The present disclosure relates generally to compressors and more particularly to compressor components and methods for forming such components.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Dimensional accuracy of scroll components is an important parameter during manufacturing. Scrolls, to optimally perform in a scroll compressor, should minimize leakage, wear, and fracture. Thus accurate final dimensions are important. Scroll components of scroll compressors are frequently manufactured by a molten metal process (“casting”). In one casting method, molten metal, such as liquid gray cast iron, is poured into a cavity, which then solidifies and forms a scroll after solidification is complete. Molds used in the casting process, into which the molten metal flows, are frequently composed of sand, binder, and/or a ceramic coating and may not have full structural rigidity. When the liquid metal contacts the mold wall surfaces, pressure is exerted on the mold, which potentially can cause mold wall expansion. Gray cast iron is prone to solidification expansion, believed to be due in part to having a high carbon or graphite content. Such a phenomenon can contribute to dimensional variation and tolerance increases.
Furthermore, sometimes, a “skin effect” is observed, which is believed to be attributable to the complicated thermodynamic, kinetic and metallurgical/chemical interactions that take place at the interface between the metal and ceramic casting material during solidification and cooling. Such a skin effect may necessitate removal of the modified surface. To accomplish accurate dimensions after casting, often extensive, complicated and expensive machining is used on the raw castings to convert them into a useable scroll.
It would be desirable to improve dimensional accuracy of scroll components produced during manufacturing and/or to reduce the amount of machining and other attendant processing required during the scroll component manufacturing process to improve manufacturing efficiency and product quality.
In various aspects, the present disclosure provides a scroll component that includes an injection molded scroll form having an involute portion and a base plate portion. In certain aspects, the injection molded scroll form includes a polymer. In certain aspects, the injection molded scroll form is formed of polymer with a plurality of reinforcing material particles dispersed therethrough, thus forming a reinforcement phase within the polymer matrix. In certain aspects, the present disclosure optionally provides one or more wear plates disposed in the base portion of the scroll form.
In other aspects, the present disclosure provides a scroll component including a scroll form having an involute portion that includes a polymer. The involute portion further defines a tip seal groove. A tip seal may be disposed in the tip seal groove, which in certain aspects can be accomplished without requiring machining of the molded tip seal groove. The scroll form has a base plate portion defining a metal bearing and a metal tip seal engaging surface.
In yet other aspects, the present disclosure provides a scroll compressor component including a scroll form having an involute portion including a polymer and defining a molded tip seal groove formed at a terminal end of the involute portion. A tip seal is disposed in the molded tip seal groove, where the tip seal comprises a tribological material. In certain aspects, the base plate portion further has a tip seal engaging surface.
In other aspects, a scroll component is provided that includes a scroll member having an involute portion and a base plate portion. The involute portion includes a polymer and defines a molded tip seal accepting groove, having a tip seal disposed therein. The base plate portion optionally further defines a tip seal engaging surface.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features
The present disclosure provides manufacturing processes that enable the manufacturing of a scroll with improved dimensional tolerances, while still meeting the rigorous stress and pressure requirements for a functioning scroll. In various aspects, the disclosure provides for injection molding processes for manufacturing of various near-net shaped scroll components. In various aspects, the scroll form is either formed wholly or formed in component parts which can then be joined to make the entire scroll.
In general, the teachings herein are directed towards the use of injection molded materials, such as polymers, in the formation of a scroll component for a scroll compressor. The entire scroll component may be formed utilizing injection molding techniques. Further, portions of the scroll component may be produced utilizing insert molding techniques. These portions or inserts can form portions of the scroll's wear surfaces to provide a high degree of dimensional tolerance. The portions may be fastened to other portions of the scroll component using over-molding techniques. These portions are formed by a variety of techniques known in the art, such as casting, forging, and/or injection molding, to provide the desired tribological properties.
As best seen in
As shown in
In certain aspects, a mold such as that shown in
The tip engaging wear plate 14 and bearing engaging wear plate 16 can be coupled to the tool inner surface using alignment pins (not shown) or optional magnets 54 found within the tool. After the tip engaging wear plate 14 and thrust bearing engaging wear plate 16 are positioned, the mold is closed and fluid is injected into the cavity through gate 44. After the base or matrix material of the component sets, the mold cavity 46 is opened and the scroll component 6 is removed therefrom. It should be understood that the injection molding techniques herein can be used with polymer materials, metal injection molding, or the injection of powder metals utilizing a binder. In certain aspects, the injected material comprises a polymer. In certain aspects, the injected material further comprises a reinforcing material or a reinforcement phase (e.g., forming a composite or a polymer matrix that includes a plurality of particles dispersed within one or more polymer resins). Further, it should be understood that certain components or portions of the scroll may be formed by other conventional processing techniques, such as casting, and the injection molded component(s) can later be joined together with other parts to form an integral scroll.
With respect to the injection molding of polymers, it is envisioned that the polymer material used to form the scroll component 6 can be either a thermoset or a thermoplastic polymer material. In this regard, the thermoset or thermoplastic material can be an engineered plastic such as polymers utilizing reinforcements. In certain aspects, the polymer comprises a polyimide, a copolymer of a polyimide, and/or a derivative or equivalent thereof. As discussed above, such polymer materials optionally comprise a reinforcement phase material to form a matrix. These reinforcements can include, but are not limited to, chopped glass, carbon fiber, polyimide fiber and mixtures thereof. Additionally, it is envisioned that the polymer materials can be reinforced with nano-phase clay (e.g., smectite clays) or carbon micro or nano-tubes, whether single or multi-walled used as reinforcement to form a nano-composite. Other equivalent reinforcement phase materials known or to be developed in the art are also contemplated. In this regard, it is envisioned the carbon micro or nano-tubes (referred to herein as “carbon nanotubes”) can be less than or equal to about 5 wt %, or optionally greater than or equal to 1 and less than or equal to 2 wt. % of the total polymer composite weight. In certain aspects, a material modulus is at least 10,000 MPa at an operational temperature up to 300° F., for example. An example of a suitable commercially available polyimide polymer for such applications is VESPEL®, available from E.I. duPont Nemours of Wilmington, Del.
Shown in
Compressor body 62 is generally cylindrical shaped. In certain aspects, the compressor body 62 is constructed from steel. The body 62 defines an internal cavity 86 within which is located main bearing housing 66, and a suction inlet 65 for connecting to a refrigeration circuit (not shown) associated with compressor 60. Compressor body 62 and upper and lower cap assemblies define a sealed chamber 34 within which scroll members 72 and 74 are disposed.
As seen, when in use, the tip seals 28 engage the tip seal bearing surface 23 of the tip seal engaging wear plate 14 of an opposing scroll component. Similarly the bearing engaging wear plate 16 engages an associated bearing 81. The optional hub bearing cylinder wear plate 18 disposed within the hub portion 10 is configured to interface with the bearing sleeve 84. As described above, the tip seals 28 can be formed of parallel metal shims or carbon reinforced polymer PTFE.
A steel drive shaft or crankshaft 80 having an eccentric crank pin 82 at one end thereof is rotatably journaled in a sleeve bearing 84 in main bearing housing 66 and a bearing in lower bearing assembly (not shown). Crank pin 82 is drivingly disposed within inner bore 92 of drive bushing 94. Crank pin 82 has a flat on one surface which drivingly engages a flat surface (not shown) formed to provide a radially compliant drive arrangement, such as shown in commonly assigned U.S. Pat. No. 4,877,382 to Caillat et al., which is hereby incorporated by reference.
This application claims the benefit of U.S. Provisional Application No. 60/910,125, filed on Apr. 4, 2007. The disclosure of the above application is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4875839 | Sakata et al. | Oct 1989 | A |
5131827 | Tasaka | Jul 1992 | A |
6998434 | Wadahara et al. | Feb 2006 | B2 |
20040077771 | Wadahara et al. | Apr 2004 | A1 |
20090030090 | Krishnamoorti et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
101617122 | Dec 2009 | CN |
1 980 752 | Oct 2008 | EP |
63158362 | Jul 1988 | JP |
01277693 | Nov 1989 | JP |
04005492 | Jan 1992 | JP |
07069015 | Jul 1995 | JP |
07180681 | Jul 1995 | JP |
2004-003410 | Jan 2004 | JP |
2004003410 | Jan 2004 | JP |
2004003410 | Jan 2004 | JP |
1020030077596 | Oct 2003 | KR |
WO 2005014708 | Feb 2005 | WO |
WO 2006096203 | Sep 2006 | WO |
WO 2008123947 | Oct 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20080247895 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
60910125 | Apr 2007 | US |