The disclosure relates to injection molded components. More particularly, the disclosure relates to injection molded components, such as pallets or receptacles, having at least one sensor associated with the injection molded component.
When packing or transporting goods on pallets or in receptacles, it is beneficial to the user to quickly and easily identify the goods stored on the pallet or in the receptacle, where the goods are being shipped, and/or the origin of the goods in addition to other information of the injection molded component. A number of approaches have been used to provide information to the user through the use of an indicator associated with the injection molded component. However, there is a need to improve the manufacturability of the injection molded components and the operability of indicators associated with the injection molded components.
In one exemplary embodiment, an injection molded component includes a wall that has an inner wall surface and an outer wall surface. A sensor is molded into one of the inner wall surface and the outer wall surface. A channel is at least partially surrounding the sensor.
In another exemplary embodiment, a mold assembly includes a first mold wall that includes an inner surface. A wall extends from the inner surface to define a suction surface. At least one vacuum line is in fluid communication with the suction surface. A second mold wall opposes the first mold wall and includes at least one extendable pin.
In another exemplary embodiment, a mold assembly includes a first mold wall that includes an inner surface. A portion of the inner surface defines a recessed surface. A first plurality of ribs extends across the recessed surface and includes a sensor contact surface that extends in a plane parallel to the recessed surface.
In another exemplary embodiment, a method of forming an injection molded component comprising the step of locating a sensor against a first surface of a mold. An edge of the sensor is surrounded by a wall that extends from the first surface of the mold. An injectable material is injected into the mold such that the injectable material travels over an inner surface of the sensor.
These and other features of the disclosed examples can be understood from the following description and the accompanying drawings, which can be briefly described as follows.
The top deck 12 includes an upper surface 16 for supporting goods thereon. The top deck 12 mates with the bottom deck 14 at a mating line 18. The bottom deck 14 includes multiple columns 20 that extend downward. The columns 20 located along a perimeter of the pallet 10 include a wall having an outer surface 22 that is generally flat. One or more of the outer surfaces 22 include a RFID tag 30 molded into the column 20. Although the RFID tag 30 is shown in one of the columns 20, the RFID tag 30 could also be located in the upper surface 16 or another suitable location on the pallet 10. Moreover, multiple RFID tags 30 could be incorporated into the pallet 10. Additionally, the RFID tag 30 could be used in another injection molded product, such as a crate or another type of receptacle. Moreover, other sensors, such as UHF, NFC, GPS, Bluetooth, and temperature sensors, could be used in place of or in addition to the RFID components in the RFID tag 30.
The RFID tag 30 includes an outer construction 34 that is flush or recessed with respect to the outer surface 22 of the column 20. The outer construction 34 provides protection for the antenna 32.
The antenna 32 is printed directly onto the second construction surface 35 of the outer construction 34 such that the antenna 32 is spaced from the outer surface 22 of the column 20 by the thickness of the outer construction 34. The antenna 32 and a portion of the second construction surface 35 not covered by the antenna 32 would face into the column 20 of the pallet 10 and be located adjacent and bond to the injection molded material of the pallet 10. In the illustrated non-limiting example, a thickness dimension of the outer construction 34 is greater than a thickness dimension of the antenna 32 and the antenna 32 only covers a portion of the second construction surface 35.
Instead of the antenna 32 being printed directed onto the outer construction 34 as with the RFID tag 30 shown in
Because the antenna 32 is not printed directly onto the outer construction 34 in the RFID tag 30A, the inlay 38 is used to provide support for the antenna 32. The antenna 32 is attached to a first inlay surface 37 on the inlay 38. The inlay 38 also includes a second inlay surface 39 located on an opposite side of the inlay 38 from the first inlay surface 37 and the antenna 32. The second inlay surface 39 faces into the column 20 of the pallet 10 and would be located adjacent and bond to the injection molded material of the pallet 10 along with a portion of the second construction surface 35 of the outer construction 34.
In the illustrated non-limiting example, a thickness dimension of the outer construction 34 is greater than a thickness dimension of the antenna 32 and a thickness dimension of the inlay 38. The thickness dimension of the inlay 38 is less than a thickness dimension of the outer construction 34 and greater than a thickness dimension of the antenna 32.
The inlay 38 can be made of the same material as the outer construction 34 or of a dissimilar material from the outer construction 34. When the inlay 38 is made of a similar material as the outer construction 34, the inlay 38 will act as a heat shield during molding of the pallet 10 and reduce the amount of blistering that appears on the first construction surface 33 that can result from molding.
Instead of the inner most layer of the RFID tag 30B being the inlay 38 as shown with the RFID tag 30A in
In the non-limiting illustrated example, dimensions of the first and second inner construction surfaces 41, 43 are equal to or greater than dimensions of the first and second inlay surfaces 37, 39. Additionally, the dimensions of the first and second inner construction surfaces 41, 43 are less than dimensions of the first and second construction surfaces 33, 35. As described above in relation to the inlay 38 in the RFID tag 30A, the inner construction 42 will also further act as a heat shield during molding of the pallet 10 and reduce the amount of blistering that appears on the first construction surface 33 that can result from molding.
In the illustrated non-limiting example, a thickness dimension of the outer construction 34 is greater than a thickness dimension of the antenna 32 and a thickness dimension of the inlay 38. The thickness dimension of the inlay 38 is less than a thickness dimension of the outer construction 34 and greater than a thickness dimension of the antenna 32. A thickness dimension of the inner construction 42 is greater than the thickness dimension of the inlay 38 and less than or equal to the thickness dimension of the outer construction 34.
In order to ensure that the RFID tag 30 remains in a desired orientation while material is injected into the mold to form the pallet 10 or any other injection molded product, a unique mold confirmation is utilized.
The inner surface 60 of the mold also includes the wall 62 that surrounds the RFID tag 30. The height of the wall 62 is greater than a thickness of the entire RFID tag 30. In the illustrated embodiment, the wall 62 surrounds a portion of the inner surface 60 to define a suction surface 64 dimensioned to be larger than the first construction surface 33 of the outer construction 34, which is the portion of the RFID tag 30 that is in contact with the inner surface 60.
The vacuum lines 52 are in fluid communication with the suction surface 64 to generate a suction force to hold the RFID tag 30 to the inner surface 60. The pins 54 are extendable across the mold to engage an inner surface of the RFID tag 30 to further maintain the RFID tag 30 in place during the initial stages of the molding process. Although multiple suction lines 52 are shown in the illustrated non-limiting embodiment, only a single suction line could be used. The pins 54 are removed during the injection molding process to prevent the formation of passageways extending through the wall of the column 20 an inner side of the RFID tag 30.
In one example, the suction surface 64 is larger than the outer construction 34 on RFID tag 30 to allow material injected into the mold to fill a space between a perimeter of the RFID tag 30 and the wall 62. In another example, a perimeter of the outer construction 34 fits tightly against the wall 62 such that injected material will not reach the suction surface 64.
The wall 62 protects to the RFID tag 30 during the injection molding process to prevent the RFID tag 30 from moving or shifting during the injection molding process. Arrows 66 indicate possible flow directions for the injected material entering the mold and passing over the RFID tag 30. When the injected material travels over the wall 62, the wall 62 prevents the injected material from moving the RFID tag 30 by disrupting the generally linear flow of the injected material and creating turbulent flow fields as indicated by arrows 68 adjacent the wall 62 and the RFID tag 30.
The pins 54 retractably extend through the inner portion 58 of the mold to engage the inner surface of the RFID tag 30 to further secure the RFID tag 30 against the suction surface 64. The pins 54 retract once a predetermined amount of material has been injected into the mold to prevent the formation of passageways through the columns 20 to the RFID tag 30. Alternatively, the pins 54 are extended during the high speed injection phase and retract during the slow speed injection phase.
The suction device 102 then places the RFID tag 30 against the suction surface 64 of the outer portion 56 of the mold. A leveling member 114 of the automation system 100 includes soft contacts 116 connected to an extendable arm 118. The extendable arm 118 of the leveling member 114 extends past the suction device 102 to engage an inner surface of the RFID tag 30 that extends outward past the suction head 104. Because a portion of the RFID tag 30 extends past the suction head 104 in the illustrated example, the RFID tag 30 could curl away from the suction surface 64 and extend into the injection flow. To prevent this from happening, the leveling member 114 engages the inner surface of the RFID tag 30 and presses the RFID tag 30 against the suction surface 64. The static charge on the RFID tag 30 from the static charger 110 also prevents the RFID tag 30 from curling when placed against the suction surface 64.
Vacuum lines 52A are in fluid communication with a vacuum channel 70A in a suction surface 64A to provide a negative pressure through a suction force from the external source 55 (
Vacuum lines 52B are in fluid communication with a porous material 72B in a suction surface 64B to provide a negative pressure through a suction force from the external source 55 (
The outer portion 56C includes a recessed surface 65C facing into a cavity defined by the mold. The recessed surface 65C corresponds in shape to the sensor 63C. A first plurality of side supporting ribs 69C position the sensor 63C a proper distance from the recessed surface 65C to allow injected material to fill the space defined by the recessed surface 65C and a side surface of the sensor 63C.
A second plurality of ribs 71C include ledges 73C that position the sensor 63C a proper distance from to an upper and lower edge of the recessed surface 65C. Although the horizontal and vertical aligning function are performed separately by the first and second plurality of ribs 69C and 71C, respectively, the horizontal and vertical alignment function of these ribs 69C and 71C could be combined into a single rib. Additionally, the first and second plurality of ribs could be arranged in an alternating configuration or in groups of at least two similar ribs adjacent to each other. Moreover, the recessed surface 65C and the first and second plurality of ribs 69C and 71C could be located in the inner portion 58 of the mold.
As shown in
Although the different non-limiting embodiments are illustrated as having specific components, the embodiments of this disclosure are not limited to those particular combinations. It is possible to use some of the components or features from any of the non-limiting embodiments in combination with features or components from any of the other non-limiting embodiments.
It should be understood that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be understood that although a particular component arrangement is disclosed and illustrated in these exemplary embodiments, other arrangements could also benefit from the teachings of this disclosure.
The foregoing description shall be interpreted as illustrative and not in any limiting sense. A worker of ordinary skill in the art would understand that certain modifications could come within the scope of this disclosure. For these reasons, the following claim should be studied to determine the true scope and content of this disclosure.
The application is a divisional of U.S. application Ser. No. 15/899,085 filed Feb. 19, 2018, which claims priority to U.S. Provisional Application No. 62/472,816, which was filed on Mar. 17, 2017.
Number | Name | Date | Kind |
---|---|---|---|
5586657 | Ward et al. | Dec 1996 | A |
5811163 | Ohno et al. | Sep 1998 | A |
5868986 | Foulkes | Feb 1999 | A |
5871100 | Ward | Feb 1999 | A |
6011472 | Pemdergrah et al. | Jan 2000 | A |
6031459 | Lake | Feb 2000 | A |
6152299 | O'Malley et al. | Nov 2000 | A |
6206282 | Hayes, Sr. et al. | Mar 2001 | B1 |
6302461 | Compagnie | Oct 2001 | B1 |
6441741 | Yoakum | Aug 2002 | B1 |
6483434 | Umiker | Nov 2002 | B1 |
6484875 | Brainerd et al. | Nov 2002 | B1 |
6574166 | Niemiec | Jun 2003 | B2 |
6943678 | Muirhead | Sep 2005 | B2 |
7080787 | Wulff et al. | Jul 2006 | B2 |
7113101 | Petersen et al. | Sep 2006 | B2 |
7135979 | Brady | Nov 2006 | B2 |
7226220 | Choy et al. | Jun 2007 | B2 |
7261539 | Pitscheneder et al. | Aug 2007 | B2 |
7299981 | Hickle et al. | Nov 2007 | B2 |
7323990 | Urban | Jan 2008 | B2 |
7354001 | Wulff et al. | Apr 2008 | B2 |
7528727 | Morrow | May 2009 | B2 |
7804400 | Muirhead | Sep 2010 | B2 |
7948384 | Kennedy | May 2011 | B1 |
9108338 | Sirovskiy et al. | Aug 2015 | B2 |
9203191 | Bogart | Dec 2015 | B2 |
9362688 | Bogart | Jun 2016 | B2 |
9697451 | Bogart | Jul 2017 | B2 |
9818008 | Bogart | Nov 2017 | B2 |
10074952 | Bogart | Sep 2018 | B2 |
20040094949 | Savagian et al. | May 2004 | A1 |
20040238623 | Asp | Dec 2004 | A1 |
20050068182 | Dunlap et al. | Mar 2005 | A1 |
20050280542 | Shieh | Dec 2005 | A1 |
20060113716 | Binda et al. | Jun 2006 | A1 |
20060163269 | Anderson et al. | Jul 2006 | A1 |
20060243174 | Muirhead | Nov 2006 | A1 |
20060273180 | Ammond et al. | Dec 2006 | A1 |
20070030151 | Morrow | Feb 2007 | A1 |
20070138304 | Dorfner et al. | Jun 2007 | A1 |
20070182562 | Abbott et al. | Aug 2007 | A1 |
20070218227 | Nishizawa et al. | Sep 2007 | A1 |
20070256136 | Simske et al. | Nov 2007 | A1 |
20070256358 | Schromm | Nov 2007 | A1 |
20080088459 | Martin et al. | Apr 2008 | A1 |
20120248199 | Schimmel | Oct 2012 | A1 |
20120318877 | Marur et al. | Dec 2012 | A1 |
20140007799 | Nasseri | Jan 2014 | A1 |
20150154433 | Stewart | Jun 2015 | A1 |
20150174803 | Newman et al. | Jun 2015 | A1 |
20150217059 | Ashby et al. | Aug 2015 | A1 |
20160079723 | Bogart | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
2272017 | Nov 1999 | CA |
19739438 | Mar 1999 | DE |
102004045459 | Mar 2006 | DE |
102004059962 | Jun 2006 | DE |
H02084319 | Mar 1990 | JP |
H08056799 | Mar 1996 | JP |
2003081344 | Mar 2003 | JP |
2005263288 | Sep 2005 | JP |
0007904 | Feb 2000 | WO |
2001072260 | Oct 2001 | WO |
03060818 | Jul 2003 | WO |
2015073964 | May 2015 | WO |
Number | Date | Country | |
---|---|---|---|
20200070391 A1 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
62472816 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15899085 | Feb 2018 | US |
Child | 16675542 | US |