This application claims priority of Taiwan Patent Application No. 098111632, filed on Apr. 8, 2009, the entirety of which is incorporated by reference herein.
1. Field of the Invention
The invention relates to an injection locked Phase Lock Loop (PLL), and more particularly to a sub-harmonic injection locked PLL.
2. Description of the Related Art
Phase Lock Loop (PLL) is basically a closed loop frequency control system, wherein operation is based on the phase sensitive detection of the phase differences between a feedback signal and a reference signal. A PLL circuit usually includes a controlled oscillator, a divider, a frequency phase detector (PFD), a charge pump, and a loop filter. The PLL circuit responds to both the frequency and the phase of input signals, automatically raising or lowering the frequency of the controlled oscillator until a feedback signal is matched to a reference signal in both frequency and phase. Specifically, a PLL compares the frequencies of two signals via the PFD and produces a control signal which is proportional to the difference between the input frequencies. The control signal is used to drive a controlled oscillator, such as a voltage-controlled oscillator (VCO), which creates a corresponding output frequency in response to the voltage variation of the control signal. The output frequency is fed through a frequency divider back to the input of the system, producing a negative feedback loop. If the output frequency drifts, the control signal will change accordingly, driving the frequency in the opposite direction so as to reduce errors. Thus, the output is locked to the frequency of the reference signal, which is derived from a crystal oscillator and is very stable in frequency.
However, inherent inaccurate oscillation causes the oscillator frequency to drift around the target frequency, introducing undesired phase noise.
Signal generating circuits are provided. An exemplary embodiment of a signal generating circuit for generating an output signal comprises a phase detection circuit and an injected controlled oscillator. The phase detection circuit is arranged to detect a phase difference between an input reference signal and a feedback signal and generate a control signal according to the phase difference. The injected controlled oscillator is arranged to receive the control signal and an injection signal and generate the output signal according to the control signal and the injection signal. A frequency of the output signal is proportional to a frequency of the input reference signal, and a frequency of the injection signal does not equal to the frequency of the output signal.
Another exemplary embodiment of a signal generating circuit for generating an output signal comprises a first phase detection circuit, a second phase detection circuit, a first injected controlled oscillator and a second injected controlled oscillator. The first phase detection circuit is arranged to detect a phase difference between a first input reference signal and a first feedback signal and generate a first control signal according to the phase difference. The second phase detection circuit is arranged to detect a phase difference between a second input reference signal and a second feedback signal and generate a second control signal according to the phase difference. The first injected controlled oscillator is coupled between the first phase detection circuit and the second phase detection circuit and arranged to receive the first control signal and a first injection signal, and generate a first output signal according to the first control signal and the first injection signal. A frequency of the first output signal is proportional to a frequency of the first input reference signal, and a frequency of the first injection signal does not equal to the frequency of the first output signal. The second injected controlled oscillator is coupled to the second phase detection circuit and arranged to receive the second control signal and a second injection signal and generate a second output signal as the output signal according to the second control signal and the second injection signal. The second input reference signal is one of the first input reference signal or the first output signal, a frequency of the second output signal is larger than and proportional to a frequency of the second input reference signal, and a frequency of the second injection signal does not equal to the frequency of second first output signal.
Another exemplary embodiment of a signal generating circuit for generating a high frequency output signal according to an input reference signal comprises a first stage of circuit and a second stage of circuit. The first stage of circuit comprises a first phase locked loop and a first injection signal. The first phase locked loop is arranged to detect a phase difference between the input reference signal and a first feedback signal to generate a first control signal and comprises a first injected controlled oscillator. The first injected controlled oscillator is arranged to generate a first output signal according to the first control signal and a first injection signal. The first feedback signal is generated according to the first output signal and a frequency of the first output signal is a multiple of a frequency of the first feedback signal. The first injection signal generating circuit is coupled to the first injected controlled oscillator and generates the first injection signal according to a first injection reference signal. An oscillation frequency of the first injected controlled oscillator is larger than and a multiple of a frequency of the first injection signal. The second stage of circuit is coupled to the first stage of circuit and comprises a plurality of stages of cascaded phase locked loops and a plurality of stages of the injection signal generating circuits each corresponding to one of the phase locked loops. Each stage of the injection signal generating circuit is coupled to an injected controlled oscillator of the corresponding phase locked loop and generates an injection signal to the corresponding injected controlled oscillator, and the second stage of circuit outputs an output signal at the last stage of the injected controlled oscillator as the high frequency output signal. An oscillation frequency of each stage of injected controlled oscillator is larger than and a multiple of a frequency of the injection signal generated by the corresponding injection signal generating circuit.
A detailed description is given in the following embodiments with reference to the accompanying drawings.
The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
a shows an exemplary spectrum of the output signal according to an embodiment of the invention;
b shows an exemplary frequency spectrum of the injection signal according to the embodiment of the invention;
c shows an exemplary frequency spectrum of the injection signal according to the embodiment of the invention;
The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
According to an embodiment of the invention, frequencies of the injection reference signal CKinjr and the injection signal CKinj may be smaller than the oscillation frequency of the oscillator 202. As an example, the injection signal generating circuit 203 may inject a sub-harmonic signal of the output signal CKout to the oscillator 202, or generate the injection signal CKinj according to the sub-harmonic signal of the output signal CKout. A signal f2 is regarded as a sub-harmonic signal of a signal f1 when a frequency of the signal f1 is an integer multiple of that of the signal f2.
The phase frequency detector 311 detects the phase difference between the input reference signal CKref and the feedback signal CKfb, and generates a phase error signal according to the phase difference. The charge pump 312 generates a current signal according to the phase error signal. The loop filter 313 receives and converts the current signal into the control signal Vc. The feedback divider 314 frequency divides frequency of the output signal CKout to generate the feedback signal CKfb. Therefore, the frequency of the output signal CKout is a multiple of that of the feedback signal CKfb.
According to an embodiment of the invention, since the injection signal generating circuit may directly inject a sub-harmonic signal of the output signal CKout into the oscillator, the injection signal generating circuit may directly inject the input reference signal CKref as the injection signal CKinj, or directly inject sub-harmonic signals of the output signal CKout as the injection signal CKinj. However, according to another embodiment of the invention, the injection signal generating circuit may also be designed non-linearly. As an example, the injection signal generating circuit may receive the input reference signal CKref or sub-harmonic signals of the output signal CKout as the injection reference signal CKinjr, and generate the injection signal CKinj according to the injection reference signal CKinjr.
According to an embodiment of the invention, the non-linear injection signal generating circuit may be designed to generate the injection signal CKinj, which comprises frequency components at the oscillation frequency of the oscillator. The energy of the output signal CKout at the oscillation frequency is thus increased due to the injection, so as to reduce the phase noise of the oscillator. As an example, according to an embodiment of the invention, the injection signal generating circuit may be arranged to generate, at each rising edge, each falling edge, or each rising edge and falling edge of the injection reference signal CKinjr, a pulse with a width substantially equal to half of a period length of the output signal CKout as the injection signal CKinj. Therefore, the injection signal CKinj may comprise a plurality of pulses, each having a pulse width substantially equal to half of the period length of the output signal CKout. However, according to another embodiment of the invention, the pulse width may not be exactly equal to half of the period length of the output signal CKout. A 50% inaccuracy is tolerable. Therefore, the pulse width may be designed from 25% to 75% of the period length of the output signal CKout, while still being able to reduce the phase noise of the oscillator.
where TCKout is the period length of the output signal CKout.
According to the design as illustrated above, when performing Fourier transform on the injection signal CKinj, the obtained frequency spectrum shows that energy exists at the oscillation frequency of the oscillator.
As shown in
According to an embodiment of the invention, in order to mitigate the phase noise in oscillators 715 and 725, the injection signal generating circuits 703 and 704 generate and inject the injection signals CKinj1 and CKinj2 into the oscillators 715 and 725, respectively. The frequency of the injection signal CKinj1 does not equal to the oscillation frequency of the oscillator 715, and the frequency of the injection signal CKinj2 does not equal to the oscillation frequency of the oscillator 725. As an example, the injection signal CKinj1 may be a sub-harmonic signal of the output signal CK5G, and the injection signal CKinj2 may be a sub-harmonic signal of the output signal CKout.
As shown in
In addition, it is noted that the pulse width may not be exactly equal to half of the period length of the output signal and 50% inaccuracy may be tolerable. Therefore, the pulse width of the injection signal may be designed from 25% to 75% of the period length of the output signals CK5G and CKout, while still being able to reduce the phase noise of the oscillator.
According to an embodiment of the invention, the injection reference signal of the injection signal generating circuit 703 is a sub-harmonic signal of the output signal CK5G. As shown in
According to an embodiment of the invention, the oscillator (such as the oscillator 202, 302, 715 or 725) may be any kind of injected controlled oscillator. As an example, the oscillator may be an injected voltage controlled oscillator (or called the injection locked voltage controlled oscillator).
It is noted that the performance of the phase noise suppression degrades when the frequency ratio of the output signal of the phase locked loop to the injection reference signal of the injection signal generating circuit is too large. Therefore, according to the embodiments of the invention, when the expected frequency multiple of the phase locked loop exceeds a predetermined threshold, the frequency multiple may be factorized. The phase locked loop may be implemented by a plurality of stages as shown in
As an example, according to another embodiment of the invention, the signal generating circuit may comprise a first stage of circuit coupled to a second stage of circuit, and generate a high frequency output signal according to an input reference signal. The first stage of circuit comprises a first phase locked loop (as an example, the phase locked loop 701) and a first injection signal generating circuit (as an example, the injection signal generating circuit 703). The first phase locked loop is arranged to detect a phase difference between the input reference signal and a first feedback signal to generate a first control signal. The first phase locked loop comprises a first injected controlled oscillator, arranged to generate a first output signal according to the first control signal and a first injection signal. The first feedback signal is generated according to the first output signal. A frequency of the first output signal is an integer multiple of a frequency of the first feedback signal. The first injection signal generating circuit is coupled to the first injected controlled oscillator and generates the first injection signal according to a first injection reference signal. An oscillation frequency of the first injected controlled oscillator is larger than and is an integer multiple of a frequency of the first injection signal
The second stage of circuit comprises a plurality of stages of cascaded phase locked loops (as an example, by cascading a plurality of stages of the phase locked loop 702) and a plurality of stages of the injection signal generating circuits, each corresponding to one of the phase locked loops (as an example, the injection signal generating circuit 704 coupled to the phase locked loops 702). Each stage of the injection signal generating circuit is coupled to an injected controlled oscillator of the corresponding phase locked loop and generates an injection signal to the corresponding injected controlled oscillator. The second stage of circuit outputs an output signal at the last stage of the injected controlled oscillator as the high frequency output signal. An oscillation frequency of each stage of injected controlled oscillator is larger than and is an integer multiple of a frequency of the injection signal generated by the corresponding injection signal generating circuit.
The first injection signal generating circuit receives the input reference signal as the first injection reference signal and generates, at each rising edge, each falling edge, or each rising edge and each falling edge of the first injection reference signal, a pulse with a width substantially equal to half of a period length of the first output signal as the first injection signal. The first stage of the injection signal generating circuit in the second stage of circuit receives the first output signal as a corresponding injection reference signal and generates, at each rising edge, each falling edge, or each rising edge and each falling edge of the first output signal, a pulse with a width substantially equal to half of a period length of an output signal of the first stage of injected controlled oscillator in the second stage of circuit as the corresponding injection signal. Each of the remaining stages of the injection signal generating circuit in the second stage of circuit receives an output signal of a previous stage of the phase locked loop as a corresponding injection reference signal and generates, at each rising edge, each falling edge, or each rising edge and each falling edge of the injection reference signal, a pulse with a width substantially equal to half of a period length of an output signal of the corresponding injected controlled oscillator of the injection signal generating circuit as the corresponding injection signal.
While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. Those who are skilled in this technology can still make various alterations and modifications without departing from the scope and spirit of this invention. Therefore, the scope of the present invention shall be defined and protected by the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
TW098111632 | Apr 2009 | TW | national |