The invention broadly relates to a valve or valves or passageways, and more specifically, relates to valves and passageways adapted to control the flow of fluids. More specifically still, the invention relates to an injection, sealing, valving and passageway system adapted to direct and control the flow of fluids through hollow drill rods, hollow rock bolts or hollow self drilling rock bolts.
The flow of fluids, typically water, or air, or cement grout or resin, is commonly pumped through hollow tubes, hollow drill rods, hollow rock bolts and hollow self drilling rock bolts in the mining and tunneling industries. Most commonly water or air is used to flush rock cuttings out of boreholes as they are being drilled by hollow drill rods. Also cement grout or resin is commonly pumped through the central hole in hollow injection rods to stabilise broken, fractured or weak rock or ground. In addition, cement grout or resin is also commonly pumped through hollow rock bolts or hollow self drilling rock bolts to anchor those rock bolts into rock or soil. An example of a hollow self drilling rock bolt with a drilling tip at one end is given in patent number PCT/AU91/00503.
The hollow drill rods or hollow rock bolts may be made from any suitable hollow bar including tubes, pipes or thick-walled hollow bars, and are typically made from steel but could be made from fibreglass or plastic or carbon fibre.
Where fluids are pumped through a hollow bar for any of the above applications, a sealing means is normally used between the hollow bar and the fluid pumping system. Typically, where drilling applications using drill rods are being used, the fluid pumping system is through the drilling machine using either water or air.
This sealing means can be as simple as a screw thread on the end of the hollow bar or hollow drill rod or hollow rock bolt which is screwed into a mating thread inside the drill chuck on the drilling machine. Alternatively this sealing means is typically an O ring either on the end of the hollow bar, or inside the drill chuck. The O ring prevents leakage of the fluids as they are being pumped through the hollow bar, and they are a simple, low cost and proven method of sealing fluids for this application.
In some applications two fluids are pumped through a hollow bar at the same time for drilling applications. Typically this may be water and air such that a fine “mist” is used for drilling to minimise the volume of water used. Alternatively, two fluids may be pumped through a hollow bar at different times, for example, water may be used for drilling cycle to flush rock cuttings out of the borehole, and then cement grout may be subsequently pumped through the same hollow bar to fill the borehole with cement grout and anchor the hollow bar into the borehole.
In the civil and tunneling industries this operation is typically undertaken by firstly screwing the end of a hollow bar or hollow drill rod or hollow rock bolt with a thread on the end of it into a drill chuck, and then rotating the bar during the drilling cycle. The rotational action of the drilling machine tightens the mating threads between the bar and the drill chuck and creates a seal for the fluids used for the drilling cycle. Once the drilling cycle is complete, the bar is unscrewed form the drill chuck and a screw fitting attached to a grout hose is typically screwed onto the end of the bar. This screw fitting is typically manually tightened up onto the end of the bar such that a fluid seal is created which then allows cement grout or resin or other chemical anchoring fluid to be pumped into and through the bar to fill the borehole. Once the borehole is full of the cement grout or other anchoring fluid, then the screw fitting is unscrewed from the bar and removed.
The use of screw threads or O rings are therefore the most common forms of sealing for pumping fluids through hollow bars, hollow drill rods or hollow rock bolts in the mining, civil and tunneling industries.
The screwing and unscrewing of screw threads is a cumbersome operation and where cement grout hoses and fittings are used, it is typically undertaken manually. This is a time consuming operation and is not suited to automation of the grouting process.
In addition, the use of either screw threads or O Rings for sealing of fluids being pumped through hollow bars is principally designed for sealing against leakage at the seal itself, and they are not designed to direct and control the flow of fluids either inside the drill chuck or inside the hollow bar.
In the particular case of self drilling rock bolts, water, or air, or water and air, known as the “drilling fluid” are typically pumped through the bolt to remove the rock cuttings from the drilling operation to drill a borehole. An example of a self drilling rock bolt is given in patent number PCT/AU2006/001775. A sealing device is used to prevent leakage of the drilling fluid between the drilling machine and the bolt. Once the borehole has been drilled, and all the rock cuttings have been removed from the borehole, pumping of the drilling fluid is then turned off. Then cement grout, or resin, or other chemical fluid, known as the anchoring fluid, is typically pumped through the bolt to fill the borehole and fully encapsulate the bolt in the borehole and once the anchoring fluid cures and hardens, it anchors and fixes the bolt in the borehole. Typically with current systems, the drilling fluid and the anchoring fluid are pumped into self drilling rock bolts through separate hoses and fittings which have to be separately attached and detached from the end of the self drilling rock bolt, and typically this is done manually.
Moreover, if a two part chemical resin is pumped into a hollow bar, or into a hollow bolt or into a hollow self drilling rock bolt, then the two part chemical resin normally consists of a hardenable component (known as a mastic component) and a hardening component (known as a catalyst component). Typically once the mastic component comes into contact with the catalyst component the resin will start to cure, and it may harden in less than 60 seconds, typically it will harden in less than 30 seconds. Clearly then the mastic component must be kept completely separate from the catalyst component, while these two components of the resin are being pumped through the drilling machine and through the drilling chuck of the drilling machine, otherwise it will cure and harden and clog the drilling chuck. In addition, if an injection nozzle is used in the drilling chuck to inject the two part resin into the hollow bolt, then the two parts of the chemical resin, the mastic component and the catalyst component, must also be kept separate immediately after or above the injection nozzle, otherwise premature curing can occur and cause blockages of this injection nozzle.
Furthermore if the pumping pressures within the mastic component and the catalyst component as they flow out of the injection nozzle are unequal, then it is possible to get backflow of either mastic or catalyst down the wrong passageway, and this can cause blockages within the injection nozzle. An injector for use with self drilling rock bolt which does not have a one way valving and passageway system as described this invention, is prone to blockages and an example of such an injector is given in patent number AU199959340 A1.
More particularly where an injection nozzle is used to pump one or more fluids into a hollow bar either simultaneously or sequentially, there is a considerable advantage in being able to use that one injection nozzle to pump one or more fluids into the hollow bar without the requirement to screw or unscrew different fittings onto the end of the bar to pump different fluids into the bar. However, the resin injection system as shown in patent number AU199959340 A1 is prone to blockages. The inventor has found that if the mastic part of a liquid resin and the catalyst part of a liquid resin are allowed to come together immediately at the end of an injector, then the end of the injector is likely to become clogged with resin that has cured and hardened. To prevent the injector becoming clogged with hardened resin it is necessary to keep the mastic part of the resin and the catalyst part of the resin completely separate as they leave the injector and force them to flow along their own separate passageways inside the end of the bolt. The mastic and catalyst then flow along their own separate passageways inside the bolt, and only come together and mix at some point further away from the end of the injector. In practice the distance between the end of the injector and the point where the mastic and catalyst come together and mix may be small and typically be between 5 mm and 50 mm but is not so limited.
Moreover, the inventor has further found that where two or more fluids are being pumped into a hollow bar either simultaneously or sequentially, it is often necessary to prevent back flow of one or more fluids in the wrong direction down a passageway used for another fluid, and or it is often necessary to prevent premature mixing of two or more fluids. Moreover, if two or more fluids are being pumped into a hollow bar simultaneously, the pumping pressures for each fluid may not be equal and this could cause back flow or flow through the wrong passageway. Therefore it is necessary to have a one way valving system that will prevent back flow of liquid resins along the wrong passageway, and typically this can be achieved by having separate one way valves along each passageway inside the bolt.
Furthermore, if separate passageways and one way valves are only used in the injector, clogging of the end of the injector by curing and hardening of two part liquid resins is still possible. For example patent number WO2006042530 shows an injection head with two separate passageways with two separate valves which then combine into a single passageway in a connecting piece which is then inserted into the end of a hollow bar or bolt. However this patent indicates that this single passageway in the connecting piece has to be flushed out after use, otherwise the two part liquid resins will cure and harden in the passageway entering the bolt making the injector unusable for subsequent bolts.
There is therefore a considerable advantage in having an injection, sealing, passageway and valving system for used with hollow self drilling rock bolts that enables:
Even further, there is a considerable advantage in being able to maintain a hydraulic seal or seals between a stationary injector with one or more passageways and a rotating bolt in which the injector is inserted into or is coupled to.
The present invention relates to an injection, sealing, passageway and valving means which overcomes the problems of existing systems described above and allows one or more fluids to be simultaneously or sequentially pumped into and through a hollow bar, a hollow drill rod or hollow rock bolt, without back flow or contamination and enabling the resin in the bolt to cure and harden without clogging the injector, and also leaving the injector completely clean after it is removed from the bolt and be ready to install the next bolt.
There is a need for improved mechanism or device to overcome the above problems of manually changing over separate hoses and fittings to pump different fluids into hollow bars, and to control and direct the flow of those fluids inside the hollow bar. Moreover there is a need to have separate passageways with optional one way valves to control the flow of chemical resins to prevent back flow, flow along the wrong passageway and avoid premature mixing and curing of chemical resins, grouts or other anchoring fluids.
The present inventor has developed an injection, sealing, valving and passageway system that can be installed substantially in the end of a hollow bar or a hollow drill rod or a hollow rock bolt or hollow self drilling rock bolt and or partially within an external injector that overcomes these problems and enables one or more fluids to be pumped into and through a hollow bar or hollow drill rod or hollow bolt or hollow self drilling rock bolt without premature mixing or back flow or leakage such that these bars, rods or bolts can be installed with a minimum of manual handling and without blockage of the injector or the dill chuck.
Furthermore the injection, sealing, valving and passageway system enables water to be pumped through a hollow self drilling rock bolt during the drilling operation while the bolt is being rotated, and then enables resin or cement grout to be pumped through the bolt during the grouting cycle, without any change to the sealing or valving system. The injection, sealing, valving and passageway system can not only function and hydraulically seal while a hollow self drilling rock bolt is being rotated at drilling speeds of typically 500 rpm, but it can also hydraulically seal and separate two part resins, chemicals or grouts during the grouting cycle. This has the considerable advantage that there is no requirement to change over fittings on the end of the bolt between the drilling cycle and the grouting cycle as occurs with current practice.
The present invention provides an injection, sealing, valving and passageway system (the “valving system”) for use with hollow elongate members used in mining, civil engineering, tunneling and construction including use with self drilling rock bolts, where the valving system comprises a plurality of passageways whereby at least one of the passageways has at least one flow valve at some position along it. The flow valve is typically a one way flow valve.
The passageways can enable fluids to flow along them without cross contamination with the fluids in another passageway and where at least one of the passageways can accommodate the flow of one or more fluids along them either sequentially or simultaneously. Moreover, the passageways are typically substantially contained within a hollow bar or bolt and are also typically partially contained within an external injector that hydraulically seals with the hollow bar or bolt.
The passageways in the bar or bolt are then hydraulically connected and hydraulically sealed to the passageways in the injector both when there is no relative rotation between the bar and the injector and when there is relative rotation between the bar and the injector during the drilling cycle.
The side boundaries of the passageways could be formed by any means and are typically formed by one or more separate items or components. The inlet and outlet ends of the passageways are typically open, but also typically could have one or more one-way valves positioned anywhere along the length of the passageways. The passageways can be of unequal length and of unequal cross sectional area.
The passageways in an injector extend beyond the end of the injector such that fluids flowing along the separate passageways in the injector then subsequently flow along separate passageways in the bar or bolt and do not come together until after the end of the injector such that those fluids cannot mix at the end of the injector and harden and block the openings at the end of the injector.
The passageways within the hollow elongate member typically have a seal or seals to provide a hydraulic seal with the passageways contained within an external injection nozzle or nozzles.
Preferably the passageways have one or more one-way valve or valves that allow fluids to flow in one direction along the passageways but prevent flow of fluids in the opposite direction along the passageways.
Preferably the passageways can accommodate the flow of single or multiple fluids either sequentially or simultaneously.
Preferably, in practice, the passageway and valving assembly inside the bolt or bar (the “valving assembly”) is made from plastic and substantially consists of a plastic cylindrical shaped member with at least one internal passageway and a one-way valve, and at least one external passageway with another one-way valve such that one fluid can be pumped through the internal passageway, and another fluid can be pumped through the external passageway.
Preferably as the self drilling rock bolt is inserted into a drilling machine, the valving system which is substantially contained inside the self drilling rock bolt forms a mating and sealing fit with an injection nozzle inside the drilling machine such that a hydraulic seal or hydraulic seals are formed between the passageways in the injection nozzle and the passageways in the bolt. The hydraulically seal or seals can operate when the bolt is being rotated during the drilling cycle, or when the bolt is stationary during the grouting cycle. Water or air or resin or cement grout or other fluids can then be pumped into the self drilling rock bolt through the injection nozzle and into the correct passageway through the valving system without back flow or flow through the wrong passageway thus avoiding premature mixing of fluids or other problems.
Preferably part of the plastic valving system can substantially wipe the injection nozzle clean when the injection nozzle is withdrawn from the bolt.
Preferably the valving system is only used to install one self drilling rock bolt but is not so limited.
Preferably the valving system has two separate passageways but is not so limited and could have three or more separate passageways,
It is particularly preferred that the valving assembly substantially consists of one or more plastic cylinders with one or more circular plastic skirt or flap valves which close and hydraulically seal against a circular section of an injector. These skirt or flap valves open with fluid flow in one direction and close with any fluid flow in the opposite direction.
It is particularly preferred that the valving assembly in the bar or bolt can hydraulically seal against a stationary injector even if the valving assembly in the bar or bolt is being rotated.
It is particularly preferred that the valves in at least one passageway can allow multiple fluids to sequentially flow along it such that this passageway can be flushed out with a flushing fluid after resin or grout injection.
Persons skilled in the art would appreciate that different embodiments of the invention could be used with hollow self drilling rock bolts, hollow rock bolts, hollow injection tubes or any other device used for the flow of one or more fluids.
Throughout this specification, unless the context requires otherwise, the word “comprise”, or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps.
Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed in Australia before the priority date of each claim of this specification.
In order that the present invention may be more clearly understood, preferred embodiments will be described with reference to the following drawings and examples.
Where the specification refers to a “bar” or to a “hollow bar” or to a “hollow drill rod” or to a “hollow rock bolt” or to a “hollow self drilling rock bolt” or to a “hollow elongate member” or to a “hollow injection tube” or to a “tube” or to a “pipe” it is to be understood that the invention includes all such variations and modifications of the above including any long hollow elongate member including self drilling rock bolts.
Where the specification refers to an “injection nozzle” or to a “nozzle” or to “nozzles” or to an “injector” or to an “external injector” it is to be understood that the invention includes all such variations and modifications of one or more injection nozzles that may have one or more passageways which can separate the flow of one or more fluids.
Where the specification refers to an “injection sleeve” or to a “sleeve” it is to be understood that the invention includes all such variations and modifications of an injection sleeve that can accommodate and seal with an external injector and the injection sleeve may contain one or more passageways and one or more one way flow valves and one or more seals.
Where the specification refers to an “seal” or to “seals” or to a “sealing device” it is to be understood that the invention includes all such variations and modifications of a seal including threads, O rings, flaps, valves, or any other device that can hydraulically seal a fluid against leakage or flow in an undesired direction.
Where the specification refers to a “valve” or to “valves” or to “one way valves” or to “one way flow valves” it is to be understood that the invention includes all such variations and modifications of a valve including one way flow valves or any device that can control or direct the flow of fluids.
Where the specification refers to a “flap valve” or to a “skirt valve” it is to be understood that the invention includes all such variations and modifications of a one way valve that opens by the flow of fluid in one direction and closes by the flow of fluid in the opposite direction.
Where the specification refers to a “passageway” or to “passageways” it is to be understood that the invention includes all such variations and modifications of the above, including tubes, pipes, holes of any shape, any assemblage of components that could form a through hole or through passageway, and any other member or assemblage of members that could contain fluids and enable fluids to flow through it. The passageways may be formed both during drilling rotation and when there is no drilling rotation.
Where the specification refers to a “valving system” or to a “valving and passageway system” it is to be understood that the invention includes an injection, sealing, valving and passageway system which could be formed by multiple parts and all such variations and modifications of the above,
Where the specification refers to a “valving assembly” or to a “valving and passageway assembly” it is to be understood that the invention includes a valving and passageway assembly that includes at least one passageway and includes at least one one way valve and is typically formed by an assembly of plastic tubes and one way valves but includes all such variations and modifications of the above and could be formed in any way.
For consistency, in the Figures, item numbers refer to the same feature or design component.
The preferred embodiments shown in
One embodiment of the injection, sealing, valving and passageway system (the “valving system”) shown in
In operation the injection nozzle 2 is fitted over or into the end of the hollow bar 1 such that at least one passageway 7 in the injection nozzle 2 hydraulically connects with a passageway 10 in the valve and passageway assembly 4. Additional passageways 8 in the injection nozzle 2 also hydraulically connect with passageways 11 inside or around the valve and passageway assembly 4 inside the hollow bar 1.
In preferred embodiments, the present invention does not require the use of separate hoses or connectors or other grouting systems and hence removes considerable manual labour as well as reducing injuries to operators. The present invention makes it possible to automatically drill and resin inject or cement grout self drilling rock bolts using automatic or semi-automatic drilling machines.
In preferred embodiments, the present invention enables two or more component chemical resins or grouts to be injected into and through hollow bars or hollow bolts or hollow self drilling rock bolts without premature mixing or back flow, and hence prevents unwanted blockages occurring.
In a particularly preferred embodiment, at least one part of the anchoring fluid is water soluble and can flow into one passageway through a one way valve, and flushing water can then be pumped into the same passageway through a separate one way valve such that the water soluble anchoring fluid can be flushed away with water.
In a preferred embodiment, the valve and passageway assembly and the one way valves used in the valve and passageway assembly are made from plastic, but could be made from any suitable material. The valve and passageway assembly typically comprises two or more substantially tubular components which are assembled together.
In a preferred embodiment, some of the one way valves are flap valves or skirt valves. These flap or skirt valves are opened and closed by the flow of the fluid, and seal against a circular injector or a circular bar.
In a particularly preferred embodiment, there is at least one central circular bar or circular tube that enables at least one flap or skirt valve to close against the external surface of this bar or tube.
In a particularly preferred embodiment, the skirt valves and seals and injector are all designed such that the injector can be partially withdrawn from the bar and still hydraulically seal against the bar and valve assembly.
In a particularly preferred embodiment, part or all of the passageways are contained within a hollow injection sleeve which is threadably attached to the hollow bar and which can be removed from the hollow bar by unscrewing it.
It should be noted that the present invention enables water or air or water and air to be pumped through hollow bars or hollow bolts or hollow self drilling rock bolts with either left hand or right hand drilling rotation. The present invention then also enables two or more component chemical resins or grouts to be injected into and through hollow bars or hollow bolts or hollow self drilling rock bolts without removal of the bar or bolt from the drilling chuck and without back flow of fluids along the wrong passageway. The invention further enables water soluble chemical resin or grout to be flushed away from the leading end of the injector and the end of the bar or bolt by removing the injector from the bar or bolt and turning on water flow as the injector is removed. The present invention even further enables the circular tube and bar sections of the injector to be wiped clean by the skirt valves and by the lip seal and by the O rings as the injector is removed from the bar or bolt. The present invention even further enables the valving assembly to be retained inside the injection sleeve or bar by the O ring seals.
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
Number | Date | Country | Kind |
---|---|---|---|
2008904851 | Sep 2008 | AU | national |
2009202836 | Jul 2009 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2009/001239 | 9/18/2009 | WO | 00 | 3/18/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/031132 | 3/25/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3994138 | Herbst | Nov 1976 | A |
4302132 | Ogawa et al. | Nov 1981 | A |
5622454 | Ashmore et al. | Apr 1997 | A |
5653557 | Gruber | Aug 1997 | A |
5997219 | Krzysztalowicz et al. | Dec 1999 | A |
6793445 | Charlton et al. | Sep 2004 | B1 |
20050077041 | Gessay et al. | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
199959340 | May 2000 | AU |
102007008966 | Sep 2007 | DE |
WO 9208040 | May 1992 | WO |
WO 2006042530 | Apr 2006 | WO |
WO 2007059580 | May 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20110168398 A1 | Jul 2011 | US |