The present disclosure relates generally to plastic injection molding systems for injecting plastic material into mold cavities. More specifically, the present disclosure relates to a heated edge gated injection molding nozzle and a method of using the same.
There are a number of known injection molding machines and systems. The injection molding machine melts a material and then injects the molten material through a machine nozzle into a mold cavity. Typically, the injection molding machine nozzle includes a heating element, such as to provide heat to maintain the temperature of the melted material within the acceptable range. Known heated injection molding machine nozzles heat the material inefficiently and non-uniformly, and they do not maintain the temperature and consistency of the melted material throughout the nozzle, and especially at the outer end of the nozzle.
Accordingly, there is a need in the art for an injection molding nozzle and method of use suitable for achieving a more uniform temperature profile throughout the nozzle.
The present disclosure provides for an injection molding nozzle for dispensing of molten material including an elongated body member having an outer surface, a first portion at a proximal end, a second portion at a distal end, and a central passageway extending longitudinally therethrough from the first portion to the second portion. The central passageway includes an inlet defined at the proximal end and splitting outwardly at the second portion to form a radially extending passageway leading to a corresponding outlet. A tip member is coupled to the outlet and is adapted to facilitate dispensing of molten material into a mold cavity. A groove is defined on the outer surface of the body member that winds from the a heated section of the first portion to a heated section of the second portion that is positioned adjacent the tip members. An electrically insulated heating element is positioned within the groove and is adapted to maintain the molten material within a predetermined temperature range throughout the nozzle, including the heated section of the second portion.
One advantage of the present disclosure is that the injection molding nozzle maintains the temperature of the melted material at the outermost end of the nozzle adjacent the edge gate. Another advantage of the present disclosure is that the injection molding nozzle heats the melt more efficiently and uniformly. Still another advantage of the present disclosure is that the injection molding nozzle has a one-piece body construction that mitigates leakage of melt material. A further advantage of the present disclosure is that the injection molding nozzle assembly has a simple design for easy assembly. Still a further advantage of the present disclosure is that a method of assembling and using the injection molding nozzle in an injection molding machine is provided.
Other features and advantages of the present disclosure will be readily appreciated, as the same becomes better understood after reading the subsequent description taken in conjunction with the accompanying drawings.
The present disclosure provides for an injection molding machine, particularly one that is used in molding or fabrication of items or parts. The machine includes a housing having a mold cavity that generally conforms to the shape of the item or part being molded. The mold includes an opening that is continuous with the mold cavity for receiving a nozzle 10 in a manner to be described.
Referring to
The body or shank 12 is a generally elongated member, such as tubular, and includes an inlet 22 at proximal end of the nozzle for receiving the molten material to be infused into a central passageway 24 and dispensing the heated material out through a tip member 20 adjacent the base 18 at a distal end of the nozzle. Body 12 includes a first portion 26 and a second portion 36. In this example, first portion 26 can be referred to as an “upper” portion and second portion 36 can be referred to as a “lower portion”. This example illustrates a vertical orientation for nozzle 10 with first portion 26 being an upper portion and second portion 36 being a lower portion, although alternative orientations are within the scope of the present disclosure.
The central passageway 24 extends longitudinally from the inlet 22 towards the second portion 36 of the injection molding nozzle 10 and splits/branches outwardly into a radial passageway 28 which leads to an outlet 30 for delivering molten material into the mold cavity. In an example, the outlet is formed perpendicular to the axis of the elongated body 12. An outer surface 32 of the body or shank 12 also includes a groove 34 formed into the outer surface 32 thereon in a predetermined manner, such as machined, etched, carved, etc. In this example, the groove 34 extends in a longitudinal direction from the first portion 26 of the injection molding nozzle 10 to the second portion 26 of the injection molding nozzle 10. Also in this example, the groove 34 returns back up to the upper portion 36 of the injection molding nozzle 10, and generally forms a loop-like pattern or a “U-shaped” geometry. The “U-portion” of the groove is formed between and adjacent to the tip members 20. Other patterns for the groove may also be formed in the body.
The injection molding nozzle 10 includes an electrically insulated heating element 14 that is adapted to maintain the molten material within a desired temperature range. The electrical heating element 14 can include one continuous integral piece of conductive material (e.g., metal, etc.) having a first and second end (terminals) 38, 40. The conductive material may have a generally tubular shape. The heating element 14 fits within the groove 34 such that the heating element 14 winds from the first portion 26 of the injection molding nozzle 10 toward the second portion 36 of the injection molding nozzle 10 and loops back toward the first portion 26 of the injection molding nozzle 10. A heated section 36a is defined in the second portion 36 of the nozzle 10 that provides suitable heat to a distal area of the body 12. The first portion of the nozzle 10 may also includes a heated section 26a. The further the molten travels through the nozzle, the more heat loss is experienced. At the second portion 36 of the injection molding nozzle 10, the heating element 14 winds adjacent to the edge gate 42 (shown in
Undesired heat loss occurs in the first section and again in the second section as molten material travels from the inlet 22 to the outlet 30. The groove 34 with heating element 14 positioned therein reduces heat loss by heating the first section 26a and second section 36b. Therefore, the molten material can be maintained within a desired temperature range across the entire length of the nozzle 10. Accordingly, the heating element 14 reduces undesired heat loss or heat sink near the outlets 30 of the nozzle 10 or towards the distal end of the nozzle 10 at the second section of the body 12. The heating element 14 may have a predetermined dimensions, such as, a diameter of 1.5 mm. The heating element 14 may generate any needed and/or desired heat. For example, the heating element 14 may have a temperature range of 200° F. to 800° F., depending on the molten material (e.g., plastic, etc.) being used. An example of a heating element 14 is a chrome nickel resistance wire extending centrally through a refractory powder electrical insulating material such as magnesium oxide inside a steel casing having a protective nickel coating.
The injection molding nozzle 10 also includes a guide collar 16 having a generally hollow cylindrical shape and rests atop the first portion 26 of the injection molding nozzle 10. The guide collar 16 guides and locates the injection molding nozzle 10 into the cavity in the mold. The guide collar 16 also provides an insulated space between the heated nozzle 10 and surrounding cooled mold. The guide collar 16 can further include a cutout or slot 44 extending upward from the base 46 of the guide collar 16 for each end 38, 40 of the heating element 14 to protrude therefrom.
The injection molding nozzle 10 includes a tip member positioned thereon. The injection molding nozzle may include one tip member 20 or a plurality of tip members 20 spaced circumferentially around the perimeter of the second portion 36 of the body 12. The tip member 20 can include an insert 48 made from a high heat conductive material (e.g., copper alloy, etc.) to facilitate the injection of molten material into the cavity. In this example, insert 48 is conically shaped to facilitate molten material distribution.
The base portion 18 of the injection molding nozzle 10 may provide support for the nozzle when installed in the mold. In this example, the base portion 18 is generally circular in shape and can be threaded to receive a support 50 (shown in
In operation, the present disclosure provides for a method of injection molding using an improved injection nozzle 10 having an elongated body member, a central passageway extending longitudinally therethrough and leading to a tip member. The nozzle includes a groove as previously described, and a heating element is positioned in the groove, such that the groove extends from the first portion 26 to the second portion 36 and is adjacent a tip member 20 to heat the first portion and second portion surrounding the tip member. The method includes the steps of dispensing molten material through the nozzle 10 into a mold part cavity 91. The temperature of the nozzle and the molten material can be maintained within a predetermined temperature range along the entire length of the elongated body member and surrounding the tip member. The temperature can be maintained from the heated first portion 26 to the heated second portion 26 of the body 12 due to the electrically insulated heating element 14 positioned within the groove.
Generally, heat sinks and heat losses can exist at the connection point of the seal of the tips with the cold mold apparatus and at the base connection with the support. Forming a groove and providing a heating element in the groove that extends along the outer surface of the nozzle as well as in between the tip members can reduce heat loss and allow for more consistent and uniform heat distribution of the molten material from inlet to outlet. This can reduce cycle time and improve efficiency since part regularity can be achieved through a more uniform temperature profile. It reduces the need to raise the temperature of the molten material above a certain threshold to ensure it stays in moldable state prior to entering the mold cavity.
The injection molding nozzle may include additional features that are generally associated with such injection molding machines, such as fittings, a controller or hydraulics or the like.
The present disclosure has been described in an illustrative manner. It is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation.
This application claims the benefit of U.S. Provisional Patent Applications No. 61/227,904, filed Jul. 23, 2009, the disclosure of which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US10/43105 | 7/23/2010 | WO | 00 | 3/27/2012 |
Number | Date | Country | |
---|---|---|---|
61227904 | Jul 2009 | US |