35.degree. C. 45.degree. C. 55.degree. C.TIME Conc. Rel. % Conc. Rel. % Conc. Rel. % Conc. Rel. %(weeks) mg/ml Assay mg/ml Assay mg/ml Assay mg/ml Assay__________________________________________________________________________1 19.14 95.4 17.81 88.7 14.84 73.92 19.97 99.5 19.07 95.0 16.27 81.1 12.36 61.63 18.08 90.1 14.62 72.9 10.04 50.04 20.06 99.9 18.03 89.8 13.20 65.88 19.69 98.1__________________________________________________________________________ t.sub.90 (days) extrapolated according to Arrhenius equation: t.sub.90 at 4.degree. C. = 4360 days t.sub.90 at 8.degree. C. = 2200 days
Similar stability data can be observed for analogous solutions containing 4'-epi-doxorubicin or 4'-desoxy-doxorubicin, as hydrochloride salts, at the same 20 mg/ml concentration.
EXAMPLE 10
______________________________________Composition for 80 vials (for 1 vial)______________________________________Doxorubicin.HCl 8.0 g (100.0 mg)Polyvinylpyrrolidone 20.0 g (250.0 mg)Hydrochloric acid 0.1 N q.s. to pH = 3 (pH = 3)Water for injections q.s. to 0.4 l (5.0 ml)______________________________________
Doxorubicin.HCl (8.0 g) was dissolved in 90 percent of the amount of water for injections, de-aerated by nitrogen bubbling. Polyvinylpyrrolidone was added and dissolved under stirring and nitrogen bubbling. The hydrochloric acid was then added dropwise to adjust the pH of the solution to 3. Further de-aerated water for injections was then added to bring the solution to its final volume (0.4 l).
The solution was filtered through a 0.22.mu. microporous membrane under nitrogen pressure. Volumes of 5 ml of the solution were distributed into type I-colourless glass vials having 5/7 ml capacity. The vials were then closed with chlorobutyl teflon-faced rubber stoppers and sealed with aluminium caps.
The stability of the solutions in the vials was tested. The vials were stored at temperatures of 55.degree. C., 45.degree. C. and 35.degree. C. (accelerated stability controls) and at 4.degree. C. for up to 3 weeks (55.degree. C.), 4 weeks (45.degree. C. and 35.degree. C.) and 8 weeks (4.degree. C.).
The stability data obtained, using high performance liquid chromatography (HPLC) for the determination of potency, are reported in the following Table 10:
TABLE 10__________________________________________________________________________INITIAL VALUESConcentration: 19.57 mg/ml pH = 2.62Relative % Assay: 100.0TEMPERATURE4.degree. C. 35.degree. C. 45.degree. C. 55.degree. C.TIME Conc. Rel. % Conc. Rel. % Conc. Rel. % Conc. Rel. %(weeks) mg/ml Assay mg/ml Assay mg/ml Assay mg/ml Assay__________________________________________________________________________1 19.54 99.9 19.11 97.6 16.88 86.2 12.48 63.82 18.43 94.2 14.13 72.2 6.00 30.73 18.02 92.1 11.57 59.1 2.61 13.34 19.58 100.1 17.36 88.7 9.23 47.28 19.34 98.8t.sub.90 (days) extrapolated according to Arrhenius equation:t.sub.90 at 4.degree. C. = 2540 dayst.sub.90 at 8.degree. C. = 1290 days__________________________________________________________________________
Similar stability data can be observed for analogous solutions containing 4'-epi-doxorubicin or 4'-desoxy-doxorubicin, as hydrochloride salts, at the same 20 mg/ml concentration.
EXAMPLE 11
______________________________________Composition for 80 vials (for 1 vial)______________________________________Doxorubicin.HCl 0.80 g (10.0 mg)N,N-Dimethylacetamide 0.12 l (1.5 ml)Hydrochloric acid 0.1N pH = 3 (pH = 3)q.s. toWater for injections 0.40 l (5.0 ml)q.s. to______________________________________
Doxorubicin.HCl (0.80 g) was dissolved in 90% of the amount of water for injections, de-aerated by nitrogen bubbling. N,N-Dimethylacetamide was added under stirring and nitrogen bubbling. Hydrochloric acid 0.1N was then added dropwise to adjust the pH of the solution to 3. De-aerated water for injections was finally added to bring the solution to its final volume (0.40 l).
The solution was filtered through a 0.22.mu. microporous membrane under nitrogen pressure. Volumes of 5 ml of the solution were distributed into type I-colourless glass vials having 5/7 ml capacity. The vials were then closed with chlorobutyl teflon-faced rubber stoppers and sealed with aluminium caps.
The stability of the solutions in the vials was tested. The vials were stored at temperatures of 55.degree. C., 45.degree. C. and 35.degree. C. (accelerated stability controls) and at 4.degree. C. for up to 3 weeks (55.degree. C.), 4 weeks (45.degree. C. and 35.degree. C.) and 8 weeks (4.degree. C.).
The stability data obtained, using high performance liquid chromatography (HPLC) for the determination of potency, are reported in the following Table 11:
TABLE 11__________________________________________________________________________INITIAL VALUESConcentration: 1.826 mg/ml pH = 3.14Relative % Assay: 100.0TEMPERATURE4.degree. C. 35.degree. C. 45.degree. C. 55.degree. C.TIME Conc. Rel. % Conc. Rel. % Conc. Rel. % Conc. Rel. %(weeks) mg/ml Assay mg/ml Assay mg/ml Assay mg/ml Assay__________________________________________________________________________1 1.830 100.2 1.812 99.2 1.784 97.7 1.605 87.92 1.818 99.6 1.781 97.5 1.554 85.1 1.292 70.83 1.743 95.4 1.409 77.2 1.018 55.74 1.823 99.8 1.734 95.0 1.369 75.08 1.792 98.2t.sub.90 (days) extrapolated according to Arrhenius equation:t.sub.90 at 4.degree. C. = 5815 dayst.sub.90 at 8.degree. C. = 2920 days__________________________________________________________________________
Similar stability data can be observed also for analogous solutions containing either doxorubicin hydrochloride at 5 mg/ml concentration, or 4'-epi-doxorubicin, 4'-desoxy-doxorubicin, 4'-epi-desoxy-4'-iodo-doxorubicin, daunorubicin or 4-demethoxy-daunorubicin, as hydrochloride salts, at both 2 mg/ml and 5 mg/ml concentration.
EXAMPLE 12
______________________________________Composition for 80 vials (for 1 vial)______________________________________Doxorubicin.HCl 0.80 g (10.0 mg)Propylene glycol 0.12 l (1.5 ml)Hydrochloric acid 0.1N pH = 3 (pH = 3)q.s. toWater for injections 0.40 l (5.0 ml)q.s. to______________________________________
Doxorubicin. HCl (0.80 g) was dissolved in 90% of the amount of water for injections de-aerated by nitrogen bubbling. Propylene glycol was added under stirring and nitrogen bubbling. Hydrochloric acid 0.1N was then added dropwise to adjust the pH of the solution to 3. De-aerated water for injections was finally added to bring the solution to its final volume (0.40 l).
The solution was filtered through a 0.22.mu. microporous membrane under nitrogen pressure. Volumes of 5 ml of the solution were distributed into type I-colourless glass vials having 5/7 ml capacity. The vials were then closed with chlorobutyl teflon-faced rubber stoppers and sealed with aluminium caps.
The stability of the solutions in the vials was tested. The vials were stored at temperatures of 55.degree. C., 45.degree. C. and 35.degree. C. (accelerated stability controls) and at 4.degree. C. for up to 3 weeks (55.degree. C.), 4 weeks (45.degree. C. and 35.degree. C.) and 4 weeks (4.degree. C.).
The stability data obtained, using high performance liquid chromatography (HPLC) for the determination of potency, are reported in the following Table 12:
TABLE 12__________________________________________________________________________INITIAL VALUESConcentration: 1.982 mg/ml pH = 3.11Relative % Assay: 100.0TEMPERATURE4.degree. C. 35.degree. C. 45.degree. C. 55.degree. C.TIME Conc. Rel. % Conc. Rel. % Conc. Rel. % Conc. Rel. %(weeks) mg/ml Assay mg/ml Assay mg/ml Assay mg/ml Assay__________________________________________________________________________1 1.972 99.5 1.934 97.6 1.889 95.3 1.705 86.02 1.952 98.5 1.795 90.6 1.483 74.83 1.935 97.6 1.699 85.7 1.153 58.24 2.056 103.7 1.788 90.2 1.460 73.7t.sub.90 (days) extrapolated according to Arrhenius equation:t.sub.90 at 4.degree. C. = 1794 dayst.sub.90 at 8.degree. C. = 1025 days__________________________________________________________________________
Similar stability data can be observed also for analogous solutions containing either doxorubicin hydrochloride at 5 mg/ml concentration, or 4'-epi-doxorubicin, 4'-desoxy-doxorubicin, 4'-desoxy-4'-iodo-doxorubicin, daunorubicin or 4-demethoxy-daunorubicin, as hydrochloride salts, at both 2 mg/ml 5 mg/ml concentration.
EXAMPLE 13
______________________________________Composition for 80 vials (for 1 vial)______________________________________Doxorubicin.HCl 0.80 g (10.0 mg)Polyethylene glycol 400 0.12 l (1.5 ml)Hydrochloric acid 0.1N pH = 3 (pH = 3)q.s. toWater for injections 0.40 l (5.0 ml)q.s. to______________________________________
Doxorubicin.HCl (0.80 g) was dissolved in 90% of the amount of water for injections, de-aerated by nitrogen bubbling. Polyethylene glycol 400 was added under stirring and nitrogen bubbling. Hydrochloric acid 0.1N was then added dropwise to adjust the pH of the solution to 3. De-aerated water for injections was finally added to bring the solution to its final volume (0.40 l).
The solution was filtered through a 0.22.mu. microporous membrane under nitrogen pressure. Volumes of 5 ml of the solution were distributed into type I-colourless glass vials having 5/7 ml capacity. The vials were then closed with chlorobutyl teflon-faced rubber stoppers and sealed with aluminium caps.
The stability of the solutions in the vials was tested. The vials were stored at temperatures of 55.degree. C., 45.degree. C. and 35.degree. C. (accelerated stability controls) and at 4.degree. C. for up to 3 weeks (55.degree. C.), 4 weeks (45.degree. C. and 35.degree. C.) and 4 weeks (4.degree. C.).
The stability data obtained, using high performance liquid chromatography (HPLC) for the determination of potency, are reported in the following Table 13:
TABLE 13__________________________________________________________________________INITIAL VALUESConcentration: 1.907 mg/ml pH = 3.07Relative % Assay: 100.0TEMPERATURE4.degree. C. 35.degree. C. 45.degree. C. 55.degree. C.TIME Conc. Rel. % Conc. Rel. % Conc. Rel. % Conc. Rel. %(weeks) mg/ml Assay mg/ml Assay mg/ml Assay mg/ml Assay__________________________________________________________________________1 1.871 98.1 1.797 94.2 1.668 87.5 1.484 77.82 1.710 89.7 1.608 84.3 1.237 64.93 1.739 91.2 1.551 81.3 1.007 52.84 1.873 98.2 1.693 88.8 1.453 76.2t.sub.90 (days) extrapolated according to Arrhenius equation:t.sub.90 at 4.degree. C. = 1130 dayst.sub.90 at 8.degree. C. = 680 days__________________________________________________________________________
Similar stability data can be observed also for analogous solutions containing either doxorubicin hydrochloride at 5 mg/ml concentration, or 4'-epi-doxorubicin, 4'-desoxy-doxorubicin, 4'-desoxy-4'-iodo-doxorubicin, daunorubicin or 4-demethoxy-daunorubicin, as hydrochloride salts, at both 2 mg/ml and 5 mg/ml concentration.
EXAMPLE 14
______________________________________Composition for 80 vials (for 1 vial)______________________________________Doxorubicin.HCl 0.8 g (10 mg)Hydrochloric acid 0.1N pH = 3 (pH = 3)q.s. toWater for injections 0.4 l (5 ml)q.s. to______________________________________
Doxorubicin.HCl (0.8 g) was dissolved in 90 percent of the amount of water for injections, de-aerated by nitrogen bubbling. The hydrochloric acid was then added dropwise to adjust the pH of the solution to 3. Further de-aerated water for injections was then added to bring the solution to its final volume (0.4 l).
The solution was filtered through a 0.22.mu. microporous membrane under nitrogen pressure. Volumes of 5 ml of the solution were distributed into type I-colourless glass vials having 5/7 ml capacity. The vials were then closed with chlorobutyl teflon-faced rabber stoppers and sealed with aluminium caps.
The stability of the solutions in the vials was tested. The vials were stored at temperatures of 4.degree. C. and 8.degree. C. for up to 6 months.
The stability data obtained, using high performance liquid chromatography (HPLC) for the determination of potency, are reported in the following Table 14:
______________________________________INITIAL VALUESConcentration: 2.039 mg/ml pH = 3.06Relative % Assay: 100.0 TEMPERATURE 4.degree. C. 8.degree. C.TIME Conc. Rel. % Conc. Rel. %(months) mg/ml Assay mg/ml Assay______________________________________1 1.983 97.3 1.959 96.13 1.984 97.3 1.983 97.36 2.012 98.7 2.002 98.2______________________________________
At the same conditions, similar stability data can be generally observed also for the other solutions mentioned in the preceding examples.
Claims
  • 1. A physiologically acceptable solution of doxorubicin hydrochloride dissolved in a physiologically acceptable solvent, having a pH adjusted to from 2.5 to 5.0 with hydrochloric acid and doxorubicin concentration of from 0.1 to 100 mg/ml, wherein said solution has not been reconstituted from a lyophilizate.
  • 2. The solution of claim 1 which is contained in a sealed container.
  • 3. The solution of claim 1 wherein said physiologically acceptable solvent is selected from the group consisting of water, ethanol, polyethylene glycol, dimethylacetamide, aqueous polyvinylpyrrolidone, propylene glycol and mixtures thereof.
  • 4. The solution of claim 1 wherein the physiologically acceptable solvent is water.
  • 5. The solution of claim 1 wherein the concentration of the doxorubicin is from 0.1 to 50 mg/ml.
  • 6. The solution of claim 5 wherein the concentration of doxorubicin is from 1 to 20 mg/ml.
  • 7. The solution of claim 1 wherein the concentration of doxorubicin is 2 mg/ml.
  • 8. The solution of claim 1 wherein the concentration of doxorubicin is 5 mg/ml.
  • 9. A physiologically acceptable solution of doxorubicin hydrochloride dissolved in water, having a pH adjusted to from 2.5 to 5.0 with hydrochloric acid and a doxorubicin concentration of from 0.1 to 100 mg/ml, and a tonicity adjusting agent, wherein said solution has not been reconstituted from a lyophilizate.
Priority Claims (1)
Number Date Country Kind
8519452 Aug 1985 GBX
Parent Case Info

This is a division of application Ser. No. 07/385,999, filed on Jul. 27, 1989, and now U.S. Pat. No. 4,946,831.

US Referenced Citations (5)
Number Name Date Kind
4058519 Arcamone et al. Nov 1977
4075328 Ducep et al. Feb 1978
4250303 Wu et al. Feb 1981
4296105 Baurain et al. Oct 1981
4946831 Gatti et al. Aug 1990
Foreign Referenced Citations (8)
Number Date Country
129606 Jan 1985 EPX
6092212 May 1985 JPX
8502869 Oct 1985 NLX
2178311 Feb 1977 GBX
1491184 Nov 1977 GBX
2007645 Oct 1978 GBX
216751A Apr 1986 GBX
A2178311 Feb 1987 GBX
Non-Patent Literature Citations (38)
Entry
Beneruto et al., American Journal of Hospital Pharmacy; vol. 38 (1981) pp. 1914-1918.
Beijnen et al., Pharmaceutisch Weekblad., Scientific Edition, vol. 7 (1985) pp. 109-116.
Arcamone et al., International Symposium on Adriamycin (1972) pp. 9-22.
Bosanquet, Cancer Chemother. Pharmacol. vol. 13 (1986) pp. 1-10.
English Translation of Official Action in Swedish Patent Application 8704849-2.
"Stability of Solutions of Antineoplastic Agents During Preparation and Storage for In Vitro Assays" by Andrew G. Bosanquet pp. 1-10.
English Translation of Official Action issued in German Application, 3741037.7.
English Translation of Official Action in Swedish Patent Application 8602743-0.
"Kinetics of the Acid-Catalyzed Hydrolysis of Doxorubicin" by Karsten Wassermann et al.; pp. 73-78.
"Martindale--The Extra Pharmacopoeia" Twenty-eighth Edition, Edited by James E. F. Reynolds.
"DOXORUBICIN" by Aristide Vigevani et al.; pp. 246-274.
"Termical Degradation of Adriamycin Hydrochloride Substance and Solutions of Various pH Were Examined, The Reaction Rate Constans, Temperature Factors and t.sub.10% Were Determined" by Teresa Kaniewska.
"Aspects of the Chemical Stability of Doxorubicin and Seven Other Anthracyclines in Acidic Solution" by J. H. Beijnen et al.; pp. 109-116.
Jornal of Parenteral Science and Technology, vol. 39, No. 6, 1985 pp. 220-222; by J. H. Beijnen et al.
The Merck Index, 10th Edition, 1983, p. 449, Edited by M. Windholz, et al.
"Physiological Principles of Pharmacy" by A. T. Florence, et al. Chemical Stability of Drugs, p. 475.
"The Merck Index" 10th Edition, by Martha Windholz, et al. published by Merck & Co., Inc. Rahway, N.J., U.S.A., 1983; p. 499.
The American Journal of Intravenous Therapy & Clinical Nutrition, pp. 15-18, Daniel Ketchum et al. 8, 15-18 (1981).
Dora and Fritz, Cancer Chemotherapy Handbook, Elsevier: New York, 1980, pp. 388-401.
Cancer Treatment Reports, vol. 65, No. 1-2, Jan./Feb. 1981 pp. 21-27, Edwin D. Savlov et al.
Cancer Treatment Reports, vol. 67, No. 2, Feb. 1983 pp. 133-142 Marc B. Garnick et al.
Journal of Pharmaceutical Sciences, pp. 782-785, Staffan Eksborg, Sep. 21, 1977 67.
Journal of Pharmaceutical Sciences, vol. 73, No. 6, Jun. 1984, pp. 766-770, Milena Menozzi et al.
Trissel, Handbook of Injectable Drugs, pp. 143, 144, 171 and 172.
Chemical Abstracts, vol. 92 (1980), 99512c.
Chemical Abstracts, vol. 94 (1981), 214489f.
Chemical Abstracts, vol. 99 (1983), 146022z.
Chemical Abstracts, vol. 101 (1984), 122451x.
Chemical Abstracts, vol. 102 (1985), 209266k.
Chemical Abstracts, vol. 104 (1986), 39716d.
Arzneimittel-Forschung, vol. 17 (1967), pp. 934-939.
The Merck Index (1983) pp. 3436.
Pharmaceutisch Weekbald, Scientific Edition, vol. 8, Apr. 25, 1986, pp. 109-133.
Journal of Chromatography 299 (1984), pp. 489-494.
Patent Abstracts of Japan (1956), 92212.
Martindale, The Extra Pharmacopoeia (1982), pp. 205-208.
Nor. Pharm. Acta, 45, 61-67 (1983).
J. Pharm. Biomed Anal., 2, 297-303 (1984).
Divisions (1)
Number Date Country
Parent 385999 Jul 1989