INJECTION MOLDED GRID FOR SAVING SCREEN FRAMES

Abstract
A shaker screen including a composite frame, a removable grid attached to the composite frame, and at least one filtering element attached to the removable grid is disclosed. A method including forming a composite frame, forming a removable grid, attaching at least one filtering element to the removable grid, and attaching the removable grid to the composite frame is disclosed. Additionally, a method for rebuilding a shaker screen, the method including removing a first screen assembly from a composite frame, the screen assembly having a removable grid and at least one filtering element, and attaching a second screen assembly to the composite frame is disclosed.
Description

BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is an illustration of a conventional shaker.



FIG. 2 is a prospective cutaway view of a portion of a prior art composite screen.



FIG. 3 is a top view of a screen in accordance with one embodiment of the present disclosure.



FIG. 4 is a cross-section view of a composite frame in accordance with one embodiment of the present disclosure.



FIG. 5 is a side view of a screen assembly in accordance with one embodiment of the present disclosure.



FIG. 6 is a cross-section view of a shaker screen in accordance with one embodiment of the present disclosure.



FIGS. 7-8 are cross-section views of heat staking a removable grid to a composite frame in accordance with an embodiment of the present disclosure.





DETAILED DESCRIPTION

In one aspect, embodiments disclosed herein relate to pre-tensioned composite screens for an oilfield shaker. More specifically, embodiments disclosure herein relate to pre-tensioned composite screens including removable screen assemblies. More specifically still, embodiments disclosed herein relate to pre-tensioned composite shaker screens and methods of manufacturing and rebuilding such screens.


Generally, embodiments disclosed herein include a composite frame) at least one removable grid attached to the composite frame, and at least one filtering element attached to the at least one removable grid. In at least one embodiment, such screens provide a shaker operator the ability to remove the grid from the composite frame and attach a new grid to the original composite frame.


Referring to FIG. 3, a top view of a screen 300 for a shaker in accordance with one embodiment of the present disclosure is shown. In this embodiment, screen 300 is illustrated including a partially removed filtering element 301 attached to a removable grid 302. Filtering element 301 covers a plurality of apertures 303 in grid 302 such that solid particles larger than perforations in filtering element 301 will not pass through screen 300. Removable grid 302 includes a first side 304 and a second side 305 extending between a first end 306 and a second end 307. In this embodiment, first side 304 and second side 305 side are substantially parallel, and first end 306 and second end 307 are also substantially parallel. A plurality of longitudinal cross-members 308 extend between first end 306 and second end 307, while a plurality of transverse ribs 309 are arrayed between the first side 306 and second side 307. Thus, apertures 303 are formed from the intersection of transverse ribs 309 and cross-members 308.


While the embodiment shown in FIG. 3 illustrates apertures 303 of substantially equal configuration (i.e., of same size and shape), one of ordinary skill in the art will appreciate that alternate size and shape perforations 303 may be formed by varying the number of cross-members 308 and the angles of intersection between such cross-members 308 and transverse ribs 309. Correspondingly, alternate embodiments may include apertures 303 which may be substantially asymmetrical, square, circular, triangular, or any other shape known to one of ordinary skill in the art. Furthermore, the relative size of apertures 303 may be varied to change the rate of drilling fluid and particulate flow therethrough.


Referring to FIG. 4, a cross-sectional side view of a composite frame 402, taken through line A-A of the screen of FIG. 3, is shown in accordance with one embodiment of the present disclosure. Composite frame 402 includes a first side 404, a second side 405, and a plurality of cross-members 408. Cross-members 408 intersect a plurality of transverse ribs (not shown) thereby creating a plurality of apertures 403 as described above. In this embodiment, cross-members 408 include a plurality of contact points 410 for supporting and/or attaching a removable grid (not shown). As illustrated, contact points 410 may be of generally pyramidal shape and protrude from cross-members 408 and/or transverse ribs (not shown). Contact points 410 may extend from the top of cross-members 408 and/or transverse ribs (not shown) such that a filtering element (not shown) may be attached thereto. To attach the filtering element (not shown) to composite frame 402, the filtering elements may be stretched taut over contact points 410 and then heat and pressure may be applied to contact points 410 to melt and seep through the filtering element. Once contact points 410 melt through the filtering element (not shown), contact points 410 may no longer protrude through the filtering element. Thus, by melting and flattening contact points (410), the filtering element (not shown) and/or filtering elements may be attached so as to hold the screen assembly in tension.


Composite frame 402 may be formed from any material and by any method known in the art. In one embodiment, composite frame 402 may be formed from a frame sub-structure including high-strength steel beams, having a hollow cross-section, and high strength steel rods. The frame sub-structure may be enclosed in a high-strength, glass reinforced plastic outer frame, wherein the frame sub-substructure forms part of both cross-members 408 and/or transverse ribs (not shown). The composite material may include high-strength plastic, mixtures of high-strength plastic and glass, high-strength plastic reinforced with high-tensile-strength steel rods, and any combination thereof. One of ordinary skill in the art will appreciate that the frame sub-structure and the outer frame may be formed in any configuration and from any material or combination or materials known in the art. Alternatively, composite frame 402 may be formed through injection molding, gas-assisted injection molding, extrusion, and/or any other process known in the art.


Referring now to FIG. 5, a side view of a screen assembly 500 in accordance with one embodiment of the present disclosure is shown. Generally, a screen assembly 500 includes a removable grid 502 and a filtering element 501. In this embodiment, removable grid 502 is illustrated including a plurality of filtering element attachment points 512 extending from ends of removable grid 502 for attaching and pre-tensioning filtering element 501 to removable grid 502. As illustrated, filtering element attachment points 512 may terminate at a substantially similar height, thereby forming a surface of consistent height for attaching filtering element 501. In alternate embodiments, filtering element attachment points 512 may extend to different heights, or in certain instances, may not extend out of removable grid 502. In such non-extending embodiments, filtering element attachment points 512 may be recessed into removable grid 502, and filtering element 501 may be attach thereto.


Removable grid 502 may be formed by, among other processes, injection molding, gas injection molding, and/or extrusion. In embodiments using injection molding, a molten material is injected at a high pressure into a mold having an inverse shape of a desired grid. The configuration of the grid may be, for example, any configuration described above, and/or shown in FIGS. 1-6. The mold may be formed by a toolmaker or mold maker from metals (e.g., steel or aluminum) and precision-machined to form smaller, more detailed features. Once the mold is filled with molten material, the molten material is allowed to cure and is then removed from the mold. The grid may be filled with any molten material known to one of ordinary skill in the art.


Alternatively, a removable grid 502 in accordance with embodiments described herein may be formed by gas-assist injection molding. In this embodiment, molten material is injected into a mold, partially filling it with a predetermined amount of resin or molten material. A gas (e.g., nitrogen) is introduced into the mold cavity. The gas forms hollow channels as it follows a path of least resistance, thereby directing the molten material to fill all areas of the mold. As the gas expands in the cavity, forcing the molten material outward, all of the surfaces receive substantially equal pressure. Subsequently, the molten material is allowed to cure, the gas may be vented through a nozzle or vent, and the grid may be removed from the mold. In other embodiments, removable grid 502 may be formed by any of the processes of forming a frame discussed above such as, for example, sub-structure framing.


Filtering element 501 may include, for example, a mesh, a fine screen cloth, combinations thereof, and/or any other materials known to one of ordinary skill in the art. Furthermore, filtering elements 501 may be formed from, for example, plastics, metals, alloys, fiberglass, composites and/or polytetrafluorethylene. In certain embodiments, multiple layers of filtering elements 501 may be used, and in such multiple layer filtering elements 501, filtering elements 501 with different size perforations may be used. In such embodiments, the filtering element layers should preferably be arranged wherein coarser filtering elements are disposed closer to removable grid 502, while finer layers are disposed on top of the coarser layers.


While attaching filtering element 501 to removable grid 502, in accordance with any of the methods described above, filtering element 501 may be pre-tensioned. In one embodiment, filtering element 501 may be stretched over attachment points 512 so that filtering element 501 is tensioned to a pre-selected level. Filtering element 512 may then be attached to removable grid 502 by, for example, heat staking, ultrasonic welding, mechanical fastening, chemical adhesion, and/or thermal bonding. Alternatively, one of ordinary skill in the art will appreciate that filtering element 501 may be attaching to removable grid 502 in accordance with any method known in the art.


Removable grid 502 may also be coated with polymer, epoxies, of combinations thereof to further enhance the anticorrosion properties of the grid. In certain embodiments, removable grid 502 may be coated in materials such as, powder epoxies and/or polymers, such as polyethylene and/or polypropylene. Those of ordinary skill in the art will appreciate that additional polymers and epoxies not specifically disclosed may also be used to coat removable grid 502. In alternate embodiments, wherein removable grid 502 is formed from a metal, the metal surfaces may also be coated with polymers, epoxies, or combinations thereof.


Referring to FIG. 6, a cross-sectional side view of a shaker screen 600 taken through line A-A of FIG. 3 is shown in accordance with one embodiment of the present disclosure. Shaker screen 600 includes a composite frame 602 and a screen assembly 611. Screen assembly 611 includes a filtering element 601 and a removable grid 603. In this embodiment, removable grid 603 is attached to composite frame 602 such that when filtering element 601 and/or removable grid 603 becomes worn from use, removable grid 603 may be removed from composite frame 602.


Removable grid 603 may be attached to composite frame 602 according to any attachment method known to one of ordinary skill in the art including, but not limited to, bonding, mechanical fastening, and chemical adhesion. In one embodiment, removable grid 603 may be attached to composite frame 602 using heat staking. Referring briefly to FIGS. 7 and 8 together, a cross-sectional view of a method of heat staking removable grid 603 to composite frame 602, in accordance with an embodiment of the present disclosure, is shown. Heat staking, also referred to as thermal staking, heading, or riveting, is the controlled flow of molten material to attach two components together. When heat staking removable grid 603 to composite frame 602, a hole in removable grid 603, for receiving a premolded contact point 613 extending from composite frame 602, may be formed. A heated tip 614 then contacts premolded contact point 613 and creates localized heat. The heat melts premolded contact point 613 so that the contact point melts over removable grid 603 in a form according to the shape of the heated tip. The melted plastic is then allowed to cool, and when the plastic solidifies, removable grid 603 is attached to composite frame 602.


In alternate methods of heat staking, the contact point may be externally affixed to composite frame 602, rather than being integral to composite frame 602. In embodiments where external attachment points are affixed to composite frame 602, external attachment points may be formed from any material known to one of ordinary skill in the art, including, acrylonitrile butadiene styrene, modified phenylene oxide, and polypropylene. Generally, other appropriate heat staking materials may include thermoplastics, crystalline polymers, and amorphous polymers.


In another embodiment, removable grid 603 may be attached to composite frame 602 using ultrasonic welding. Ultrasonic welding is the conversion of high-frequency electrical energy to high-frequency mechanical energy. The mechanical energy is applied to a plastic material as a vertical vibrating motion under pressure, and heat is generated at the contact point of two materials (e.g., composite frame 602 and removable grid 603) such that the two materials become attached. Contact points for attaching composite frame 602 to removable grid 603 may include portions of composite frame 603 which are integral, or external attachment points attached to composite frame 603 either before or after manufacture.


One of ordinary skill in the art will appreciate that any method of bonding composites to metal and/or composites to composites may be used so as to attach removable grid 603 to composite frame 602. In methods of ultrasonic welding wherein external attachment points are affixed to composite frame 602, external attachment points may be formed from any material known to one of ordinary skill in the art, including, styrene-maleic-anhydride, polycarbonates, acrylonitrile butadiene styrene, and combinations thereof. Generally, other appropriate ultrasonic welding materials may include thermoplastics, crystalline polymers, and amorphous polymers.


In still another embodiment, removable grid 603 may be attached to composite frame 602 using mechanical fastening. Mechanical fasteners may include bolts, rivets, screws, and any other fastening device capable of attaching removable grid 603 to composite frame 602. One mechanical method of attaching removable grid 603 to composite frame 602 may include fasteners attached to removable grid 603 that are configured to engage a fastening structure of composite frame 602. While not independently illustrated, one of ordinary skill in the art will appreciate that any method of mechanically fastening a metal to a composite and/or a composite to another composite may be used so as to attach removable grid 603 to composite frame 602. Preferably, the mechanical fasteners will include corrosion resistant and or coated material, such as plastics and/or composites, to reduce failure of the fasteners. Certain embodiments may include a combination of mechanical fasteners and, for example, heat staking, to attach removable grid 603 to composite frame 602.


Possible methods of detaching removable grid 603 from composite frame 602 may include a mechanical stripping process or removal of the fasteners connecting the two parts. Methods used to detach removable grid 602 from composite frame 603 may vary depending on the method by which removable grid 602 was attached to composite frame 602. When threaded fasteners were used, removable grid 603 and composite frame 602 may be separated by unscrewing the threaded fasteners. Alternatively, if non-threaded fasteners are used, a different method of removal, such as by severing the fasteners, may be appropriate. When removable grid 603 is attached to composite frame 602 by heat staking, they may be separated by severing the stakes, by heating the stakes until they are soft enough that removable grid 603 and composite frame 602 may be separated, or by another method known to one of ordinary skill in the art. Alternative embodiments may use any other methods known to those of ordinary skill in the art, such as for example, chemical stripping, to separate removable grid 603 from composite frame 602.


Certain embodiments in accordance with the present disclosure may have filtering elements that are attached to the removable grid before the removable grid is attached to the composite frame. In these embodiments, the tension in the filtering elements, resulting from their attachment to the removable grid, may prevent the grid and filtering element assembly from lying substantially flat, that is, the grid may be bowed. The attachment of the removable grid to the composite frame may force the grid to conform to the overall shape of the composite frame. Such screen assemblies may be substantially flat after the grid is attached to the composite frame. Other embodiments may include removable grids that are rigid enough to remain substantially flat, even when filtering elements are attached to the removable grid before the removable grid is attached to the composite frame.


Advantageously, embodiments disclosed herein may provide for a more efficient pre-tensioned composite shaker screen design. Embodiments presently disclosed may allow the composite frame to be reused after one or more of the screen assemblies attached to it are worn out. Certain embodiments may also allow a shaker operator to change the screen assembly as is required to adjust the rate of separation of differing drilling fluids from particulate matter.


Also advantageously, embodiments disclosed herein may allow an existing composite frame to be rebuilt with various filtering element configurations for different applications. Thus, entire shaker screens will not need to be discarded; rather, only the removable grid and/or filtering elements will need to be replaced. By decreasing the cost associated with replacing entire shaker screens, the cost of separating drilling fluid from solids may be substantially decreased, thereby decreasing the overall cost of the drilling operation.


While the present disclosure has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of embodiments disclosed herein. Accordingly, the scope of embodiments disclosed herein should be limited only by the attached claims.

Claims
  • 1. A shaker screen, the shaker screen comprising: a composite frame;a removable grid attached to the composite frame; andat least one filtering element attached to the removable grid.
  • 2. The shaker screen of claim 1, wherein the at least one filtering element is pre-tensioned.
  • 3. The shaker screen of claim 1, wherein the removable grid is attached to the composite frame by bonding.
  • 4. The shaker screen of claim 3, wherein the bonding is one selected from a group consisting of heat staking, ultrasonic welding, and thermal bonding.
  • 5. The shaker screen of claim 1, wherein the removable grid is attached to the composite frame with at least one mechanical fastener.
  • 6. The shaker screen of claim 1, wherein the removable grid comprises a thermoplastic.
  • 7. The shaker screen of claim 1, wherein the removable grid is formed by one of a group consisting of injection molding and extrusion.
  • 8. The shaker screen of claim 1, wherein the removable grid comprises a metal.
  • 9. The shaker screen of claim 1, wherein the removable grid is coated with at least one of an epoxy and a polymer.
  • 10. A method of manufacturing a shaker screen, the method comprising: forming a composite frame;forming a removable grid;attaching at least one filtering element to the removable grid; andattaching the removable grid to the composite frame.
  • 11. The method of claim 10, further comprising: pre-tensioning the at least one filtering element to the removable grid.
  • 12. The method of claim 10, wherein the removable grid is formed by injection molding.
  • 13. The method of claim 10, further comprising: coating the removable grid with at least one of a group consisting of an epoxy and a polymer.
  • 14. The method of claim 10, wherein the attaching the removable grid to the composite frame comprises bonding.
  • 15. The method of claim 14, wherein the bonding is one selected from a group consisting of heat staking, ultrasonic welding, and thermal bonding.
  • 16. The method of claim 10, wherein the attaching the removable grid to the composite frame comprises mechanical fastening.
  • 17. A method for rebuilding a shaker screen comprising: removing a first screen assembly from a composite frame, the first screen assembly comprising; a removable grid; andat least one filtering element; andattaching a second screen assembly to the composite frame.
  • 18. The method of claim 17, wherein the removing the first screen assembly from the composite frame comprises mechanical stripping.
  • 19. The method of claim 17, wherein the attaching the second screen assembly to the composite frame comprises bonding.
  • 20. The method of claim 17, wherein the attaching the second screen assembly to the composite frame comprises mechanical fastening.
  • 21. The method of claim 17, wherein the second screen assembly is pre-tensioned.
Provisional Applications (1)
Number Date Country
60827601 Sep 2006 US