1. Field of the Invention
The present invention relates generally to injection molding and, more particularly, to a drop tip for injection molding.
2. Description of the Related Art
Injection molding is a widely known manufacturing process used to produce a variety of parts. Injection molding involves introducing a molten material, for example a molten plastic or resin, into a cavity within a mold until the cavity is filled. The molten material hardens in the mold in the shape of inner surfaces of the cavity. After the molten material hardens or cures, the hardened or cured material is removed from the cavity.
For injection molding, a manifold assembly is typically used for conveying molten material from a central injection portion or sprue to a number of cavities or to multiple points within one large cavity of the mold. An example of such a manifold assembly is disclosed in U.S. Pat. No. 4,964,795 to Tooman. In that patent, a manifold assembly has an integral or one piece, cast or steel, cylindrical or rectangular manifold with a passageway and at least one nozzle extending outwardly from the manifold and having a passageway through which a molten material may pass. The terminal end of the passageway of the nozzle, called a gate, is in fluid communication with the cavity of the mold. The nozzle may fluidly communicate with a drop tip attached thereto and passes through the mold or terminates in the mold. The drop tip has an internal bore that is generally straight or linear from its inlet to an outlet thereof.
It is also known that the manifold assembly may be used to mold colored plastic parts. Typically, the manifold assembly is used to mold the plastic part with a first color and then with a second color. However, the internal bore of the drop tip retains a portion of the first color prior to molding the second color. During the injection molding process, the first few parts molded will have a mix of the first color and the second color, resulting in scrap parts.
Therefore, it is desirable to provide a drop tip that has an internal bore that reduces or eliminates the retention of plastic material. It is also desirable to provide a drop tip for molding multiple colored parts that eliminates mixing of the colors during the molding process. It is further desirable to provide a drop tip for molding colored plastic parts that minimizes or eliminates scrap due to a change of colors as a result of the molding process. Therefore, there is a need in the art to provide a drop tip that meets these desires.
Accordingly, the present invention is a drop tip for conveying injection molding material from a molding material supply into a mold. The drop tip has a body including an internal bore and a drop passage extending from the internal bore. The internal bore has an arcuate lower end terminating in a gate to prevent retention of molten material therein.
One advantage of the present invention is that a drop tip is provided having a new internal bore for molding of multiple colored parts. Another advantage of the present invention is that the drop tip has an internal bore that eliminates retention of plastic material in the internal bore. Yet another advantage of the present invention is that the drop tip has an internal bore that reduces or eliminates mixing of colors for multiple color injection molding of parts. Still another advantage of the present invention is that the drop tip has an internal bore for molding colored plastic parts that minimizes or eliminates scrap due to a change of colors as a result of the molding process.
Other features and advantages of the present invention will be readily appreciated, as the same becomes better understood, after reading the subsequent description taken in conjunction with the accompanying drawings.
Referring to the drawings, and in particular
The manifold assembly 12 includes a manifold 20 having a manifold flow passage 22. The manifold assembly 12 also includes as least one, preferably a plurality of drops or nozzles 24 extending downwardly from the manifold 20 and having a nozzle flow passage 26 fluidly communicating with the manifold flow passage 22. The flow passages 22 and 26 can be of any appropriate shape. The nozzle flow passage 26 narrows and terminates at the drop tip 10. The manifold assembly 12 further includes a sprue bushing 28 and a sprue bushing spacer 29 connected to the manifold 20 for facilitating the introduction of molten material into the manifold 20. It should be appreciated that more than one nozzle 24 may be used with the manifold assembly 12, only one nozzle 24 is used with one drop tip 10 of the manifold assembly 12. It should also be appreciated that the molten material may be of a plastic, metal, wood fibers and plastic, etc. and is injected into the sprue bushing 28 of the manifold 20 from a molding machine (not shown). It should further be appreciated that the manifold assembly 12 is conventional and known in the art.
The manifold assembly 12 includes at least one, preferably a plurality of manifold spacers 34 connected to the manifold 20 opposite the nozzles 24. The manifold assembly 12 also includes at least one drop end plug 35 disposed in the manifold passageway 22 of the manifold 20 adjacent each nozzle 24 and a fastener 36 such as a set screw threadably engaging the manifold 20 to secure the drop end plug 35 in the manifold passageway 22 of the manifold 20. It should be appreciated that manifold assembly 12 may include at least one bracket 37 connected to the manifold 20 for mounting the manifold assembly 12 to the mold.
The manifold assembly 12 also includes at least one, preferably a plurality of electrical heaters 38 in the form of heater bands removably disposed about the circumference of the manifold 20 as well as the nozzles 24 and sprue bushing 28 to supply heat to maintain the plastic at a specified or predetermined temperature. The heaters 38 are formed as two half cylinders electrically wired in parallel to an electrical source such as a junction box (not shown). The half cylinders of the heaters 38 are removably clamped about the circumference of the manifold 20, nozzles 24, and sprue bushing 28 using conventional clamping fasteners or the like (not shown).
Referring to
The manifold assembly 12 may include at least one, preferably a plurality of drop locators 56. The drop locators 56 are in the form of a titanium or stainless steel insulating ring disposed about each of the drop tips 10 for locating the drop tip 10 relative to the mold and inhibiting the heat transfer between each drop tip 10 and the cavity of the mold. The drop locator 56 has an aperture 58 extending axially therethrough to receive the nozzle 24 and drop tip 10. The drop locator 56 is made of a metal material. The drop locator 56 is a monolithic structure being integral, unitary, and one-piece. It should be appreciated that the drop locator 56 is retained to the mold by suitable means such as fasteners.
In operation, a first colored molten material is injected at high temperatures and pressures into the manifold 20 through the sprue bushing 28. The first colored molten material then flows along the central flow passage 22 of the manifold 20 to the nozzles 24. The first colored molten material then flows through the nozzle passages 26. When this occurs, the first colored molten material flows through the internal bore 42, gate 46, and drop passage 48 of the drop tip 10 to the mold to mold a part (not shown). It should be appreciated that throughout the injection process, the heaters 38 maintain the molten material at a specified temperature, which is monitored by sensors (not shown).
After the first colored molten material is discontinued, a second colored molten material is molded. The second colored molten material then flows along the central flow passage 22 of the manifold 20 to the nozzles 24. The second colored molten material then flows through the nozzle passages 26. The second colored molten material flows through the internal bore 42 toward the gate 46. When this occurs, the second colored molten material flows through the gate 46 and the arcuate surface of the lower end 44 of the internal bore 42 causes any residue from the first colored molten material to flow upward away from the gate 46. The second colored molten material then flows through the drop passage 48 of the drop tip 10 to the mold to further mold the part. It should be appreciated that a multiple of colors of molten material may be used to mold the part.
Referring to
The present invention has been described in an illustrative manner. It is to be understood that the terminology, which has been used, is intended to be in the nature of words of description rather than of limitation.
Many modifications and variations of the present invention are possible in light of the above teachings. Therefore, within the scope of the appended claims, the present invention may be practiced other than as specifically described.
Number | Name | Date | Kind |
---|---|---|---|
4173448 | Rees et al. | Nov 1979 | A |
4666396 | Shaw | May 1987 | A |
4810184 | Gellert et al. | Mar 1989 | A |
4964795 | Tooman | Oct 1990 | A |
5353673 | Lynch | Oct 1994 | A |
5378138 | Onuma et al. | Jan 1995 | A |
5470219 | Yokoyama et al. | Nov 1995 | A |
5783234 | Teng | Jul 1998 | A |
5820803 | Hashimoto | Oct 1998 | A |
5834041 | Sekine et al. | Nov 1998 | A |
5840231 | Teng | Nov 1998 | A |
5879727 | Puri | Mar 1999 | A |
5919492 | Tarr et al. | Jul 1999 | A |
5969280 | Marcinkiewicz | Oct 1999 | A |
6086357 | Steil et al. | Jul 2000 | A |
6099767 | Tarr et al. | Aug 2000 | A |
6129541 | Takeda | Oct 2000 | A |
6179604 | Takeda | Jan 2001 | B1 |
6294122 | Moss et al. | Sep 2001 | B1 |
6343925 | Jenko | Feb 2002 | B1 |
6464909 | Kazmer et al. | Oct 2002 | B1 |
6514440 | Kazmer et al. | Feb 2003 | B1 |
6638049 | Moss et al. | Oct 2003 | B1 |
20020102323 | Ihara et al. | Aug 2002 | A1 |
20030155672 | Kazmer et al. | Aug 2003 | A1 |
20050031728 | Babin et al. | Feb 2005 | A1 |
Number | Date | Country |
---|---|---|
44 08 683 | Jul 2003 | DE |
0 995 574 | May 2003 | EP |
2397796 | Aug 2004 | GB |
2-289320 | Nov 1990 | JP |
3159720 | Apr 2001 | JP |
WO 03080315 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060093703 A1 | May 2006 | US |