The invention relates to an injection device, in particular an autoinjector, for administering a medicine, as described in claim 1.
From U.S. Pat. No. 6,767,336 B1 an automated injection device is known for administering a medicine, which comprises a support housing in which the drive unit, the storage container for the medicine and the needle arrangement are arranged. Via the cannula of the needle arrangement an elastically deformable and penetrable protection element is passed through, which is connected to the needle holder. The needle holder supports the needle and is coupled to a storage container for the medicine at its distal end. The cannula is thus continually in flow connection with the inner chamber and thereby with the medicine. In the region of the distal end on the support housing a needle protection element is mounted longitudinally displaceably to which a further driving means is allocated. Starting from the proximal end of the support housing a triggering sleeve is assigned thereto and the latter mounts the support housing at least in part. A safety element is assigned to the first drive unit in order to avoid unwanted triggering. The triggering of the needle protection element or its driving means is performed during the relative displacement of the medicine store together with the needle arrangement arranged thereon. Both the triggering sleeve and the needle protection element are arranged closely together and behind one another in axial direction on the common support housing.
WO 2005/113039 A1 describes an autoinjector for administering a medicine, which comprises a fixed support housing with an inner and outer housing wall in the region of the distal end. The support housing contains the drive unit, the storage container for the medicine and the needle arrangement. The proximal end of the needle is in continual flow connection with the inner chamber of the storage container and thus with the medicine. Furthermore, the automatic injection device comprises a needle protection element which is displaceable in the direction of the longitudinal axis, which is guided between the inner and outer housing wall of the support housing. An additional drive unit is assigned to said sleeve-like needle protection element, in order after releasing to move the latter into the covering position. In addition, on the outside of the support housing a grip can be provided to improve the handling. At the end opposite the needle—i.e. the proximal end—a releasing device is arranged for triggering the first drive unit. In this case the triggering movement is performed by a sliding movement in perpendicular direction in relation to the longitudinal axis. After the transverse displacement and the unlocking of the restraining device the first drive unit is activated, whereby the piston together with the storage container moves so far in the direction of the distal end until a stop of the storage container facing the proximal end reaches a stop of the inner housing wall of the support housing. At the same time as this longitudinal displacement the needle protection element is also released which is moved until it is applied against the administration site of the medicine. After administering the medicine and removing the entire injection device, owing to the already activated additional drive device an additional forwards movement of the needle protection element is performed until the needle is completely covered.
From EP 0 307 367 B1 and DE 38 72 122 T2 an injection device is known for administering a medicine, in which the medicine can be taken in by drawing up into the injection cylinder. A safety device for a needle protection element arranged on the outer side of the injection cylinder is activated by means of a conical part on the piston rod. When injecting or administering the medicine, the safety device is triggered by the conical part, whereby under the effect of spring force the outerlying needle protection sleeve is displaced along the injection cylinder until the needle projecting over the injection cylinder is covered.
From U.S. Pat. No. 5,295,965 A an automated injection device is known for administering a medicine, in which the outer casing is a needle protection sleeve. The latter extends from the distal end facing the patient up to the proximal end and can be activated there by a cap-like triggering sleeve. For the activation a safety pin arranged in the region of the proximal end is released, which pin secures the first drive unit until released by the cap-like triggering sleeve. After the removal of the safety pin the sleeve-like triggering sleeve can be moved relative to the support housing and the needle protection sleeve, whereby both the first drive unit and the needle protection sleeve are triggered. The needle protection sleeve is in turn allocated its own spring device by which the latter is moved into a position covering the needle.
From U.S. Pat. No. 5,658,259 A and EP 0 956 058 B1 a further automated injection device is known for administering a medicine from a cartridge. For this the cartridge with the medicine is arranged inside a support housing, whereby the cartridge is further allocated a first drive unit for its activation and the administering of a medicine. Inside the support housing a needle protection sleeve is arranged which can be triggered by the longitude displacement of the needle support, which is also allocated an adjusting element. The needle protection sleeve is held inside the support body by means of a detent connection until its release by the displaced needle support. After administering the medicine the needle protection sleeve covers the end of the needle projecting over the autoinjector.
U.S. Pat. No. 4,031,893 A describes a further autoinjector, in which in a common support housing the triggerable drive unit and the medicine container is mounted with the needle arrangement placed thereon. The drive unit is in turn secured against unintentional release by a safety element. The support housing is surrounded on the outside by a sleeve-like component, which is coupled at its proximal end to an additional triggering sleeve. The triggering sleeve after the removal of the safety cap with the safety pin triggers the drive unit, whereby the medicine container is displaced together with the needle arrangement in the direction of the distal end. The cannula which is in continual flow connection with the inner chamber of the medicine container is surrounded by an elastically deformable protective sleeve, which is supported on the inside of the distal end of the support housing. During the forwards movement the cannula penetrates the elastically deformable protection sleeve and exits the support housing for the injection. The elastically deformable needle protection sleeve after the completion of the injection process causes a restoring of the needle arrangement together with the medicine container into the interior of the support housing.
The underlying objective of the invention is to create an injection device, in particular an autoinjector, which in a simple operation provides a high degree of operational safety, in particular improved needle protection. Furthermore, a method for sterilisation is also described, in which at least the entire needle arrangement remains reliably sterilised even during a long storage period.
The objective of the invention is achieved in that the support housing is surrounded over most of its longitudinal extension between the distal and proximal end by the activating sleeve, and the needle protection element with the second drive unit cooperating therewith, as viewed in axial cross section, is arranged radially between the support housing and the activating sleeve.
The surprising advantage resulting from the features of claim 1 is that the activating sleeve also mounts the drive unit assigned to the needle protection element, whereby any manipulation for potential subsequent use can reliably be avoided. Furthermore, in this way however for the entire mounting in the storage position manipulation on the drive units and needle protection element is avoided. In addition however, additional protection of all of the interior components is achieved by the almost complete covering with the activating sleeve. The simple operation also means that any incorrect handling is practically excluded and no additional displacement movements or triggering movements are necessary to initiate the administration of the medicine. A further advantage is that the activating and operating sleeve after its simple release by the safety device by the user in a one-handed operation at the same time the entire injection device can be brought up to the body part receiving the medicine and by means of the corresponding support of the support housing of the injection device on said body part and suitable pressure a relative displacement of the activating sleeve relative to the support housing can be achieved. In this way the administration of the medicine is initiated and carried out. Thus the entire injection device can be prepared simply by removing the safety cap of the safety device for the subsequent administration procedure and with further simple pressure movement introduced via the activating sleeve on the corresponding body part the medicine is administered automatically.
A further embodiment according to claim 2 is also advantageous, as by separating the support housing into two mutually displaceable support housing parts different operating states can be achieved, which are significant during the sterilisation and the subsequent storage period.
An embodiment according to claim 3 is also advantageous as an additional guide is formed between the support housing parts to be coupled together, whereby at the same time in this area predefined coupling positions can be created.
By means of the embodiment according to claim 4 it is possible in the first coupling position to achieve a defined positioning of the two support housing parts relative to one another and also to provide the option of external access in this position in the front support housing part.
In a further embodiment according to claim 5 only one movement direction of the two support housing parts relative to one another is allowed, but unwanted separation, caused for example by vibrations and shocks etc., is reliably prevented.
A development according to claim 6 is also advantageous, as in this way the support housing at its distal end also allows penetration through the sealing stopper, and thereby a sterile sealing of the front holding chamber in connection with the front support housing part is ensured during the entire storage period.
In the embodiment according to claim 7 it is an advantage that at a predetermined point access required for the subsequent sterilisation can be provided in the front holding chamber in order to be able to sterilise the needle arrangement contained and mounted therein even with an already premounted injection device.
By means of the development according to claim 8 a predefined stop area can be created on the one hand for the sealing element and on the other hand for the support of the second drive unit.
By means of the embodiment according to claim 9 after completing the sterilisation a clear and reliable sealing of the sterilised front holding chambers can be performed. Furthermore, the circumferential sealing element can also be used as a damping holder for the cartridge with the medicine mounted in the support housing. In this way impact and shocks coming from the outer activating sleeve towards the cartridge with the medicine can be damped or completely reduced and prevented.
An embodiment according to claim 10 is also advantageous, as thus for gassing during the ETO sterilisation only a predefined inner chamber has to undergo sterilisation.
According to an embodiment described in claim 11, with an already premounted injection device between the individual components access can still be provided in the front holding chamber for the subsequent sterilisation.
In this case an embodiment according to claim 12 has proved to be advantageous as with a short displacement movement between the two support housing parts after sterilisation a perfect seal can also be obtained even for longer storage periods.
In an advantageous development according to claim 13 between the activating sleeve and the support housing only pushing into one another and over one another is allowed, but the unwanted separation of the two parts from one another is reliably prevented. In this way a very high degree of operational reliability is achieved and manipulation is virtually excluded.
A development according to claim 14 is also an advantage as in this way a predefinable control surface is formed and after a predeterminable relative displacement movement between the activating sleeve and the support housing the needle protection element is released or activated. The latter is adjusted by means of the second drive unit cooperating therein into a position covering the cannula after use.
According to claim 15 thus during the storage position a clear securing in position is achieved between the needle protection element and the support housing. This locking can be triggered by a simple pivot movement of the lever element, whereby for this a relative longitudinal displacement is required between the support housing and the activating sleeve, whereby in cooperation with the stop surface formed on the activating sleeve the rib-like lever element is displaced and thus the needle protection element released.
In the development according to claim 16 a repeat restoring and associated therewith a repeat release of the already used needle tip of the cannula is prevented.
Also an embodiment according to claim 17 is possible, as hereby additionally the needle protection element is fixed mechanically between the support housing and the activating sleeve.
The embodiment according to claim 18 allows a stop delimitation for the forwards movement of the needle protection element in the covering position. In this way the adjusting forces of the driving means of the second drive unit can be selected to be slightly higher in order thus to obtain a perfect covering position each time.
An embodiment according to claim 19 is advantageous, as thus a premanufactured unit can be created which can be arranged on the cartridge or held thereon. This entire needle arrangement is set up so that the needle tip facing the cartridge or the cartridge seal does not penetrate the cartridge seal during the entire storage position, and thus no medicine stored in the cartridge can be discharged. The flow connection between the cannula and the interior of the cartridge is only formed during the injection procedure.
An embodiment according to claim 20 is also advantageous as thereby the needle support can be held in a clearly determined position relative to the guide element, and only after a predefinable displacement movement of the cartridge relative to the support housing can the flow connection be formed between the cannula and the interior of the cartridge.
However, also an embodiment as described in claim 21 is possible, as in this way in cooperation with a control cam only at a predefinable position or after a predefinable displacement movement can the sticking procedure of the needle end through the cartridge seal be performed and thus access provided to the medicine to be administered.
The embodiment according to claim 22 is advantageous as in this way by means of the reduction of the dimension in the region of the piston rod a greater spacing is achieved from the inner wall of the cartridge and thus in case of impact damage to the cartridge can be prevented.
A further embodiment according to claim 23 is also advantageous, as thus with a clear short adjustment movement between the activating sleeve and the support housing the injection procedure can be triggered, which is performed automatically after the triggering or activation of the drive unit.
An embodiment according to claim 24 is also advantageous, as thus during the relative longitudinal displacement of the entire needle unit with the cartridge on the one hand the time of sticking the needle into the patient and on the other hand the formation of the flow connection with the interior of the cartridge can be determined.
By means of the embodiment according to claim 25 it is possible firstly to obtain a reliable penetration of the cannula into the patent and only then to provide access to the medicine. In this way the unwanted discharge of medicine from the needle is avoided even before the insertion of the cannula into the patient.
In another embodiment variant according to claim 26 the entire injection device achieves a high level of operational reliability as upon activation of the first drive unit the needle protection for the covering position of the cannula used is also activated.
A development according to claim 27 is also advantageous, as thus in a single displacement movement a simultaneous triggering is performed and in this way in case of a possible malfunction before the administration of the medicine the covering of the needle tip projecting over the housing is performed reliably.
Furthermore, also an embodiment is advantageous, as described in claim 28, as in this way a slim structure can be provided and in addition a relatively precise longitudinal guiding of the needle protection element can be achieved on the support housing.
An embodiment as described in claim 29 is also possible, as in this way the holding arms are arranged relative to the holding disc and thereby a mutual jamming is reliably prevented. Furthermore, an even more reliable effect of the entire safety device can be achieved for the first drive unit.
Also a design according to claim 30 is advantageous as in this way external sterilisation of the assembly is possible without after the sterilisation impurities re-entering into the not yet completely sterilised holding chamber around the needle arrangement.
Also a development according to claim 31 is advantageous, as thus also several such injection devices can be stored next to one another. Furthermore, also the external sterilisation of the assembly is also made possible without after the sterilisation impurities re-entering the not yet completely sealed sterilised holding chamber around the needle arrangement.
Lastly, also an embodiment as described in claim 32 is possible as thus a material is used which according to the current standards also enables germ-free or sterile storage over an extended storage period.
The objective of the invention is also achieved independently of this by a method for sterilising the injection device according to the features described in claim 33. The advantages resulting from the combination of features of this claim are that in this way an injection device can be prefabricated and assembled with all of its components so that with minimum effort a completely sealed holding chamber can be created inside the injection device. By separating the support housing into two support housing parts following the sterilisation by interrupting the flow connection an absolutely sterile state of the components provided for the injection can be ensured. This is ensured by the simplest means without additional sealing elements being necessary.
Moreover, the objective of the invention is also achieved independently of this by a method for sterilising the injection device according to the features described in claim 34. The advantages resulting from the combination of features in this claim are that such an injection device can be premanufactured with all of its components and mounted so that only with minimum effort a completely tightly sealed holding chamber can be formed within the injection device. With this injection device the entire needle arrangement and the inner chamber surrounding the needle arrangement can be sterilised, whereby also during the entire storage period this sterile state can be reliably maintained. This is achieved with the simplest means without additional sealing elements being required.
Furthermore, a procedure according to the features given in claim 35 is also advantageous, as thereby with only a relatively short axial displacement of the front and rear support housing part towards one another a completely sealed holding space is provided.
A further advantageous procedure is described in claim 36, whereby access to the sterilised holding chamber is reliably prevented and this locked position can be maintained even over a long storage period.
Also a procedure according to the features described in claim 37 is advantageous as the inner chamber to be sealed can be reduced in size and furthermore also a resilient support of the cartridge relative to the support housing is achieved.
A variant of the method according to claim 38 is also advantageous, because in this way sterilisation external to the assembly is made possible, so that impurities after the sterilisation cannot reach the not yet completely sealed sterilised holding chamber around the needle arrangement.
A procedure according to claim 39 is also advantageous, as also several such injection devices can be stored next to one another. Furthermore, also an external sterilisation is possible of the assembly, without in this way after sterilisation more impurities entering into the not yet completely sealed sterilised holding space around the needle arrangement.
Lastly, however also a variant of the method, as described in claim 40, is advantageous as a material is thus used which according to the current standards also enables a germ-free and sterile storage over a longer storage period.
For a better understanding of the invention the latter is explained in more detail with reference to the following figures.
In a much simplified representation:
Firstly, it should be mentioned that in the variously described embodiments the same parts are provided with the same reference numbers and the same component names, whereby the disclosures contained throughout the description can be transferred to the same parts with the same reference numbers or same component names. Also the details of position used in the description, such as e.g. top, bottom, side etc., relate to the figure currently being described and represented, and with a change in position should be adjusted accordingly to the new position. Furthermore, individual features or combinations of features from the shown and described different exemplary embodiments can represent in themselves independent, inventive solutions according to the invention.
All of the details relating to value ranges in the present description are defined such that they include any and all subranges, e.g. the specification of 1 to 10 includes all subranges starting from the lower limit 1 and including the upper limit 10, i.e. all of the subranges begin with a lower limit of 1 or more and end at an upper limit of 10 or less, e.g. 1 to 1.7 or 3.2 to 8.1 or 5.5 to 10.
In
The injection device 1 is composed of a plurality of components and can comprise a support housing 2, a storage container mounted therein such as a cartridge 3, a first releasable drive unit 4, which is in active connection with the cartridge 3, a safety device 5, a needle arrangement 6, a needle protection element 7 and a second drive unit 8 assigned to the needle protection element 7 and thus in active connection therewith and an activating sleeve 9.
The injection device 1 i.e. the support housing 2 comprises a distal end 11 to be applied to the living being such as a patient 10 and a proximal end 12 averted therefrom, whereby a longitudinal axis 13 extends between the two ends 11, 12. Furthermore, in the description of the position front and rear is used and thereby the front is allocated to the distal end 11 and rear to the proximal end 12. The holding container for a medicine 14 is formed here by the cartridge 3, in which the medicine 14 or the active ingredient to be administered or injected is already stored during the storage position and is ready to be administered. The cartridge 3 is thereby mounted in the support housing 2 and surrounded by the latter. The cartridge 3 is a conventional packaging for medicine 14, whereby the amount of medicine 14 held therein can be adjusted to the respective application. Furthermore, in a known manner the first triggerable drive unit 4 is assigned to the cartridge 3 at the end facing the proximal end 12 of the injection device 1 or is in active connection therewith.
The first drive unit 4 comprises a first driving means 15, which is secured by the safety device 5 against release until the user actively activates the injection device 1, in which the first drive unit 4 is released and thus the injection device 1 is triggered. By means of the safety device 5 thus the first drive unit 4 is secured in its position relative to the support housing 2 prior its activation for the injection procedure. The first drive unit 4, in particular the driving means 15 and the holding arms 16 allocated to the driving means 15 are mounted inside the support housing 2. The holding arms 16 engage in turn in a holding disc 17 arranged in the region of the proximal end 12 of the injection device 1, whereby a detailed description thereof is given in the following. The safety device 5 also comprises a safety cap 18 to prevent the unintentional triggering of the drive unit 4, whereby in its centre a safety pin 19 penetrating the holding disc 17 is arranged. The safety pin locks the holding arms 16 in radial direction in a known manner with respect to the longitudinal axis 13 and prevents up to the removal of the safety cap 18 together with the safety pin 19 a release of the holding arms 16 locked onto the holding disc 17 in radial direction of the longitudinal axis 13.
In the region of the distal end 11 the needle arrangement 6 is arranged directly before the cartridge 3. The needle arrangement 6 comprises in turn a cannula 20 or a hollow needle with needle ends 21, 22 spaced apart from one another in the direction of the longitudinal axis 13. The cannula is held in turn by a needle support 23 and is mounted in the latter. Both needle ends 21, 22 project respectively on both sides of the needle support 23.
The needle support 23 is coupled in turn via a guiding element 24 to a cartridge end 25 facing the distal end 11 or is connected therewith. For further details see also the following
The needle protection element 7, which is in active connection with the second drive unit 8, can be shifted by means of the latter from a non-effective position into a position covering the needle end 21, which projects after the injection procedure over the distal end 11 of the support housing 2. The triggering of the second drive unit 8 and the displacement of the needle protection element 7 are also described in detail in the following. The needle protection element 7 together with the second drive unit 8 is arranged in the region of the exterior of the support housing 2 and is supported at least partly on the latter.
The support housing 2 is also surrounded over the most part of its longitudinal extension between the distal end 11 and the proximal end 12 by the activating sleeve 9 described above and is mounted in the latter. In this case only the distal end 11 of the support housing 2 projects over the activating sleeve 9 in axial direction. Here the term “over the most part” of its longitudinal extension is defined such that the activating sleeve 9 extends in relation to the length of the support housing 2 over an longitudinal extension in a lower limit of at least 50% and an upper limit of up to 100%. In this case advantageous values of the longitudinal extension are at least 50%, preferably at least 60%, in particular at least 70%, preferably at least 80%, preferably at least 90%, particularly preferably at least 95%. As almost the entire support housing 2 is mounted by the activating sleeve 9 or arranged inside the latter the needle protection element 7 is arranged with the second drive unit 8 interacting therewith, as viewed in axial section, radially between the support housing 2 and the activating sleeve 9. In this way there can be no influence on the second drive unit 8 for its triggering or deactivation. The activating sleeve 9 can also be defined as a triggering sleeve. Furthermore, the latter is used not only for the function of activating or triggering the first drive unit 4 but also for the user to hold the entire injection device 1 and keep holding it in the same way during the whole administration process.
The support housing 2 comprises in turn a front and a rear support housing part 27, 28, whereby the front support housing part 27 faces the distal end 11 and thus the patient 10. The rear support housing part 28 is arranged closer to the proximal end 12. The two support housing parts 27, 28 delimit and define respectively a front and rear holding chamber 29, 30, and can be coupled together in a connecting section 31 arranged between the latter by a coupling device 32 in the direction of the longitudinal axis 13 in two different longitudinal positions, a first and a second coupling position.
The coupling device 32 has on the two support housing parts 27, 28 cooperating locking elements 33, 34, which are designed such that the two support housing parts 27, 28 are locked in the two coupling positions in opposite movement directions. Here the term opposite movement direction is meant as locking which prevents the moving apart of the two support housing parts 27, 28 in the direction of the longitudinal axis 13, but allows moving towards one another from the first coupling position into the second coupling position.
The first locking elements 33 of the coupling device 32 are for example formed in the region of the front support housing part 27 by recesses or openings in the wall of the front support housing part 27. Preferably, as viewed in axial direction for the two coupling positions several locking elements 33 arranged behind one another are provided. The locking element or further locking elements 34 of the coupling device 32 of the rear support housing part 28 can be formed by detent noses or detent projections engaging in recesses or openings, whereby preferably as viewed in the direction of the longitudinal axis 13 several of these locking elements 34 are provided. In the first coupling position, in which the two support housing parts 27, 28 have a greater longitudinal extension than in the second coupling position, only the front locking elements 34 are in engagement with the rear locking elements 33 of the front support housing part 27. The second coupling position is shown in
In the region of the distal end 11 the support housing 2 or the front support housing part 27 has an opening 35 allowing the passage of the needle end 21 of the needle arrangement 6. In this opening 35 a penetrable sealing stopper 36 is arranged in a position sealing the front holding chamber 25 relative to the outer environment.
The front support housing part 27 in connection section 31 with the rear support housing part 28 has at least one throughput 37, which allows access from the outside of the support housing 2 at least into the front holding chamber 29 with the needle arrangement 6 arranged therein. The throughput 37 is thus arranged or provided in the wall section of the front support housing part 27 gripping over the rear support housing part 28. Immediately adjacent to the throughput(s) 37 the connecting section 31 gripping over the rear support housing part 28 ends with a wall part 38 springing back to the longitudinal axis 13, which is preferably arranged in a plane aligned perpendicular to the longitudinal axis 13. Said wall part 38 has a face end 39 facing the rear support housing part 28, which is also arranged preferably in the plane aligned perpendicular to the longitudinal axis 13. On the wall part 38 also on the side averted from the rear support housing part 28 the second drive unit 8 is supported with a further driving means 40. The driving means 40 can in turn be formed by a pretensioned compression spring or similar spring element.
Furthermore, on the backspringing face end wall 39 of the wall part 38 a shoulder 41 designed to be wedge-shaped in axial cross section and continuous around the circumference can be arranged. The wedge-shaped tapering is in this case aligned in the direction of the rear support housing part 28.
On the rear support housing part 28 at its end 42 facing the front support housing part 27 a sealing element 43 designed to be continuous around the circumference is arranged or secured thereon. The sealing element 43 is preferably arranged on a face end side of the rear support housing part 28 and secured there. The sealing element 43 designed to be circumferential bears both against the external surface 44 of the cartridge 3 and an internal surface 45 of the front support housing part 27, in particular in the connecting section 31. This bearing preferably seals around the entire circumference on both surfaces 44, 45, whereby in the first coupling position of the two support housing parts 27, 28, the sealing element 43 is arranged spaced apart from the face end wall 39 of the wall part 38 or the shoulder 41 formed on the face end wall 39.
The front support housing part 27 comprises a casing 46 designed to be roughly cylindrical, which in the region of the distal end 11 comprises the opening 35 described above, which is sealed by the sealing stopper 36. The casing 46 is continuous and thus designed to seal up to the connecting section 31. In the latter only the throughputs 37 are provided, through which, in the first coupling position of the two support housing parts 27, 28, a flow connection is formed in the front holding chamber 29 of the front support housing part 27. In this way over the circumference, only one or even several of the throughputs 37 can be provided, which run from the outside of the front support housing part 27 into the front holding chamber 29. In this way in the first coupling position the front holding chamber 29 of the front support housing part 27 on the one hand is delimited in a sealing manner by the casing 46, the sealing stopper 36 arranged in the opening 35, the sealing element 43 and the cartridge 3 projecting into the front holding chamber 29 and a flow connection is provided simply via the throughput 37.
Independently of this it would also be possible however to make not only the front holding space 29 accessible for sterilisation via the throughputs 37, but also to provide access to the rear holding space 30. This could be achieved in that the sealing element 43, as viewed over the circumference, does not bear completely against the outer surface 44 of the cartridge 3. The support of the cartridge 3 on the rear support housing part 28 can be performed via individual support webs distributed around the circumference, which have not been shown in more detail. Furthermore, by means of the divided design of the support housing 2 into the front and rear support housing part 27, 28 a simple sterilisation can be performed by means of gas application and afterwards by means of a corresponding sealing process of the sterile inner chamber the latter can be maintained over a longer period.
In the second coupling position of the two support housing parts 27, 28 the sealing element 43 bears in a sealing manner against the face end wall 39 of the wall part 38 or the shoulder 41 arranged thereon. To obtain a better peripheral seal, the wedge-shaped shoulder 41 described above is provided, which pushes in axial direction into the sealing element 43 during its bearing thereon.
By means of the mutual displacement of the two support housing parts 27, 28 towards one another, the sealing element 43 is pushed past the throughput 37 and the front holding space 29 is completely sealed. Furthermore, the peripheral sealing element 43 can also be used as a damping holder for the cartridge 3 with the medicine mounted in the support housing 2. In this way impact and stress from the external activating sleeve 9 towards the cartridge 3 with the medicine 14 can be damped or completely reduced and absorbed.
A further damping device 86 can be seen from an overview of
The access via the throughput 37 in the first coupling position is used for sterilising the front holding chamber 29 together with the needle arrangement 6 arranged therein. As during the sterilisation the cartridge 3 with the medicine 14 stored therein is already arranged inside the injection device 1, there are only a small number of sterilisation options. Sterilisation under the effect of heat or radiation with electron beams should be avoided for these reasons, so as to avoid negatively affecting the medicine 14. In the present exemplary embodiment preferably gassing with ethylene oxide is performed via the throughput 37 arranged in the connecting section 31. The gassing can also be called ETO-gassing and is sufficiently well known. After the sterilisation process the two support housing parts 27, 28 are moved relative to one another from their first coupling position into the second coupling position, whereby, as already described, the circumferential sealing element 43 ensures the complete sealing of the front holding chamber 29 relative to the external environment. In this way the entire needle arrangement 6 and the cartridge seal 26 is sterilised on the side facing the front holding chamber 29 and remains in this state until the use or application of the injection device 1.
It is also possible that before the sterilisation is carried out by gassing the injection device 1 is completely surrounded by a casing, not shown in detail. In this case for example the casing is made from a paper-fleece-like fibrous material made of thermally welded fibres of high density polyethylene (HDPE). The paper-fleece-like fibrous material is sold for example by the company DuPont under the trade name TYVEK and has the property that the passage of the ethylene oxide required for the gassing is made possible, but the formation of germs and bacteria is reliably prevented. Thus for example the injection device 1 located in the first coupling position of the front end rear support housing part 27, 28 can be surrounded in a simple or also multiple arrangement by the casing. Subsequently, sterilisation by gassing is performed at a suitable location. Following the sterilisation in a separate procedure the two support housing parts 27, 28 are moved into the second coupling position, and thereby the front holding chamber 29 is fired in a sealing manner relative to the external environmental conditions, as already described in detail above. If several injection devices 1 are stored in a tray or holding shell described in more detail below and covered by a cover on the holding shell or surrounded by a casing, the tray can on the wall parts facing the two ends 11, 12 have easily deformable wall sections, which allow the pushing together of the two support housing parts 27, 28 against one another from the first coupling position to the second coupling position, without the tray getting damaged. This is described in more detail in
The activating sleeve 9 is designed at its proximal end 12 such that the latter is used for mounting or coupling the safety cap 18. For this a sleeve wall 47 of the largely cylindrical or tubular activating sleeve 9 in the region of its proximal end 12 has a thinner wall and thus forms a mounting area on the outside of the sleeve wall 47. A cap casing 49 grips over the mounting area 48 on the side facing away from the longitudinal axis 13 and is thus preferably designed to run flat relative to the exterior of the sleeve wall 47.
Furthermore, the activating sleeve 9 at its proximal end 12 in the region of the longitudinal axis 13 has at least one wedge-shaped activating element 50. Said activating element 50 can be designed to be continuous over the circumference and on the side facing the drive unit 4 has a conical surface 51 tapering to the side averted from the drive unit 4. After removing the safety cap 18 with its safety pin 19 upon a relative displacement of the activating sleeve 9 relative to the support housing 2 it is possible to displace the ends of the holding arms 16 on either side of the conical surface 51 radially inwards—i.e. in the direction of the longitudinal axis 13, and in this way release the holding disc 17. This release process is usual with such injection devices 1 and is thus generally known in specialist circles. Therefore, a description of the detailed design of this activating or triggering mechanism for the first drive unit 4 is not given here.
As already described above,
Thus the rear support housing part 28 has on its external surface and in the region of the proximal end 12 at least two detent noses 53, 54 spaced apart from one another in the direction of the longitudinal axis 13, which cooperate with a detent element 55 arranged on the activating sleeve 9 in two different longitudinal positions. The detent element 55 formed on the activating sleeve 9 is preferably a component of the sleeve wall 47 and can for example be connected to a resilient detent arm or formed by the latter. The first detent nose 53 is thus arranged closer to the proximal end 12 than the other detent nose 54. The spacing of the two detent noses 53, 54 corresponds preferably to the triggering movement of the activating sleeve 9 relative to the support housing 2, which is necessary to release at least the first drive unit 4 and thus activate the injection procedure. The two detent noses 53, 54 define the relative positions of the support housing 2 with respect to the activating sleeve 9 on the one hand in the storage position and on the other hand in the injection position. Thus only a relative longitudinal displacement of the activating sleeve 9 with respect to the support housing 2 is possible from the storage position to the injection position, but a relative longitudinal adjustment in the opposite position is reliably prevented.
The activation or triggering of the injection device 1 for the injection process from the storage position to the injection position is performed in that the entire injection device 1 is held by the hand of a user on the activating sleeve 9 and then the safety cap 18 is removed from the proximal end 12 of the activating sleeve 9. Thus the injection device 1 is activated for triggering and the following injection process. Subsequently, the entire injection device 1 with its distal end 11 is positioned on the point of the patient 10 where the medicine 14 is to be administered. In this way, the distal end of the needle protection element 7 and if necessary the sealing stopper 36 arranged on the front support housing part 27 in the opening 35 is supported thereon. By displacing the activating sleeve 9 in the direction of the distal end 11 and thus towards the patient 10, by the support of the support housing 2 on the body part of the patient 10, there is a relative displacement of the activating sleeve 9 in relation to the support housing 2. In this way, as already described above, the first drive unit 4, in particular the locked holding arms 16, is displaced by the activating element 50 radially inwards and in this way the locking with the holding disc 17 is released.
The relative axial displacement movement causes the resilient detent element 55 to disengage from the first detent nose 53, slide over the second detent nose 54 and afterwards support itself on this second detent nose 54. In this way the support housing 2 is held fixed in position relative to the activating sleeve 9. This locking is achieved in both axial directions, whereby the first support is performed between the holding arms 16 and the activating element 50 and the second support between the second detent nose 54 and the detent element 55.
Furthermore, the activating sleeve 9 in the region of the distal end 11 and on its internal surface 56 has a stop surface 57, which is preferably aligned perpendicular to the longitudinal axis 13. Said stop surface 57 can preferably be designed or arranged continuously over the inner circumference of the activating sleeve 9 and is preferably formed by a cylindrical or tubular recess in the sleeve wall 47.
Also the needle protection element 7 is secured under pretensioning of the second drive unit 8 relative to the support housing 2, in particular the front support housing part 27 in the storage position. This relative and detachable securing can best be seen in
As already described above, the entire needle arrangement 6, in particular the cannula 20 is arranged with its needle end 22 facing the cartridge seal 26 spaced apart from the latter in the storage position. Furthermore, the needle support 23 is held axially displaceably in the guiding element 24 or mounted therein, whereby in the storage position the needle support 23 is secured by at least one detachable holding element 63 relative to the guiding element 24. This can best be seen from the view of
As can be seen better from
The activated and inserted position of the cannula 20 into the patient 10 can best be seen from
By means of the further pressure effect or force loading of the drive unit 4 in the direction of the distal end 11 a cartridge stopper 68 arranged on a piston rod 67 is pushed into the inner chamber of the cartridge 3 and thus injects the medicine 14 via the cannula 20 injected at this time into the patient 10.
During the relative displacement of the activating sleeve 9 relative to the support housing 2 and the associated triggering of the first drive unit 4 the second lever end 62 of the lever element 60 facing the proximal end 12 comes into contact with the stop surface 57 formed on the internal surface 56 of the activating sleeve 9. In this way the lever end 62 facing the proximal end 12 is pivoted radially in the direction of the longitudinal axis 13. Then the rocker-like mounting of the lever element 60 causes the first lever end 61 of the lever element 60 facing the distal end 11 to disengage from the stop element 59 by a radial pivoting to the side averted from the longitudinal axis 13. Thus the support of the needle protection element 7 on the support housing 2, in particular the front support housing part 27, is released, and simultaneously the second drive unit 8 is activated. In this way, after the completion of the injection procedure and the removal of the injection device 1 from the patient 10 immediately the needle protection element 7 with the drive unit 8 cooperating therewith is shifted from its non-effective position into the position covering the needle end projecting after the injection procedure over the distal end of the support housing 2. It is advantageous, if with the axial displacement of the activating sleeve 9 relative to the support housing 2 the release of both the first and second drive units 4, 8 is performed simultaneously.
In order to prevent the unintentional restoring of the needle protection element 7 from the protecting and covering position to a new release position of the needle end 21, the needle protection element 7 also has at its proximal end 12 at least one elastically deformable safety element 69, which can be designed as an elastically deformable lever. The needle protection element 7 is shifted during its relative displacement relative to the support housing 2 into the position covering the needle arrangement 6 by the drive unit 8. The restoring of the needle protection element 7 in the direction of the proximal end 12 is prevented by the support of the safety element 69 on the stop surface 57 formed on the internal surface 56 of the activating sleeve 9. In this case the needle protection element 7 is displaced by means of the second drive unit 8 via a predefined displacement movement up to a mechanical stop. The safety element 69 thus projects in this case into the free space in front of the stop surface 57. Furthermore, the safety element 60 can be arranged at a specific distance in front of the stop surface 57 or also immediately adjacent thereto. The locking position of the safety element 60 is additionally supported or secured in the position of the needle protection element 7 covering the needle arrangement 6 by an adjusting element 70 arranged on the support housing 2. The adjusting element 70 can be designed as a circumferential web-like shoulder on the support housing 2 or the front support housing part 27, whereby the adjusting element 70 during the relative displacement of the needle protection element 7 pushes or moves the safety element 69 radially to the side averted from the longitudinal axis 13 relative to the support housing 2. By means of this mechanical locking of the safety element 69 onto the stop surface 57 and the radial pretensioning by the adjusting element 70 a secured covering of the cannula 20 by the needle protection element 7 is ensured.
The axial adjustment movement of the needle protection element 7 relative to the support housing 2 can be ended by a positive stop between a detent element 71 arranged on the proximal end 12 and the adjusting element 70 arranged on the support housing 2 in the direction of the distal end 11. In this way the needle protection element 7 is adjusted by a predefined adjustment movement in the direction of the distal end 11, whereby in this position the cannula 20 of the needle arrangement 6 is completely covered. This can best be taken from
Furthermore, it can also be taken from
The administration of the medicine 14 supplied in the cartridge 3 can be performed in the following manner. The two drive units 4, 8 are held secured in their pretensioned position inside the injection device 1, whereby the front holding chamber 29 together with the entire needle arrangement 6 is in a sterile state. If the injection is now to be administered, firstly by removing the safety device 5, i.e. the safety cap 18 together with the safety pin 19, the first drive unit 4 is released for its triggering or activation. The user holds the entire injection device 1 on the activating sleeve 9 and places the latter with its distal end 11 on the body part of the patient 10 to receive the medicine 14. In this way the support of the support housing 2 together with the needle protection element 7 arranged thereon on the surface of the patient 10 is achieved.
By means of the axial adjustment movement of the activating sleeve 9 in the direction of the distal end 11, the first drive unit 4 is triggered or activated, whereby the cartridge 3 together with the needle arrangement 6 is adjusted automatically in the direction of the distal end 11. During this axial adjustment movement additionally the needle support 23 together with the cannula 20 is released from the locked first position on the guiding element 24 and the needle end 22 is penetrated through the cartridge seal 26. Prior to this penetration the needle end 21 facing the distal end 11 has already been pushed into the patient 10, whereby the flow connection between the needle end 22 averted therefrom with the internal chamber of the cartridge 3 is performed immediately afterwards. Immediately afterwards or also simultaneously with the axial displacement of the activating sleeve 9 also the second drive unit 8 is triggered for the movement of the needle protection element 7. By means of the first drive unit 4 the medicine 14 is the administered to the patient 10. After completing the administration the entire injection device 1 is removed from the patient 10. By means of the already activated or triggered second drive unit 8 during the removal of the injection device 1 from the patient 10 the needle protection element 7 is adjusted until the cannula 20 is mounted completely therein or the detent part 71 of the needle protection element 7 comes to bear against the adjusting element 70. At the same time as the complete axial displacement of the needle protection element 7 into the covering position the latter is hindered by means of the safety element 69 by supporting on the stop surface 57 against a repeat restoring into a release position of the needle end 21.
The holding shell 75 shown here can represent in itself an independent solution according to the invention. In this case the objective of the invention can be seen to create a holding shell 75, which is used for holding preferably several injection devices 1 arranged next to one another and in which also the sterilisation of the injection device 1 can be performed, whereby after the sterilisation the subsequent sealing process and the associated sterile sealing of the sterilised space inside the injection device 1 can also be performed simultaneously with the injection device 1 located in the holding shell 75.
The holding shell 75 can in this case also be denoted as a tray, which is formed for example from a deep-drawn foil from a heat-deformable material, such as for example a plastic. The injection device 1 shown in
The holding shell 75 is designed to be bath-shaped and comprises a base 76 and side walls 77 projecting upwards from the latter. On the side of the side walls 77 facing away from the base 76 the holding shell 75 has a container edge 78. The latter is preferably designed to be flange-like projecting outwards and is used in order to be sealed by a cover 79 shown in simplified form in
Depending on the external dimensions of the activating sleeve 9, in the region of the base 76 holding elements 80 are formed here in rows arranged behind one another in the region of the base 76. The latter are used for clamping the injection device 1 and thus determine the position of the injection devices 1 inside the holding shell 75. It would also be possible however to dispense with the clamping action of the holding elements 80 and to omit this completely. Independently of this it would also be possible instead of the clamping effect of the holding elements 80 between the injection devices 1 arranged in the holding shell 75 to simply have separating webs in order to achieve at least a rough positioning or mutual positioning of the injection devices 1 relative to one another.
Furthermore, from an overview of the
Afterwards on said support section 82 the deformable wall section 81 comprises step-like outwards expanding and semi-circular deformation sections 83. The step-like deformation sections 83 arranged behind one another thus subsequently form a seal with the support section 82 in the direction of the container edge 87. The beginning of the semi-circular deformation sections 83 is thus approximately at the level of the longitudinal axis 13 of the injection device 1 in a position clamped in the holding shell 75 and preferably parallel to the base 76 or the container edge 78. By means of the step-like or step-shaped arrangement behind one another a very large deformation movement of the wall sections 81 is achieved, without these deformation movements damaging the holding shells 75. This is essential as otherwise it would be possible for germs or bacteria to enter the otherwise completely sealed holding chamber of the holding shell 75.
It is also shown in a simplified form in
By means of the additional shaping or use of the holding shell 75, it is possible to provide the injection device 1 in a premounted state for sterilisation, in order to perform this for example at a further location provided for this, and after the sterilisation is complete to adjust the two support housing parts 27, 28 into the second coupling position. By means of the complete enclosure of the injection devices 1 inside the holding shell 75 and the thus associated covering 79 also non-sterile transport movements after sterilisation up to the complete sealing in the second coupling position can be planned.
After the sterilisation has been carried out thus all of the components of the injection device 1 accessible by the ETO gassing are sterilised or the latter have such a state. The subsequent adjustment of the two support housing parts 27, 28 relative to one another are performed opposite one another and the associated completely sealed closure of the front holding chamber 29 can then be performed by means of separate mechanical device, not show in more detail here. The correct sealing can be performed by the previously described visual or sensory control of the marking 84.
After pushing together the two support housing parts 27, 28 the cover 79 can be removed from the holding shell 75, and the sterilised injection devices 1 removed from the holding shell 75 and if necessary further packed into individual packaging.
In
As already described above, the needle support 23 and the cannula 20 mounted and held therein is mounted jointly in the guiding element in axial direction displaceable lengthways relative to said guiding element 24.
The guiding element 24 is formed in this embodiment shown here from two guiding elements 87, 88, which can be joined together like half-shells to form the tubular guiding element 24.
By means of the raised position shown in
In the mounted position shown in
The two guiding elements 87, 88, designed here as half-shell parts, are prevented from falling out in the assembled state by the bearing thereof against the internal surface 45 of the support housing 2 in particular the front support housing part 27. In this way a simple assembly is achieved with a good connection. Furthermore, a mutual locking of the two guiding parts 87, 88 is possible by an offset arrangement of pins and pin mounts.
This axial guiding has the advantage that also an axial injection movement of the cannula 20 relative to the longitudinal axis 13 is performed into the tissue of the patient 10 or user.
This results in the radial displacement and the associated release of the locking between the holding element 63 and the guiding element 24. Depending on the position of the control cam 66, as viewed in axial direction, also the release for the injection movement of the needle end 22 into the cartridge seal 26 can be determined. The earlier the release takes place the sooner the cartridge 20 is in flow connection with the inner chamber of the cartridge 3 containing the medicine 14.
In
The individual components forming the injection device 1 are designed such that the latter can be assembled or preassembled into component groups or units 91, 92. In a subsequent additional assembly stage then the two component units 91, 92 are joined together with the remaining components, as shown in
Thus a first component 91 in the region of the distal end 11 of the injection device 1 comprises the front support housing part 27, the sealing stopper 36 and the needle protection element 7 adjustable with the second drive unit 8. The needle protection element 7 is supported and locked in turn by the previously described lever element 60 on the stop element 59 of the front support housing part 27. The second drive unit 8, which is formed here by a spiral compression spring, is supported on the one hand on the step-like connecting section 31 of the front support housing part 27 and on the other hand on a face side of the needle protection element 7 facing the proximal end 12. By means of the pretensioned drive unit 8 according to the already described release of the lever element 60 the axial adjustment of the needle protection element 7 can be performed into the position covering the need or the cartridge 20.
The second component 92 in the region of the proximal end 12 of the injection device 1 comprises in turn the rear support housing part 28, the first drive unit 4 mounted therein, the cartridge 3 with its cartridge stopper 26, the needle arrangement 6, the sealing element 43, the piston rod 67 with the cartridge stopper 68 and the holding arms 16, which can be held in position by means of the holding disc 17. In order to prevent the unintentional release of the first drive unit 4 by means of the disengagement of the holding arms 16 with the holding disc 17, it is shown a simplified manner in
In this way a high degree of prefabrication is achieved, whereby according to the desired medicine also the cartridge 3 can be connected to the needle arrangement 6 arranged thereon via the cartridge stopper 68 to the piston rod 67. The assembly of the cartridge 3 on the piston rod 67 can be performed as a function of the storage ability of the medicine 14.
In this way a simple method for assembling the injection device 1 can be created, in which firstly the previously described components 91, 92 are assembled together with all their individual part and thus form a semi-finished product or intermediate product. In this way also there can be an external manufacture of the individual components and for example the preassembled components 91, 92 can be produced and assembled by different manufacturers. If during the assembly the first component 91 is joined to the second component 92 in the region of the connecting section 31 according to the position shown in
As already shown in
The exemplary embodiments show possible embodiment variants of the injection device 1, whereby it is noted at this point that the invention is not restricted to the specifically shown embodiments thereof, but rather also various combinations of the individual embodiments are possible and this variability due to the teaching on technical proceedings of the present invention lies within the ability of a person skilled in this technical field. Also all conceivable embodiment variants are covered by the scope of protection, which are possible by the combination of individual details of the embodiment variants shown and described.
For form's sake it is mentioned that for a better understanding of the structure of the injection device 1 the latter and its components have been shown partly untrue to scale and/or enlarged and/or reduced in size.
The underlying objective of the independent solutions according to the invention can be taken from the description.
Mainly, the individual embodiments shown in
Number | Date | Country | Kind |
---|---|---|---|
A 958/2008 | Jun 2008 | AT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AT2009/000239 | 6/16/2009 | WO | 00 | 12/16/2010 |
Number | Date | Country | |
---|---|---|---|
61184044 | Jun 2009 | US |