The present invention relates to an energy management system for a crash impact event, and in particular to an injection molded inflatable active bolster.
Inflatable bolsters have been developed to enhance vehicle occupant protection in the event of a vehicle crash. Such bolsters are mounted within a vehicle compartment and include a hollow body and an inflator for injecting a pressurized fluid into the hollow body. In order to reduce the potential for injuries from impacting the vehicle interior, the inflator is activated upon detection of such an event, and the bolster is inflated to form a cushion.
One prior active bolster comprises a polymeric expansible body having a face portion towards a vehicle occupant and a back portion in opposing relation. The expansible body is connected to an inflator such that upon discharge of a gas, the face portion is projected outwardly to an extended position, so as to intercept and cushion the impacting portion of the occupant. At the core of such bolsters is generally a blow molded expansible hollow structure, much like that detailed Applicant's U.S. Pat. No. 6,203,057.
While such a construction may provide a desired degree of protection, interior space restrictions and the need to meet interior design flexibility and fit/finish necessitates further options in respect of active bolster technology.
According to an aspect of an embodiment provided is an inflatable active bolster for a vehicle occupant, the inflatable active bolster comprising an expansible hollow chamber of unitary construction having a first body section and a second body section interconnected by a living hinge, the first and second body sections being folded about the living hinge and joined about at least a portion of the periphery between the first and second body section to form the hollow chamber. The first body section provides an outer surface for facing the vehicle occupant, while the second body section provides a support surface for coupling the inflatable active bolster to a vehicle. At least one of the first and second body sections provides at least one expansible element such that upon pressurization of the expansible hollow chamber, at least a portion of the at least one expansible element undergoes deformation to permit inflation of the expansible hollow chamber, thereby displacing the outer surface of the first body section outwardly to an extended position.
According to another aspect of an embodiment, provided is an injection molded inflatable active bolster for a vehicle occupant that projects outwardly from a stored position to an extended position adjacent the occupant during a collision event. The bolster comprises an expansible hollow chamber of unitary injection molded construction having a first body section and a second body section interconnected by a living hinge. The first and second body sections are folded about the living hinge and joined about at least a portion of the remaining periphery between the first and second body section, to form the hollow chamber. The first body section presents an outer surface for facing the vehicle occupant, while the second body section provides a mating surface for attachment of the inflatable active bolster to a vehicle. Also provided is an inflator in fluid communication with the expansible hollow chamber, the second body section having at least one expansible element such that upon pressurization of the expansible hollow chamber by the inflator, at least a portion of the at least one expansible element undergoes deformation to permit inflation of the expansible hollow chamber, displacing the outer surface of the first body section outwardly to an extended position.
The foregoing and other features and advantages of the invention will be apparent from the following description of the invention as illustrated in the accompanying drawings. The accompanying drawings, which are incorporated herein and form a part of the specification, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention. The drawings are not to scale.
a is a perspective view of the active bolster system in a folded/readied state, according to the embodiment of
b is a side sectional view of the active bolster system of
c is a side sectional view of the active bolster system of
d is a side sectional view of an alternate embodiment detailing the attachment of first body section to second body section.
e is a side sectional view of a further alternate embodiment in which a set spacing is provided between first body section and second body section.
a is a side sectional view of the active bolster system of
b is a side sectional view of the active bolster system of
a is a plan view (interior side) of the expansible body of the active bolster system in an unfolded state, according to another exemplary embodiment.
b is a perspective view of the active bolster system in a partially folded state, according to the embodiment of
c is a perspective view of the active bolster system in a folded/readied state, according to the embodiment of
Specific embodiments of the present invention will now be described with reference to the figures. The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. A person skilled in the relevant art will recognize that other configurations and arrangements can be used without departing from the scope of the invention. Although the description of the embodiments hereof is in the context of vehicular active bolsters, the invention may also be used in other active bolster arrangements. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
Referring to
Referring now to
As will be appreciated, the sealing arrangement between first and second body sections 28, 30 may be accomplished a variety of ways. For example, one or both of first and second body sections 28, 30 may provide one or more projection elements around at least a portion of each respective periphery to provide a bonding or joining surface to achieve a sealing arrangement therebetween. In the embodiment detailed for example in
In an alternate embodiment, the sealing arrangement between first and second body sections 28, 30 may be accomplished by way of a weld seam 56 provided directly between the peripheral end surface 58 of second body section 30 and inside surface of first body section 28, as detailed in
Referring back to
Where active bolster 22 is implemented in an operable feature of a vehicle, such as for example a glove or utility compartment, active bolster may optionally be fitted with a surface treatment or additional finished panel. Referring to
In use, that is during deployment of active bolster 22 during a crash event, inflator 62 pressurizes body 26, in particular hollow chamber 34 to cause an unfolding or deformation of pleat 36. This volumetric expansion of hollow chamber 34 projects the outer surface of first body section 28 of active bolster 22 outwardly to the extended position, as shown in
An alternate embodiment of active bolster, denoted 122, is shown in
To facilitate mounting of active bolster within a vehicle, prior to folding first and second body section together, suitable mounting elements are provided on the interior surface 180 of second body section 130, as shown in
In active bolster 22 detailed in
The active bolster described herein is suitable for use in a wide range of locations within a vehicle passenger compartment. In addition to usage as a knee bolster, as generally described above, the active bolster is configurable for use in side bolster applications. For example, the active bolster may be implemented in the form of an upper active side bolster 192 or a lower active side bolster 194 within a side door panel 196, as detailed in
As will be appreciated, although the components of the active bolster, in particular the expansible body and related panels (where provided) are described as being injection molded, the components may be formed using any other suitable process. Materials suitable for the expansible body include, but are not limited to polyolefin with elastic properties suitable for deployment over a range of operating temperatures, such as Salflex 245 (Salflex Polymers, Toronto, ON). Non-expanding components (e.g. panel 68) may be formed from filled or unfilled thermoplastic material such as, but not limited to polypropylene, thermoplastic elastomer polyolefin (TPO), acrylonitrile butadiene styrene (ABS) or polycarbonate (PC)/ABS blends. Non-expanding components may also be selected from non-polymeric materials, such as various metal substrates and/or fiberglass.
As will be appreciated, while the embodiments presented herein present the accordion pleats as having a certain configuration/orientation, they may be configured differently depending on the application. In other words, the pleats may be different in number, orientation, take a different form or be continuous/dis-continuous around the expansible body, as deemed suitable for a certain active bolster configuration. For example, in other exemplary embodiments, the pleats may be configured as having sine curve or rectangular cross-section shape. In other exemplary embodiments, the number of pleats may differ (e.g. one pleat, five pleats, or varying the number of pleats at different locations).
It will be further appreciated that active bolster characteristics may be controlled or influenced in a number of ways, such as through the use of vents (e.g. quantity and placement), selection of materials (e.g. types, combinations, thickness, amount), pleats (e.g. number, location, or shape), inflator (e.g. type, discharge rate, discharge volume), structural features (e.g. ribs, or other integrated patterns) or any combination thereof.
While various embodiments according to the present invention have been described above, it should be understood that they have been presented by way of illustration and example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the appended claims and their equivalents. It will also be understood that each feature of each embodiment discussed herein, and of each reference cited herein, can be used in combination with the features of any other combination. All patents and publications discussed herein are incorporated by reference herein in their entirety.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/331,542, filed May 5, 2010, the entire contents of which are hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2834606 | Bertrand | May 1958 | A |
3185497 | Lagace | May 1965 | A |
3473824 | Carey et al. | Oct 1969 | A |
3963362 | Hollis | Jun 1976 | A |
3981518 | Pulling | Sep 1976 | A |
4203616 | Okada | May 1980 | A |
4297051 | Robinson | Oct 1981 | A |
4362425 | Dixon | Dec 1982 | A |
4511281 | Schmanski | Apr 1985 | A |
4518172 | Bortz et al. | May 1985 | A |
4597691 | Clarke | Jul 1986 | A |
4721329 | Brantman et al. | Jan 1988 | A |
4951963 | Behr et al. | Aug 1990 | A |
5082310 | Bauer | Jan 1992 | A |
5138721 | Spector | Aug 1992 | A |
5273309 | Lau et al. | Dec 1993 | A |
5312133 | Pietila et al. | May 1994 | A |
5324070 | Kitawage et al. | Jun 1994 | A |
5324072 | Olson et al. | Jun 1994 | A |
5364125 | Brown et al. | Nov 1994 | A |
5370417 | Kelman et al. | Dec 1994 | A |
5382051 | Glance | Jan 1995 | A |
5447326 | Laske et al. | Sep 1995 | A |
5456490 | Carter et al. | Oct 1995 | A |
5476283 | Elton | Dec 1995 | A |
5498026 | Eckhout | Mar 1996 | A |
5524924 | Steffens, Jr. et al. | Jun 1996 | A |
5533748 | Wirt et al. | Jul 1996 | A |
5536043 | Lang et al. | Jul 1996 | A |
5544913 | Yamanishi et al. | Aug 1996 | A |
5556128 | Sinnhuber et al. | Sep 1996 | A |
5567375 | Filion et al. | Oct 1996 | A |
5615914 | Galbraith et al. | Apr 1997 | A |
5630621 | Schneider | May 1997 | A |
5716093 | Sadr | Feb 1998 | A |
5718449 | Numazawa et al. | Feb 1998 | A |
5775729 | Schneider et al. | Jul 1998 | A |
5816613 | Specht et al. | Oct 1998 | A |
5845937 | Smith | Dec 1998 | A |
5865468 | Hur | Feb 1999 | A |
5927755 | Matsuo et al. | Jul 1999 | A |
D412880 | Sadr | Aug 1999 | S |
5931493 | Sutherland | Aug 1999 | A |
5957493 | Larsen et al. | Sep 1999 | A |
5967594 | Ramanujam | Oct 1999 | A |
5968431 | Ang et al. | Oct 1999 | A |
6032978 | Spencer et al. | Mar 2000 | A |
6131950 | Schroter | Oct 2000 | A |
6142520 | Iino et al. | Nov 2000 | A |
6158766 | Kowalski | Dec 2000 | A |
6170871 | Goestenkors et al. | Jan 2001 | B1 |
6193272 | Aigner et al. | Feb 2001 | B1 |
6203057 | Spencer et al. | Mar 2001 | B1 |
6213497 | Spencer et al. | Apr 2001 | B1 |
6231072 | Pywell et al. | May 2001 | B1 |
6250665 | Sutherland et al. | Jun 2001 | B1 |
6302437 | Marriott et al. | Oct 2001 | B1 |
6305710 | Bosgeitet et al. | Oct 2001 | B1 |
6336653 | Yaniv et al. | Jan 2002 | B1 |
6338501 | Heilig et al. | Jan 2002 | B1 |
6416079 | Lutz et al. | Jul 2002 | B1 |
6435554 | Feldman | Aug 2002 | B1 |
6471242 | Schneider | Oct 2002 | B2 |
6517103 | Schneider | Feb 2003 | B1 |
6536802 | Sutherland et al. | Mar 2003 | B1 |
6543838 | Bertolini et al. | Apr 2003 | B1 |
6568743 | Jayasuriya et al. | May 2003 | B1 |
6578867 | Khoudari et al. | Jun 2003 | B2 |
6588557 | Williams et al. | Jul 2003 | B2 |
6619689 | Spencer et al. | Sep 2003 | B2 |
6688643 | Schneider | Feb 2004 | B2 |
6712385 | Enders | Mar 2004 | B2 |
6715789 | Takimoto et al. | Apr 2004 | B2 |
6752417 | Takimoto et al. | Jun 2004 | B2 |
6758493 | Conlee et al. | Jul 2004 | B2 |
6817625 | Hjerpe | Nov 2004 | B2 |
6817627 | Galmiche et al. | Nov 2004 | B2 |
6848715 | Nelson et al. | Feb 2005 | B2 |
6874811 | Enders et al. | Apr 2005 | B2 |
6971667 | Enders et al. | Dec 2005 | B2 |
6976706 | Smith et al. | Dec 2005 | B2 |
6991252 | Enders | Jan 2006 | B2 |
7021652 | Kumagai et al. | Apr 2006 | B2 |
7055083 | Wang | May 2006 | B2 |
7055853 | Honda et al. | Jun 2006 | B2 |
7086663 | Honda | Aug 2006 | B2 |
7093846 | Reiter et al. | Aug 2006 | B2 |
7093851 | Lotspih | Aug 2006 | B2 |
7144032 | Lunt et al. | Dec 2006 | B2 |
7168733 | Kumagai et al. | Jan 2007 | B2 |
7213840 | Kumagai | May 2007 | B2 |
7249781 | Kai et al. | Jul 2007 | B2 |
7322598 | Galmiche et al. | Jan 2008 | B2 |
7350852 | Rust et al. | Apr 2008 | B2 |
7367587 | Taoka | May 2008 | B2 |
7393013 | Best et al. | Jul 2008 | B2 |
7396040 | Enders et al. | Jul 2008 | B2 |
7413215 | Wetson et al. | Aug 2008 | B2 |
7422234 | Huber et al. | Sep 2008 | B2 |
7448645 | Bederka et al. | Nov 2008 | B2 |
7481457 | Best et al. | Jan 2009 | B2 |
7568722 | Sato et al. | Aug 2009 | B2 |
7578518 | Ochiai et al. | Aug 2009 | B2 |
7735865 | Cappabianca et al. | Jun 2010 | B2 |
7874587 | Miki et al. | Jan 2011 | B2 |
7980589 | Best et al. | Jul 2011 | B2 |
8146943 | Fukawatase et al. | Apr 2012 | B2 |
20010054811 | Spencer et al. | Dec 2001 | A1 |
20020125691 | Conlee et al. | Sep 2002 | A1 |
20020171231 | Roychoudhury et al. | Nov 2002 | A1 |
20030127819 | Richardson | Jul 2003 | A1 |
20030197354 | Beland et al. | Oct 2003 | A1 |
20040007856 | Enders et al. | Jan 2004 | A1 |
20040075251 | Fuji et al. | Apr 2004 | A1 |
20040075252 | Pan | Apr 2004 | A1 |
20040099644 | Allen | May 2004 | A1 |
20040100075 | Sakai et al. | May 2004 | A1 |
20040135353 | Enders et al. | Jul 2004 | A1 |
20040145163 | Galmiche et al. | Jul 2004 | A1 |
20040155447 | Smith et al. | Aug 2004 | A1 |
20040163872 | Lincoln et al. | Aug 2004 | A1 |
20040163873 | Polz et al. | Aug 2004 | A1 |
20040178616 | Yoshikawa | Sep 2004 | A1 |
20040232666 | Sato et al. | Nov 2004 | A1 |
20050023802 | Enders et al. | Feb 2005 | A1 |
20050029781 | Enders et al. | Feb 2005 | A1 |
20050052005 | Lunt et al. | Mar 2005 | A1 |
20050052010 | Best et al. | Mar 2005 | A1 |
20050052011 | Best et al. | Mar 2005 | A1 |
20050057024 | Weston et al. | Mar 2005 | A1 |
20050073134 | Matsuura et al. | Apr 2005 | A1 |
20050098996 | Enders | May 2005 | A1 |
20050116449 | Enders | Jun 2005 | A1 |
20050253369 | Taoka | Nov 2005 | A1 |
20060214400 | Enders et al. | Sep 2006 | A1 |
20070007753 | Williams et al. | Jan 2007 | A1 |
20070052219 | Rust et al. | Mar 2007 | A1 |
20070108746 | Ochiai et al. | May 2007 | A1 |
20070108747 | Roychoudhury et al. | May 2007 | A1 |
20070152431 | Rust et al. | Jul 2007 | A1 |
20070273179 | Hommel et al. | Nov 2007 | A1 |
20070296187 | Ochiai | Dec 2007 | A1 |
20080061537 | Enders | Mar 2008 | A1 |
20080203714 | Untersinger et al. | Aug 2008 | A1 |
20090152848 | Sadr et al. | Jun 2009 | A1 |
20090152849 | Saraf et al. | Jun 2009 | A1 |
20090250915 | Best et al. | Oct 2009 | A1 |
20100052296 | Sasaki et al. | Mar 2010 | A1 |
20100194081 | Thomas et al. | Aug 2010 | A1 |
20100320736 | Traber et al. | Dec 2010 | A1 |
20100327566 | Matsushima | Dec 2010 | A1 |
20110109064 | Best et al. | May 2011 | A1 |
20110115201 | Best et al. | May 2011 | A1 |
20110123739 | Ciplijauskas et al. | May 2011 | A1 |
20110133435 | Sadr et al. | Jun 2011 | A1 |
20110156378 | Matsushima et al. | Jun 2011 | A1 |
20110198827 | Roychoudhury | Aug 2011 | A1 |
20120080871 | Roychoudhury | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
404746 | Feb 1999 | AT |
1112266 | Aug 1961 | DE |
3737081 | May 1989 | DE |
19546143 | Jun 1997 | DE |
19858520 | Apr 2000 | DE |
10123207 | Jul 2002 | DE |
274535 | Jul 1988 | EP |
0678425 | Oct 1995 | EP |
0684164 | Nov 1995 | EP |
0872390 | Oct 1998 | EP |
1426249 | Jun 2004 | EP |
1663725 | Dec 2009 | EP |
2272670 | May 1994 | GB |
57058532 | Apr 1982 | JP |
63-002741 | Jan 1988 | JP |
63207744 | Aug 1988 | JP |
282946 | Jun 1990 | JP |
2249740 | Oct 1990 | JP |
5016758 | Jan 1993 | JP |
06-037011 | May 1994 | JP |
7291084 | Nov 1995 | JP |
H08-258604 | Oct 1996 | JP |
10504784 | May 1998 | JP |
10512210 | Nov 1998 | JP |
H11-028998 | Feb 1999 | JP |
11-091454 | Apr 1999 | JP |
11334515 | Dec 1999 | JP |
2000006751 | Jan 2000 | JP |
2000-326810 | Nov 2000 | JP |
2002-522286 | Jul 2002 | JP |
2003517966 | Jun 2003 | JP |
2004026126 | Jan 2004 | JP |
2004182231 | Jul 2004 | JP |
2004249960 | Sep 2004 | JP |
2004-338677 | Dec 2004 | JP |
2007-504050 | Mar 2007 | JP |
2007090954 | Apr 2007 | JP |
4083653 | Apr 2008 | JP |
4136876 | Aug 2008 | JP |
0007851 | Feb 2000 | WO |
0050270 | Aug 2000 | WO |
2004071818 | Aug 2004 | WO |
2006132990 | Dec 2006 | WO |
2007056849 | May 2007 | WO |
2009124394 | Oct 2009 | WO |
2009124395 | Oct 2009 | WO |
2009124401 | Oct 2009 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/CA2011/000518, mailed Aug. 11, 2011. |
Anonymous “Inftatable Bellows-Box Panel” Research Disclosure, Mason Publications, Hampshire, Great Britain, vol. 374, No. 9 (Jun. 1, 1995). |
Canadian Patent Application No. 2,535,661 Notice of Allowance dated Feb. 1, 2010. |
Canadian Patent Application No. 2,535,661 Office Action dated Jan. 20, 2009. |
European Patent Application No. 04761769.1 Examination Report dated Mar. 23, 2007. |
European Patent Application No. 04761769.1 Communication under Rule 71 (3) EPC dated Jul. 1, 2009. |
European Patent Application No. 04761769.1 Decision to Grant dated Nov. 19, 2009. |
European Patent Application No. 04761769.1 Supplementary European Search Report dated Nov. 1, 2006. |
European Patent Application No. 06771989.8 Supplementary European Search Report dated Feb. 8, 2010. |
European Patent Application No. 06771989.8 Examination Report dated May 21, 2010. |
European Patent Application No. 06804728.1 Communication under Rule 71 (3) EPC dated Jun. 14, 2010. |
European Patent Application No. 06804728.1 Examination Report dated Oct. 27, 2009. |
European Patent Application No. 06804728.1 Response to European Examination Report dated Mar. 3, 2010. |
European Patent Application No. 06804728.1 Supplementary European Search Report dated Jun. 15, 2009. |
International Patent Application No. PCT/CA2004/001605 International Search Report dated Feb. 8, 2005. |
International Patent Application No. PCT/CA2006/001862 International Preliminary Report on Patentability dated May 29, 2008. |
International Patent Application No. PCT/CA2006/001862 International Search Report and Written Opinion dated Feb. 1, 2007. |
International Patent Application No. PCT/CA2009/000475 International Search Report dated Jul. 7, 2009. |
International Patent Application No. PCT/CA2009/000476 International Search Report and Written Opinion dated Jul. 28, 2009. |
International Patent Application No. PCT/CA2009/000507 International Search Report dated Jul. 14, 2009. |
International Patent Application No. PCT/US2006/021507 International Search Report and Written Opinion dated Oct. 26, 2006. |
International Patent Application No. PCT/US2006/021507 International Preliminary Report on Patentability dated Dec. 6, 2007. |
Japanese Patent Application No. 2006-525586 Office Action dated Apr. 6, 2010. |
European Patent Application No. 06771989.8 Examination Report dated Feb. 2, 2011. |
Japanese Office Action for Application No. 2008-514914 dated Aug. 31, 2011, 6 pages. |
English translation of DE10123207; Publication Date: Jul. 4, 2002; Country: DE; Inventar: Tietz Werner; Assignee: Audi NSU Auto Union AG. |
German Patent Application No. 112009000827.5 Office Action dated Apr. 16, 2012 (English Translation and Original). |
European Search Report for Application No. 12168676.0 dated Jun. 26, 2012. |
Office Action from the Korean Intellectual Property Office for Application No. 10-2007-7030970 dated Jan. 17, 2013 (14 pages). |
Office Action from the United States Patent and Trademark Office for U.S. Appl. No. 13/215,892 dated Apr. 16, 2013 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20110272926 A1 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
61331542 | May 2010 | US |