This disclosure relates generally to equipment utilized and operations performed in conjunction with a subterranean well and, in an example described below, more particularly provides for injection of fluid into selected ones of multiple zones in a well, and provides for magnetic actuation of well tools.
It can be beneficial in some circumstances to individually, or at least selectively, inject fluid into multiple formation zones penetrated by a wellbore. For example, the fluid could be treatment, stimulation, fracturing, acidizing, conformance, or other type of fluid.
Therefore, it will be appreciated that improvements are continually needed in the art. These improvements could be useful in operations other than selectively injecting fluid into formation zones.
In the disclosure below, systems and methods are provided which bring improvements to the art. One example is described below in which a magnetic device is used to open a selected one or more valves associated with different zones. Another example is described below in which different magnetic devices, or different combinations of magnetic devices can be used to actuate respective different ones of multiple well tools.
A method of actuating a well tool can include displacing a magnetic device pattern in the well, thereby transmitting a corresponding magnetic signal to the well tool, and the well tool actuating in response to detection of the magnetic signal.
In one aspect, a method of injecting fluid into selected ones of multiple zones penetrated by a wellbore is provided to the art by the disclosure below. In one example, the method can include displacing one or more magnetic devices into one or more valves in the wellbore, the valve(s) actuating in response to the magnetic device displacing, and injecting the fluid through the valve(s) and into at least one of the zones associated with the valve(s).
In another aspect, an injection valve for use in a subterranean well is described below. In one example, the injection valve can include a sensor which detects a magnetic field, and an actuator which opens the injection valve in response to detection of at least one predetermined magnetic signal by the sensor.
In a further aspect, another method of injecting fluid into selected ones of multiple zones penetrated by a wellbore is provided to the art. In one example described below, the method can include displacing a set of one or more magnetic devices through a tubular string having multiple injection valves interconnected therein, opening a set of the injection valves in response to the displacing of the magnetic device set, displacing another set of one or more magnetic devices through the tubular string, and opening another set of one or more injection valves in response to the second magnetic device set displacing.
A magnetic device described below can, in one example, comprise multiple magnetic field-producing components arranged in a pattern on a sphere.
These and other features, advantages and benefits will become apparent to one of ordinary skill in the art upon careful consideration of the detailed description of representative examples below and the accompanying drawings, in which similar elements are indicated in the various figures using the same reference numbers.
Representatively illustrated in
The tubular string 12 may be of the type known to those skilled in the art as casing, liner, tubing, a production string, a work string, etc. Any type of tubular string may be used and remain within the scope of this disclosure.
The packers 18a-e seal off an annulus 20 formed radially between the tubular string 12 and the wellbore 14. The packers 18a-e in this example are designed for sealing engagement with an uncased or open hole wellbore 14, but if the wellbore is cased or lined, then cased hole-type packers may be used instead. Swellable, inflatable, expandable and other types of packers may be used, as appropriate for the well conditions, or no packers may be used (for example, the tubular string 12 could be expanded into contact with the wellbore 14, the tubular string could be cemented in the wellbore, etc.).
In the
The zones 22a-d may be sections of a same formation 22, or they may be sections of different formations. Each zone 22a-d may be associated with one or more of the injection valves 16a-e.
In the
It is sometimes beneficial to initiate fractures 26 at multiple locations in a zone (for example, in tight shale formations, etc.), in which cases the multiple injection valves can provide for injecting fluid 24 at multiple fracture initiation points along the wellbore 14. In the example depicted in
Preferably, the other valves 16a,b,d,e are closed while the fluid 24 is being flowed out of the valve 16c and into the zone 22b. This enables all of the fluid 24 flow to be directed toward forming the fractures 26, with enhanced control over the operation at that particular location.
However, in other examples, multiple valves 16a-e could be open while the fluid 24 is flowed into a zone of an earth formation 22. In the well system 10, for example, both of the valves 16b,c could be open while the fluid 24 is flowed into the zone 22b. This would enable fractures to be formed at multiple fracture initiation locations corresponding to the open valves.
It will, thus, be appreciated that it would be beneficial to be able to open different sets of one or more of the valves 16a-e at different times. For example, one set (such as valves 16b,c) could be opened at one time (such as, when it is desired to form fractures 26 into the zone 22b), and another set (such as valve 16a) could be opened at another time (such as, when it is desired to form fractures into the zone 22a).
One or more sets of the valves 16a-e could be open simultaneously. However, it is generally preferable for only one set of the valves 16a-e to be open at a time, so that the fluid 24 flow can be concentrated on a particular zone, and so flow into that zone can be individually controlled.
At this point, it should be noted that the well system 10 and method is described here and depicted in the drawings as merely one example of a wide variety of possible systems and methods which can incorporate the principles of this disclosure. Therefore, it should be understood that those principles are not limited in any manner to the details of the system 10 or associated method, or to the details of any of the components thereof (for example, the tubular string 12, the wellbore 14, the valves 16a-e, the packers 18a-e, etc.).
It is not necessary for the wellbore 14 to be vertical as depicted in
In other examples, the principles of this disclosure could be applied in circumstances where fluid is not only injected, but is also (or only) produced from the formation 22. Thus, well tools other than injection valves can benefit from the principles described herein.
Referring additionally now to
In the
In this configuration, fluid communication is prevented between the annulus 20 external to the valve 16, and an internal flow passage 36 which extends longitudinally through the valve (and which extends longitudinally through the tubular string 12 when the valve is interconnected therein). The valve 16 can be opened, however, by shearing the shear members 34 and displacing the sleeve 32 (downward as viewed in
To open the valve 16, a magnetic device 38 is displaced into the valve to activate an actuator 50 thereof. The magnetic device 38 is depicted in
The magnetic device 38 may be displaced into the valve 16 by any technique. For example, the magnetic device 38 can be dropped through the tubular string 12, pumped by flowing fluid through the passage 36, self-propelled, conveyed by wireline, slickline, coiled tubing, etc.
The magnetic device 38 has known magnetic properties, and/or produces a known magnetic field, or pattern or combination of magnetic fields, which is/are detected by a magnetic sensor 40 of the valve 16. The magnetic sensor 40 can be any type of sensor which is capable of detecting the presence of the magnetic field(s) produced by the magnetic device 38, and/or one or more other magnetic properties of the magnetic device.
Suitable sensors include (but are not limited to) giant magneto-resistive (GMR) sensors, Hall-effect sensors, conductive coils, etc. Permanent magnets can be combined with the magnetic sensor 40 in order to create a magnetic field that is disturbed by the magnetic device 38. A change in the magnetic field can be detected by the sensor 40 as an indication of the presence of the magnetic device 38.
The sensor 40 is connected to electronic circuitry 42 which determines whether the sensor has detected a particular predetermined magnetic field, or pattern or combination of magnetic fields, or other magnetic properties of the magnetic device 38. For example, the electronic circuitry 42 could have the predetermined magnetic field(s) or other magnetic properties programmed into non-volatile memory for comparison to magnetic fields/properties detected by the sensor 40. The electronic circuitry 42 could be supplied with electrical power via an on-board battery, a downhole generator, or any other electrical power source.
In one example, the electronic circuitry 42 could include a capacitor, wherein an electrical resonance behavior between the capacitance of the capacitor and the magnetic sensor 40 changes, depending on whether the magnetic device 38 is present. In another example, the electronic circuitry 42 could include an adaptive magnetic field that adjusts to a baseline magnetic field of the surrounding environment (e.g., the formation 22, surrounding metallic structures, etc.). The electronic circuitry 42 could determine whether the measured magnetic fields exceed the adaptive magnetic field level.
In one example, the sensor 40 could comprise an inductive sensor which can detect the presence of a metallic device (e.g., by detecting a change in a magnetic field, etc.). The metallic device (such as a metal ball or dart, etc.) can be considered a magnetic device 38, in the sense that it conducts a magnetic field and produces changes in a magnetic field which can be detected by the sensor 40.
If the electronic circuitry 42 determines that the sensor 40 has detected the predetermined magnetic field(s) or change(s) in magnetic field(s), the electronic circuitry causes a valve device 44 to open. In this example, the valve device 44 includes a piercing member 46 which pierces a pressure barrier 48.
The piercing member 46 can be driven by any means, such as, by an electrical, hydraulic, mechanical, explosive, chemical or other type of actuator. Other types of valve devices 44 (such as those described in U.S. patent application Ser. Nos. 12/688,058 and 12/353,664, the entire disclosures of which are incorporated herein by this reference) may be used, in keeping with the scope of this disclosure.
When the valve device 44 is opened, a piston 52 on a mandrel 54 becomes unbalanced (e.g., a pressure differential is created across the piston), and the piston displaces downward as viewed in
However, in the
When the piston 52 displaces downward, the collets 58 are deflected radially inward by an inclined face 62 of the recess 60, and the seat 56 is then in its sealing position. A plug (such as, a ball, a dart, a magnetic device 38, etc.) can sealingly engage the seat 56, and increased pressure can be applied to the passage 36 above the plug to thereby shear the shear members 34 and downwardly displace the sleeve 32 to its open position.
As mentioned above, the retractable seat 56 may be sealingly engaged by the magnetic device 38 which initially activates the actuator 50 (e.g., in response to the sensor 40 detecting the predetermined magnetic field(s) or change(s) in magnetic field(s) produced by the magnetic device), or the retractable seat may be sealingly engaged by another magnetic device and/or plug subsequently displaced into the valve 16.
Furthermore, the retractable seat 56 may be actuated to its sealing position in response to displacement of more than one magnetic device 38 into the valve 16. For example, the electronic circuitry 42 may not actuate the valve device 44 until a predetermined number of the magnetic devices 38 have been displaced into the valve 16, and/or until a predetermined spacing in time is detected, etc.
Referring additionally now to
The chambers 64, 66 are initially isolated from each other by the pressure barrier 48. When the sensor 40 detects the predetermined magnetic signal(s) produced by the magnetic device(s) 38, the piercing member 46 pierces the pressure barrier 48, and the support fluid 63 flows from the chamber 64 to the chamber 66, thereby allowing a pressure differential across the sleeve 32 to displace the sleeve downward to its open position, as depicted in
Fluid 24 can now be flowed outward through the openings 28 from the passage 36 to the annulus 20. Note that the retractable seat 56 is now extended inwardly to its sealing position. In this example, the retractable seat 56 is in the form of an expandable ring which is extended radially inward to its sealing position by the downward displacement of the sleeve 32.
In addition, note that the magnetic device 38 in this example comprises a ball or sphere. Preferably, one or more permanent magnets 68 or other type of magnetic field-producing components are included in the magnetic device 38.
In
In
Note that in the FIGS. 2 & 3-6 examples, the seat 58 is initially expanded or “retracted” from its sealing position, and is later deflected inward to its sealing position. In the
The seat 58 in both of these examples can be considered “retractable,” in that the seat can be in its inward sealing position, or in its outward non-sealing position, when desired. Thus, the seat 58 can be in its non-sealing position when initially installed, and then can be actuated to its sealing position (e.g., in response to detection of a predetermined pattern or combination of magnetic fields), without later being actuated to its sealing position again, and still be considered a “retractable” seat.
Referring additionally now to
The recesses 74 are arranged in a pattern which, in this case, resembles that of stitching on a baseball. In
The magnets 68 are preferably arranged to provide a magnetic field a substantial distance from the device 38, and to do so no matter the orientation of the sphere 76. The pattern depicted in
Referring additionally now to
When one of the valve devices 44 opens, a sufficient amount of the support fluid 63 is drained to displace the sleeve 32 to its open position (similar to, e.g.,
Various different techniques may be used to control actuation of the valve devices 44. For example, one of the valve devices 44 may be opened when a first magnetic device 38 is displaced into the valve 16, and the other valve device may be opened when a second magnetic device is displaced into the valve. As another example, the second valve device 44 may be actuated in response to passage of a predetermined amount of time from a particular magnetic device 38, or a predetermined number of magnetic devices, being detected by the sensor 40.
As yet another example, the first valve device 44 may actuate when a certain number of magnetic devices 38 have been displaced into the valve 16, and the second valve device 44 may actuate when another number of magnetic devices have been displaced into the valve. Thus, it should be understood that any technique for controlling actuation of the valve devices 44 may be used, in keeping with the scope of this disclosure.
Referring additionally now to
In
In
Initially, the chamber 66 is at or near atmospheric pressure, and contains air or an inert gas. Thus, the support fluid 63 can readily flow into the chamber 66, allowing the sleeve 32 to displace downwardly, due to the pressure differential across the piston 52.
In
In
A locking member 84 (such as a resilient C-ring) expands outward when the sleeve 32 displaces to its open position. When expanded, the locking member 84 prevents re-closing of the sleeve 32.
The actuator 50 is not visible in
A contact 82 is provided for interfacing with the electronic circuitry 42 (for example, comprising a hybridized circuit with a programmable processor, etc.), and for switching the electronic circuitry on and off. With the outer sleeve 78 in a downwardly displaced position (as depicted in
Although in the examples of
In examples described above, the sensor 40 can detect magnetic signals which correspond to displacing one or more magnetic devices 38 in the well (e.g., through the passage 36, etc.) in certain respective patterns. The transmitting of different magnetic signals (corresponding to respective different patterns of displacing the magnetic devices 38) can be used to actuate corresponding different sets of the valves 16a-e.
Thus, displacing a pattern of magnetic devices 38 in a well can be used to transmit a corresponding magnetic signal to well tools (such as valves 16a-e, etc.), and at least one of the well tools can actuate in response to detection of the magnetic signal. The pattern may comprise a predetermined number of the magnetic devices 38, a predetermined spacing in time of the magnetic devices 38, or a predetermined spacing in time between predetermined numbers of the magnetic devices 38, etc. Any pattern may be used in keeping with the scope of this disclosure.
The magnetic device pattern can comprise a predetermined magnetic field pattern (such as, the pattern of magnetic field-producing components on the magnetic device 38 of
A first set of the well tools might actuate in response to detection of a first magnetic signal. A second set of the well tools might actuate in response to detection of another magnetic signal. The second magnetic signal can correspond to a second unique magnetic device pattern produced in the well.
The term “pattern” is used in this context to refer to an arrangement of magnetic field-producing components (such as permanent magnets 68, etc.) of a magnetic device 38 (as in the
The sensor 40 may detect a pattern on a single magnetic device 38, such as the magnetic device of
The sensor 40 may detect patterns created by displacing multiple magnetic devices 38 in the well. For example, three magnetic devices 38 could be displaced in the valve 16 (or past or to the sensor 40) within three minutes of each other, and then no magnetic devices could be displaced for the next three minutes.
The electronic circuitry 42 can receive this pattern of indications from the sensor 40, which encodes a digital command for communicating with the well tools (e.g., “waking” the well tool actuators 50 from a low power consumption “sleep” state). Once awakened, the well tool actuators 50 can, for example, actuate in response to respective predetermined numbers, timing, and/or other patterns of magnetic devices 38 displacing in the well. This method can help prevent extraneous activities (such as, the passage of wireline tools, etc. through the valve 16) from being misidentified as an operative magnetic signal.
In one example, the valve 16 can open in response to a predetermined number of magnetic devices 38 being displaced through the valve. By setting up the valves 16a-e in the system 10 of
For example, the valve 16e could open when a first magnetic device 38 is displaced through the tubular string 12. The valve 16d could then be opened when a second magnetic device 38 is displaced through the tubular string 12. The valves 16b,c could be opened when a third magnetic device 38 is displaced through the tubular string 12. The valve 16a could be opened when a fourth magnetic device 38 is displaced through the tubular string 12.
Any combination of number of magnetic device(s) 38, pattern on one or more magnetic device(s), pattern of magnetic devices, spacing in time between magnetic devices, etc., can be detected by the magnetic sensor 40 and evaluated by the electronic circuitry 42 to determine whether the valve 16 should be actuated. Any unique combination of number of magnetic device(s) 38, pattern on one or more magnetic device(s), pattern of magnetic devices, spacing in time between magnetic devices, etc., may be used to select which of multiple sets of valves 16 will be actuated.
Another use for the actuator 50 (in any of its
It may now be fully appreciated that the above disclosure provides several advancements to the art. The injection valve 16 can be conveniently and reliably opened by displacing the magnetic device 38 into the valve, or otherwise detecting a particular magnetic signal by a sensor of the valve. Selected ones or sets of injection valves 16 can be individually opened, when desired, by displacing a corresponding one or more magnetic devices 38 into the selected valve(s). The magnetic device(s) 38 may have a predetermined pattern of magnetic field-producing components, or otherwise emit a predetermined combination of magnetic fields, in order to actuate a corresponding predetermined set of injection valves 16a-e.
The above disclosure describes a method of injecting fluid 24 into selected ones of multiple zones 22a-d penetrated by a wellbore 14. In one example, the method can include producing a magnetic pattern, at least one valve 16 actuating in response to the producing step, and injecting the fluid 24 through the valve 16 and into at least one of the zones 22a-d associated with the valve 16. The valve(s) 16 could actuate to an open (or at least more open, from partially open to fully open, etc.) configuration in response to the magnetic pattern producing step.
The valve 16 may actuate in response to displacing a predetermined number of magnetic devices 38 into the valve 16.
A retractable seat 56 may be activated to a sealing position in response to the displacing step.
The valve 16 may actuate in response to a magnetic device 38 having a predetermined magnetic pattern, in response to a predetermined magnetic signal being transmitted from the magnetic device 38 to the valve, and/or in response to a sensor 40 of the valve 16 detecting a magnetic field of the magnetic device 38.
The valve 16 may close in response to at least two of the magnetic devices 38 being displaced into the valve 16.
The method can include retrieving the magnetic device 38 from the valve 16. Retrieving the magnetic device 38 may include expanding a retractable seat 56 and/or displacing the magnetic device 38 through a seat 56.
The magnetic device 38 may comprise multiple magnetic field-producing components (such as multiple magnets 68, etc.) arranged in a pattern on a sphere 76. The pattern can comprise spaced apart positions distributed along a continuous undulating path about the sphere 76.
Also described above is an injection valve 16 for use in a subterranean well. In one example, the injection valve 16 can include a sensor 40 which detects a magnetic field, and an actuator 50 which opens the injection valve 16 in response to detection of at least one predetermined magnetic signal by the sensor 40.
The actuator 50 may open the injection valve 16 in response to a predetermined number of magnetic signals being detected by the sensor 40.
The injection valve 16 can also include a retractable seat 56. The retractable seat 56 may be activated to a sealing position in response to detection of the predetermined magnetic signal by the sensor 40.
The actuator 50 may open the injection valve 16 in response to a predetermined magnetic pattern being detected by the sensor 40, and/or in response to multiple predetermined magnetic signals being detected by the sensor. At least two of the predetermined magnetic signals may be different from each other.
A method of injecting fluid 24 into selected ones of multiple zones 22a-d penetrated by a wellbore 14 is also described above. In one example, the method can include producing a first magnetic pattern in a tubular string 12 having multiple injection valves 16a-e interconnected therein, opening a first set (such as, valves 16b,c) of at least one of the injection valves 16a-e in response to the first magnetic pattern producing step, producing a second magnetic pattern in the tubular string 12, and opening a second set (such as, valve 16a) of at least one of the injection valves 16a-e in response to the second magnetic pattern producing step.
The first injection valve set 16b,c may open in response to the first magnetic pattern including a first predetermined number of magnetic devices 38. The second injection valve set 16a may open in response to the second magnetic pattern including a second predetermined number of the magnetic devices 38.
In another aspect, the above disclosure describes a method of actuating well tools in a well. In one example, the method can include producing a first magnetic pattern in the well, thereby transmitting a corresponding first magnetic signal to the well tools (such as valves 16a-e, etc.), and at least one of the well tools actuating in response to detection of the first magnetic signal.
The first magnetic pattern may comprise a predetermined number of the magnetic devices 38, a predetermined spacing in time of the magnetic devices 38, or a predetermined spacing in time between predetermined numbers of the magnetic devices 38, etc. Any pattern may be used in keeping with the scope of this disclosure.
A first set of the well tools may actuate in response to detection of the first magnetic signal. A second set of the well tools may actuate in response to detection of a second magnetic signal. The second magnetic signal can correspond to a second magnetic pattern produced in the well.
The well tools can comprise valves, such as injection valves 16, or other types of valves, or other types of well tools. Other types of valves can include (but are not limited to) sliding side doors, flapper valves, ball valves, gate valves, pyrotechnic valves, etc. Other types of well tools can include packers 18a-e, production control, conformance, fluid segregation, and other types of tools.
The method may include injecting fluid 24 outward through the injection valves 16a-e and into a formation 22 surrounding a wellbore 14.
The method may include detecting the first magnetic signal with a magnetic sensor 40.
The magnetic pattern can comprise a predetermined magnetic field pattern (such as, the pattern of magnetic field-producing components on the magnetic device 38 of
In one example, a magnetic device 38 described above can include multiple magnetic field-producing components arranged in a pattern on a sphere 76. The magnetic field-producing components may comprise permanent magnets 68.
The pattern may comprise spaced apart positions distributed along a continuous undulating path about the sphere 76.
The magnetic field-producing components may be positioned in recesses 74 formed on the sphere 76.
The actuating can be performed by piercing a pressure barrier 48.
Although various examples have been described above, with each example having certain features, it should be understood that it is not necessary for a particular feature of one example to be used exclusively with that example. Instead, any of the features described above and/or depicted in the drawings can be combined with any of the examples, in addition to or in substitution for any of the other features of those examples. One example's features are not mutually exclusive to another example's features. Instead, the scope of this disclosure encompasses any combination of any of the features.
Although each example described above includes a certain combination of features, it should be understood that it is not necessary for all features of an example to be used. Instead, any of the features described above can be used, without any other particular feature or features also being used.
It should be understood that the various embodiments described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of this disclosure. The embodiments are described merely as examples of useful applications of the principles of the disclosure, which is not limited to any specific details of these embodiments.
In the above description of the representative examples, directional terms (such as “above,” “below,” “upper,” “lower,” etc.) are used for convenience in referring to the accompanying drawings. However, it should be clearly understood that the scope of this disclosure is not limited to any particular directions described herein.
The terms “including,” “includes,” “comprising,” “comprises,” and similar terms are used in a non-limiting sense in this specification. For example, if a system, method, apparatus, device, etc., is described as “including” a certain feature or element, the system, method, apparatus, device, etc., can include that feature or element, and can also include other features or elements. Similarly, the term “comprises” is considered to mean “comprises, but is not limited to.”
Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments of the disclosure, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to the specific embodiments, and such changes are contemplated by the principles of this disclosure. Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the invention being limited solely by the appended claims and their equivalents.
This application is a continuation-in-part of prior U.S. application Ser. No. 13/219,790, filed 29 Aug. 2011. The entire disclosure of the prior application is incorporated herein by this reference.
Number | Name | Date | Kind |
---|---|---|---|
2189936 | Broyles | Aug 1938 | A |
2189937 | Broyles | Feb 1940 | A |
2308004 | Hart | Jan 1943 | A |
2330265 | Burt | Sep 1943 | A |
2373006 | Baker | Apr 1945 | A |
2381929 | Schlumberger | Aug 1945 | A |
2618343 | Conrad | Nov 1952 | A |
2637402 | Baker et al. | May 1953 | A |
2640547 | Baker et al. | Jun 1953 | A |
2695064 | Ragan et al. | Nov 1954 | A |
2961045 | Stogner et al. | Nov 1960 | A |
2974727 | Goodwin | Mar 1961 | A |
3029873 | Hanes | Apr 1962 | A |
3055430 | Campbell | Sep 1962 | A |
3122728 | Lindberg, Jr. | Feb 1964 | A |
3160209 | Bonner | Dec 1964 | A |
RE25846 | Campbell | Aug 1965 | E |
3233674 | Leutwyler | Feb 1966 | A |
3266575 | Owen | Aug 1966 | A |
3398803 | Leutwyler et al. | Aug 1968 | A |
4085590 | Powell et al. | Apr 1978 | A |
4282931 | Golben | Aug 1981 | A |
4352397 | Christopher | Oct 1982 | A |
4377209 | Golben | Mar 1983 | A |
4385494 | Golben | May 1983 | A |
4402187 | Golben et al. | Sep 1983 | A |
4574889 | Pringle | Mar 1986 | A |
4598769 | Robertson | Jul 1986 | A |
4606416 | Knighton et al. | Aug 1986 | A |
4884953 | Golben | Dec 1989 | A |
5024270 | Bostick | Jun 1991 | A |
5074940 | Ochi et al. | Dec 1991 | A |
5101907 | Schultz et al. | Apr 1992 | A |
5197758 | Lund et al. | Mar 1993 | A |
5211224 | Bouldin | May 1993 | A |
5238070 | Schultz et al. | Aug 1993 | A |
5249630 | Meaders et al. | Oct 1993 | A |
5316081 | Baski et al. | May 1994 | A |
5316087 | Manke et al. | May 1994 | A |
5396951 | Ross | Mar 1995 | A |
5452763 | Owen | Sep 1995 | A |
5476018 | Nakanishi et al. | Dec 1995 | A |
5485884 | Hanley et al. | Jan 1996 | A |
5531845 | Flanigan et al. | Jul 1996 | A |
5573307 | Wilkinson et al. | Nov 1996 | A |
5585726 | Chau | Dec 1996 | A |
5666050 | Bouldin et al. | Sep 1997 | A |
5673556 | Goldben et al. | Oct 1997 | A |
5687791 | Beck et al. | Nov 1997 | A |
5700974 | Taylor | Dec 1997 | A |
6041864 | Patel et al. | Mar 2000 | A |
6128904 | Rosso, Jr. et al. | Oct 2000 | A |
6142226 | Vick | Nov 2000 | A |
6152232 | Webb et al. | Nov 2000 | A |
6167974 | Webb | Jan 2001 | B1 |
6186226 | Robertson | Feb 2001 | B1 |
6305467 | Connell et al. | Oct 2001 | B1 |
6315043 | Farrant et al. | Nov 2001 | B1 |
6343658 | Webb | Feb 2002 | B2 |
6378611 | Helderle | Apr 2002 | B1 |
6536524 | Snider | Mar 2003 | B1 |
6557637 | Dore et al. | May 2003 | B1 |
6561479 | Eldridge | May 2003 | B1 |
6568470 | Goodson, Jr. et al. | May 2003 | B2 |
6598679 | Robertson | Jul 2003 | B2 |
6651747 | Chen et al. | Nov 2003 | B2 |
6684950 | Patel | Feb 2004 | B2 |
6695061 | Fripp et al. | Feb 2004 | B2 |
6705425 | West | Mar 2004 | B2 |
6776255 | West et al. | Aug 2004 | B2 |
6925937 | Robertson | Aug 2005 | B2 |
6962215 | Curtis et al. | Nov 2005 | B2 |
6971449 | Robertson | Dec 2005 | B1 |
6973993 | West et al. | Dec 2005 | B2 |
7083009 | Paluch et al. | Aug 2006 | B2 |
7152679 | Simpson | Dec 2006 | B2 |
7191672 | Ringgenberg et al. | Mar 2007 | B2 |
7197923 | Wright et al. | Apr 2007 | B1 |
7237616 | Patel | Jul 2007 | B2 |
7252152 | LoGiudice et al. | Aug 2007 | B2 |
7395882 | Oldham et al. | Jul 2008 | B2 |
7413011 | Chee et al. | Aug 2008 | B1 |
7431335 | Khandhadia et al. | Oct 2008 | B2 |
7597151 | Curtis et al. | Oct 2009 | B2 |
7604062 | Murray | Oct 2009 | B2 |
20040227509 | Ucan | Nov 2004 | A1 |
20050115708 | Jabusch | Jun 2005 | A1 |
20050260468 | Fripp et al. | Nov 2005 | A1 |
20060124310 | Lopez de Cardenas et al. | Jun 2006 | A1 |
20060144590 | Lopez de Cardenas et al. | Jul 2006 | A1 |
20070039508 | Saito et al. | Feb 2007 | A1 |
20070089911 | Moyes | Apr 2007 | A1 |
20080236840 | Nguy | Oct 2008 | A1 |
20090301233 | Irani et al. | Dec 2009 | A1 |
20090308588 | Howell et al. | Dec 2009 | A1 |
20100084060 | Hinshaw et al. | Apr 2010 | A1 |
20100201352 | Englert | Aug 2010 | A1 |
20110232917 | Skinner et al. | Sep 2011 | A1 |
20110240301 | Robinson et al. | Oct 2011 | A1 |
20110240311 | Robison et al. | Oct 2011 | A1 |
20110265987 | Wright et al. | Nov 2011 | A1 |
20110284240 | Chen et al. | Nov 2011 | A1 |
20120006562 | Speer et al. | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
0220942 | Mar 2002 | WO |
2010079327 | Jul 2010 | WO |
Entry |
---|
Specification and Drawings filed Jul. 23, 2013, U.S. Appl. No. 13/948,267, 38 pages. |
Specification and Drawings filed Jul. 23, 2013, U.S. Appl. No. 13/948,278, 37 pages. |
Office Action issued Jul. 11, 2013 for U.S. Appl. No. 13/219,790, 40 pages. |
Office Action issued Jul. 10, 2014 for U.S. Appl. No. 13/219,790, 14 pages. |
Storr; “The Hall Effect Sensor”, Electronics Tutorial, dated 1999-2014, 8 pages. |
Swagatam; “Types, Working Principle of Hall Effects ICs”, Bright Hub Engineering website, dated Feb. 22, 2011, 3 pages. |
Office Action issued Feb. 21, 2014 for U.S. Appl. No. 13/219,790, 33 pages. |
International Preliminary Report on Patentability and Written Opinion issued for International Patent Application No. PCT/US06/023947 dated Jan. 24, 2008, 6 pages. |
Anonymous; “Smart Plugging Tool System for Selectively Actuating Wellbore Valves”, originally published in Prior Art Database, dated Jan. 7, 2008, 5 pages. |
Halliburton; “Horizontal Completion Systems”, article H03280, received Jun. 30, 2011, 14 pages. |
Halliburton; “Delta Stim Lite Sleeve”, article H06033, dated Jun. 2010, 3 pages. |
Halliburton; “Delta Stim Sleeve”, article H04616, dated Sep. 2008, 4 pages. |
Office Action issued Feb. 10, 2005 for U.S. Appl. No. 10/426,917, 6 pages. |
Office Action issued Mar. 1, 2007 for U.S. Appl. No. 11/180,140, 9 pages. |
Office Action issued Sep. 17, 2007 for U.S. Appl. No. 11/180,140, 8 pages. |
Office Action issued Sep. 9, 2008 for U.S. Appl. No. 11/180,140, 12 pages. |
Office Action issued Oct. 27, 2008 for U.S. Appl. No. 11/180,140, 11 pages. |
Office Action issued Feb. 26, 2009 for U.S. Appl. No. 11/180,140, 7 pages. |
Halliburton; “Quick Trip Valve”, article H02856R, dated Apr. 2002, 2 pages. |
Pes; “Model DV Dual Control Line Operated Drill Through Lubricator Valve”, marketing document, dated Jul. 27, 2001, 6 pages. |
Weatherford; “Underbalanced Drilling: Undeniable Success”, product article, dated Mar. 2002, 1 page. |
Weatherford; “Products and Services Catalog”, brochure # 01.01, dated 2002, 3 pages. |
International Search Report and Written Opinion issued May 30, 2013 for PCT Patent Application No. PCT/US2013/029750, 18 pages. |
Search Report issued Jun. 23, 2011 for International Patent Application Serial No. PCT/US10/61047, 5 pages. |
Written Opinion issued Jun. 23, 2011 for International Patent Application Serial No. PCT/US10/61047, 4 pages. |
Specification and Drawings for U.S. Appl. No. 12/831,240, filed Jul. 6, 2010, 65 pages. |
Specification and Drawings for U.S. Appl. No. 12/962,621, filed Dec. 10, 2010, 32 pages. |
Specification and Drawings for U.S. Appl. No. 13/219,790, filed Aug. 29, 2011, 49 pages. |
Specification and Drawings for U.S. Appl. No. 13/025,041, filed Feb. 10, 2011, 71 pages. |
Specification and Drawings for U.S. Appl. No. 13/151,457, filed Jun. 2, 2011, 78 pages. |
Specification and Drawings for U.S. Appl. No. 13/025,039, filed Feb. 10, 2011, 69 pages. |
Specification and Drawings for U.S. Appl. No. 13/539,392, filed Nov. 8, 2009, 47 pages. |
Halliburton; “RapidFrac System”, H08004, dated Oct. 2011, 3 pages. |
Halliburton; “RapidFrac System”, product presentation, dated 2011, 6 pages. |
International Search Report with Written Opinion issued Mar. 11, 2013 for PCT Patent Application No. PCT/US12/050762, 14 pages. |
International Search Report and Written Opinion issued Jul. 23, 2013 for PCT Patent Application No. PCT/US2013/029762, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20130048291 A1 | Feb 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13219790 | Aug 2011 | US |
Child | 13440727 | US |