The current invention relates to an injection gateway comprising a base part which during use is secured to the skin of a patient, a cannula which is connected to the base part and which is inserted into the body of the patient during use, a gate through which fluid is injectable into the gateway via a needle based injection device, said gate being located at a fixed position with regards to said base part, and a fluid passageway where fluid injected through the gate is communicated to the cannula.
An injection gateway is a device which is secured to the user for a certain period of time, for example three days. The user can then inject medications into his or her body via the injection gateway. The gateway therefore replaces repeated injections by syringes or injection pens. This reduces trauma to the patient's skin while simultaneously keeping the injection site free of infections. It is also much easier for people with fear of needles to use an injection gateway than to inject themselves directly.
Injection gateways are already known in many different types. In certain injection gateways, once the gateway is secured to the skin of the user, fluid is delivered to the gateway via an adapter attached to the gateway, see for example U.S. Pat. No. 4,755,173, WO 2004/101071, WO 02/053220 and U.S. 2004/0158207. However these devices require the use of a special adapter and are usually connected to an infusion pump via tubing. They are not suitable for use together with a needle based injection device such as an ordinary syringe. In addition, in many cases, in order to work with the tubing of the infusion pump, the mechanisms of the injection gateways becomes rather complex with complicated fluid paths inside the device which increase the risk of leaks in the device and/or increase the cost of the device due to the complicated seals which need to be integrated into the device.
Other types of gateways are designed to be used together with a special pen-type injector, see for example applicant's own disclosure WO 2006/097111. In the most common form, the gateway is arranged such that a needle on the pen-type injector pierces a septum on the gateway such that fluid can be injected through the septum and into the body of the user via the cannula which is inserted into the body of the user. However, devices of this kind require the use of a special pen-type injector device since the needle of the injection device should not come into contact with the cannula. If the needle comes into contact with the cannula, there is a risk that the needle could pierce the side of the cannula or scrape small plastic parts off the cannula which could end up in the body of the user. Furthermore, the use of short needles is preferred such that the risk that a user accidentally penetrates too deeply into his or her skin is minimized. Should a user use an ordinary syringe with the known gateways, the user will expose him or herself to the above mentioned risks.
A first aspect of the present invention is to provide a gateway which is easy for the patient to place and to use for self-administration of drugs or other medicaments.
A second aspect of the present invention is to provide a gateway where the gateway after placement onto the patient's skin is noticed as little as possible by the patient when the patient is not actually injecting medication.
A third aspect of the present invention is to provide a gateway which allows the user to safely use an ordinary injection syringe without the risks ordinarily associated herewith.
A fourth aspect of the present invention to provide a gateway which allows the user to safely use an ordinary injection syringe while preventing the user from injecting the needle too deeply into his or her body.
A fifth aspect of the present invention is to provide a gateway which prevents the user from damaging the cannula with a needle inserted into the gateway after the gateway is secured to the user's skin.
A sixth aspect of the present invention is to provide a gateway which is simple and of low cost.
The injection gateway according to the current invention as claimed meets these aspects by providing an injection gateway as mentioned in the introductory paragraph which further comprises a closing mechanism having a first position where a needle is insertable into the gateway and insertable into the cannula and a second position where a needle of a needle based injection device is insertable into the gateway in order to inject fluid into the patient via the cannula but where said needle is prevented from coming into contact with the cannula. By providing such a closing mechanism, the user is prevented from sticking a needle into the cannula or sticking a needle too far into his or her body. The gateway according to this invention therefore reduces the risks normally associated with the use of an ordinary needle based injection device.
In one embodiment of such an injection gateway, the gateway can be arranged such that in the first position of the closing mechanism, a needle inserted into the gateway and into the cannula passes through the gate. The gateway could also be arranged such that in the second position of the closing mechanism, a needle inserted through the gate is prevented from coming into contact with the cannula. In this way, the access point for the different needles is the gate, thereby providing an effective seal between the environment outside the gateway and the user's body on the inside of the gateway. In a typical embodiment, the gate could comprise a pierceable septum.
In one embodiment, the fluid passageway can be arranged such that it establishes fluid communication between two chambers. The two chambers could be arranged such that the axis of the cannula passes through a first of the two chambers and not through a second of the two chambers. The chambers could furthermore be arranged such that needles inserted into the gateway when the closing mechanism is in its first position are inserted into the first chamber and that needles inserted into the gateway when the closing mechanism is in its second position are inserted into the second chamber. In this way, needles inserted into the gateway come into contact with two unique chambers.
In another embodiment, the closing mechanism could comprise a cover element having an access port through which a needle can be inserted into the gateway and which is displaceably connected to the base part.
The cover element could furthermore be arranged such that in the first position of the closing mechanism its access port is aligned with the axis of the cannula such that an inserter needle can be inserted through the access port and into the cannula. This position is useful during insertion of the cannula into the user's skin via an inserter needle which is arranged inside the cannula.
The cover element could also be arranged such that in the second position of the closing mechanism, the access port is not aligned with the axis of the cannula. In this way, a needle inserted into the gateway through the access port is prevented from coming into contact with the cannula.
The cover element could be rotatably connected to the base part about an axis. In this case, the access port in the cover element and the cannula could be arranged offset from the axis of rotation of the cover element. In this way, by rotating the cover element, the access port can be moved from a position where it is positioned aligned with the axis of the cannula, to a position where it is not aligned with the axis of the cannula.
The cover element could alternatively or simultaneously be connected to the base part in such a manner that it is displaceable along a path.
In certain embodiments, the closing mechanism could comprise a locking mechanism whereby the closing mechanism can be locked in the second position. This ensures that the gateway will only be used once. That is to say, the gateway will not be able to be removed from the user's body and then reapplied at a later point in time. The user will be required to use a new gateway.
In one embodiment, the locking mechanism could comprise a ratchet mechanism. In another embodiment, the locking mechanism could comprise an elastically biased protrusion element which engages with a corresponding recess when the closing mechanism is put into the second position of the closing mechanism. In one embodiment, the protrusion element is arranged on the cover element and the recess is arranged on the base part. The opposite case could also be imagined. Such mechanisms are simple and robust.
In one embodiment, the cover element could be arranged in such a way that it is aligned with the base element in the second position of the closing mechanism and not aligned with the base element in the first position of the closing mechanism. In this way, the user is given a clear visual signal when the device is “safe” and when it is “unsafe”. This prevents the user from using the device in its “unsafe” mode.
The closing mechanism could also comprise a blocking element which in the first position of the closing mechanism is displaced away from the axis of the cannula and in the second position of the closing mechanism is displaced over the axis of the cannula in order to block the entrance to the cannula.
The blocking element could be elastically biased towards a position where it covers the cannula opening. In such an embodiment, the blocking element could be prevented from covering the cannula opening in the first position of the closing mechanism in that it is held back by the inserter needle. The blocking element could however be biased in other ways than elastically, for example via gravity.
In one embodiment, the blocking element could be a ball which is released when the inserter needle is removed and which rolls into the opening of the cannula in order to block the entrance to the cannula.
In another embodiment, the blocking element could be displaced due to an actuation element which responds to warmth and/or moisture when the gateway is removed from its packaging and secured to the user. This provides a closing mechanism which is to a certain extent “automatic” and ensures that the gateway is put into its safe mode without interference by the user.
It could furthermore be imagined that a gateway as described above could be part of a set which comprises an injection gateway and an inserter needle already arranged in the cannula of the gateway. The set could further comprise an inserter device for allowing a user to more easily insert the cannula into his or her body.
Such a set could also comprise a lid which covers the gateway during the times when the gateway is secured to the user but not being actively used as an injection gateway.
A gateway of the kind described above could be used according to a method which comprises the steps of placing an inserter needle through a cannula of the injection gateway, inserting the inserter needle and cannula beneath the skin of the user, securing the injection gateway to the user, removing the inserter needle, displacing a closing mechanism such that access to the cannula with a needle is prevented, and injecting fluid from a needle based injection device into the user via the injection gateway without further displacement of the closing mechanism.
In one such method, the step of displacing the closing mechanism could occur automatically after removal of the inserter needle from the injection gateway.
In another embodiment of such a method, the step of displacing the closing mechanism could comprise the step of the user rotating a cover element with respect to a base element of the gateway.
It should be emphasized that the term “comprises/comprising” when used in this specification is taken to specify the presence of stated features, integers, steps or components but does not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof. For example, the description describes a closing mechanism having two positions. However, it should be obvious to the person skilled in the art that the closing mechanism could have more than two positions even though only two positions are explicitly mentioned in the claims and the description.
In the following, the invention will be described in greater detail with reference to embodiments shown by the enclosed figures. It should be emphasized that the embodiments shown are used for example purposes only and should not be used to limit the scope of the invention.
a-14d show another approach to minimizing the risks associated with the use of an ordinary needle based injection device in commonly available injection gateways.
A cover element 5 is rotatably connected to the base part 2 about an axis A. The cover element 5 has an access port 6 through which a needle can be inserted in order for the needle to gain access to the interior of the gateway. The access port 6 is arranged offset from the axis A. In this way, when the cover element is rotated about the axis, the access port 6 is both rotated and moved along a circular path.
The base element 2 comprises a cannula 7 which is inserted into the user's body when the gateway is in use. The cannula is therefore in fluid communication with the interior of the user's body during use. In the current embodiment the cannula is made of a soft plastic material as is well known to the person skilled in the art. The soft plastic cannula can be left in the user's body without causing discomfort for the user.
The cannula 7 is connected to the base part 2 via a bushing 8. The bushing is typically made of a plastic material which fuses the base part and the cannula together. However, in certain cases, it could be imaged that the bushing was made of a metal material. This will prevent damage to the gateway by the needle. In other cases, the cannula can be fused directly to the base part, thereby eliminating the need for the bushing.
The base part further comprises two chambers 9, 10. The first chamber 9 is in direct fluid communication with the cannula 7 and is arranged such that the axis of the cannula passes through the first chamber 9. This allows an inserter needle 11 which needs to be inserted through the cannula during the insertion of the cannula into the body of the user to pass through the first chamber. The second chamber 10 is arranged offset from the axis of the cannula. The second chamber 10 is however in fluid communication with the cannula via a fluid passageway 12. In this way, fluid inserted into the second chamber reaches the cannula and therefore also reaches the body of the user. It should be noted that in the current embodiment, the fluid passageway is established between the first chamber and the second chamber, however, it could be imaged that the second chamber was also connected directly to the cannula.
The base part 2 also comprises a gate 13 in the form of a pierceable septum. The function of the gate 13 is to allow a needle to penetrate the septum in order to inject fluid into the gateway, but to prevent bacteria and other unwanted matter from getting into the inside of the gateway. The use of a gate such as a septum for this purpose is well known to the person skilled in the art and will not be further discussed here.
As can be seen from the figures, the two chambers 9,10 are also arranged offset from the axis of rotation of the cover element. In the current embodiment the two chambers are arranged 180 degrees apart with respect to the axis of rotation of the cover element. In addition, the two chambers are arranged to be offset the same amount from the rotation axis A as the access port on the cover element. In this way, when the cover element is rotated about the axis A the access port 6 can be made to either give a needle access to the first chamber 9 (
When the cover element is in the first position, a needle can be inserted through the access port, through the septum, through the first chamber and through the cannula. This position is used during the insertion of the device. It could be imagined that the gateway is delivered to the user with the cover element in the first position and with an inserter needle already inserted through the cannula. In this way, the user does not risk damaging the cannula by inserting the inserter needle into the gateway by him or herself.
When the gateway has been secured to the user and the cannula inserted into the user's body, then the inserted needle can be removed and the cover element rotated into the second position. In the second position, a needle can be inserted through the access port in the cover, through the septum and into the second chamber 10. However, the needle is prevented from reaching the cannula. The user can therefore use an ordinary needle based injection device without the risks which are typically associated with this.
It should also be mentioned that the cover element is provided with an elastically biased hook which snaps into a groove in the base element when the cover element is rotated to the second position. In this way, the hook locks the cover element preventing further rotation. This ensures that the device can only be used once with an inserter needle. After the cover element has been rotated into the second position, then the cover element is locked and needles inserted into the device will not come into contact with the cannula.
It should also be mentioned that the first embodiment comprises an external cover element which is arranged on the outside of the base part. However, in another embodiment (not shown), the cover element could be arranged inside the base part. In this case, the cover element could be displaced via an actuation element which is accessible to the user through an opening in the base part. For example, the cover element could be attached to a protrusion which is arranged in a slot in the base part. The user could therefore displace the cover element by displacing the protrusion in the slot.
It can also be mentioned with respect to the first embodiment 1 that the cover element is arranged rotatable about an axis, however, the cover element could also be arranged to be displaceable along a path. For example, the user could slide the cover a short distance between the first position and the second position. Furthermore, a combination of rotation and displacement could also be possible.
It should be obvious to the person skilled in the art that the blocking element and the spring can be formed in many different ways. The spring element could for example be a plastic beam which is bent away from the cannula opening by the inserter needle. The person skilled in the art of mechanical components should be able to develop many different blocking elements which provide the same benefits as the embodiment shown in the figures.
It should be noted that in the above described embodiments, a single septum was used as a gate. In other words, both the inserter needle and the injection needles were inserted through the same septum. However, the gate could comprise multiple separate areas. For example one could imagine two separate septums, one for the inserter needle port and one for the injection needle port.
a-14d show an embodiment of a system which can also be used to minimize the risks associated with the use of needle based injection devices. The figures show an injection gateway 50 comprising a base part 51, a cannula 52 and a septum 53.
b shows a needle 55 of a typical needle based injection device. Before use, the user attaches a wedge shaped blocking element 56 to the tip of the needle 55. The user then inserts the needle 55 and wedge shaped blocking element 56 through the septum as shown in
In the above described embodiments, the cannula has been a soft plastic cannula. However, in certain cases, it could be imagined that the cannula is a thin needle made of metal. This reduces the risk of damage to the cannula from injection needles, but might be a bit less comfortable to the user. The metal cannula could however be inserted into the body of the user without the need for an inserter needle.
It is to be noted that the figures and the above description have shown the example embodiments in a simple and schematic manner. The internal details have not been shown in great detail since the person skilled in the art should be familiar with these details and they would just unnecessarily complicate this description.
It should also be mentioned that the current specification describes a number of independent inventions which could form parts of divisional applications. For example, the metal bushing arranged between the cannula and the base part could be used in many other gateways in order to prevent damage to the cannula from the injection needle. Another example is the cannula made from metal. This embodiment could be used on other types of gateways than the ones claimed in the current invention.
In addition, the embodiments shown in this specification should not be used to limit the scope of the invention unnecessarily. There are other embodiments of injection gateways which fall in under the scope of the current claim set. For example, the embodiments described above all show a gateway where the inserter needle pierces a septum. However, it could be imagined that the gateway has an open port for the inserter needle which is closed and sealed via the closing mechanism in the second position of the closing mechanism. For example the cover element could be equipped with a seal and an opening. When the gateway is in its “insertion mode”, the opening in the cover is arranged over the opening to the cannula. When the gateway is put into its “user mode”, the cover element is displaced such that the opening is displaced over a septum used for injections from a normal needle based injection device and the seal on the cover is displaced over the cannula opening, thereby preventing access to the cannula. The seal furthermore prevents unwanted bacteria and/or other unwanted matter from reaching the inside of the gateway. The person skilled in the art should be able to define the scope of the current claim set using his knowledge and the current specification.
Number | Date | Country | Kind |
---|---|---|---|
2007-00179 | Feb 2007 | PA | national |
2007-00185 | Feb 2007 | PA | national |
2007-00191 | Feb 2007 | PA | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP08/51278 | 2/1/2008 | WO | 00 | 1/15/2010 |
Number | Date | Country | |
---|---|---|---|
60899075 | Feb 2007 | US | |
60899062 | Feb 2007 | US | |
60899143 | Feb 2007 | US |