The technology disclosed in this specification is a development of the technology shown in patent publication U.S. Pat. No. 6,851,473 (Davidson, 8 Feb. 2005).
One of the problems with simple (i.e non-pulsed) injection of liquid into the ground is that the liquid penetrates and spreads very unevenly. The injected liquid tends to extend outwards into the ground, not as a uniform front advancing circumferentially outwards from the borehole, but as fingers of liquid, which follow the existing pathways in the ground of (slightly) lower permeability—unfortunately in such manner as to lower still further the already-lower resistance of those pathways.
Introducing almost any type of pulsing to the injected liquid is likely to be beneficial, in that pulsing tends to reduce the degree of fingering. Often, applying pulses to the pressurized liquid enables the liquid to be injected into the ground at a greater rate.
Of course, the engineers could inject more liquid, and could inject it at a faster rate, simply by raising the injection pressure. However, there is usually a limitation, often imposed by regulation for the purpose of avoiding physical damage to the ground, as to the maximum pressure at which fluids can be injected into the particular ground formation. Generally, the engineers, motivated to inject as much liquid into the ground as possible, and to inject it as quickly as possible, wish to use the highest possible injection pressure. Pulsing the injection generally enables more liquid to be injected at the allowed pressure.
As injection continues, and more liquid enters the ground, so the back pressure of the ground, i.e the pressure that resists further injection, rises. Thus, after a period of injection, as the formation becomes saturated with the injected liquid, the available pressure differential between the liquid being injected and the ground becomes smaller. Pulsing enables the saturation state of the ground to be increased: where injection-without-pulsing can saturate the formation, injection-with-pulsing can be expected to over-saturate the formation.
In injection-with-pulsing, a pulse-valve of the pulse-injection tool is opened, and a charge-volume of liquid is injected out of the tool, into the ground. The opening of the pulse-valve defines the injection-phase of the pulse-cycle. During the injection-phase, the charge-volume passes from an accumulator of the tool out into the formation, whereby the accumulator-pressure within the tool starts to fall. The formation-pressure starts to rise, as liquid is injected into the formation. The pressure differential between the accumulator-pressure and the formation-pressure is herein termed the PDAF. During the injection-phase, the PDAF is decreasing.
Later, the pulse-valve closes, which defines a recovery or recharge-phase of the pulse-cycle. During the recharge-phase, the accumulator is recharged with pressurized liquid (from the surface), whereby the accumulator-pressure inside the tool now increases. At the same time, during the recharge-phase, no more liquid is being injected, and the just-injected liquid is dissipating into the ground and so the formation-pressure is falling. Thus, during the recharge-phase, the PDAF is increasing.
Pulsing with suckback is especially efficacious from the standpoint of homogenizing the ground formation. Pulsing with suckback can be expected to super-saturate the formation around the injection well. In pulsing-with-suckback, a suckback-chamber is created inside the tool, which is open to the formation during the recharge-phase of the injection-cycle. At this time, the pressure in the suckback-chamber is lower than the formation-pressure, and the chamber is open to the formation. Therefore, some liquid is sucked back into the chamber, from the formation. This suckback of (some of) the just-injected liquid has been found to be very effective in increasing the amount of, and the rate at which, liquid that can be injected into the ground, for a given maximum allowed pressure.
Adding suckback to the pulses can be expected to make a significant reduction in the degree and effect of fingering, and to reducing the in-ground gradients of many in-ground parameters, including gradients of permeability, porosity, liquid-content, contaminant concentration, and so forth.
One of the especial benefits of suckback is an enhanced ability to procure the conditions under which the liquid in the ground around the borehole becomes a coherent unitary body of liquid. That is to say, during the injection-phase of the pulse-cycle, the in-ground body of liquid surges outwards, away from the borehole, as a coherent unitary body. During the suckback portion of the recharge-phase of the cycle, if the proper conditions can be established, the same coherent unitary body of liquid surges back towards the borehole.
Such out-and-back movement of a coherent unitary body of liquid, in time with the pulses, is enormously effective in homogenizing the in-ground liquid, and indeed, sometimes, in homogenizing the ground itself. When the coherent body of liquid can be established, generally fingering can be reduced to the point that it is eliminated as a problem.
In some designs of pulsing-tool, suckback is inherent, i.e it happens automatically. However, there is usually a problem with the tools in which suckback is inherent, as will now be described.
A pulse-injection tool has a movable pulse-valve-member, which moves relative to a pulse-valve-housing to open and close the pulse-valve. The movement of the pulse-valve-member is activated by a pulse-valve-driver. The driver can be unitary with the member, or can be separate from the member. When the driver is separate from the member, they are connected by a pulse-valve-connector. The pulse-valve-connector permits the driver to travel, during an opening or closing movement of the pulse-valve, a further distance than the member, and the extra distance may be used to ensure that the pulse-valve opens rapidly—even violently rapidly.
Such rapidity of opening can be useful in generating an energetic porosity-wave, which propagates out into the ground formation. An energetic porosity-wave can extend the penetrative power of the pulsing action out into the formation, especially when the ground is approaching the super-saturation condition, and the coherent body of liquid which surges out-and-back, has been established.
However, designing the tool to produce an energetic porosity-wave can mean that the seals of the tool have a short service life, in that the seals have to cope with very rapid speeds of movement. One of the benefits of the present technology is that it enables the suckback components to be separated from the pulse-valve opening and closing components, and it thus enables both to be designed without having to be compromised by the needs of the other. By separating the suckback-chamber and associated components from the pulse-valve components, in the manner as described herein, the seals on the pulse-valve components need not be compromised by having to travel over a long distance, or by having to move very rapidly, or by having to sweep over sharp-edged ports and windows.
As mentioned, in some designs of pulse-injection tool, suckback is inherent. It is inherent when the movable pulse-valve-member, or the pulse-valve-driver connected thereto, carries on travelling in the pulse-valve closing direction, even after the pulse-valve is closed. Such movement creates an empty space, and, in order for suckback to occur, such space is arranged to be open to the ground formation. The said empty space created by the movement of the suckback-piston is open to the formation-space 32 outside the tool, and thus is open (via suitable perforations in the well-casing) to the formation. When such over-travel of the pulse-valve-driver (i.e travel beyond the pulse-valve-closed condition) is present, the tool can be arranged so that liquid is sucked back out of the formation, into the space, during the recovery or recharge-phase of the pulse-cycle, whereby the space serves as a suckback-chamber.
The present technology enables suckback to be present in those designs of pulse-injection tool in which there is no inherent suckback, or in which the inherent suckback produces only a small suckback volume. Also, the present technology provides an alternative to those designs in which, although suckback is procured, it is procured at the expense of e.g service-life problems, especially of the elastomeric seals.
In the present technology, in order to create the desired suckback-chamber, the designers preferably provide a suckback-piston and a complementary cylinder. The suckback-piston moves between a rest-position and a suckback-position. The designers' task is to engineer a manner of operating the suckback-piston whereby, during the recovery-stroke of the injection-cycle, the suckback-piston moves from its rest-position to its suckback-position, thus creating the said empty volume.
The designers should see to it that the suckback-piston moves to its suckback-position and then is returned to its rest-position before the start of the recovery-stroke of the next injection-cycle. Preferably, the suckback-piston should resume its rest-position before the start of the injection-stroke of the next cycle.
In the accompanying drawings:
a,1b,1c,1d show the same apparatus as
a shows the same apparatus as
The scope of the patent protection sought herein is defined by the accompanying claims, as submitted and amended, and not necessarily by particular features of the exemplary tools, as disclosed.
The tool shown in
There is a lost motion connection between the member 25 and the hammer-piston 29. In
a shows the locations of the pulse-valve components 25,29 when the pulse-valve 23 is closed. The valve-member 25 and the hammer-piston 29 are at the tops of their respective travels.
The hammer-piston 29 is acted upon by the difference in pressure between the accumulator-pressure in the accumulator-space 30 and the formation-pressure in the formation-space 32, i.e by the PDAF. The accumulator pressure is larger than the formation-pressure during cyclic operation, and so the PDAF acts to urge the hammer-piston 29 downwards.
The hammer-piston 29 is biassed in the upwards direction by a piston-spring 38. When the pulse-valve 23 is open, the PDAF is falling. When the PDAF drops down to its low-threshold level, the spring-force is now greater than the PDAF-force on the piston, whereby the piston rises, thereby closing the pulse-valve. The engineer can pre-determine the low-threshold level of the PDAF, at which the pulse-valve closes, by selecting a suitable magnitude of the force exerted by the spring, in conjunction with the areas of the piston that are exposed to the various pressures.
(The over-travel of the pulse-valve-driver, or hammer-piston 29, i.e its travel beyond the point at which the pulse-valve-member 25 engages the pulse-valve-seat in the housing, creates a space underneath the piston 29. This space is open to the formation-space 32, but closed to the accumulator space 30. Therefore, while the PDAF is low, liquid is sucked into the chamber, from the ground formation. Such flow of liquid back from the formation constitute suckback. However, the volume of liquid sucked back is tiny, in this case, because the over-travel of the piston 29 is tiny. The tiny travels of the piston 29 and of the pulse-valve-member 25 mean that the elastomeric seals thereon can be expected to have a reasonable service life. The present technology is concerned with creating much larger volumes of suckback, but without compromising those valve seals.)
In the example, the pulse-valve has been set to close at a low-threshold level of the PDAF of 100 psi. In
The pulse-valve 23 being now closed, in
The recharge-phase of the pulse-cycle is complete when the PDAF reaches its high-threshold level. The designers of the tool have set the high-threshold level of the PDAF at 500 psi. This is the level at which the force on the hammer-piston 29 due to the pulse-valve-biassing-spring 38 is balanced by the PDAF acting over the small area-AS enclosed by the seal 40 of the hammer-piston 29. In
The valve-member 25 is caught up by the rapid movement of the piston 29, and the pulse-valve slams open. The lost-motion connection between the pulse-valve-member 25 and the hammer-piston 29 means that the (heavy) piston 29 is already travelling at a high rate of speed at the moment the piston slams into the valve-member 25. The pulse-valve 23 therefore opens very rapidly indeed, thereby creating the energetic porosity wave.
During the injection-phase of the pulse-cycle, the pulse-valve 23 remains open. The charge-volume of liquid is injected out into the formation, until the PDAF once more falls to 100 psi. Then, the pulse-valve closes, and the cycle continues.
The operation of the suckback components of the tool of
In
A rod 169 is unitary with the hammer-piston 29. When the hammer-piston rose, and closed the pulse-valve 23, the rod 169 also rose. In the
But now, in
In
The designers have so arranged the dimensions of the components, and the strengths of the springs, that, in
In
In
The suckback-piston 161 moves upwards until the nose 174 of the piston enters the recess 176, and the piston abuts against the body of the tool, as shown in
In
The designers preferably should arrange for the suckback-piston 161 to remain in its
b,1c show what happens when the PDAF increases to 400 psi. In
As mentioned, it is arranged that the suckback-piston moves downwards when the PDAF reaches its suckback-equalization level of e.g 400 psi, which is the condition shown in
It is preferred that the suckback-piston be fully restored to its DOWN position (
In
In
The operation of the rod 169 in conjunction with the suckback-port 170 will now be considered in more detail.
It might be considered that the rod 169/port 170 provision is not required, and that the suckback-chamber 172 underneath the suckback-piston 161 could simply be connected to the formation-space 32 all the time. And in some applications, that arrangement might be adequate. However, in that case, it would be difficult for the designers to arrange for the suckback-piston not to rise, i.e to remain
At the time (
The designers also desire to have close control over the moment when the suckback-piston 161 descends. As mentioned, the designers should see to it that the suckback-piston 161 is fully descended before the pulse-valve opens (as shown in
It should be understood that, in some applications of the tool, in an actual well, the pressure differential available for driving the reverse suckback flow of liquid can be quite small. However, the suckback flow, in order to perform its useful function, does not need to be of large velocity nor of large volume; it is the fact that the flow is (substantially) reversed, at all, that gives rise to most of the advantageous effect. Often, the volume sucked back into the tool need not be more than a few liters, in order for the suckback effect to be significantly advantageous. The volume sucked back, per cycle, can be equated, at least theoretically-arithmetically, to the change in the volume of the suckback-chamber 172.
In the example, the provision of the nose 174 and recess 176 enables the designers to control the moment the suckback-piston starts to descend. If the nose-recess were not provided, the suckback-piston would simply be subjected to the PDAF over its full area, above and below, whereby the piston would descend as soon as the PDAF had risen (during the recovery-stroke) to a level at which the PDAF could overcome the suckback-spring 167. The nose/recess provision is a way of increasing the equalization level of the PDAF (at which the PDAF-force on the piston equals the spring-force on the piston) without resorting to a very powerful spring. The nose/recess provision also means that, once the piston has started to descend, it moves quickly (i.e it snaps back) to its DOWN (
The annular space around the recess 176 should be vented to the formation-space 32 outside the tool. Theoretically, it would be desirable for the suckback-spring 167 to exert a constant force—but of course the spring-force will be greater when the suckback-piston is
Generally, in order to secure a low spring-rate, the designers will have to allow for the suckback-spring 167 to be physically long, i.e long in the axial or vertical direction—perhaps e.g two meters long in some cases. Of course, in a borehole or well, it is often not difficult to provide for the suckback-spring to be long—since, in a down-hole apparatus, although diametral space is at a critical premium, vertical length is not.
In an alternative apparatus, there is provided, in place of (or in addition to) the suckback-spring 167, a suckback-accumulator of the gas-filled type. The designers arrange for the force provided by the suckback-accumulator to carry out the same or equivalent functions as the force provided by the suckback-spring, in that they arrange for:
The design shown in
The
In
In
The pulse-valve-piston 216 starts to move downwards when the PDAF has risen to its high-threshold. Now, as soon as the pulse-valve-piston 216 starts to move, the face-seal 220 cracks open, and suddenly the full area-AF of the valve-piston 216 is exposed to the accumulator-pressure. Therefore, the pulse-valve-piston 216 slams downwards, and the pulse-valve opens, and liquid from the accumulator-space 30 flows out into the formation through the now-opened pulse-valve port 210.
The end of the injection-phase of the pulse-cycle (and the start of the recharge-phase) occurs as the PDAF falls to its low-threshold level. At this low level of the PDAF, the PDAF acting on the pulse-valve-piston 216 is overcome by the pulse-valve-spring 223, and so the pulse-valve-piston 216 rises.
The low-threshold of the PDAF can be expressed by equating the upwards forces on the pulse-valve-piston with the downwards forces, as the PDAF at which:
downwards force=accumulator pressure×area-AF; and
upwards force=(formation-pressure×area-AF)+spring-force.
Equally, the high-threshold of the PDAF can be expressed as the PDAF at which:
downwards force=accumulator pressure×area-AS; and
upwards force=(formation-pressure×area-AF)+spring-force.
Thus, the designer can pre-determine the high-threshold and the low-threshold levels of the PDAF by suitably selecting the magnitudes of area-AF, of area-AS, and of the pulse-valve-spring 223.
The suckback operation in FIGS. 2,2a may be described as follows.
The pulse-valve-piston 216 carries a plug 225. The plug 225 carries a seal, by means of which, when the plug is inserted into a suckback-port 227 (
A suckback-equalization level of the PDAF is the PDAF level at which, the suckback-port 227 being open, the PDAF-force acting upwards on the suckback-piston 230 is balanced by the biassing-force of the suckback-spring 232 acting upwards on the suckback-piston 230.
The suckback-port 227 having just opened, and the PDAF being below its suckback-equalization level, the volume of the suckback-chamber 229 increases (i.e, in
In the tool of
The sealed plug 225, attached to the pulse-valve-piston 216, serves as a suckback-port-closer. During the injection-phase, the plug 225 closes the suckback-port 227, and thus seals off the suckback-chamber 229 from the formation-pressure. During the injection-phase, the underside of the suckback-piston 230 is acted upon by the accumulator-pressure (via the long pipe 234), while the suckback-chamber 229 above the suckback-piston 230 is at this time simply a closed chamber, which cannot change volume. Therefore, while the suckback-port 227 is closed, during the injection-phase, the suckback-piston 230 remains in its
Meanwhile, during the injection phase, the PDAF falls, until it drops below its suckback-equalization level and then drops down further to its low-threshold (100 psi in this case). When that happens, the pulse-valve-member 216 rises, closing the pulse-valve, and opening the suckback-port 227.
At the moment the suckback-port 227 becomes unplugged, the PDAF (being 100 psi) is below its equalization level (400 psi); therefore, at that moment, the suckback-piston 230 immediately moves downwards. In other words, the suckback-chamber 229 increases in volume. Therefore, the pulse-valve being now closed and the suckback-port 227 being now open, liquid from the formation is drawn into the suckback-chamber 229. In other words, suckback takes place. The volume of liquid sucked back in from the formation may be equated to the variable volumetric capacity of the suckback-chamber 229.
So, at the beginning of the recharge-phase of the pulse-cycle, the suckback-piston 230 moves smartly downwards, sucking liquid back from the formation into the suckback-chamber 229. Then, as the recharge-phase progresses, the PDAF increases. When the PDAF has risen up to its suckback-equalization level (400 psi in this case), the suckback-piston 230 starts to move back upwards. The contents of the suckback-chamber 229 are thus emptied back into the formation, and the suckback-chamber 229 shrinks to its minimum volume. After that, the PDAF continues to rise, and eventually reaches its high-threshold (500 psi in this case), whereupon the pulse-valve slams open, and a new cycle begins.
In
The suckback-piston 356 remains in the
In
In
The operation of the suckback sub-cycle may be further described generally as follows. Preferably, for proper suckback functioning, the suckback-equalization-level of the PDAF should be partway between the high-threshold and the low-threshold levels of the PDAF. For example, where the PDAF high-threshold (at which the pulse-valve opens) is 500 psi, and the PDAF low-threshold (at which the pulse-valve-closes) is 100 psi, the suckback-equalization-level of the PDAF is 400 psi. If the suckback-equalization-level were set to a level below the low-threshold, it would not be so simple to engineer the suckback-chamber to expand, and to suck in the liquid from the formation. If the suckback-equalization-level were set to a level above the high-threshold, it would not be so simple to engineer the suckback-chamber to empty, after the suckback itself.
Towards the end of the injection-phase of the pulse-cycle, the PDAF is falling, and is nearing its low-threshold level. The PDAF is now below its suckback-equalization-level, and so, at this point, the designer should ensure that the suckback-port is, and stays, closed; if the PDAF were allowed to go below its equalization-level with the suckback-port open, the biassing-spring would expand the suckback-chamber, and liquid would flow into and fill the suckback-chamber; therefore, the suckback-chamber would not be empty and ready to suck in liquid from the formation when the pulse-valve closed. The suckback-port should only be opened when the pulse-valve has closed.
The following conditions should be noted, as to the opening and closing of the suckback-port. The four conditions occur in the order stated, and repeat cyclically, i.e:
1. the pulse-valve is open, and the (falling) PDAF is above its suckback-equalization level;
2. the pulse-valve is open, and the (falling) PDAF is below its suckback-equalization level;
3. the pulse-valve is closed, and the (rising) PDAF is below its suckback-equalization level;
4. the pulse-valve is closed, and the (rising) PDAF is above its suckback-equalization level.
During conditions 1 and 4, if the suckback-port is open, the suckback-spring will draw liquid into the suckback-chamber, against the low PDAF. During conditions 2 and 3, if the suckback-port is open, the high PDAF will force liquid out of the suckback-chamber, against the suckback-spring.
During condition 1, the suckback-port (which connects the suckback-chamber to the formation) should remain open long enough to allow a suckback-volume of liquid from the formation to be sucked into the suckback-chamber.
During conditions 2 and 3, the suckback-port should remain open long enough for the liquid in the suckback-chamber to be emptied or discharged back into the formation. The suckback-port can be closed once the suckback sub-cycle has been completed, or the suckback-port can remain open throughout conditions 2 and 3.
During condition 4, the suckback-port should be closed, and should remain closed until the pulse-valve opens. If the suckback-port were to be opened during condition 4, liquid would be drawn into the suckback-chamber: this would not matter, provided the suckback-chamber is empty (i.e at its minimum volume) at the moment when the pulse-valve closes, so that suckback from the formation can occur at that moment.
In the examples, the suckback-port opens when the pulse-valve closes. Then, the pulse-valve remains open until triggered to close by the PDAF rising above the equalization-level of the PDAF.
One option that might be available to designers is to provide a solenoid or similar mechanism in the tool, and to open and close the suckback-port by means of electrical signals and electrical power supplied from the surface. An electrically-energized system would offer great flexibility as to the timing of the triggering of the opening and closing of the suckback-port. However, many designers try to avoid the need to supply electrical power and signals from the surface, down to the pulsing tool.
In terms of what mechanically self-actuating triggers might be available to the designers, to actuate the opening and closing of the suckback-port, the movement of the pulse-valve-member (or of the pulse-valve-member-driver) is a prime candidate—especially from the standpoint of simplicity of operation. The examples make it clear just how simple it is to use the open/close movements of the pulse-valve to close/open the suckback-port. However, that is not to rule out that other triggers are available, or could be provided. In the case of other triggers, the designers should see to it that the open/close triggers that activate the opening and closing of the suckback-port comply with the above considerations regarding the four conditions.
The pulse-injection tool includes a pulse-valve-member and a pulse-valve-driver, which are movable relative to a pulse-valve-housing in the direction to open and close the pulse-valve. The tool also includes a pulse-valve-motor, which provides the motive power needed to move the driver. The pulse-valve-member and the pulse-valve-driver are connected together by a pulse-valve-connector. When the pulse-valve-member and the pulse-valve-driver are operable only as a single unit, the pulse-valve-connector would then be the unity thereof.
When the member and the driver are separate components, and are movable relative to each other, the pulse-valve-connector connects the driver to the member. During travel of the driver in the direction either to close or to open the pulse-valve, the connector constrains the member, over at least a portion of that travel, to move in unison with the driver. Typically, the connector includes a lost-motion capability, in that the driver picks up the member, and the member is carried along with the driver, but over only a portion of the total travel of the driver.
The tool includes an operable pulse-valve-motor, which is effective, when operated, to move the pulse-valve-driver. In FIGS. 1,2,3, the motor is powered and controlled by hydraulic pressure-differentials, and by mechanical springs. In
Some of the preferred features will now be described, as to the structure of the pulse-injector tool that makes the tool suitable for use with the suckback facility as described herein.
Preferably, the tool is so arranged that, during operation, the tool being supplied constantly with pressurized fluid from the surface, the accumulator-pressure is always greater than the formation-pressure, whereby the PDAF is always a positive quantity.
Preferably, the tool is so structured that the pulse-valve is operable cyclically between a pulse-valve-open position and a pulse-valve-closed position. In the pulse-valve-open position, which defines an injection-phase of the cycle, fluid can flow out through the pulse-valve, out of the tool, and into the ground formation, whereby the PDAF is then falling. In the pulse-valve-closed position, which defines a recharge-phase of the cycle, the closed pulse-valve isolates the accumulator from the formation, whereby the PDAF is then rising.
Preferably, the tool is so structured that the pulse-valve closes, to end the injection-phase of the cycle and begin the recharge-phase, when the PDAF falls to a low threshold, whereupon the PDAF starts to rise, and is so structured that the pulse-valve opens, to end the recharge-phase and begin the injection-phase, when the PDAF rises to a high threshold, whereupon the PDAF starts to fall.
Preferably, the tool is so structured as to cycle automatically, upon being supplied with fluid at nominally constant pressure. (In fact, usually, the injection pressure, measured at the surface, will vary cyclically. But this variation is a result of the cyclic operations taking place below ground. The pulsing operation itself does not require the supply pressure of the fluid to be varied cyclically.) Preferably, the cyclic operation of the tool is energized by the on-going supply of pressurized fluid from the surface, and, apart from that, no other energy-transmitting connection is made, downhole, to the tool, during operation.
It is not essential that suckback must take place every pulse-cycle, in order to be useful. For example, if the engineers were to arrange for suckback to take place every other cycle, that might well be just as effective to procure the homogenization as described.
The skilled designers will understand that the drawings are merely diagrammatic—particularly in that many of the components cannot, as drawn, be assembled together. Of course, some of the components have to be made in separate pieces, and assembled together, in order to function in the manner as described. This is within the competence of the skilled designer of down-hole moving-parts tools. Also, the drawings are not to scale; in particular, many of the vertical dimensions have been shortened. (The tool can be put to use in e.g an angled, or even horizontal, borehole—and the “up” and “down”, etc, designations should be construed accordingly.)
The variable volume portion of the suckback-chamber, in a typical case, might be e.g ten liters. In order for the cyclic suckback volume to be large enough to be a worthwhile contribution to homogenizing the ground formation, the variable volume should be no less than about one liter. The suckback-biassing-spring should exert a reasonably constant force over the stroke length of the suckback-piston—in other words, the spring should have a low rate. Thus, the length of the suckback-spring, when compressed, preferably should be double the stroke length of the piston, or more.
The term “fluid” as used herein includes liquids, and includes liquids in which some gases may be entrapped or entrained. Typically, the liquids being injected will contain also some suspended solids, which may be (undesired) dirt or (desired) additives. Although use of the new technology for the injection of a gas, as such, is not ruled out of the patent protection sought herein, it is not suggested that the same injection-tool that has been engineered to work with a liquid could be simply utilized to work with a gas.
The designer should select the materials for use in the apparatus on the basis that they are suitably inert with respect to the substances likely to be encountered in the down-hole environment, over the intended service life of the apparatus.
Number | Date | Country | Kind |
---|---|---|---|
0817500.2 | Sep 2008 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2009/001333 | 9/24/2009 | WO | 00 | 3/22/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/034113 | 4/1/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5836393 | Johnson | Nov 1998 | A |
6241019 | Davidson et al. | Jun 2001 | B1 |
6405797 | Davidson et al. | Jun 2002 | B2 |
6851473 | Davidson | Feb 2005 | B2 |
8061421 | Samaroo et al. | Nov 2011 | B2 |
20050189108 | Davidson | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
2412675 | Oct 2005 | GB |
WO2007100352 | Sep 2007 | WO |
WO2008037069 | Apr 2008 | WO |
WO2009089622 | Jul 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20110259575 A1 | Oct 2011 | US |