The present invention relates generally to injection molding machines, and more particularly to an injection molding machine having side-injection sub-assembly that readily allows access to a hot passage distributor system contained therein.
Injection molding machines are well known. Typical injection molding machines generally include an injection mold part and an ejection mold part, which together form two tool halves for defining a mold cavity. The injection mold part typically has one or more channels for partially receiving a hot passage distributor system therethrough.
Existing injection molding machines have a construction that is substantially difficult to dismantle for accessing various parts of the machine, e.g. the hot passage distributor system, for maintaining and/or repairing those parts.
Therefore, a need exists for an injection molding machine having a side-injection sub-assembly that is easily manipulated for providing access to components therein.
The present invention provides an injection molding machine having a side-injection sub-assembly and a method for readily providing access to a hot passage distributor system contained therein. The side-injection sub-assembly includes an injection mold part and a hot passage distributor system. The hot passage distributor system is sandwiched and fixedly held between the injection mold part and a bead plate. Specifically, two or more bolt members attach the injection mold part to the head plate and are accessible from a side of the injection mold part. In that regard, these bolt members can be detached to remove the injection mold part from the hot passage distributor system and provide access thereto. The injection molding machine further includes an ejection mold part for releasably mating to the injection mold part and defining a mold cavity.
One advantage of the present invention is that a side-injection sub-assembly is provided having a construction that allows easy dismantling thereof in substantially few steps.
Another advantage of the present invention is that a method for accessing a hot passage distributor system is provided that renders easy access to the hot passage distributor system for maintenance, repair, or replacement thereof.
Other advantages of the present invention will become apparent when viewed in light of the detailed description of the preferred embodiment when taken in conjunction with the attached drawings and appended claims.
For a more complete understanding of this invention, reference should now be made to the embodiments illustrated in greater detail in the accompanying drawings and described below by way of the examples of the invention:
In the following figures, the same reference numerals are used to identify the same parts in the various views.
Referring to
The side-injection sub-assembly 30 generally includes the injection mold part B and a hot passage distributor system 40. The hot passage distributor system 40 includes a hot passage distributor block C, two nozzles 2, and a mold-on sleeve 3. It is understood that more or less than two nozzles 2 can be utilized as desired.
The hot passage distributor system 40 has a compact construction with the nozzles 2 fixedly connected thereto. This hot passage distributor system is also ready-wired for connection to the injection molding machine F. In other words, the hot passage distributor system 40 represents a complete unit on which all electrical and hydraulic connections have already been made and which can be tested as is before installation thereof. It is contemplated that the hot passage distributor system 40 can have more or less parts than those enumerated above.
The injection mold part B has two channels 25 formed therein for receiving the nozzles 2 of the hot passage distributor system 40. Each nozzle 2 has a tip opening 2A at one end that protrudes through a gate point into the mold cavity 26. The opposing end of each nozzle 2 is fixedly connected to the hot passage distributor block C. This hot passage distributor block C is coupled to the injection molding machine F by way of the mold-on sleeve 3. Moreover, the hot passage distributor block C is held between the injection mold part B and the head plate D by way of a series of bolt fasteners 10.
The side-injection sub-assembly 30 is fastened to the fixed platform E of the injection molding machine F by means of clamps 22. The exact alignment of the two tool halves A and B is accomplished by guide pins 7, introduced from the head plate D and supported on the fixed platform E of the injection molding machine F.
The ejection mold part A is fastened to the movable platform G of the injection molding machine F via clamps 23. Although only two clamps 23 are illustrated, it will be appreciated that more or less than two clamps 23 can be utilized as desired. In this way, the ejection mold part A can travel back and forth (left and right as shown in
Referring collectively to
With particular attention to
Referring to
In step 102, as depicted in
Furthermore, the head plate D is connected to the hot passage distributor block C via a series of fastening screws 24. This feature allows the hot passage distributor block C to remain attached to the head plate D while the bolt fasteners 10 are released and the injection mold part B is removed from the side-injection sub-assembly 30.
It is understood that existing side-injection sub-assemblies include a positive dynamic connection between the head plate D and the hot passage distributor block C by means of bolts introduced from the head plate D. According to the invention, by contrast, the corresponding bolt fasteners 10 (
In step 104, as illustrated in
Each bar member 12 is initially fastened only to the injection mold part B when the bar member 12 is not being utilized to attach the two tool halves A and B together. However, it is understood that the bar member can instead be stored on the ejection mold part A as desired.
It will be appreciated that the fastening device 11 may be of any configuration other than the one hereinbefore exemplified. Then, the sequence proceeds to step 106.
In step 106, as shown in
That completes the first operation of the method of clearing the hot passage distributor system. It will be appreciated that the first operation provides for extensive maintenance opportunities without requiring that the side-injection sub-assembly 30 is completely removed from the injection molding machine F. For example, after completion of the first operation, typical maintenance performed can include replacement of gate caps, gate points, nozzle heating means, nozzle sensors, and distributor sensors, as well as checking electrical devices and inspecting for leakage.
The invention, therefore, after completion of the first operation, allows maintenance of the hot passage distributor system, while the system remains fastened to the injection molding machine.
If no further maintenance work is required, the injection mold part B is moved back over the nozzles 2 again and the hot passage distributor block C. Then, the bar members 12 are replaced to their original positions on the injection mold part B. Also, the injection molding machine F is re-opened, by reinserting the bolt fasteners 10 and utilizing them to re-connect the injection mold part B to the head plate D.
If further maintenance work is required, specifically maintenance on the side of the hot passage distributor system 40 opposite to the nozzles 2, then the first operation is followed by a second operation. This second operation is sequentially shown in
In step 108, as shown in
In step 110, as shown in
Thus, the entire hot passage distributor system 40, consisting of the hot passage distributor block C, the nozzles 2, the mold-on sleeve 3 and the corresponding electrical, pneumatic and hydraulic connections, is omni-laterally accessible for maintenance work or a variety of other purposes. It is understood that the bench service associated with the second operation is possible without breaking the electrical, pneumatic, and hydraulic connections.
In corresponding reverse sequence of the steps of the two operations described, the side-injection sub-assembly is reassembled after completion of maintenance.
While particular embodiments of the invention have been shown and described, numerous variations and alternate embodiments will occur to those skilled in the art. Accordingly, it is intended that the invention be limited only in terms of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4348165 | Vostrovsky | Sep 1982 | A |
4500274 | Cyriax et al. | Feb 1985 | A |
4828478 | Hehl | May 1989 | A |
5219593 | Schmidt et al. | Jun 1993 | A |
5302105 | Bertleff | Apr 1994 | A |
5308234 | Nicke et al. | May 1994 | A |
5738883 | Tanaka | Apr 1998 | A |
5952016 | Gellert | Sep 1999 | A |
6540499 | Schneider | Apr 2003 | B2 |
6805827 | Kami et al. | Oct 2004 | B2 |
6921256 | Bokich | Jul 2005 | B2 |
Number | Date | Country | |
---|---|---|---|
20050077654 A1 | Apr 2005 | US |