Injection molding nozzle

Information

  • Patent Grant
  • 7108503
  • Patent Number
    7,108,503
  • Date Filed
    Tuesday, May 24, 2005
    19 years ago
  • Date Issued
    Tuesday, September 19, 2006
    18 years ago
Abstract
A nozzle for an injection molding apparatus is provided. The injection molding apparatus has a mold component that defines a mold cavity and a gate into the mold cavity. The nozzle includes a nozzle body, a heater, a tip, a tip surrounding piece and a mold component contacting piece. The nozzle body defines a nozzle body melt passage therethrough, that is adapted to receive melt from a melt source. The heater is thermally connected to the nozzle body for heating melt in the nozzle body. The tip defines a tip melt passage therethrough, that is downstream from the nozzle body melt passage, and that is adapted to be upstream from the gate. The tip surrounding piece is removably connected with respect to said nozzle body. The mold component contacting piece is connected with respect to the nozzle body. The material of the mold component contacting piece has a thermal conductivity that is less than at least one of the thermal conductivity of the material of the tip and the thermal conductivity of the material of the tip surrounding piece.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates to an injection molding apparatus, and more particularly to a system for isolating a nozzle from a mold component in the injection molding apparatus.


2. Background Art


It is known for a nozzle in hot runner injection molding apparatus to include a thermally conductive body and a thermally conductive tip. Furthermore, it is known for the nozzle to include a separate piece that joins to the nozzle body and retains the tip in place in the nozzle body. The tip surrounding piece is also typically used to form a seal surrounding the space between the nozzle and the mold component to which the nozzle transfers melt. Because the mold component is usually maintained at a different temperature than the tip at least for a portion of an injection molding cycle, the tip surrounding piece is typically made from a material that is less thermally conductive than the tip itself.


An example of such a nozzle construction is shown in U.S. Pat. No. 5,299,928 (Gellert). A problem with such nozzle constructions, however, is that the tip surrounding piece, which has a lower thermally conductive material than the tip, can impede heat transfer from a heater on the nozzle, to melt that is in the tip.


Thus, a need exists for a nozzle and injection molding apparatus that has improved heat transfer efficiency.


BRIEF SUMMARY OF THE INVENTION

In accordance with one aspect of the present invention, there is provide an injection molding apparatus comprising a runner component, including at least one runner that receives melt from a melt source, a nozzle in fluid communication with the runner, a mold contacting piece that is proximate to the nozzle, and a mold component that is proximate to the mold contacting piece, the mold component including a mold cavity for receiving melt from said nozzle. The nozzle is comprised of a heated nozzle body, including a melt passage therethrough, a nozzle tip, including a tip melt passage therethrough, wherein the tip melt passage is in fluid communication with the melt passage of the nozzle body, and a thermally conductive tip surrounding piece that is removably coupled to the nozzle body. The nozzle may also include a chamber defined by the space between the inner surface of the tip surrounding piece and the outer surface of the tip. The tip surrounding piece retains the nozzle tip in position with respect to the nozzle body. The nozzle tip is formed of a thermally conductive material, such as H13. The tip surrounding piece is preferably formed of a material having a thermal conductivity that is substantially equal to that of the nozzle tip; optimally H13. The tip surrounding piece is preferably threadably engaged with the nozzle body. The mold contacting piece is in contact with, but not attached to, the tip surrounding piece. The mold contacting piece preferably surrounds the nozzle tip and is formed of a material having a thermal conductivity that is less than that of the nozzle tip and tip surrounding piece. The mold contacting piece is generally adapted to isolate the nozzle body, nozzle tip, and tip surrounding piece from the mold component when the nozzle is positioned to deliver melt to a gate of the mold component; thus limiting heat loss from the nozzle to the mold component. The mold contacting piece may also be adapted to align the nozzle with respect to a gate of the mold component, and the injection molding apparatus may further include a second mold contacting piece adapted to inhibit leakage of melt from the chamber to the area surrounding the nozzle. The tip melt passage may take a generally linear path, or may alternatively take a diverted path in which the tip melt passage includes an exit that is off-center from the longitudinal axis of the tip melt passage.


In accordance with another aspect of the present invention, there is provided an injection molding apparatus comprising a runner component including at least one runner, a nozzle in fluid communication with at least the runner, and a mold contacting piece that is positioned between the nozzle and a mold component such that the nozzle is isolated from contacting the mold component. The injection molding apparatus may further include a heat source thermally coupled to the nozzle. The nozzle is formed of a nozzle body, defining a body melt passage, a nozzle tip, defining a tip melt passage, and a tip surrounding piece that is removably coupled to the nozzle body. Optimally, the tip surrounding piece is threadably engaged with the nozzle body. The tip surrounding piece is preferably formed of a material that has a thermal conductivity that is equivalent to that of the nozzle tip. The nozzle may also include a chamber defined by a space between the inner surface of the tip surrounding piece and the outer surface of the nozzle tip. The nozzle tip includes a retaining surface, which may take the form of a shoulder, abutting with the tip surrounding piece to thereby retain the nozzle tip in position with respect to the nozzle body.


In accordance with yet another aspect of the present invention, there is provided an injection molding apparatus comprising a runner component, a mold component, a nozzle in fluid communication with the runner component, a heat source thermally coupled to the nozzle, and a mold contacting piece that is positioned between the nozzle and the mold component. The mold contacting piece acts to isolate the nozzle from contacting the mold component. The nozzle includes a nozzle body having a body melt passage therethrough, a nozzle tip formed of a metallic material, and a tip surrounding piece formed of said metallic material. The tip surrounding piece is removably coupled, and preferably threadably engaged, to the nozzle body and retains the tip in position with respect to the nozzle body. The metallic material is typically thermally conductive and may be Beryllium-Copper, tool steel, H13, or titanium. The nozzle tip typically has a retaining surface, which may take the form of a shoulder, mating with the tip surrounding piece to thereby retain the nozzle tip in position with respect to the nozzle body.


In accordance with still another aspect of the present invention, there is provided an injection molding apparatus having a runner component, a mold component, a nozzle in fluid communication with the runner component, a heater thermally coupled to the nozzle, and a mold contacting piece positioned between the nozzle and the mold component to thereby form a thermal barrier between the nozzle and the mold component. The nozzle is formed of a nozzle body, a nozzle tip, and a tip surrounding piece which is removably coupled to the nozzle body and retains the nozzle tip in position with respect to the nozzle body. The tip surrounding piece is formed of a material that has a thermal conductivity which is equivalent to that of the material which forms the nozzle tip. Such a material may be Beryllium-Copper, Copper, Titanium/Zirconium carbide, Aluminum, Aluminum alloy, Molybdenum, Molybdenum alloy, mold steel, Tungsten Carbide, tool steel, titanium, or H13. The tip surrounding piece is preferably threadably engaged with the nozzle body. The nozzle body may include outward threads along at least a portion of its outer surface, such outward threads engaging with inward threads along at least a portion of the inner surface of the tip surrounding piece to thereby couple the tip surrounding piece to the nozzle body. Alternatively, the nozzle body may include inward threads along at least a portion of its inner surface, such inward threads engaging with outward threads along at least a portion of the outer surface of the tip surrounding piece to thereby couple the tip surrounding piece to the nozzle body. The nozzle tip may also include an exit that is off-center from the longitudinal axis of the tip melt passage.





BRIEF DESCRIPTION OF THE FIGURES

For a better understanding of the present invention, and to show more clearly how it may be carried into effect, reference will now be made by way of example to the accompanying drawings.



FIG. 1 is a sectional view of an injection molding apparatus having a plurality of nozzles and a mold component in accordance with a first embodiment of the present invention.



FIG. 1
a is a magnified sectional view of a portion of one of the nozzles and the mold component shown in FIG. 1.



FIG. 1
b is a magnified section view of a portion of a nozzle and a mold component, in accordance with a variant of the first embodiment of the present invention.



FIG. 2 is a magnified sectional view of a portion of a nozzle and a mold component in accordance with a second embodiment of the present invention.



FIG. 3 is a magnified sectional view of a portion of a nozzle and a mold component in accordance with a third embodiment of the present invention.



FIG. 4 is a magnified sectional view of a portion of a nozzle and a mold component in accordance with a fourth embodiment of the present invention.



FIG. 5 is a magnified sectional view of a portion of a nozzle and a mold component in accordance with a fifth embodiment of the present invention.



FIG. 6 is a magnified sectional view of a portion of a nozzle and a mold component in accordance with a sixth embodiment of the present invention.



FIG. 7 is a magnified sectional view of a portion of a nozzle and a mold component in accordance with a seventh embodiment of the present invention.



FIG. 8 is a magnified sectional view of a portion of a nozzle and a mold component in accordance with an eighth embodiment of the present invention.



FIG. 9 is a magnified sectional view of a portion of a nozzle and a mold component in accordance with a ninth embodiment of the present invention.



FIG. 10 is a magnified sectional view of a portion of a nozzle and a mold component in accordance with a tenth embodiment of the present invention.



FIG. 11 is a magnified sectional view of a portion of a nozzle and a mold component in accordance with an eleventh embodiment of the present invention.



FIGS. 12
a and 12b are magnified sectional views of a portion of a nozzle and a mold component in accordance with a twelfth embodiment of the present invention.



FIG. 13 is a magnified sectional view of a portion of a nozzle and a mold component in accordance with a thirteenth embodiment of the present invention.



FIG. 14 is a magnified sectional view of a portion of a nozzle and a mold component in accordance with a fourteenth embodiment of the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Reference is made to FIG. 1, which shows an injection molding apparatus 10, which includes a runner component 12, a mold component 14, a plurality of nozzles 16 in accordance with a first embodiment of the present invention, and a plurality of optional valve pin devices 17.


The runner component 12 includes a plurality of runners 18, which transfer melt from a main runner inlet 20 to the nozzles 16. The runner component 12 may be heated by a heater 22.


The mold component 14 is made up of a plurality of mold components, which together define a plurality of mold cavities 24. A gate 26 into each mold cavity 24 is defined in the mold component 14 and has an axis 27. Each gate 26 is positioned downstream from one of the nozzles 16.


A plurality of cooling channels 28 may be included in the mold component 14. The cooling channels 28 transport a cooling fluid throughout the mold component 14 to cool and solidify melt in the mold cavities 24.


Reference is made to FIG. 1a. Each nozzle 16 receives melt from the runner component 12 and transfers the melt into a chamber 30 between the nozzle 16 and the mold component 14, and then through one of the gates 26 and into to one of the mold cavities 24. Each nozzle 16 includes a nozzle body 31, a heater 32, a tip 33, a tip surrounding piece 34 and a mold component contacting piece 35; and may include an optional thermocouple 36.


The nozzle body 31 defines a nozzle body melt passage 37, which receives melt from one of the runners 18. The heater 32 is connected to the nozzle body 31 for heating melt in the nozzle 16. The heater 32 may be any suitable kind of heater, such as a resistive wire heater, or a sleeve heater, as long as it is thermally connected to the nozzle body 31, i.e. the heater 32 is connected such that heat is transferable from the heater 32 to the nozzle body 31. For example, the heater 32 may wrap around the nozzle body 31 in a groove on the outer surface of the nozzle body 31.


The tip 33 defines a tip melt passage 38, and is removably connected to the nozzle body 31 so that the tip melt passage 38 is in fluid communication with and downstream from the nozzle body melt passage 37. The tip melt passage 38 has an exit, which may be offset from axis 27, as shown in FIG. 1a. In this embodiment, the tip 33 extends into the gate 26, to heat melt passing through the gate 26.


The tip 33, and more particularly the tip melt passage 38, transports the melt from the body melt passage 37 to chamber 30. The tip 33 is made from a first material that is preferably thermally conductive to reduce losses in the heat transferred from the heater 32 to the melt in the tip melt passage 38. Some examples of suitable first materials for the tip 33 are Be—Cu (Beryllium-Copper), Beryllium-free Copper, such as AMPCO 940, TZM (Titanium/Zirconium carbide), Aluminum or Aluminum-based alloys, Nickel-Chromium alloys, such as INCONEL, Molybdenum or suitable Molybdenum alloys, H13, mold steel or steel alloys, such as AERMET 100.


Also, however, because of the melt flow through the tip 33, the tip 33 may be exposed to a highly abrasive environment, and may be made from a wear resistant first material. An example of such a first material that is both thermally conductive and wear resistant is Tungsten Carbide. U.S. Pat. No. 5,658,604 (Gellert et al.) discloses the construction of a nozzle tip using Tungsten Carbide. The tip 33 may be made using the construction taught in U.S. Pat. No. 5,658,604.


The tip 33 may be removable from the nozzle body 31. The tip 33 may, for example, seat against a shoulder 39 in the nozzle body 31. The shoulder 39 may be an internal shoulder, as shown in FIG. 1a, or alternatively, it may be on the exterior of nozzle body 31.


The tip surrounding piece 34 may retain the tip 33 in place on the nozzle body 31. The tip surrounding piece 34 may be removably connected to the nozzle body 31. For example, tip surrounding piece 34 may include a tip surrounding piece threaded portion 40, which mates with a corresponding nozzle body threaded portion 41 on the nozzle body 31. In the present embodiment, shown in FIG. 1a, threaded portion 40 is shown to have external threads, and threaded portion 41 is shown to have internal threads. Alternatively, however, threaded portion 40 may have internal threads and may mount to a corresponding externally threaded portion 41 in the nozzle body 31. Such a mounting is taught in U.S. Pat. No. 5,208,052, which is hereby incorporated by reference. As a further alternative, the threaded portions 40 and 41 may be replaced by any other suitable removable connecting means for connecting the tip surrounding piece 34 to the nozzle body 31 to retain the tip 33 in place.


For example, for users who mold several different types of articles from a variety of different materials, it may be desirable to have several different types of tips 33 available for use in the nozzles of their injection molding apparatus. A user may, for example, have many different sets of tips 33 for use with their injection molding apparatus, each set of tips 33 being suited to one or more molding applications. Rather than machining threaded portion 40 on each set of tips 33, the tips 33 may be free of threads or other connecting means, and the tip surrounding piece 34 can include the connecting means, such as threads 40, as shown in FIG. 1a. A single tip surrounding piece 34 can be configured to retain all the different types of tip 33. This eliminates the need to manufacture a connecting means, such as a threaded portion, on each set of tips 33. Furthermore, depending on the characteristics of the molding application, the tips 33 may wear and may require regular replacement. By eliminating the need to include threads on the tips 33, the cost of replacement tips 33 can be reduced.


The tip surrounding piece 34 is made from a second material that may be less wear resistant than the first material from which the tip 33 is made, because the tip surrounding piece 34 does not have an internal melt passage. Accordingly, the tip surrounding piece 34 may be made from a second material that is relatively easily machined with threaded portion 40.


The tip surrounding piece 34 may also include a gripping portion 42 to facilitate the removal of the tip surrounding piece 34 from the nozzle body 31. The gripping portion 42 may be, for example, hexagonal for receiving a removal tool (not shown), such as a wrench.


The tip surrounding piece 34 and the tip 33 may be two separate, distinct pieces, as shown in the Figures. However, it can sometimes be difficult to remove the tip 33 from the nozzle body 31 due, for example, to a buildup of plastic between their mating surfaces. To facilitate the removal of the tip 33 from the nozzle body 31, the tip surrounding piece 34 and the tip 33 may alternatively be brazed or otherwise joined together, rather than being separate.


The tip surrounding piece 34 is at least in part, positioned between the tip melt passage 38 and the heater 32 along at least a portion of the length of the tip melt passage 38. In order to improve the heat flow from the heater to the tip melt passage 38, the tip surrounding piece 34 may be made from a thermally conductive second material. However, as explained above, the tip surrounding piece 34 is not necessarily made from a wear resistant second material. The tip surrounding piece 34 may be made from such second materials as, Copper, Be—Cu (Beryllium-Copper), Beryllium-free Copper, such as AMPCO 940, TZM (Titanium/Zirconium carbide), Aluminum or Aluminum-based alloys, Nickel-Chromium alloys, such as INCONEL, Molybdenum or suitable Molybdenum alloys, H13, steel, mold steel or steel alloys, such as AERMET 100.


The mold component contacting piece 35 contacts the mold component 14, and may inhibit melt leakage out of the chamber formed between the nozzle 16 and the mold component 14. The mold component contacting piece 35 may, for example, be positioned between the tip surrounding piece 34 and the mold component 14, as shown in FIG. 1a. The mold component contacting piece 35 may form a first seal 44 with at least one of the tip surrounding piece 34 (as shown in FIG. 1a), the tip 33, the nozzle body 31 or some other portion of the nozzle 16, and forms a second seal 46 with the mold component 14.


The mold component contacting piece 35 may align the nozzle 16 with respect to the gate 26. The alignment means may be provided by the same surfaces that provide the seals 44 and 46. For example, seals 44 and 46 may be mechanical seals, formed by a close fit between the mold component contacting piece 35 and the bore 48 and between the mold component contacting piece 35 and the tip surrounding piece 34, thereby aligning the nozzle 16 with respect to the gate 26. Alternatively, a separate alignment means may be used to position nozzle 16 with respect to the gate 26.


The mold component contacting piece 35 may be positioned outside of the path between the melt passage 38 and the heater 32. The mold component contacting piece 35 may instead be positioned between the mold component 14 and at least one of the tip surrounding piece 34, the tip 33 and the nozzle body 31. Typically, at least for some portion of an injection molding cycle, the mold component 14 and the nozzle 16 are maintained at different temperatures. For example, once the mold cavity 24 is filled with melt, the mold component 14 may be cooled to cause solidification of the melt in the mold cavity 24. However, the nozzle 16 may be heated to keep the melt contained therein hot and ready for the next injection phase. In order to reduce unwanted heat transfer between the nozzle 16 and the mold component 14, the mold component contacting piece 35 may be made from a material that is comparatively less thermally conductive than the material of the nozzle tip 33. Furthermore, the material of the mold component contacting piece 35 may be less thermally conductive than the material of the tip surrounding piece 34. For example, the mold component contacting piece 35 may be made from titanium, H13, stainless steel, mold steel or chrome steel. Other alternative materials include ceramics and plastics. Other suitable materials for the mold component contacting piece 35 are disclosed in U.S. Pat. No. 5,879,727 (Puri), which is hereby incorporated by reference. Puri discloses such materials for use as an insulative layer for a nozzle.


The mold component contacting piece 35 may be a separate piece that is mechanically joined to tip surrounding piece 34 by a suitable joint, such as an interference fit, as shown. Alternatively, the mold component contacting piece 35 may be made by spraying a coating onto the tip surrounding piece 34, and then machining the coating as required, to a suitable dimension for mating and sealing appropriately with the mold component 14. U.S. Pat. No. 5,569,475 (Adas et al.) discloses a method of spraying an insulating layer onto a portion of a nozzle, and is hereby incorporated by reference.


The mold component contacting piece 35 may be joined to the tip surrounding piece 34, as shown in FIG. 1a. Alternatively, the mold component contacting piece 35 may be joined to the mold component 14 and may cooperate with the tip surrounding piece 34 to form a seal therebetween when the nozzle 16 and the mold component 14 are assembled together. For example, the mold component contacting piece 35 may be brazed or otherwise joined to the wall of bore 48, as shown in FIG. 1b.


Reference is made to FIG. 2, which shows a nozzle 100 in accordance with a second embodiment of the present invention, in combination with a mold component 14. The nozzle 100 may be similar to the nozzle 16 (FIG. 1a), and includes a nozzle body 31, a heater 32, a tip 102, a tip surrounding piece 34 and a mold component contacting piece 35. The tip 102 differs from the tip 33 in that the tip 102 has a melt passage 104 with an exit 106 that is concentric about the axis 27 of the gate 26.


Thus, a nozzle in accordance with the present invention may have a tip that inserts into the gate 26 and has an off-centre melt passage exit (as shown in FIG. 1a), or alternatively the nozzle may have a tip that has a melt passage exit that is concentric about the axis 27 of the gate 26 (as shown in FIG. 2).


Reference is made to FIG. 3, which shows a nozzle 200 in accordance with a third embodiment of the present invention, in combination with mold component 14. The nozzle 200 may be similar to any of the nozzles described herein, such as the nozzle 100 (FIG. 2). The nozzle 200 includes the nozzle body 31, the heater 34, a two-component tip 202, the tip surrounding piece 34 and the mold component contacting piece 35. The tip 202 may be similar to the tip 102 (FIG. 2) and may define a tip melt passage 203 which is in fluid communication with the body melt passage 37. The tip 202, however, includes an inner portion 204 and an outer portion 206. The inner portion 204 contains the melt passage 203 therethrough. The inner portion 204 may be made from a wear resistant, thermally conductive material. For example, the inner portion 204 may be made from Tungsten Carbide. The outer portion 206 may be made from a thermally conductive material, but may be made from a material that is less wear resistant than the material of the inner portion 206, thus providing greater freedom to select a suitable material for the outer portion 206. For example, the outer portion 206 may be made from a highly thermally conductive material such as Aluminum or an Aluminum alloy, Be—Cu (Beryllium-Copper), or Beryllium-free Copper or TZM (Titanium/Zirconium carbide). It will be appreciated that the inner portion 204 need not be a distinct piece that is joined to the outer portion 206, but may instead be made by applying a suitable coating to the interior wall of the outer portion 206.


The tip melt passage 203, has an exit 208, which may be concentric about axis 27, as shown in FIG. 3. Alternatively, tip 202 may be of a configuration similar to that of tip 33 (shown in FIG. 1a), and may have an exit that is offset from axis 27.


Reference is made to FIG. 4, which shows a nozzle 300 in accordance with a fourth embodiment of the present invention, in combination with the mold component 14. The nozzle 300 may be similar to any of the nozzles described herein, such as the nozzle 16, and may include the nozzle body 31, the heater 32, a thermocouple 302, a tip 304, a tip surrounding piece 306 and the mold component contacting piece 35. The thermocouple 302 penetrates into the tip 304, to get a more accurate temperature for the melt flowing through the tip 304. The tip 304 includes an aperture 308 for receiving the sensing portion of thermocouple 302, which is shown at 310. The aperture 308 may be, for example, a hole sized to snugly receive the sensing portion 310, to improve the sensing of the temperature of the melt. The tip surrounding piece 306 includes a pass-through 312, which may be, for example, a slotted hole, to permit the passage of the sensing portion 310 of the thermocouple 302 into the aperture 308.


Reference is made to FIG. 5, which shows a nozzle 400, in accordance with a fifth embodiment of the present invention, in combination with mold component 14. The nozzle 400 may be similar to the nozzle 16 (FIG. 1a), and may include the nozzle body 31, the heater 32, a tip 402, the tip surrounding piece 34 and the mold component contacting piece 35. The tip 402 may have a torpedo configuration and may have a downstream end 404 that is generally coned and may extend into the gate 26.


The downstream end 404 is subject to increased wear from the melt flow for several reasons. A first reason is that the available cross-sectional area through which the melt can flow (i.e. the gate area minus the area of the end 404) is relatively small and as a result the melt flow velocity through the gate 26 is relatively high. The higher melt flow velocity increases the wear on the end 404. A second reason is that the end 404 has a relatively high surface-to-volume ratio, relative to other portions of the tip 402 that are exposed to the melt flow, and is therefore particularly easily damaged by wear from the melt flow.


The end 404 may be made from a wear resistant, thermally conductive material, such as Tungsten Carbide. The main portion of the tip 402, shown at 405, may be made from a less wear resistant material than the end 404, and may be made from a greater selection of materials. For example, a highly thermally conductive material may be selected for the main portion 405, such as Aluminum, an Aluminum alloy, or Be—Cu (Beryllium-Copper). By making the tip 402 with the compound construction described above, it can be wear resistant in a selected portion, and may be less wear resistant but highly thermally conductive elsewhere. It will be appreciated that the materials for the end 404 and for the main portion 405 may be selected for any desirable characteristics and not only for wear resistance and thermal conductivity. It will also be appreciated that the tip 402 may include one or more other portions having selected properties, instead of, or in addition to the end 404. It will also be appreciated, that the end 404 may be made by heat treating or coating the tip 402.


Reference is made to FIG. 6, which shows a nozzle 450 in accordance with a sixth embodiment of the present invention, in combination with a mold component 452. The nozzle 450 may be similar to nozzle 16 (FIG. 1a) and includes the nozzle body 31, the heater 32, the tip 33, a tip surrounding piece 453 and a mold component contacting piece 454, and may include an optional thermocouple 36.


The tip surrounding piece 453 may be similar to the tip surrounding piece 34 (FIG. 1a) and may retain the tip 33 in place in the nozzle body 31. However, the tip surrounding piece 453 has a first sealing surface 456 included thereon, which forms a seal with a second sealing surface 458 positioned on the mold component contacting piece 454. The tip surrounding piece 453 and the mold component contacting piece 454 may not be attached together. The tip surrounding piece 453 may instead seal against the mold component contacting piece 454, while the mold component contacting piece 454 may remain attached to the mold component 452.


Aside from remaining in the mold component 452, the mold component contacting piece 454 may be similar to the mold component contacting piece 35 (FIG. 1a). The mold component contacting piece 454 may further include a third sealing surface 460 for mating with a fourth sealing surface 462 on the mold component 452. The mold component contacting piece 454 may seat against a shoulder 464 on the mold component 452.


Reference is made to FIG. 7, which shows a nozzle 500 in accordance with a seventh embodiment of the present invention, in combination with the mold component 452. The nozzle 500 may be similar to the nozzle 16 (FIG. 1a), and may include a nozzle body 502, the heater 32, a tip 504, a tip surrounding piece 506 and the mold component contacting piece 454.


The nozzle body 502 may be similar to the nozzle body 31 (FIG. 1a) and may define a nozzle body melt channel 507. The nozzle body 502 may have the heater 32 positioned thereon. The heater 32 may be partially or completely covered by a sleeve portion 508 of the nozzle body 502. The sleeve portion 508 may have a threaded portion 509 thereon, that is externally threaded, for mating with a threaded portion 510 that is internally threaded on the tip surrounding piece 506. The sleeve portion, 508 may be made from a thermally conductive material, such as the material of the rest of the nozzle body 31. By positioning the threaded portion 509 on the sleeve 508, the heater 32 can be positioned closer to the downstream end of the nozzle body 502, and can therefore better transfer heat to melt in the downstream end of the body 502 and in the tip 504. The optional thermocouple 36 may be positioned in the sleeve 508 to sense the temperature of melt in the nozzle 500.


The tip 504 may be similar to the tip 33 (FIG. 1a), and may define a tip melt channel 511 that has an exit 513 that is offset from the axis 27 of the gate 26.


The tip surrounding piece 506 may be similar to the tip surrounding piece 34 (FIG. 1a), and includes a shoulder 512 for mating with a shoulder 514 on the tip 504. The shoulders 512 and 514 may be tapered.


The tip surrounding piece 502 may include a first sealing surface 516, which may be similar to the sealing surface 456 on the tip surrounding piece 453 (FIG. 6), and which seals against the second sealing surface 458 on the mold component contacting piece 454.


Reference is made to FIG. 8, which shows a nozzle 550 in accordance with an eighth embodiment of the present invention, in combination with the mold component 14. The nozzle 550 may be similar to the nozzle 500 (FIG. 7), and includes a nozzle body 552, the heater 32, a tip 554, a tip surrounding piece 556 and the mold component contacting piece 35, and may include the optional thermocouple 36.


The nozzle body 552 may be similar to the nozzle body 502 (FIG. 7) and defines a body melt passage 558. The nozzle body 552 includes a threaded portion 560 that is externally threaded, for mating with a threaded portion 562 that is internally threaded, on the tip surrounding piece 556. The threaded portion 560 may be directly positioned on the nozzle body 552 e.g. below the heater 32, instead of being positioned on a sleeve that covers the heater 32.


The tip 554 may be similar to the tip 504 (FIG. 7) and defines a tip melt passage 563, and may include a tapered shoulder 564 which mates with a tapered shoulder 566 on the tip surrounding piece 556.


The tip surrounding piece 556 may be similar to the tip surrounding piece 502 (FIG. 7), and may retain the tip 554 in place in the nozzle body 552. The mold component contacting piece 35 may, however, be attached to the tip surrounding piece 556 instead of being attached to the mold component 14.


Reference is made to FIG. 9, which shows a nozzle 600 in accordance with a ninth embodiment of the present invention, in combination with the mold component 452. The nozzle 600 may be similar to the nozzle 550 (FIG. 8) and may include the nozzle body 552, the heater 32, the tip 554, a tip surrounding piece 602 and the mold component contacting piece 454, and may include the optional thermocouple 36.


The tip surrounding piece 602 may be similar to the tip surrounding piece 556 (FIG. 8), and may have an internally threaded portion 604, for sealing with the externally threaded portion 560 on the nozzle body 552. The tip surrounding piece 602, however, includes a first sealing surface 606 for mating and sealing with the second sealing surface 458 on the mold component contacting piece 454.


Reference is made to FIG. 10, which shows a nozzle 650 in accordance with a tenth embodiment of the present invention, in combination with mold component 14. The nozzle 650 may be similar to the nozzle 600 (FIG. 9) and includes a nozzle body 652, the heater 32, a tip 654, a tip surrounding piece 656 and a mold component contacting piece 658, and may include an optional thermocouple 36.


The nozzle body 652 may be similar to the nozzle body 31 (FIG. 1) and may define a body melt passage 660. The nozzle body 652 includes a threaded portion 662 that may be internally threaded, for mating with a threaded portion 664 that may be externally threaded, on the tip surrounding piece 654. The heater 32 may be attached to the nozzle body 652 in any suitable way for heating melt in the nozzle 650.


The tip 654 may be similar to the tip 554 (FIG. 9) and defines a tip melt passage 666. The tip 654 includes a jam surface 667a, which mates with a shoulder 667b in the nozzle body 652. The tip 654 also includes a first shoulder 668 that may be tapered, which mates with a second shoulder 670 that may be tapered, on the tip surrounding piece 656, for the retention of the tip 654 in place in the nozzle body 652.


The tip surrounding piece 656 may be similar to the tip surrounding piece 602 (FIG. 9), and may retain the tip 654 in place. In the case as shown in FIG. 10, where the tip surrounding piece 656 is positioned between at least a portion of the heater 32 and the tip 654, the tip surrounding piece 656 is preferably made from a thermally conductive material so as to facilitate heat transfer between the heater 32 and melt in the tip melt passage 666.


The mold component contacting piece 658 may be L-shaped in cross-section, and may have a first sealing face 672 that seals in the bore 48 of the mold component 14, and may also align the nozzle 650 in the bore 48. The mold component contacting piece 658 may also have a second sealing face 674, which may include both a vertical portion 676 and a horizontal portion 678. The vertical and horizontal portions 676 and 678 may cooperate with a vertical sealing surface 680 and a horizontal sealing surface 682 on the tip surrounding piece 656 to inhibit melt leakage therepast.


Reference is made to FIG. 11, which shows a nozzle 700 in accordance with an eleventh embodiment of the present invention, in combination with a mold component 702. Nozzle 700 may be similar to nozzle 650 (FIG. 10), and include a mold component contacting piece 704, a tip surrounding piece 706, the tip 654, and a nozzle body 707, and may include the optional thermocouple 36.


The mold component contacting piece 704 may be generally rectangular in cross-section and may have a sealing and aligning surface 708 which seals and aligns against a bore 710 in the mold component 702. The mold component contacting piece 704 may have another sealing and aligning surface 712, which may have a first portion 714 that is vertical and a second portion 716 that is horizontal. The first and second portions 714 and 716 cooperate with a mating third, optionally vertical, portion 718 and a mating fourth, optionally horizontal, portion 720 on the nozzle body 707. The nozzle body 707 may be otherwise similar to the nozzle body 652 (FIG. 10), and defines a body melt passage 721 therethrough.


The mold component 702 may be similar to the mold component 14 (FIG. 1a), except that the mold component 702 may include the bore 710 instead of bore 48. Bore 710 may have generally the same diameter as the bore which houses nozzle 700, which is shown at 724. However, the bore 710 may be machined to a close tolerance to provide an improved seal with the mold component contacting piece 704 and an improved alignment of the nozzle 700 with respect to the gate 26.


Thus, the combination of the nozzle 700 and mold component 702 may be similar to the combination of the nozzle 650 and the mold component 14 (FIG. 10), except that the seal and the alignment occur in the present embodiment between the nozzle body 707, the mold component contacting piece 704, and the mold component 702, instead of between a tip surrounding piece, a mold component contacting piece and a mold component.


Reference is made to FIGS. 12a and 12b, which show a nozzle 750 in combination with a mold component 751, in accordance with a twelfth embodiment of the present invention. Nozzle 750 may be similar to nozzle 700 (FIG. 11), and includes the nozzle body 652, the heater 32, a tip 753, a tip surrounding piece 754 and a mold component contacting piece 755, and may include an optional thermocouple 36. The mold component contacting piece 755 may remain at a bottom shoulder 756 in a bore 757 in the mold component 751. The mold component contacting piece 755 may also be used to align the nozzle 750 relative to the gate 26.


The mold component contacting piece 755 may be generally washer-shaped, having an outer face 758, an inner face 760, a lower face 762 and an upper face 764. The outer face 758 may cooperate with the bore 757 of the mold component 751 to align the mold component contacting piece 755 relative to the gate 26. The inner face 760 in turn, cooperates with a portion of the nozzle 750, in this case, an alignment and sealing surface 765 on the tip 753, to align the nozzle 750 relative to the gate 26. The lower face 762 of the mold component contacting piece 755 may form a seal with the bottom shoulder 756 to prevent melt leakage out of the chamber 30.


The tip 753 may have a jam surface 767 for resting against the shoulder 667b in the nozzle body 652. The tip 753 may be retained in place by the cooperation between a shoulder 768a on the tip 753 and a shoulder 766b on the tip surrounding piece 754. The tip defines a tip melt passage 771 therethrough that is downstream from and in fluid communication with the body melt passage 660


The tip surrounding piece 754 has a bottom shoulder 769. In the ‘cool’ position, shown in FIG. 12a, there is a gap between the bottom shoulder 769 of the tip surrounding piece 754 and the upper face 764 of the mold component contacting piece 755. When the nozzle 750 is heated, it expands due to thermal expansion to a ‘hot’ position (FIG. 12b), whereby the lower surface 769 may contact the upper surface 764. The contact between the surfaces 769 and 764, may provided an added seal in addition to that formed by the surfaces 760 and 765.


The tip surrounding piece may have a threaded portion 770 for mating with the threaded portion 662 on the nozzle body 652.


It will be noted that in this embodiment, the mold component contacting piece 755 is not necessarily specifically attached to either of the mold component 751 or the rest of the nozzle 652.


Reference is made to FIG. 13, which shows a nozzle 800 in combination with a mold component 801, in accordance with a thirteenth embodiment of the present invention. Nozzle 800 may be similar to the nozzle 750 (FIGS. 12a and 12b), and may include the nozzle body 652, the tip 753, the tip surrounding piece 754, an alignment piece 802, a seal piece 804, the heater 32 and may include the optional thermocouple 36.


The alignment piece 802 may be generally L-shaped in cross-section, and may have a lower face 806, a first upper face 808, a second upper face 810, an inner face 812, a first outer face 814 and a second outer face 816. The alignment piece 802 may rest against a shoulder 818 in the mold component 801. The second outer face 816 and the bore 820 cooperate to align the alignment piece 802 relative to the gate 26. The inner face 812 cooperates with a portion of the nozzle 800, in this case, an alignment surface 819 on the tip 753 to align the nozzle 800 relative to the gate 26. A gap exists between the second upper face 810 and the bottom face 769 of the tip surrounding piece 754.


The seal piece 804 may be an O-ring that is resilient and that can seal effectively for the pressures and temperature in the general environment of an injection molding apparatus. The seal piece 804 is positioned in a pocket form by a bore 820 in the mold component 801, the first upper face 808 and the first outer face 814 and the bottom face 769 of the tip surrounding piece 754. In the ‘cool’ position, shown in FIG. 13, the bottom shoulder 769 of the tip surrounding piece 754 contacts and compresses the seal piece 804, so that a seal is formed at all contact points between the seal piece 804, the nozzle 800, and the mold component 801.


It will be noted that, in the embodiment shown in FIG. 13, both the alignment piece 802 and the seal piece 804 are mold component contacting pieces.


During an injection molding cycle, the nozzle 800 is heated and expands, and the gap between the bottom shoulder 769 of the tip surrounding piece 754 and the second upper face 810 of the alignment piece 802 is reduced or may be eliminated, due to the thermal expansion. The bottom shoulder 769 of the tip surrounding piece 754 further compresses the seal piece 804, thereby further strengthening the seals formed between the seal piece 804 and the nozzle 800 and the mold component 801.


Reference is made to FIG. 14, which shows a nozzle 900 in accordance with a fourteenth embodiment of the present invention, in combination with the mold component 14. The nozzle 900 may be similar to the nozzle 16 (FIG. 1a), and includes a nozzle body 902, a tip 904, a tip surrounding piece 906, a mold component contacting piece 908, and may include the optional thermocouple 36. The nozzle body 902 may be similar to the nozzle body 31 (FIG. 1a) and defines a nozzle body melt passage 910 therethrough. The nozzle body 902 has a first nozzle body threaded portion 912 thereon for mating with a tip threaded portion 914 on the tip 904. The nozzle body 902 may also include a second nozzle body threaded portion 916 for mating with a corresponding tip surrounding piece threaded portion 918 on the tip surrounding piece 906. The heater 32 may be positioned on the nozzle body 902 in any suitable way for heating melt in the nozzle body melt channel 910.


The tip 904 may be similar to the tip 33 (FIG. 1a), and defines a tip melt passage 920 therethrough that is downstream from and in fluid communication with the nozzle body melt passage 910. The tip 904 may optionally include a tip tool engagement portion 922 for receiving a tool for the installation and removal of the tip 904 with respect to the nozzle body 902.


The tip surrounding piece 906 is not required to contact the tip 904 in the embodiment shown in FIG. 14. The tip surrounding piece 906 may include a tip surrounding piece tool engagement portion 924 for receiving a tool to facilitate the installation and removal of the tip surrounding piece 906 with respect to the nozzle body 902.


The tip surrounding piece 906 may or may not form a seal with the tip 904 for inhibiting melt leakage therebetween. Thus, melt may be permitted to exist between the tip 904 and the tip surrounding piece 906.


The mold component contacting piece 908 may be similar to the mold component contacting piece 35 (FIG. 1a), and may be attached to the tip surrounding piece 906 by means of a friction fit.


The mold component contacting piece 908 may align the nozzle 900 with respect to the bore 48 of the mold component 14. Alternatively, the mold component contacting piece 908 may form a seal with the bore 48 in the mold component 14 to prevent melt leakage therebetween. As a further alternative, the mold component contacting piece 908 may provide both a sealing function and an aligning function.


In the above described embodiments, the tip surrounding piece has been attached to the nozzle body by means of mating threaded portions. It is alternatively possible for the tip surrounding piece to be attached to the nozzle body in any suitable way that permits the tip surrounding piece to be removed.


In the embodiment shown in FIGS. 12a and 12b, it was disclosed that the nozzle may undergo thermal expansion, and clearance was provided between the tip surrounding piece and the mold component contacting piece to accommodate the expansion. It will be noted that thermal expansion may take place with each of the nozzles described above, and is not limited to the embodiment shown in FIGS. 12a and 12b.


A particular example of an injection molding apparatus is shown in FIG. 1. It will be appreciated that the injection molding apparatus that incorporates the nozzle tip assembly of the present invention may be any suitable type of injection molding apparatus and is not limited to the example shown.


While the above description constitutes the preferred embodiments, it will be appreciated that the present invention is susceptible to modification and change without departing from the fair meaning and scope of the accompanying claims.

Claims
  • 1. A nozzle for an injection molding apparatus, the injection molding apparatus having a mold component, the nozzle comprising: a nozzle body defining a nozzle body melt passage therethrough, wherein the nozzle body melt passage is adapted to receive melt from a melt source;a nozzle tip defining a tip melt passage therethrough, wherein the tip melt passage is downstream from and in fluid communication with the nozzle body melt passage and wherein the nozzle tip is directly coupled to said nozzle body;a tip surrounding piece that surrounds at least a portion of the nozzle tip, wherein the tip surrounding piece is coupled to the nozzle body; anda mold component contacting piece that surrounds at least a portion of the tip surrounding piece and is disposed between the tip surrounding piece and the mold component.
  • 2. The nozzle of claim 1, wherein the tip surrounding piece is spaced apart from the nozzle tip.
  • 3. The nozzle of claim 1, wherein: the mold component contacting piece is adapted to act as seal between the tip surrounding piece and the mold component.
  • 4. The nozzle of claim 1, wherein the nozzle tip is removably coupled to the nozzle body.
  • 5. The nozzle of claim 4, wherein the nozzle tip is threaded to threadingly engage corresponding threads on the nozzle body.
  • 6. The nozzle of claim 1 wherein, the nozzle tip is more thermally conductive than the mold component contacting piece.
  • 7. The nozzle of claim 1, further comprising: a heater thermally coupled to the nozzle body for heating a melt in the nozzle body.
  • 8. The nozzle of claim 1, wherein the nozzle tip is made of substantially the same material as the tip surrounding piece.
  • 9. The nozzle of claim 1, wherein the nozzle tip is made of a different material than the tip surrounding piece.
  • 10. The nozzle of claim 1, wherein the nozzle tip is threaded and is coupled to the nozzle body through a first threaded portion of the nozzle body.
  • 11. The nozzle of claim 1, where the tip surrounding piece is threaded and is coupled to the nozzle body through a second threaded portion of said nozzle body.
  • 12. The nozzle of claim 1, wherein the mold component contacting piece is adapted to act as an insulation between the tip surrounding piece and the mold component.
  • 13. The nozzle of claim 1, wherein the nozzle tip is more thermally conductive than the tip surrounding piece.
  • 14. The nozzle of claim 1, wherein the nozzle tip and the tip surrounding piece are made of materials having substantially similar thermal conductivity.
  • 15. The nozzle of claim 1, wherein: the injection molding apparatus includes a chamber; andthe nozzle tip is located at least partially within the chamber.
  • 16. The nozzle of claim 1, wherein the mold component contacting piece is coupled to the tip surrounding piece.
  • 17. The nozzle of claim 1, wherein the mold component contacting piece is coupled to the mold component.
  • 18. The nozzle of claim 1, wherein the mold component contacting piece is made of a material that is less thermally conductive than materials of the nozzle tip and the tip surrounding piece.
  • 19. The nozzle of claim 1, wherein the nozzle tip is made of beryllium-copper, beryllium-free copper, titanium, zirconium, carbide, aluminum, aluminum-based alloys, nickel, nickel alloys, chromium, chromium alloys, molybdenum, molybdenum alloys, mold steel, or steel alloys.
  • 20. The nozzle of claim 1, wherein the tip surrounding piece is made of beryllium-copper, beryllium-free copper, titanium, zirconium, carbide, aluminum, aluminum-based alloys, nickel, nickel alloys, chromium, chromium alloys, molybdenum, molybdenum alloys, mold steel, or steel alloys.
  • 21. The nozzle of claim 1, wherein the mold component contacting piece is made of titanium, stainless steel, mold steel, chrome steel, ceramics, or plastics.
  • 22. The nozzle of claim 1, wherein the mold component contacting piece comprises a coating.
  • 23. The nozzle of claim 1, wherein the nozzle body and the nozzle tip are configured to have unrestricted axial movement, whereby the movement is caused by thermal expansion.
  • 24. The nozzle of claim 1, where the nozzle body and the tip surrounding piece are configured to have unrestricted axial movement, whereby the movement is caused by thermal expansion.
Priority Claims (1)
Number Date Country Kind
2358148 Oct 2001 CA national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 10/262,982, filed Oct. 3, 2002 (now U.S. Pat. No. 6,921,257 that issued Jul. 26, 2005), the entire disclosure of which is hereby incorporated by reference, which claims the benefit of U.S. Provisional Application No. 60/356,170, filed Feb. 14, 2002, and U.S. Provisional Application No. 60/346,632, filed Jan. 10, 2002, and U.S. Provisional Application No. 60/330,540, filed Oct. 24, 2001.

US Referenced Citations (160)
Number Name Date Kind
2865050 Strauss Dec 1958 A
3488810 Gellert Jan 1970 A
3677682 Putkowski Jul 1972 A
3716318 Erik et al. Feb 1973 A
3741704 Beasley Jun 1973 A
3952927 Schaumburg et al. Apr 1976 A
4004871 Hardy Jan 1977 A
4010903 Sakuri et al. Mar 1977 A
4013393 Gellert Mar 1977 A
4043740 Gellert Aug 1977 A
4053271 Gellert Oct 1977 A
4173448 Rees et al. Nov 1979 A
4212627 Gellert Jul 1980 A
4268240 Rees et al. May 1981 A
4268241 Rees et al. May 1981 A
4279588 Gellert Jul 1981 A
4286941 Gellert Sep 1981 A
4306852 Mateev et al. Dec 1981 A
4312630 Travaglini Jan 1982 A
4318686 Morgan Mar 1982 A
4330258 Gellert May 1982 A
4368028 Grish et al. Jan 1983 A
4412807 York Nov 1983 A
4450999 Gellert May 1984 A
4517453 Tsutsumi May 1985 A
4652230 Osuna-Diaz Mar 1987 A
4662837 Anderson May 1987 A
4768283 Gellert Sep 1988 A
4768945 Schmidt et al. Sep 1988 A
4771164 Gellert Sep 1988 A
4781572 Boring Nov 1988 A
4787836 Osuna-Diaz et al. Nov 1988 A
4832593 Brown May 1989 A
4875848 Gellert Oct 1989 A
4902218 Leonard et al. Feb 1990 A
4911636 Gellert Mar 1990 A
4925384 Manner May 1990 A
4945630 Gellert Aug 1990 A
4950154 Moberg Aug 1990 A
4954072 Zimmerman Sep 1990 A
4981431 Schmidt Jan 1991 A
5015170 Gellert May 1991 A
5028227 Gellert et al. Jul 1991 A
5030084 Gellert et al. Jul 1991 A
5053271 Mori et al. Oct 1991 A
5067893 Osuna-Diaz Nov 1991 A
5135377 Gellert Aug 1992 A
5139724 Hofstetter et al. Aug 1992 A
5141696 Osuna-Diaz Aug 1992 A
5208052 Schmidt et al. May 1993 A
5208228 Ok et al. May 1993 A
5238378 Gellert Aug 1993 A
5254305 Fernandez et al. Oct 1993 A
5268184 Gellert Dec 1993 A
5269677 Gauler Dec 1993 A
5299928 Gellert Apr 1994 A
5324191 Schmidt Jun 1994 A
5334008 Gellert Aug 1994 A
5360333 Schmidt Nov 1994 A
5374182 Gessner Dec 1994 A
5421716 Gellert Jun 1995 A
5443381 Gellert Aug 1995 A
5474439 McGrevy Dec 1995 A
5492467 Hume et al. Feb 1996 A
5501594 Glozer et al. Mar 1996 A
5505613 Krummenacher Apr 1996 A
5518393 Gessner May 1996 A
5545028 Hume et al. Aug 1996 A
5554395 Hume et al. Sep 1996 A
5569475 Adas et al. Oct 1996 A
5652003 Gellert Jul 1997 A
5658604 Gellert et al. Aug 1997 A
5674439 Hume et al. Oct 1997 A
5686122 Huntington et al. Nov 1997 A
5695793 Bauer Dec 1997 A
5700499 Bauer Dec 1997 A
5707667 Galt et al. Jan 1998 A
5736171 McGrevy Apr 1998 A
5795599 Gellert Aug 1998 A
5804228 Kofsman et al. Sep 1998 A
5811140 Manner Sep 1998 A
5820899 Gellert et al. Oct 1998 A
5834041 Sekine et al. Nov 1998 A
5845853 Frideman Dec 1998 A
5849343 Gellert et al. Dec 1998 A
5871785 Van Boekel Feb 1999 A
5871786 Hume et al. Feb 1999 A
5879727 Puri Mar 1999 A
5885628 Swenson et al. Mar 1999 A
5894025 Lee et al. Apr 1999 A
5895669 Seres, Jr. et al. Apr 1999 A
5925386 Moberg Jul 1999 A
5941637 Maurer Aug 1999 A
5948450 Swenson et al. Sep 1999 A
5955121 Gellert et al. Sep 1999 A
5980234 Harley Nov 1999 A
5980237 Swenson et al. Nov 1999 A
5984661 Vorkoper Nov 1999 A
6003182 Song Dec 1999 A
6009616 Gellert Jan 2000 A
6017209 Gellert et al. Jan 2000 A
6022210 Gunther Feb 2000 A
6030202 Gellert et al. Feb 2000 A
6036467 Jameson Mar 2000 A
6050806 Ko Apr 2000 A
6074195 Belous Jun 2000 A
6089468 Bouti Jul 2000 A
6113381 Gellert et al. Sep 2000 A
6135757 Jenko Oct 2000 A
6143358 Singh et al. Nov 2000 A
6164945 Mortazavi et al. Dec 2000 A
6164954 Mortazavi et al. Dec 2000 A
6220851 Jenko Apr 2001 B1
6227461 Schroeder et al. May 2001 B1
6234783 Shibata et al. May 2001 B1
6245278 Lausenhammer et al. Jun 2001 B1
6254377 Kazmer et al. Jul 2001 B1
6261084 Schmidt Jul 2001 B1
6264460 Wright et al. Jul 2001 B1
6273706 Gunther Aug 2001 B1
6287107 Kazmer et al. Sep 2001 B1
6309208 Kazmer et al. Oct 2001 B1
6315549 Jenko et al. Nov 2001 B1
6318990 Gellert et al. Nov 2001 B1
6331106 Helldin Dec 2001 B1
6358038 Rozenberg Mar 2002 B1
6358039 Manner et al. Mar 2002 B1
6394785 Ciccone May 2002 B1
6419116 Eigler et al. Jul 2002 B1
6428305 Jenko Aug 2002 B1
6533571 Fikani Mar 2003 B1
6609902 Blais et al. Aug 2003 B1
6709262 Fong Mar 2004 B1
6726467 Lefebure Apr 2004 B1
6769901 Babin et al. Aug 2004 B1
6789745 Babin et al. Sep 2004 B1
6821112 Eigler et al. Nov 2004 B1
6832909 Bazzo et al. Dec 2004 B1
6869276 Babin et al. Mar 2005 B1
6921257 Olaru Jul 2005 B1
6921259 Gellert Jul 2005 B1
6962492 Olaru Nov 2005 B1
6971869 Olaru Dec 2005 B1
6988883 Babin et al. Jan 2006 B1
20030082264 Babin et al.. May 2003 A1
20030086997 Olaru May 2003 A1
20030170340 Sicilia et al. Sep 2003 A1
20030235638 Gellert Dec 2003 A1
20040058031 Niewels Mar 2004 A1
20040071817 Fischer et al. Apr 2004 A1
20040131721 Babin et al. Jul 2004 A1
20040137107 Babin et al. Jul 2004 A1
20040146598 Sicilia et al. Jul 2004 A1
20040208949 Niewels Oct 2004 A1
20040258788 Olaru Dec 2004 A1
20040265417 Olaru Dec 2004 A1
20050106283 Olaru May 2005 A1
20050118298 Babin et al. Jun 2005 A1
20050136151 Babin Jun 2005 A1
20050214403 Olaru Sep 2005 A1
Foreign Referenced Citations (53)
Number Date Country
2082700 May 1994 CA
2190569 May 1998 CA
2261367 Aug 2000 CA
2358148 Mar 2003 CA
2473920 Aug 2003 CA
032 45 571 Jun 1984 DE
296 02 484 May 1996 DE
196 08 676 Jan 1997 DE
100 08 722 Aug 2001 DE
10037739 Feb 2002 DE
0 590 677 Apr 1994 EP
0 638 407 Feb 1995 EP
0743158 Nov 1996 EP
0 750 975 Jan 1997 EP
0835176 Apr 1998 EP
0 873 841 Oct 1998 EP
0920969 Jun 1999 EP
0743158 Aug 1999 EP
0 962 296 Dec 1999 EP
1 188 537 Mar 2002 EP
1321274 Jun 2003 EP
2537497 Jun 1984 FR
1 540 698 Feb 1979 GB
05-261770 Oct 1992 JP
05-177664 Jul 1993 JP
05-309695 Nov 1993 JP
6-143358 May 1994 JP
7-148786 Jun 1995 JP
8-90598 Apr 1996 JP
9-123222 May 1997 JP
10-034708 Feb 1998 JP
10-264222 Oct 1998 JP
10-296798 Nov 1998 JP
11-254488 Sep 1999 JP
2002-273768 Sep 2002 JP
2002-307492 Oct 2002 JP
2003-11173 Jan 2003 JP
2003-11174 Jan 2003 JP
2003-11176 Jan 2003 JP
2003-071873 Mar 2003 JP
WO 8400922 Mar 1984 WO
WO 9702129 Jan 1997 WO
WO 0048814 Aug 2000 WO
WO 0128750 Apr 2001 WO
WO 0178961 Oct 2001 WO
WO 0240245 May 2002 WO
WO 03004243 Jan 2003 WO
WO 03028973 Apr 2003 WO
WO 03028974 Apr 2003 WO
WO 03070446 Aug 2003 WO
WO 03086734 Oct 2003 WO
WO 200412923 Feb 2004 WO
WO 2005090051 Sep 2005 WO
Related Publications (1)
Number Date Country
20050214403 A1 Sep 2005 US
Provisional Applications (3)
Number Date Country
60356170 Feb 2002 US
60346632 Jan 2002 US
60330540 Oct 2001 US
Continuations (1)
Number Date Country
Parent 10262982 Oct 2002 US
Child 11135525 US