Injection-amount measuring unit

Information

  • Patent Grant
  • 6817233
  • Patent Number
    6,817,233
  • Date Filed
    Monday, April 29, 2002
    22 years ago
  • Date Issued
    Tuesday, November 16, 2004
    20 years ago
Abstract
An injection-amount measuring unit, for measuring an injection amount of a fuel injector, employs a flow meter to measure a flow amount of a test fluid supplied from a pump and pumped through a fluid supply passage. A volume enlargement chamber of a volume member, is disposed around an upstream side of a fuel inlet of the fuel injector. A test fluid flows from a side of the pump into the volume enlargement chamber through the fluid inflow passage. The test fluid then flows from the volume enlargement chamber to a side of the fuel injector through the fluid outflow passage. When a needle opens an injection hole, transmitted waves and reflected waves, and resultantly, pressure pulsation, may be generated in the test fluid within the fuel injector. These waves and pulsation are eliminated.
Description




CROSS REFERENCE TO RELATED APPLICATION




This application is based on, and claims the benefit of priority of, prior Japanese Patent Application No. 2001-132571 filed on Apr. 27, 2001, the contents of which are incorporated herein by reference.




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an injection-amount measuring unit for measuring a fuel-injection amount of a fuel injector.




2. Description of Related Art




An injection-amount measuring device shown in

FIG. 3

is a main part of an injection-amount measuring unit


110


for measuring an injection amount of an injector


100


. A test fluid is supplied to the injector


100


from a pump (not shown) and the like through a fluid supply passage


115


. A noncombustible fluid, substantially having the same viscosity as fuel, is used as the test fluid to prevent the test fluid from catching on fire, burning, and the like.




The injector


100


injects the test fluid from an injection hole


104


by detaching a needle


102


from a valve seat. That is, the needle


102


breaks contact with the valve seat


103


. The needle


102


detaches from the valve seat


103


against an applied force of a spring


106


by energizing a coil


105


. The spring


106


applies the force to the needle


102


in a direction where the needle


102


is seated on the valve seat


103


that is, in a direction causing the injection hole to close. The applied force of the spring


106


is adjusted using a feed distance of an adjusting pipe


107


. The adjusting pipe


107


is guided by and enclosed within a housing


101


.




The force of the spring


112


is applied to a valve member


111


of the injection-amount measuring device in a downward direction in FIG.


3


. The valve member


111


is moved upward in

FIG. 3

by attaching the injector


100


to the injection-amount measuring device


110


so that a fluid passage


116


provided in the valve member


111


communicates with the fluid supply passage


115


. A flow meter


120


measures an amount of the test fluid flowing in the fluid supply passage


115


that is, an injection amount of the injector


100


. A pressure gage


121


measures a pressure of the test fluid flowing in the fluid supply passage


115


.




The needle


102


is made to reciprocate by supplying a pulse current shown in

FIG. 4

to the coil


105


. When the needle


102


is repeatedly seated on and detached from the valve seat


103


using an ON current and an OFF current of the pulse current, transmitted waves and reflected waves are generated


100


in the fluid within the injector. Then, as shown in

FIG. 4

, pressure pulsation is generated in the fluid within the injector. When the pressure pulsation is generated in the test fluid, the measured injection amount may fluctuate for every injection of the injector. The injection amount of injector can be accurately measured by increasing the number of injections and calculating an average injection amount. However, it takes a relatively long time to measure the injection amount in this manner.




A frequency of the pressure pulsation, a pressure wave shape and a pressure wave amplitude thereof are changed by a length, arrangement structure, and the like of piping for supplying the test fluid to the injector. Here, plural injection-amount measuring units are set, and a length, arrangement structure, and the like of piping for supplying the test fluid to the injector are changed for every injection-amount measuring unit. In this case, a frequency of the pressure pulsation, a pressure wave shape thereof and a pressure wave amplitude thereof are changed for every injection-amount measuring unit.




When the pressure pulsation of the test fluid injected by the injector is changed for every injection-amount measuring unit, the following trouble occurs. That is, even when a pulse current having the same pulse width and the same amplitude is applied to the coil of the same injector, and the test fluid having the same pressure is supplied, a measured result of the injection amount is changed for every injection-amount measuring unit. Further, when a measurement set value such as the pulse current and the test fluid pressure is changed, the measured injection amount using the changed measurement set value is sometimes changed for every injection-amount measuring unit.




SUMMARY OF THE INVENTION




Therefore, it is an object of the present invention to provide an injection-amount measuring unit for accurately measuring an injection amount of an injector in a relatively short period of time. It is another object of the present invention to provide an injection-amount measuring unit for measuring an injection amount which does not change for every injection-amount measuring unit.




In an injection-amount measuring unit according to an embodiment of the present invention, a passage area of a volume enlargement chamber is larger than a fluid inflow passage and a fluid outflow passage. Here, a fluid flows from a side of a fluid supply device into the volume enlargement chamber through the fluid inflow passage, and a fluid flows from the volume enlargement chamber to a side of a fuel injector (injector) through the fluid outflow passage. When a valve member of the injector performs intermittent fuel-injection, a pulsating pressure is generated in a fluid within the injector. When the pressure pulsation reaches the volume enlargement chamber from the fluid outflow passage, the pressure pulsation is reduced. That is, while a fluid is injected from the injector, fluctuating pressures of a fluid supplied to the injector can be reduced. Therefore, an injection amount can be accurately measured using a small number of injections, thereby performing a measuring operation in a small amount of time.




Here, multiple injection-amount measuring units are set, and a passage member changes in length and curvature for every injection-amount measuring device. Even in this case, when a pressure of a fluid supplied to the injector and a control current supplied to the electric driving member are set at the same values for every injection-amount measurement, injection-amount fluctuation of the injector is reduced for every injection-amount measuring unit. Accordingly, a degree of freedom of a set condition of the injection-amount measuring unit can be increased. In an injection-amount measuring unit according to an embodiment of the present invention, a feed distance of an adjusting pipe is adjusted so that a requested injection amount can be realized while the injection amount is measured. Accordingly, the injection amount of the injector can be adjusted in a small amount of time.




In an injection-amount measuring unit according to an embodiment of the present invention, the volume enlargement chamber is provided around a fuel inlet of the injector. Accordingly, the pressure pulsation generated in the fluid within the injector is immediately reduced. Here, multiple injection-amount measuring units are provided, and the passage member changes in length and curvature for every injection-amount measuring unit. Even in this case, when a pressure of a fluid supplied to the injector and a control current supplied to the electric driving member are set at the same values for every injection-amount measuring unit, injection-amount fluctuation of the injector can be further reduced for every injection-amount measuring unit.




In an injection-amount measuring unit according to an embodiment of the present invention, the fluid inflow passage and the fluid outflow passage are provided on lines different from each other, respectively. That is, the fluid inflow passage and the fluid outflow passage are not in the same line. Accordingly, the pressure pulsation can be effectively reduced in the volume enlargement chamber.




In an injection-amount measuring unit of an embodiment of the present invention, the fluid inflow passage and the fluid outflow passage are perpendicular to each other. Therefore, the pressure pulsation, transmitted from the injector into the volume enlargement chamber through the fluid outflow passage, experiences difficulty in transmitting the pulsation to the fluid inflow passage which is located to a side with respect to the fluid outflow passage. Accordingly, the pressure pulsation can be reduced in the volume enlargement chamber.




Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention, together with additional objectives, features and advantages thereof, will be best understood from the following description, the appended claims and the accompanying drawings in which:





FIG. 1

is a cross-sectional view showing an injection-amount measuring unit according to an embodiment of the present invention;





FIG. 2

is a characteristic graph showing a relationship between a pulse current supplied to a coil and a fluid pressure to be measured in an injector according to an embodiment of the present invention;





FIG. 3

is a cross-sectional view showing a main part of a conventional injection-amount measuring unit; and





FIG. 4

is a characteristic graph showing a relationship between a pulse current supplied to a coil and a fluid pressure to be measured in an injector according to a conventional example.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.




As shown in

FIG. 1

, an injection-amount measuring unit according to an example of the present invention includes a pump


20


driven by an attached motor M, a flow meter


22


, a pressure gage


23


, a back pressure valve


24


, a motor


30


, a motor gear


31


, a screw gear


32


, a feed screw


33


, a cylinder


40


, an opening-closing rod


41


, an opening-closing valve member


43


and a volume member


50


.




An injector


10


is used for a gasoline engine, and it injects a test fluid from an injection hole


13


by detaching a needle


12


as a valve member from a valve seat


11




a


. A noncombustible fluid, having substantially the same viscosity as fuel, is used as the test fluid to prevent the test fluid from catching fire, igniting, and the like. A spring


14


applies a force to the needle


12


in a direction so that the needle


12


rests on the valve seat


11




a


, that is, in a direction that causes the injection hole


13


close. The applied force of the spring


14


is adjustable using a feed mechanism of an adjusting pipe


15


to change an adjusting distance. Here, the feed distance defines a distance traveled by the adjusting pipe


15


from an initial position to a desired feed position. The adjusting pipe


15


is fed into a housing


11


by press-fitting. When the adjusting pipe


15


reaches a predetermined feed distance, it is fixed to the housing


11


by crimping or the like. When a coil


16


energizes, it generates a magnetic force for moving the needle


12


away from the valve seat


11




a


(upward in

FIG. 1

) against the applied force of the spring


14


. This, causes the needle


12


to be detached from the valve seat


11




a.






When the feed distance of the adjusting pipe


15


is made larger, the applied force of the spring


14


increases. At this time, when a control pulse current having the same frequency, the same pulse width, and the same amplitude is supplied to the coil


16


, an open time of the injector


10


per pulse becomes longer, and a closed time of the injector


10


per pulse becomes shorter. Therefore, an amount of the test fluid injected from the injector


10


per pulse is reduced. A flow amount, measured using a personal computer (PC)


70


based on a flow amount signal from a flow meter


22


, is also reduced. Here, the open time defines a period of time between a beginning of an energizing of the coil


16


and a time when the needle


12


is stopped by a stopper


17


. The closed time defines a period between a time when the energizing of the coil


16


is stopped and a time during which the needle is seated on the valve seat


11




a.






The pump


20


draws a test fluid from a tank


21


, and it supplies the test fluid to the injector


10


through a fluid supply passage


80


. The flow meter


22


measures a flow amount of the test fluid flowing in the fluid supply passage


80


, that is, an amount of the test fluid injected by the injector


10


. For example, the flow meter


22


generates a pulse signal, and the number of pulses of the pulse signal for a unit time corresponds to the flow amount. The flow meter


22


outputs the number of pulses to the PC


70


as a flow amount signal. As the number of pulses from the flow meter


22


is increased, the flow amount, that is, the injection amount from the injector


10


is increased. The back pressure valve


24


adjusts a pressure of the test fluid supplied to the injector


10


at a predetermined pressure. A depression valve may be used in place of the back pressure valve


24


.




The motor gear


31


rotated together with the motor


30


is engaged with the screw gear


32


. The screw gear


32


is engaged with the feed screw


33


through a screw connection. The feed screw


33


travels upward or downward in

FIG. 1

by rotation of the screw gear


32


. The feed distance of the adjusting pipe


15


is increased by moving the feed screw


33


downward in FIG.


1


.




A piston (not shown) is contained in the cylinder


40


and is capable of reciprocating in the cylinder


40


. The opening-closing rod


41


moves circularly about a supporting point


42


by making the piston reciprocate. The opening-closing valve member


43


is connected to the opening-closing rod


41


, and it opens and closes a fluid outflow passage


53


in a volume member


50


. The opening-closing valve member


43


travels upward or downward in

FIG. 1

independently from the feed screw


33


.




The volume member


50


forms a part of a passage member through which the test fluid is supplied from the pump


20


to the injector


10


. The volume member


50


is disposed around an upstream side of a fuel inlet of the injector


10


, and it defines a volume enlargement chamber


51


therein. A passage area of the volume enlargement chamber


51


is larger than that of a fluid inflow passage


52


and that of the fluid outflow passage


53


. Here, the test fluid flows from a side of the pump


20


into the volume enlargement chamber


51


through the fluid inflow passage


52


. The test fluid flows from the volume enlargement chamber


51


to a side of the injector


10


through the fluid outflow passage


53


. Further, the fluid inflow passage


52


and the fluid outflow passage


53


are not disposed on the same line, but they are substantially perpendicular to each other. That is, their fluid flow directions are substantially perpendicular to each other.




A dummy injector


60


has the same shape as injector


10


whose injection amount is measured. Energizing the coil


16


of the dummy injector


60


is stopped during a period between a time when the measuring for the injector


10


is started and a time when the measuring is stopped. Then, the test fluid is injected from the dummy injector


60


by energizing the coil


16


thereof during a period between a time when the measuring for the injector


10


is ended and a time when the measuring for the next injection of injector


10


, is started. The test fluid flows in the fluid supply passage


80


while the injector


10


is not measuring, thereby preventing the flow amount measured by the flow meter


22


from substantially being reduced to zero. When the flow amount is substantially reduced to zero in the fluid supply passage


80


, it takes time for the flow amount to increase to a level where the injection amount of the injector


10


can be accurately measured. Therefore, while the subsequent injection amount of injector


10


is exchanged with the measured amount of injector


10


, the test fluid continuously flows in the fluid supply passage


80


by injecting the test fluid from the dummy injector


60


. Thus, the flow-amount measurement can be performed immediately after the injection amount of injector


10


is exchanged with the measured amount of injector


10


.




The PC


70


controls a control current supplied from a driving circuit


71


to the injector


10


, the dummy injector


60


and the motor


30


. The control current supplied to the motor


30


is controlled based on the flow-amount signal from the flow meter


22


so that the test fluid is injected from the injector


10


at a set amount (or flow rate, volume/time) and so that the feed distance of the adjusting pipe


15


is controlled. The feed distance is adjusted using the feed screw


33


, and the applied force of the spring


14


is adjusted using the feed distance. The injection amount of the injector


10


is adjusted using the applied force. Then, the adjusting pipe


15


is fixed at a position where the flow amount measured by the flow meter


22


reaches a target amount.




In the present example, the volume member


50


, defining the volume enlargement chamber


51


, is disposed around the fuel inlet of the injector


10


. A passage area of the volume enlargement chamber


51


is larger than that of the fluid outflow passage


53


, and the volume enlargement chamber


51


has a large capacity. When the needle


12


opens the injection hole


13


, transmitted waves and reflected waves may be generated in the test fluid within the injector


10


, so that pressure pulsation may be generated in the test fluid. Even at this time, the pressure pulsation is reduced while being transmitted into the volume enlargement chamber


51


. Accordingly, as shown in

FIG. 2

, a fluid pressure in the injector


10


is substantially constant while the injection hole


13


is opened other than a rise time of the pulse current, that is, a time immediately after detaching the needle


12


from the valve seat


11




a


. Therefore, for every injection, the test-fluid injection amount never fluctuates, thereby accurately measuring the test-fluid injection amount using a low number of injections. Also, the adjusting pipe


15


can be fed while the fluid injection amount is measured, so that the measured flow amount can reach the target amount in a short time.




The pressure pulsation generated in the test fluid within the injector


10


is reduced in the volume enlargement chamber


51


, and it is never transmitted to the pump


20


. Here, the passage member of the injection-amount measuring unit changes in length and curvature for every injection-amount measuring unit. Even in this case, when the control current supplied to the injector


10


has the same pulse width and the same amplitude, the injection amount of the injector


10


is not changed for every injection-amount measuring unit. Even when the pressure of the fluid supplied to the injector


10


is changed, the injection amount of the injector


10


can be prevented from being changed for every injection-amount measuring unit. Accordingly, a degree of freedom of a set condition of the injection-amount measuring unit can be increased.




An end of the opening-closing valve member


43


is located in the volume enlargement chamber


51


at a side of the fluid outflow passage


53


. Therefore, the pressure pulsation transmitted from the injector


10


into the volume enlargement chamber


51


can be readily reduced. For the same reason, eddy streams can be prevented from being generated in the test fluid flowing from the volume enlargement chamber


51


into the fluid outflow passage


53


, thereby accurately measuring the injection amount of the injector


10


.




In the injection-amount measuring unit of the present example, the feed distance of the adjusting pipe


15


of the injector


10


is adjusted while the injection amount of the injector


10


is measured. However, only the injection amount measurement may be performed in the injection-amount measuring unit. The injection-amount measuring unit measures the injection amount of the injector


10


for a gasoline engine, but it may measure the injection amount of an injector, having no adjusting pipe, for a diesel engine.




The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.



Claims
  • 1. An injection-amount measuring unit and fuel injector, the fuel injector including a valve member for performing intermittent fuel-injection by being seated on and then lifted from a valve seat using reciprocating movement and an electric driving member for driving the valve member, the injection-amount measuring unit comprising:a fluid supply device for supplying a fluid to the fuel injector; a fluid supply passage through which a fluid is supplied from the fluid supply device to the fuel injector; a volume enlargement chamber in the fluid supply passage, wherein a passage area of the volume enlargement chamber is larger than that of a fluid inflow passage and that of a fluid outflow passage, wherein a fluid flows from a side of the fluid supply device through the fluid inflow passage, to a side of the fuel injector and into the volume enlargement chamber and through the fluid outflow passage; a flow meter for measuring an amount of the fluid supplied from the fluid supply device and injected from the fuel injector; a force applying member for applying a force to the valve member to provide reciprocating motion of the valve member; an adjusting pipe that contacts the force applying member and adjusts the force applied by the force applying member, wherein the electric driving member generates an attracting force for attracting force for attracting the valve member against the applied force, an electric feed device for adjusting a feed distance of the adjusting pipe; and a control unit for controlling a control current supplied to the electric driving member and the electric feed device.
  • 2. The injection-amount measuring unit according to claim 1, wherein the volume enlargement chamber is provided around a fuel inlet of the fuel injector.
  • 3. The injection-amount measuring unit according to claim 1, wherein the fluid inflow passage and the fluid outflow passage are substantially perpendicular to each other.
  • 4. The injection-amount measuring unit according to claim 2, wherein the fluid inflow passage and the fluid outflow passage are perpendicular to each other.
  • 5. The injection-amount measuring unit according to claim 3, wherein the fluid inflow passage and the fluid outflow passage are perpendicular to each other.
  • 6. The injection-amount measuring unit according to claim 4, wherein the fluid inflow passage and the fluid outflow passage are perpendicular to each other.
  • 7. An injection-amount measuring unit and fuel injector, the fuel injector including a valve member for performing intermittent fuel-injection by being seated on and then lifted from a valve seat using reciprocating movement and an electric driving member for driving the valve member, the injection-amount measuring unit comprising:a fluid supply device for supplying fuel to a fluid supply passage, wherein the fluid supply passage has a flow meter for measuring an amount of a fluid supplied from the fluid supply device and injected from a fuel injector; a volume member defining a volume enlargement chamber within the fluid supply passage, wherein a passage area of the volume enlargement chamber is larger than that of a fluid inflow passage and that of a fluid outflow passage; an opening-closing valve member, a part of which is contained within the volume enlargement chamber, the opening-closing valve member guiding a feed screw, the feed screw contacting an adjustment pipe which controls a needle opening amount for opening and closing an injection hole defined within a housing; a force applying member for applying a force to the valve member to provide reciprocating motion of the valve member; an adjusting pipe that contacts the force applying member and adjusts the force applied by the force applying member, wherein the electric driving member generates an attracting force for attracting the valve member against the applied force; an electric feed device for adjusting a feed distance of the adjusting pipe; and a control unit for controlling a control current supplied to the electric driving member and the electric feed device.
  • 8. The injection-amount measuring unit of claim 7 wherein, the fluid outflow passage and the fluid inflow passage have flow directions that are perpendicular to each other.
  • 9. The injection-amount measuring unit of claim 7 wherein, the adjusting pipe adjusts a force applied to the needle to ultimately control a reciprocating motion of the needle.
  • 10. The injection-amount measuring unit of claim 7 wherein, the fluid inflow passage flows into the volume enlargement chamber and is perpendicular to the feed screw.
  • 11. The injection-amount measuring unit of claim 7, wherein a driving circuit controls an amount of duel to be fed into the fuel injector so that each fuel injection amount is accurately measured.
  • 12. An injection-amount measuring unit comprising:a fluid supply device for supplying fuel to a fluid supply passage, wherein the fluid supply passage has a flow meter for measuring an amount of a fluid supplied from the fluid supply device and injected from a fuel injector; a volume member defining a volume enlargement chamber within the fluid supply passage, wherein a passage area of the volume enlargement chamber is larger than that of a fluid inflow passage and that of a fluid outflow passage; and an opening-closing valve member, a part of which is contained within the volume enlargement chamber, the opening-closing valve member guiding a feed screw, the feed screw contacting an adjustment pipe which controls a needle opening amount for opening and closing an injection hole defined within a housing, wherein a driving circuit controls an amount of fuel to be fed into a dummy injector before being injected into the fuel injector so that each fuel injection amount is accurately measured.
Priority Claims (1)
Number Date Country Kind
2001-132571 Apr 2001 JP
US Referenced Citations (5)
Number Name Date Kind
5988142 Klopfer Nov 1999 A
6112720 Matta Sep 2000 A
6354276 Toiyama et al. Mar 2002 B1
6484573 Bundock et al. Nov 2002 B2
6532809 Robinson Mar 2003 B2