The invention relates to medical devices for injecting a fluid from a vial, through a needle, into the skin of a subject.
The fluid is typically but not exclusively a biologically active substance such as a pharmaceutical. The subject may be human or animal.
Many injector devices are known, which are used to deliver a fluid into the skin of a subject, while providing additional functionality compared with a manually operated hypodermic syringe. For example, some devices allow a variable dose to be pre-set and others allow the dose to be automatically delivered, for example using compressed air or the stored energy of a spring. In its broadest aspect, the present invention relates to the priming of injector devices prior to their use and is not incompatible with such additional functionality. However, the present invention is normally intended for devices that are single-use, in the sense that an empty vial cannot be replaced with a new one. This does not necessarily exclude using the device, after it has been primed, to deliver multiple doses of the fluid from a single vial.
Biologically active fluids such as pharmaceuticals are frequently packaged in cylindrical vials, which contain an axially sliding plunger. As the plunger moves from the proximal end (closer to the operator) to the distal end (closer to the subject), it displaces fluid from the distal end of the vial. Prior to use, for example during transport and storage, the distal end of the vial is normally sealed by a septum to maintain the sterility of the interior of the vial. Immediately before use, the septum must be ruptured to release the fluid, for example by piercing it with a hollow needle, through which the fluid can be delivered from the vial to the subject. The needle is typically double-ended and is held in a needle hub, which is moved towards the vial until the proximal end of the needle pierces the septum. The distal end of the needle is then available for injection into the skin of the subject. In the present specification, the engagement of the needle hub with the vial so that the needle pierces the septum is referred to as priming the device.
According to the prior art, the needle hub may be manually primed, for example by screwing the needle hub onto a threaded vial holder. It is also known to prime a device semi-automatically with a mechanism that moves the vial towards the needle hub as a result of pressing the device against the skin of the subject.
It is a requirement of injector devices that the distal end of the needle should be shielded from accidental contact before and after use. Many such devices include a retractable shield that surrounds the needle until the device is pressed against the skin of a patient. It is desirable that is should be possible to lock the shield against being retracted accidentally.
Many injection devices have the general form of a hypodermic syringe but on a larger scale to accommodate the additional mechanisms that they contain. The appearance of such “giant syringe” designs can be off-putting for patients who have a fear of injections. They can also cause problems for patients with limited dexterity who need to self-administer injections, who must align the device and support it against the skin, while performing whatever action the particular device requires to cause the delivery of the fluid.
The invention provides an injection device as defined in claim 1.
The invention further provides a method of operating such an injection device, as defined in claim 15.
Features of the invention that are preferred but not essential are defined in the dependent claims.
The device in this embodiment of the invention has the overall appearance and function of a large push-button. Its rounded shape, being very different in appearance from a conventional hypodermic syringe or injector pen, is less threatening to many subjects who have a fear of needles. It is also very easy and reliable to use in a “twist and press” action. After the device has been primed by twisting the base 3 relative to the air tank 2, the injection can then be performed with one hand. Operating the push-button requires little dexterity, and the wide base 3 keeps the device stable, ensuring that its axis remains perpendicular to the skin.
The needle holder 32 is in turn supported by the vial holder 10. The needle holder 32 comprises four hub arms 34 (seen in
The tips of the hub arms 34 project radially outwards to form a hub spring seat 38 and the tips of the vial arms 36 project radially outwards to form a vial spring seat 40. A compression spring 42 acts between the two spring seats 38,40 and urges them axially apart. By urging the tips of the interdigitating hub arms 34 and vial arms 36 further apart, the tendency of the spring 42 is to increase the length of overlap between the arms 34,36. If the needle holder 32 is free to move, the spring 42 therefore draws it in the proximal direction until the needle holder 32 abuts the vial holder 10 and the proximal end of the needle 9 has pierced the septum 16 of the vial 12. The spring 42 thereafter holds the needle holder 32 and the vial holder 10 in abutment and they are effectively become locked together both axially and rotationally.
However, in accordance with the invention, it is required that the needle 9 should be prevented from piercing the septum 16 until the device is primed immediately before use. Accordingly, a latch mechanism is provided to restrain the axial movement of the needle holder 32 until the latch is released.
In the illustrated embodiment of the invention, the latch is provided by the rotary actuator 4.
It will be understood that the number of holder lugs 46 and the number of actuator lugs 48 does not have to be four; and it is not strictly essential that the numbers should be equal, provided that there are some rotary positions where the respective lugs 46,48 interfere to prevent the passage of the needle holder 32 through the aperture 42. More generally, the aperture 42 can have almost any non-circular cross-section and it will be possible to design a profile of the needle holder 32 that will fit through it in certain angular positions but not in other angular positions. (Neither the aperture nor the profile can have circular symmetry about the axis.) It is preferred that the actuator 4 should not need to be rotated through a large angle to release the latch. For example, the angle is preferably less than 45° and more preferably 15° to 20°.
Rotation of the actuator 4 relative to the needle holder 32 is permitted by the engagement between the actuator 4 and the vial holder 10. (It will be recalled that the vial holder 10 and the needle holder 32 are rotationally locked together by their respective interdigitating arms 34,36.) As seen in
When the protrusions 50 of the actuator 4 are located at the blind ends of the circumferential parts 56 of the guide tracks, this corresponds to the rotary actuator 4 being in its first position, in which the actuator lugs 48 obstruct the holder lugs 46 to restrain the needle holder 32 against axial movement. At the same time, the shape of the guide track 52 prevents relative axial movement between the actuator 4 and the vial holder 10. Therefore, in the first position, not only is the needle holder 32 latched to prevent priming of the device but the operation of the “push-button” is also latched to prevent accidental deployment of the injector needle 9.
As the actuator 4 is rotated from its first position to its second position, the needle holder 32 becomes unlatched and moves under the influence of the spring 42 to prime the device for use. The same rotation causes the protrusions 50 to follow the circumferential parts 56 of the guide tracks 52 until they reach the intersection with the linear parts 54. In this second position, the vial holder 10 becomes free to move axially relative to the actuator 4 and the device can be operated to inject the fluid into the skin of a subject. If desired, an intermediate angular position of the actuator 4 could be defined between the first and second positions, at which the device has been primed but the push-button has not yet been unlatched. A second bump could be provided in the profile of the circular parts 56 of the guide tracks to hold the actuator 4 in that intermediate position and provide further haptic and/or audible feedback to the user.
Note that it would be possible to invert the illustrated arrangement so that protrusions from the vial holder 10 follow guide tracks in the actuator 4.
In the light of the foregoing explanation, the operation of the device should be apparent but will now be briefly described.
During manufacture, the device is assembled around a sealed and sterile vial 12. The actuator 4 is rotated to the first position to latch the device against premature priming or operation during transport and storage. The needle holder 32 is restrained in the position shown in
When it is desired to deliver the dose of fluid from the vial to a subject, the device is first primed by rotating the actuator 4 relative to the via holder 10 from its first position to its second position. This unlatches the needle holder 32, which moves under the influence of the spring 42 to cause the proximal end of the needle 9 to pierce the septum 16 of the vial 12. This is the position shown in
The base 3 of the actuator is then placed against the skin of a subject and sufficient pressure is applied to the proximal surface 7 of the compressed air tank 2 to overcome the resistance of the actuator spring 8. The air tank 2, vial holder 10, vial 12 and needle holder 32 move axially as a unit, sliding on the boss 5 of the actuator 4 until the bottom edge 11 of the vial holder 10 abuts the base 3 of the actuator 4 and the distal end of the needle 9 has penetrated the skin of the subject. In this position the vial holder 10 can move no further but, as shown in
The invention has been described with reference to a single embodiment but there is no intention to limit the scope of the invention to that embodiment of it. The reader will understand different ways of putting the invention into practice. It should also be understood that different aspects of the illustrated embodiment can be used independently of each other. In particular, the means for priming the device by unlatching it, to allow an internal spring 42 to drive the needle 9 to pierce the septum 16, could be used with a different means for operating the device to deliver a dose of fluid to the subject.
Number | Date | Country | Kind |
---|---|---|---|
2003866.7 | Mar 2020 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2021/050381 | 2/17/2021 | WO |