Injection cooled cooling air system for a gas turbine engine

Information

  • Patent Grant
  • 10961911
  • Patent Number
    10,961,911
  • Date Filed
    Tuesday, January 17, 2017
    7 years ago
  • Date Issued
    Tuesday, March 30, 2021
    3 years ago
  • Inventors
  • Original Assignees
    • Raytheon Technologies Corporation (Waltham, MA, US)
  • Examiners
    • Sung; Gerald L
    • Lisowski; Jacek
    Agents
    • Carlson, Gaskey & Olds, P.C.
Abstract
A gas turbine engine includes an engine core having a compressor section, a combustor fluidly connected to the compressor section, and a turbine section fluidly connected to the combustor section. At least one compressor bleed connects a compressor flowpath with a first cooled cooling air path. The first cooled cooling air path includes a supplementary coolant injector connected to a supplementary coolant supply. The cooled cooling air path including a portion exterior to the engine core.
Description
TECHNICAL FIELD

The present disclosure relates generally to a cooled cooling air system for a gas turbine engine, and more specifically to an injection cooling system for the same.


BACKGROUND

Gas turbine engines include a compressor section that compresses air, a combustor that mixes the compressed air with a fuel and ignites the mixture, and a turbine section across which the resultant combustion products are expanded. As a result of the compression, combustion, and expansion process, areas of the gas turbine engine, including portions of the flowpath such as the combustor, the high pressure turbine, and the high pressure compressor are exposed to extreme temperatures. In order to mitigate the extreme temperatures, components exposed to the flowpath are, in some examples, actively cooled by providing a coolant to the component.


In such examples, the coolant can be extracted from sources within the gas turbine engine, such as the compressor outlet, or a mid-stage of the compressor via a compressor bleed. For certain engine cycles, depending on the position within the primary flowpath that the coolant is bled from, the temperature of the coolant can be too high to effectively cool the component that the coolant is being directed to. To remedy this, the coolant is actively cooled, and the system is referred to as a cooled coolant system.


In a typical example cooled coolant system, the coolant is passed through a physical heat exchanger, where the coolant is cooled via conventional heat exchange. Heat exchangers of this type are large and can incur substantial monetary costs, weight increases and performance losses on the gas turbine engine. Further exacerbating these losses is the fact that the cooling demand is not fixed throughout the flight cycle, and during portions of the flight the additional cooling is not actively needed.


SUMMARY OF THE INVENTION

In one exemplary embodiment a gas turbine engine includes an engine core having a compressor section, a combustor fluidly connected to the compressor section, and a turbine section fluidly connected to the combustor section, at least one compressor bleed connecting a compressor flowpath with a first cooled cooling air path, the first cooled cooling air path including a supplementary coolant injector connected to a supplementary coolant supply, the cooled cooling air path including a portion exterior to the engine core.


In another exemplary embodiment of the above described gas turbine engine the supplementary coolant injector is exterior to the engine core.


In another exemplary embodiment of any of the above described gas turbine engines the at least one compressor bleed is disposed at a compressor outlet.


In another exemplary embodiment of any of the above described gas turbine engines at least a first compressor bleed of the at least one compressor bleed is disposed at a mid-compressor stage.


In another exemplary embodiment of any of the above described gas turbine engines at least a second compressor bleed of the at least one compressor bleed is disposed at a compressor outlet.


In another exemplary embodiment of any of the above described gas turbine engines the supplementary coolant is configured to cool coolant in the cooled cooling air path at least partially via expansion of the supplementary coolant.


In another exemplary embodiment of any of the above described gas turbine engines the supplementary coolant injector comprises a plurality of supplementary coolant ports, each of the supplementary coolant ports being configured to inject a portion of the supplementary coolant into the cooled cooling air path.


In another exemplary embodiment of any of the above described gas turbine engines the at least one compressor bleed comprises at least a first compressor bleed connected to the cooled cooling air path and a second compressor bleed connected to a second cooled cooling air path, and wherein a supplementary coolant connected to the first cooled cooling air path is a liquid, and a supplementary coolant connected to the second cooled cooling air path is a compressed gas.


In another exemplary embodiment of any of the above described gas turbine engines the supplementary coolant is configured to cool coolant in the cooled cooling air path at least partially via a state change of the supplementary coolant.


Another exemplary embodiment of any of the above described gas turbine engines further includes an engine controller controllably coupled to the supplementary coolant injector and configured to control injection of the supplementary coolant through the supplementary coolant injector.


In another exemplary embodiment of any of the above described gas turbine engines the controller includes a memory storing instructions configured to cause the controller to operate the injector at a first injection level during a first engine mode of operations, and at a second injection level during a second mode of engine operations.


In another exemplary embodiment of any of the above described gas turbine engines the cooled cooling air path includes a heat exchanger configured to cool bleed air passing through the cooled cooling air path.


In another exemplary embodiment of any of the above described gas turbine engines a supplementary coolant contained in the coolant supply comprises at least one of a compressed gas, water, liquid nitrogen, liquid CO2, and liquid air.


An exemplary method for cooling air in a cooled cooling air system includes injecting at least a first supplementary coolant into a first cooled cooling air path, and thereby cooling a coolant passing through the cooled cooling air path, the supplementary coolant including a compressed gas and providing the cooled cooling air to at least one flowpath component of a gas turbine engine.


In another example of the above described exemplary method for cooling air in a cooled cooling air system injecting at least the first supplementary coolant into the first cooled cooling air path, further comprises injecting a second supplementary coolant into a second cooled cooling air path.


In another example of any of the above described exemplary methods for cooling air in a cooled cooling air system the first supplementary coolant includes a compressed gas, and the second supplementary coolant is one of a compressed gas distinct from the first compressed gas and a liquid.


Another example of any of the above described exemplary methods for cooling air in a cooled cooling air system further includes receiving coolant into the first cooled cooling air path from at least one compressor bleed.


In another example of any of the above described exemplary methods for cooling air in a cooled cooling air system the compressor bleed is one of a mid stage compressor bleed and a compressor outlet bleed.


Another example of any of the above described exemplary methods for cooling air in a cooled cooling air system further includes cooling air in the first coolant path using a heat exchanger.


Another example of any of the above described exemplary methods for cooling air in a cooled cooling air system further includes varying an amount of the first supplementary coolant injected into the first cooled cooling air path using a controller, with the amount of coolant injected being dependent upon a current engine mode of operations.


These and other features of the present invention can be best understood from the following specification and drawings, the following of which is a brief description.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an exemplary gas turbine engine.



FIG. 2 schematically illustrates a portion of the gas turbine engine including a first exemplary cooled cooling air system.



FIG. 3 schematically illustrates a portion of the gas turbine engine including a second exemplary cooled cooling air system.



FIG. 4 schematically illustrates a portion of the gas turbine engine including a third exemplary cooled cooling air system.



FIG. 5 schematically illustrates a portion of the gas turbine engine including a fourth exemplary cooled cooling air system.





DETAILED DESCRIPTION OF AN EMBODIMENT


FIG. 1 schematically illustrates a gas turbine engine 20. The gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmentor section (not shown) among other systems or features. The fan section 22 drives air along a bypass flow path B in a bypass duct defined within a nacelle 15, while the compressor section 24 drives air along a core flow path C for compression and communication into the combustor section 26 then expansion through the turbine section 28. Although depicted as a two-spool turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with two-spool turbofans as the teachings may be applied to other types of turbine engines including three-spool architectures.


The exemplary engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, and the location of bearing systems 38 may be varied as appropriate to the application.


The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a first (or low) pressure compressor 44 and a first (or low) pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a second (or high) pressure compressor 52 and a second (or high) pressure turbine 54. A combustor 56 is arranged in exemplary gas turbine 20 between the high pressure compressor 52 and the high pressure turbine 54. A mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 57 further supports bearing systems 38 in the turbine section 28. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A which is collinear with their longitudinal axes.


The core airflow is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded across the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame 57 includes airfoils 59 which are in the core airflow path C. The turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion. It will be appreciated that each of the positions of the fan section 22, compressor section 24, combustor section 26, turbine section 28, and fan drive gear system 48 may be varied. For example, gear system 48 may be located aft of combustor section 26 or even aft of turbine section 28, and fan section 22 may be positioned forward or aft of the location of gear system 48.


The engine 20 in one example is a high-bypass geared aircraft engine. In a further example, the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than about ten (10), the geared architecture 48 is an epicyclic gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3 and the low pressure turbine 46 has a pressure ratio that is greater than about five. In one disclosed embodiment, the engine 20 bypass ratio is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor 44, and the low pressure turbine 46 has a pressure ratio that is greater than about five (5:1). Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle. The geared architecture 48 may be an epicycle gear train, such as a planetary gear system or other gear system, with a gear reduction ratio of greater than about 2.3:1. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.


A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet (10668 meters). The flight condition of 0.8 Mach and 35,000 ft (10668 m), with the engine at its best fuel consumption—also known as “bucket cruise Thrust Specific Fuel Consumption (‘TSFC’)”—is the industry standard parameter of lbm of fuel being burned divided by lbf of thrust the engine produces at that minimum point. “Low fan pressure ratio” is the pressure ratio across the fan blade alone, without a Fan Exit Guide Vane (“FEGV”) system. The low fan pressure ratio as disclosed herein according to one non-limiting embodiment is less than about 1.45. “Low corrected fan tip speed” is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tram° R)/(518.7° R)]{circumflex over ( )}0.5. The “Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft/second (350.5 m/s).


Combustion within combustor section 26, and expansion across the turbine section 28, generates extreme levels of heat, and exposes components at or near the combustor section 26 and turbine section 28, and in contact with the flowpath, to the high levels of heat. In alternative examples, any component within the turbine engine core can be exposed to the high levels of heat. As used herein, the turbine engine core refers to the compressor section 24, combustor section 26 and the turbine section 28, as well as the inner and outer radial structures that define the compressor section 24, combustor section 26 and turbine section 28. Turbine engine components exposed to the primary flowpath are referred to herein as “flowpath components”. In some examples, the magnitude of heat to which the flowpath components are exposed is in excess of the heat capabilities of the flowpath component. In such examples, the flowpath components are actively cooled, in order to maintain the temperature of the flowpath component below a maximum temperature to which the component can be exposed without suffering damage. One way of sourcing the coolant for the flowpath components is to remove (bleed) air from within the compressor section 24, either at a mid-compressor bleed or at a compressor outlet, and duct the bleed air to a cooling circuit of the flowpath component being cooled.


With continued reference to FIG. 1, FIG. 2 schematically illustrates a portion 100 of a gas turbine engine including a first exemplary cooled cooling air system 110. The illustrated portion 100 of the gas turbine engine includes a compressor section 102, a combustor section 104 and a turbine section 106. A compressor bleed 120 is included at an outlet of the compressor section 102 and provides a portion of the compressed air output from the compressor section 102 to the cooled cooling air system 110. The cooled cooling air system 110 ducts the bleed air to an input port 130 of a cooling circuit of a flowpath component at, or near, a last stage of the compressor section 102. In alternative examples, the cooled cooling air can be provided to a flowpath component at any other position within the compressor section 102.


The cooled cooling air system 110 further includes a supplementary coolant injector 140. The supplementary coolant injector 140 is configured to inject a supplementary coolant, such as a liquid or a compressed gas, into the cooled cooling air system 110. Injection of the supplementary coolant reduces the temperature of the bleed air, allowing the bleed air to be utilized to cool a flowpath component. In some examples, such as the liquid supplementary coolant examples, the supplementary coolant operates to cool the bleed air at least in part via a phase change, where the liquid coolant is converted into a gas. In other examples, such as a compressed gas supplementary coolant example, the expansion of the supplemental coolant can contribute to, and enhance, the cooling within the cooled cooling air system 110.


The supplementary coolant is provided to the injector 140 from a supplementary coolant source 150. The supplementary coolant source 150 is disposed within the engine housing. In the case of a liquid supplementary coolant, the supplementary coolant source 150 can be a liquid reservoir. In the case of a compressed gas supplementary coolant, the supplementary coolant source can be a pre-charged canister, a supplementary compressor, a gas generator, or any similar construction. The injector 140 is connected to the supplementary coolant source 150 via any known connection suitable for the fluid type of the supplementary coolant.


In some examples, the cooled cooling air is sufficient to cool the receiving flowpath component, without requiring supplementary coolant injection in some modes of engine operation, but requires supplementary coolant injection in other modes of engine operation. In such an example, a controller 160 can control the injector 140 using any known injection control, such that supplementary coolant is provided to the cooled cooling air system 110 only during modes of engine operation where the supplementary coolant is required. Further, in some examples, the amount of supplementary coolant required can vary depending on the mode of operation in which the engine is operating. In such examples, the controller 160 can vary the volume of supplementary coolant provided to the cooled cooling air path and/or vary the frequency with which the supplementary coolant is provided to the cooled cooling air system 110.


With continued reference to FIG. 2, and with like numerals indicating like elements, FIG. 3 illustrates another exemplary portion 200 of a gas turbine engine including a first exemplary cooled cooling air system 210. The illustrated portion 200 of the gas turbine engine includes a compressor section 202, a combustor section 204 and a turbine section 206 defined within an engine core 201. A compressor bleed 220 is included at a mid-stage of the compressor section 202. The compressor bleed 220 removes a portion of the compressed air at the corresponding stage of the compressor section 202 and provides the removed (bleed) air to the cooled cooling air system 210. The cooled cooling air system 210 includes a portion that extends outside of the engine core 201. The cooled cooling air system 210 ducts the bleed air to an input port 230 of a cooling circuit of a flowpath component at, or near, a mid-stage of the turbine section 206. In alternative examples, the cooled cooling air can be provided to a flowpath component at any other position within the turbine section 206, including flowpath components at the first stage or multiple flowpath components disposed at multiple stages of the turbine section 206.


As with the example of FIG. 1, in some or all modes of engine operation, the temperature of the coolant provided from the bleed 220 is too high to sufficiently cool the flowpath components receiving the cooled cooling air from the cooled cooling air system 210. In such a case, a supplementary coolant is injected into the cooled cooling air system 210 via a supplementary coolant injector 240. In the illustrated example, the supplementary coolant injector 240 is positioned exterior to the engine core 201. The supplementary coolant is stored and/or generated, depending on the type of supplementary coolant used, in a supplementary coolant reservoir 250. The supplementary coolant reservoir 250 provides the supplementary coolant to the injector 240 via any suitable supplementary coolant transmission means.


Further, as with the example of FIG. 2, a controller 260 can be controllably coupled to the injector 240, thereby allowing the supplementary coolant to be provided only during engine modes of operation where the supplementary coolant is needed, and allowing the injector 240 to vary the amount of supplementary coolant provided during different modes of engine operation in which some supplementary coolant is needed.


With continued reference to FIGS. 2 and 3, and with like numerals indicating like elements, FIG. 4 schematically illustrates another exemplary portion 300 of a gas turbine engine including a first exemplary cooled cooling air system 310 and a second cooled cooling air system 312. The illustrated portion 300 of the gas turbine engine includes a compressor section 302, a combustor section 304 and a turbine section 306. A first compressor bleed 320 is included at a mid-stage of the compressor section 302. The first compressor bleed 320 removes a portion of the compressed air at the corresponding stage of the compressor section 302 and provides the removed (bleed) air to the first cooled cooling air system 310. The first cooled cooling air system 310 ducts the bleed air to an input port 330 of a cooling circuit of a flowpath component at, or near, a mid-stage of the turbine section 306.


A second compressor bleed 322 is provided at an outlet of the compressor section 302. The second compressor bleed removes (bleeds) a portion of the compressed air output from the compressor section 302, and provides the bleed air to the second cooled cooling air system 312. The second cooled cooling air system 312 provides the bleed air to an input port 332 at a first stage of the turbine section 306.


In alternative examples, the cooled cooling air in either cooled cooling air system 310, 312 can be provided to flowpath components at any other positions within the turbine section 206, including to multiple flowpath components disposed at multiple stages of the turbine section 206.


As with the previous examples, in some or all modes of engine operation, the temperature of the coolant provided from the bleeds 320, 322 is too high to sufficiently cool the flowpath components receiving the cooled cooling air from the corresponding cooled cooling air systems 310, 312. In such a case, a supplementary coolant is injected into the cooled cooling air systems 310, 312 via supplementary coolant injectors 340, 342. The supplementary coolant is stored and/or generated, depending on the type of supplementary coolant used, in a supplementary coolant reservoir 350. The supplementary coolant reservoir 350 provides the supplementary coolant to the injectors 340, 342 via any suitable supplementary coolant transmission means. In some alternative examples, the first and second cooled cooling air systems 310, 312 can utilize distinct supplementary coolant types. In such an example, a second supplementary coolant source 352 can also be included and provides the second type of supplementary coolant in the same manner as the first supplementary coolant reservoir 350.


Further, as with the previous examples, a controller 360 can be controllably coupled to the injectors 340, 342, thereby allowing the supplementary coolant to be provided only during engine modes of operation where the supplementary coolant is needed, and allowing the injectors 340, 342 to vary the amount of supplementary coolant provided during different modes of engine operation in which some supplementary coolant is needed. Further, each of the injectors 340, 342 is independently controlled, allowing supplementary coolant to be provided to one, both, or neither of the cooled cooling air systems at any given time, depending on the particular mode of engine operations.


With continued reference to FIGS. 2-4, FIG. 5 schematically illustrates a combination of the example of FIG. 2 and the example of FIG. 4. The exemplary portion 400 of the gas turbine engine includes a compressor section 402, a combustor section 404, and a turbine section 406. The exemplary schematic includes a first, second and third, cooled cooling air system 410, 412, 414. Each cooled cooling air system is connected to a compressor bleed, 420, 422, 424, and provides cooling air to a corresponding flowpath component via input ports 430, 432, 434. Supplementary coolant injectors 440, 442, 444 are included in each of the cooled coolant systems 410, 412, 414, and provide supplementary coolant from at least one of the supplementary coolant reservoirs 450, 452, 454 in quantities depending on the specific mode of engine operations. As with the previous examples, each of the injectors 440, 442, 444 can be independently controller via an engine controller 460.


While illustrated in each of the above examples as providing supplementary coolant to the corresponding cooled cooling air system at a single schematic injection point, one of skill in the art will understand that the injectors can include multiple ports, and injection holes for providing the supplementary coolant to the corresponding cooled cooling air system. Further, the position of the injector 140, relative to the flow through the cooled cooling air system is not limited to the illustrated exemplary positions. The injectors can be positioned immediately adjacent the bleed, immediately adjacent the cooled cooling air system outlet, or at any position between the two, depending on the structural requirements of the engine, and the specific cooling needs of any given engine system.


In further examples, one or more included cooled cooling system can include a physical heat exchanger that provides a set amount of cooling to the cooled cooling air under all operating conditions, and supplemental coolant can be injected to the cooled cooling air upstream, or downstream, of the physical heat exchanger according to the above description.


While illustrated in FIGS. 2 and 4 as interior to the engine core, one of skill in the art will understand that as with FIG. 3, some or all of the cooled cooling air circuit ducting can pass exterior to the engine core, and in such examples the supplementary coolant injector can be included exterior to the engine core as well.


It is further understood that any of the above described concepts can be used alone or in combination with any or all of the other above described concepts. Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.

Claims
  • 1. A gas turbine engine comprising: an engine core having a compressor section, a combustor section fluidly connected to the compressor section, and a turbine section fluidly connected to the combustor section;at least one compressor bleed connecting a compressor flowpath with a first cooled cooling air path, the at least one compressor bleed including a first compressor bleed disposed at a compressor outlet;the first cooled cooling air path including a supplementary coolant injector connected to a supplementary coolant supply and configured to inject a supplementary coolant into the first cooled cooling air path, the first cooled cooling air path including a portion exterior to the engine core,wherein the first cooled cooling air path ducts bleed air to an input port at, or near, a last stage of the compressor section; andthe supplementary coolant contained in said supplementary coolant supply comprises at least one of liquid nitrogen, liquid CO2 and liquid air.
  • 2. The gas turbine engine of claim 1, wherein the supplementary coolant injector is exterior to the engine core.
  • 3. The gas turbine engine of claim 1, wherein at least a second compressor bleed of the at least one compressor bleed is disposed at a mid-compressor stage.
  • 4. The gas turbine engine of claim 1, wherein the supplementary coolant is configured to cool coolant in said first cooled cooling air path at least partially via expansion of the supplementary coolant.
  • 5. The gas turbine engine of claim 1, wherein the supplementary coolant injector comprises a plurality of supplementary coolant ports, each supplementary coolant port in said plurality of supplementary coolant ports being configured to inject a portion of the supplementary coolant into the first cooled cooling air path.
  • 6. The gas turbine engine of claim 1, wherein the at least one compressor bleed comprises at least the first compressor bleed connected to the first cooled cooling air path and a second compressor bleed connected to a second cooled cooling air path, and wherein the supplementary coolant connected to the first cooled cooling air path is a liquid, and a second supplementary coolant connected to the second cooled cooling air path is a compressed gas.
  • 7. The gas turbine engine of claim 6, wherein the supplementary coolant is configured to cool coolant in said first cooled cooling air path at least partially via a state change of the supplementary coolant.
  • 8. The gas turbine engine of claim 1, further comprising an engine controller controllably coupled to said supplementary coolant injector and configured to control injection of the supplementary coolant in the supplementary coolant supply through the supplementary coolant injector.
  • 9. The gas turbine engine of claim 8, wherein the controller includes a memory storing instructions configured to cause the controller to operate the supplementary coolant injector at a first injection level during a first mode of engine operations, and at a second injection level during a second mode of engine operations.
  • 10. The gas turbine engine of claim 1, wherein the first cooled cooling air path includes a heat exchanger configured to cool bleed air passing through the first cooled cooling air path.
  • 11. The gas turbine engine of claim 1, wherein the supplementary coolant supply is distinct from the compressor.
  • 12. The gas turbine engine of claim 1, wherein the supplementary coolant supply is a supplementary coolant reservoir.
  • 13. The gas turbine engine of claim 1, wherein the supplementary coolant supply includes a first supplementary coolant reservoir and a second supplementary coolant reservoir distinct from the first supplementary coolant reservoir.
  • 14. The gas turbine engine of claim 13, wherein a first coolant contained in the first supplementary coolant reservoir is a distinct coolant from a second coolant contained in the second supplementary coolant reservoir.
US Referenced Citations (136)
Number Name Date Kind
2692476 Schaal et al. Oct 1954 A
3878677 Colvin Apr 1975 A
4254618 Elovic Mar 1981 A
4539945 Bosisio Sep 1985 A
4882902 Reigel et al. Nov 1989 A
5056335 Renninger et al. Oct 1991 A
5269135 Vermejan et al. Dec 1993 A
5305616 Coffinberry Apr 1994 A
5392614 Coffinberry Feb 1995 A
5414992 Glickstein May 1995 A
5452573 Glickstein et al. Sep 1995 A
5498126 Pighetti et al. Mar 1996 A
5724806 Horner Mar 1998 A
5758485 Frutschi Jun 1998 A
5867979 Newton et al. Feb 1999 A
5918458 Coffinberry et al. Jul 1999 A
6050079 Durgin et al. Apr 2000 A
6065282 Fukue et al. May 2000 A
6134880 Yoshinaka Oct 2000 A
6430931 Horner Aug 2002 B1
6487863 Chen et al. Dec 2002 B1
6612114 Klingels Sep 2003 B1
6615574 Marks Sep 2003 B1
6892523 Fetescu et al. May 2005 B2
7237386 Hoffmann et al. Jul 2007 B2
7246484 Giffin, III et al. Jul 2007 B2
7284377 Joshi et al. Oct 2007 B2
7306424 Romanov et al. Dec 2007 B2
7334412 Tiemann Feb 2008 B2
7347637 Kubo et al. Mar 2008 B2
7500365 Suciu et al. Mar 2009 B2
7552591 Bad et al. Jun 2009 B2
7698884 Maguire et al. Apr 2010 B2
7765788 Schwarz Aug 2010 B2
7823389 Seitzer et al. Nov 2010 B2
7882691 Lemmers, Jr. et al. Feb 2011 B2
7886520 Stretton et al. Feb 2011 B2
8015828 Moniz et al. Sep 2011 B2
8037686 Lasker Oct 2011 B2
8087249 Ottaviano et al. Jan 2012 B2
8181443 Rago May 2012 B2
8307662 Turco Nov 2012 B2
8350398 Butt Jan 2013 B2
8397487 Sennoun et al. Mar 2013 B2
8402742 Roberge et al. Mar 2013 B2
8434997 Pinero et al. May 2013 B2
8511967 Suciu et al. Aug 2013 B2
8522529 Martinou et al. Sep 2013 B2
8572982 Tiemann Nov 2013 B2
8602717 Suciu et al. Dec 2013 B2
8621871 McCune et al. Jan 2014 B2
8727703 Laurello et al. May 2014 B2
8776952 Schwarz et al. Jul 2014 B2
8814502 Eleftheriou Aug 2014 B2
8876465 Stretton Nov 2014 B2
8961108 Bergman et al. Feb 2015 B2
9234481 Suciu et al. Jan 2016 B2
9243563 Lo Jan 2016 B2
9255492 Bacic Feb 2016 B2
9260974 Hasting Feb 2016 B2
9297391 Rued et al. Mar 2016 B2
9422063 Diaz Aug 2016 B2
9429072 Diaz et al. Aug 2016 B2
20030046938 Mortzheim Mar 2003 A1
20040088995 Reissig May 2004 A1
20050172612 Yamanaka et al. Aug 2005 A1
20070022735 Henry et al. Feb 2007 A1
20070213917 Bruno et al. Sep 2007 A1
20070245738 Stretton et al. Oct 2007 A1
20080028763 Schwarz et al. Feb 2008 A1
20080202092 Eluripati Aug 2008 A1
20080230651 Porte Sep 2008 A1
20080253881 Richards Oct 2008 A1
20090007567 Porte et al. Jan 2009 A1
20090090096 Sheridan Apr 2009 A1
20090145102 Roberge et al. Jun 2009 A1
20090196736 Sengar et al. Aug 2009 A1
20090226297 Yanagi et al. Sep 2009 A1
20090272120 Tiemann Nov 2009 A1
20100043396 Coffinberry Feb 2010 A1
20100154434 Kubota et al. Jun 2010 A1
20110036066 Zhang et al. Feb 2011 A1
20110072827 Ciofini et al. Mar 2011 A1
20110088405 Turco Apr 2011 A1
20110120083 Giffin et al. May 2011 A1
20110247344 Glahn et al. Oct 2011 A1
20120067055 Held Mar 2012 A1
20120102915 Baltas May 2012 A1
20120159961 Krautheim et al. Jun 2012 A1
20120180509 DeFrancesco Jul 2012 A1
20130036747 Fuchs et al. Feb 2013 A1
20130067928 Arias Chao et al. Mar 2013 A1
20130098059 Suciu et al. Apr 2013 A1
20130104564 Arar May 2013 A1
20130111916 Beard May 2013 A1
20130145744 Lo et al. Jun 2013 A1
20130145774 Duong et al. Jun 2013 A1
20130186102 Lo Jul 2013 A1
20130199156 Ress, Jr. et al. Aug 2013 A1
20130239583 Suciu et al. Sep 2013 A1
20130319002 Sidelkovskiy et al. Dec 2013 A1
20140020506 Duong Jan 2014 A1
20140137417 Silberberg et al. May 2014 A1
20140196469 Finney et al. Jul 2014 A1
20140230444 Hao et al. Aug 2014 A1
20140250898 Mackin et al. Sep 2014 A1
20140260326 Schwarz et al. Sep 2014 A1
20140311157 Laurello et al. Oct 2014 A1
20140341704 Fletcher Nov 2014 A1
20140352315 Diaz Dec 2014 A1
20150027129 Franitza Jan 2015 A1
20150107258 Rofa Apr 2015 A1
20150114611 Morris et al. Apr 2015 A1
20150285147 Phillips et al. Oct 2015 A1
20150308339 Forcier Oct 2015 A1
20150330236 Beecroft et al. Nov 2015 A1
20150354465 Suciu et al. Dec 2015 A1
20150354822 Suciu et al. Dec 2015 A1
20160010554 Suciu et al. Jan 2016 A1
20160131036 Bintz et al. May 2016 A1
20160131037 Spangler et al. May 2016 A1
20160169118 Duong Jun 2016 A1
20160215732 Malecki Jul 2016 A1
20160237906 Suciu et al. Aug 2016 A1
20160312797 Suciu et al. Oct 2016 A1
20160341125 Kraft et al. Nov 2016 A1
20160369697 Schwarz et al. Dec 2016 A1
20170009657 Schwarz et al. Jan 2017 A1
20170044980 Duesler et al. Feb 2017 A1
20170044982 Duesler et al. Feb 2017 A1
20170152765 Uechi et al. Jun 2017 A1
20170159568 Sennoun et al. Jun 2017 A1
20170167388 Merry et al. Jun 2017 A1
20170175632 Hanrahan et al. Jun 2017 A1
20170184027 Moniz et al. Jun 2017 A1
20170204787 Duesler et al. Jul 2017 A1
Foreign Referenced Citations (30)
Number Date Country
2852057 Jun 1979 DE
0447886 Sep 1991 EP
0469825 Feb 1992 EP
0608142 Jul 1994 EP
0903484 Mar 1999 EP
1314872 May 2003 EP
1944475 Jul 2008 EP
2085599 Aug 2009 EP
2128023 Dec 2009 EP
2362081 Aug 2011 EP
2540991 Jan 2013 EP
2584172 Apr 2013 EP
2604825 Jun 2013 EP
2733322 May 2014 EP
2865981 Apr 2015 EP
2942490 Nov 2015 EP
3085923 Oct 2016 EP
3085924 Oct 2016 EP
3121411 Jan 2017 EP
2851295 Aug 2004 FR
1244340 Aug 1971 GB
2152148 Jul 1985 GB
H1136889 Feb 1999 JP
2003037715 May 2003 WO
2008082335 Jul 2008 WO
2013154631 Oct 2013 WO
2014033220 Mar 2014 WO
2014046713 Mar 2014 WO
2014092777 Jun 2014 WO
2014120125 Aug 2014 WO
Non-Patent Literature Citations (22)
Entry
The Extended European Search Report for EP Application No. 18152149.3, dated May 30, 2018.
Dornheim, Michael A., Rolls-Royce Trent 1000 to Drive Boeing 787 Accessories From IP Spool, Aviation Week & Space Technology, Mar. 28, 2005, p. 51, Los Angeles, CA.
U.S. Appl. No. 15/232,101.
U.S. Appl. No. 14/964,984.
U.S. Appl. No. 14/967,446.
U.S. Appl. No. 15/069,197.
U.S. Appl. No. 15/269,014.
U.S. Appl. No. 15/373,072.
European Search Report for European Application No. 16166707.6 dated Sep. 26, 2016.
European Search Report for European Application No. 16166724.1 dated Sep. 26, 2016.
European Search Report for European Patent Application No. 16154635.3 dated Jul. 6, 2016.
European Search Report for European Application No. 16155316.9 completed Jun. 30, 2016.
European Search Report for Application No. 16170021.6 dated Oct. 11, 2016.
European Search Report for Application No. 16174862.9 dated Nov. 7, 2016.
European Search Report for European Application No. 16175531.9 dated Nov. 15, 2016.
European Search Report for European Application No. 16175533.5 dated Nov. 15, 2016.
European Search Report for European Application No. 16175552.5 dated Nov. 17, 2016.
European Search Report for European Application No. 16175760.4 dated Nov. 16, 2016.
European Search Report for Application No. 16178207.3 dated Nov. 21, 2016.
European Search Report for European Application No. 16202876.5 dated Apr. 24, 2017.
European Search Report for European Application No. 16180657.5 dated Dec. 16, 2016.
European Search Report for EP Application No. 17160816.9 dated Jul. 21, 2017.
Related Publications (1)
Number Date Country
20180202362 A1 Jul 2018 US