The present invention relates to an improved injection syringe and in particular to an injection syringe that includes a pressure indicator and is used for injecting live cells and/or non-cell containing materials under controlled pressure into sensitive target tissues.
In several medical applications, injection syringes are used for injecting live cells, stem cells, blood, other biologics, or polymers into the bloodstream of a patient. Many of the injected cells are destroyed during the injection due to shear stresses and/or high injection pressure. Also, when the cells or non-cell containing materials are injected into an organ or other sensitive tissues, such as heart muscle, or liver, among others, a vigorous injection of any agents, particularly a viscous material like biopolymers, gels, and others, could damage the target tissue. In these applications it is critical to be able to control the pressure that is applied onto the plunger in order to avoid destroying the live cells or target tissues due to shear stresses and/or high pressure. It would also be desirable to have an indicator that indicates the level of the applied pressure on the live cells during the injection.
Furthermore, in many conventional syringes there is a dead space formed between the syringe hub and the tip of the needle and the material to be injected remains caught in this dead space and is not fully emptied. When the syringe is attached to a catheter or tube, the dead space increases. In some conventional syringes this dead space can be as high as 84 microliters. It would be desirable to have a syringe and an injection mechanism that reduces the dead space between the syringe hub and the needle and ensures that all injectate material is injected and flushed out of the syringe.
Furthermore, for drainage applications and blood drawing applications, it would be desirable to be able to sustain a negative pressure within the syringe without the risk of disengagement.
An improved injection syringe includes a piezo-chromic pressure indicator that changes color to indicate increased pressure on the injectate and target tissues.
In general, in one aspect, the invention features an injection syringe device including a tubular barrel, a plunger, and a piezo-chromic pressure indicator. The plunger has a distal tip and is designed to fit tightly and to reciprocate within the tubular barrel. Pulling the plunger out of the tubular barrel draws a liquid or a gas inside the tubular barrel in a space between the distal tip and a distal end of the tubular barrel and pushing the plunger into the tubular barrel expels the liquid or gas from the space. The piezo-chromic pressure indicator changes color to indicate pressure applied on the liquid or gas being expelled and/or target tissue being injected with the liquid or gas.
Implementations of this aspect of the invention may include one or more of the following features. The device further includes a syringe hub attached to the distal end of the tubular barrel and a needle mounted onto the syringe hub. The device further includes a tube or a nozzle attached to the distal end of the tubular barrel. The liquid may be one of live cells, stem cells, blood, biologics, drugs, polymers, radiocontrast agent containing liquids, or combinations thereof. The distal tip of the plunger comprises the piezo-chromic pressure indicator and applying pressure onto a proximal end of the plunger causes the distal tip to change color thus indicating a measure of the applied pressure. The distal tip comprises an elastomeric compound and a piezo-chromic dye that is mixed into the elastomeric compound. The distal tip comprises an elastomeric compound that is coated with a piezo-chromic dye. The plunger comprises an elastomeric compound and a piezo-chromic dye that is mixed into the elastomeric compound. The elastomeric compound may be one of fluoropolymers, neoprene, nitrile, butyl, silicone, fluorocarbon, or tetrafluoroethylene-propylene. The piezo-chromic dye provides reversible or irreversible color changes under pressure and the color changes comprise one of from one distinct color to another distinct color, or from colorless to a distinct color, or from a distinct color to colorless. The piezo-chromic dye changes color from an original color to a new color at a defined applied pressure intensity and recovers the original color when the defined applied pressure intensity is removed. The piezo-chromic dye changes color from an original color to a new color at a first defined applied pressure intensity and recovers the original color at a second defined applied pressure intensity. The piezo-chromic dye changes color from an original color to a new color at a defined applied pressure intensity and the new color remains unchanged when the defined applied pressure intensity is removed. The piezo-chromic dye comprises one of triaryl imidazole dimer of bis-2,4,5-triaryl imidazole, bis-tetraaryl pyrrole, bianthrones, xanthylidene anthrone, dixanthylene, helianthrone, or mesonaphthobianthrone. The distal tip comprises a leading ring, a trailing ring and a main body between the leading ring and the trailing ring and the main body comprises a smaller diameter than the leading ring and the trailing ring. A first liquid is accumulated in a first space between the main body, the leading ring and the trailing ring and the tubular barrel, and a second liquid is accumulated in a second space between the leading ring and the distal end of the tubular barrel. The plunger further comprises fins extending sidewise from opposite sides of an outer surface of the plunger. The fins are inclined away from the distal tip of the plunger and wherein the tubular barrel further comprises a protrusion element extending horizontally from an inner surface or outer surface of a proximal end of the tubular barrel, and wherein the protrusion element is dimensioned to interfere with the fins and to prevent backward or forward motion of the plunger.
In general, in one aspect, the invention features a method for injecting a liquid or a gas into a target including the following: Providing an injection syringe comprising a tubular barrel and a plunger. The plunger comprises a distal tip and is designed to fit tightly and to reciprocate within the tubular barrel. Next, pulling the plunger out of the tubular barrel to draw a liquid or a gas inside the tubular barrel in a space between the distal tip and a distal end of the tubular barrel. Next, pushing the plunger into the tubular barrel to expel the liquid or gas from said space and into a target. A piezo-chromic pressure indicator changes color to indicate pressure applied on the liquid or gas being expelled and/or target being injected with said liquid or gas. The distal tip of the plunger comprises the piezo-chromic pressure indicator. Applying pressure onto a proximal end of the plunger causes the distal tip to change color thus indicating a measure of the applied pressure.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and description below. Other features, objects, and advantages of the invention will be apparent from the following description of the preferred embodiments, the drawings and from the claims.
Referring to
Referring to
Referring to
Referring to
Other embodiments include one or more of the following features. The plunger 102 is rotated by some degrees other than 90° degrees, such as 30°, 40°, 60° degrees, among others, in order to disengage or engage the fins. The entire plunger is made of piezochromic materials that change color as a function of the applied pressure. The plunger 102 is moved forward or backward via a spiral rotational motion. The spiral rotational movement prevents a speedy injection or aspiration in both the forward and the backward directions. The plunger 102 has a spiral carving and at the proximal portion of the barrel 104 there is a protrusion element on one or both inner sides or outer sides. This protrusion element interfaces with the spiral carving in the plunger 102 and this arrangement controls the forward or backward plunger movement.
Several embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
This application claims the benefit of U.S. provisional application Ser. No. 62/472,632 filed Mar. 17, 2017 and entitled “IMPROVED INJECTION SYRINGE”, the contents of which are expressly incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62472632 | Mar 2017 | US |