This disclosure generally relates to a system and method for injecting particles into a flow region in connection with, for example, excavating a formation. The formation may be excavated in order to, for example, form a wellbore for the purpose of oil and gas recovery, construct a tunnel, or form other excavations in which the formation is cut, milled, pulverized, scraped, sheared, indented, and/or fractured, hereinafter referred to collectively as cutting.
a is a perspective view of an embodiment of a selector valve assembly.
b is an overhead view of the selector valve assembly of
c is a frontal view of the selector valve assembly of
a-13h depict, in frontal and perspective views, an operational sequence of an embodiment of a selector valve assembly.
In the drawings and description that follows, like parts are marked throughout the specification and drawings with the same reference numerals, respectively. The drawings are not necessarily to scale. Certain features of the disclosure may be shown exaggerated in scale or in somewhat schematic form and some details of conventional elements may not be shown in the interest of clarity and conciseness. The present disclosure is susceptible to embodiments of different forms. Specific embodiments are described in detail and are shown in the drawings, with the understanding that the present disclosure is to be considered an exemplification of the principles of the disclosure, and is not intended to limit the disclosure to that illustrated and described herein. It is to be fully recognized that the different teachings of the embodiments discussed below may be employed separately or in any suitable combination to produce desired results. The various characteristics mentioned above, as well as other features and characteristics described in more detail below, will be readily apparent to those skilled in the art upon reading the following detailed description of the embodiments, and by referring to the accompanying drawings. This application claims priority to and the benefit of co-pending U.S. Provisional Application Ser. No. 60/959,207, filed Jul. 12, 2007, the full disclosure of which is hereby incorporated by reference herein.
In another exemplary embodiment, the present system may be used to inject any solid particulate material into a wellbore. Exemplary particles may be magnetic or non-magnetic solid particles. Exemplary uses of the of the present system include, but are not limited to, casing exits, preventing seepage loss, and fracturing a formation.
To excavate the wellbore 70, the swivel 28, the swivel quill 26, the kelly 50, the pipe string 55, and a portion of the drill bit 60, if used, may each include an interior passage that allows circulation fluid to circulate through each of the aforementioned components. The circulation fluid may be withdrawn from a tank 6, pumped by a pump 2, through a through medium pressure capacity line 8, through a medium pressure capacity flexible hose 42, through a gooseneck 36, through the swivel 28, through the swivel quill 26, through the kelly 50, through the pipe string 55, and through the bit 60.
The excavation system 1 further comprises at least one nozzle 64 on the lower 55B of the pipe string 55 for accelerating at least one solid material impactor 100 as they exit the pipe string 100. The nozzle 64 is designed to accommodate the impactors 100, such as an especially hardened nozzle, a shaped nozzle, or an “impactor” nozzle, which may be particularly adapted to a particular application. The nozzle 64 may be a type that is known and commonly available. The nozzle 64 may further be selected to accommodate the impactors 100 in a selected size range or of a selected material composition. Nozzle size, type, material, and quantity may be a function of the formation being cut, fluid properties, impactor properties, and/or desired hydraulic energy expenditure at the nozzle 64. If a drill bit 60 is used, the nozzle or nozzles 64 may be located in the drill bit 60.
The nozzle 64 may alternatively be a conventional dual-discharge nozzle. Such dual discharge nozzles may generate: (1) a radially outer circulation fluid jet substantially encircling a jet axis, and/or (2) an axial circulation fluid jet substantially aligned with and coaxial with the jet axis, with the dual discharge nozzle directing a majority by weight of the plurality of solid material impactors into the axial circulation fluid jet. A dual discharge nozzle 64 may separate a first portion of the circulation fluid flowing through the nozzle 64 into a first circulation fluid stream having a first circulation fluid exit nozzle velocity, and a second portion of the circulation fluid flowing through the nozzle 64 into a second circulation fluid stream having a second circulation fluid exit nozzle velocity lower than the first circulation fluid exit nozzle velocity. The plurality of solid material impactors 100 may be directed into the first circulation fluid stream such that a velocity of the plurality of solid material impactors 100 while exiting the nozzle 64 is substantially greater than a velocity of the circulation fluid while passing through a nominal diameter flow path in the lower end 55B of the pipe string 55, to accelerate the solid material impactors 100.
Each of the individual impactors 100 is structurally independent from the other impactors. For brevity, the plurality of solid material impactors 100 may be interchangeably referred to as simply the impactors 100. The plurality of solid material impactors 100 may be substantially rounded and have either a substantially non-uniform outer diameter or a substantially uniform outer diameter. The solid material impactors 100 may be substantially spherically shaped, non-hollow, formed of rigid metallic material, and having high compressive strength and crush resistance, such as steel shot, ceramics, depleted uranium, and multiple component materials. Although the solid material impactors 100 may be substantially a non-hollow sphere, alternative embodiments may provide for other types of solid material impactors, which may include impactors 100 with a hollow interior. The impactors may be magnetic or non-magnetic. The impactors may be substantially rigid and may possess relatively high compressive strength and resistance to crushing or deformation as compared to physical properties or rock properties of a particular formation or group of formations being penetrated by the wellbore 70.
The impactors may be of a substantially uniform mass, grading, or size. The solid material impactors 100 may have any suitable density for use in the excavation system 1. For example, the solid material impactors 100 may have an average density of at least 470 pounds per cubic foot.
Alternatively, the solid material impactors 100 may include other metallic materials, including tungsten carbide, copper, iron, or various combinations or alloys of these and other metallic compounds. The impactors 100 may also be composed of non-metallic materials, such as ceramics, or other man-made or substantially naturally occurring non-metallic materials. Also, the impactors 100 may be crystalline shaped, angular shaped, sub-angular shaped, selectively shaped, such as like a torpedo, dart, rectangular, or otherwise generally non-spherically shaped.
The impactors 100 may be selectively introduced into a fluid circulation system, such as illustrated in
Introducing the impactors 100 into the circulation fluid may be accomplished by any of several known techniques. For example, the impactors 100 may be provided in an impactor storage tank 94 near the rig 5 or in a storage bin 82. A screw elevator 14 may then transfer a portion of the impactors at a selected rate from the storage tank 94, into a slurrification tank 98. A pump 10, such as a progressive cavity pump may transfer a selected portion of the circulation fluid from a mud tank 6, into the slurrification tank 98 to be mixed with the impactors 100 in the tank 98 to form an impactor concentrated slurry. An impactor introducer 96 may be included to pump or introduce a plurality of solid material impactors 100 into the circulation fluid before circulating a plurality of impactors 100 and the circulation fluid to the nozzle 64. The impactor introducer 96 may be a progressive cavity pump capable of pumping the impactor concentrated slurry at a selected rate and pressure through a slurry line 88, through a slurry hose 38, through an impactor slurry injector head 34, and through an injector port 30 located on the gooseneck 36, which may be located atop the swivel 28. The swivel 36, including the through bore for conducting circulation fluid therein, may be substantially supported on the feed, or upper, end of the pipe string 55 for conducting circulation fluid from the gooseneck 36 into the latter end 55a. The upper end 55A of the pipe string 55 may also include the kelly 50 to connect the pipe 56 with the swivel quill 26 and/or the swivel 28. The circulation fluid may also be provided with rheological properties sufficient to adequately transport and/or suspend the plurality of solid material impactors 100 within the circulation fluid.
The solid material impactors 100 may also be introduced into the circulation fluid by withdrawing the plurality of solid material impactors 100 from a low pressure impactor source 98 into a high velocity stream of circulation fluid, such as by venturi effect. For example, when introducing impactors 100 into the circulation fluid, the rate of circulation fluid pumped by the mud pump 2 may be reduced to a rate lower than the mud pump 2 is capable of efficiently pumping. In such event, a lower volume mud pump 4 may pump the circulation fluid through a medium pressure capacity line 24 and through the medium pressure capacity flexible hose 40.
The circulation fluid may be circulated from the fluid pump 2 and/or 4, such as a positive displacement type fluid pump, through one or more fluid conduits 8, 24, 40, 42, into the pipe string 55. The circulation fluid may then be circulated through the pipe string 55 and through the nozzle 64. The circulation fluid may be pumped at a selected circulation rate and/or a selected pump pressure to achieve a desired impactor and/or fluid energy at the nozzle 64.
The pump 4 may also serve as a supply pump to drive the introduction of the impactors 100 entrained within an impactor slurry, into the high pressure circulation fluid stream pumped by mud pumps 2 and 4. Pump 4 may pump a percentage of the total rate of fluid being pumped by both pumps 2 and 4, such that the circulation fluid pumped by pump 4 may create a venturi effect and/or vortex within the injector head 34 that inducts the impactor slurry being conducted through the line 42, through the injector head 34, and then into the high pressure circulation fluid stream.
From the swivel 28, the slurry of circulation fluid and impactors may circulate through the interior passage in the pipe string 55 and through the nozzle 64. As described above, the nozzle 64 may alternatively be at least partially located in the drill bit 60. Each nozzle 64 may include a reduced inner diameter as compared to an inner diameter of the interior passage in the pipe string 55 immediately above the nozzle 64. Thereby, each nozzle 64 may accelerate the velocity of the slurry as the slurry passes through the nozzle 64. The nozzle 64 may also direct the slurry into engagement with a selected portion of the bottom surface 66 of wellbore 70. The nozzle 64 may also be rotated relative to the formation 52 depending on the excavation parameters. To rotate the nozzle 64, the entire pipe string 55 may be rotated or only the nozzle 64 on the end of the pipe string 55 may be rotated while the pipe string 55 is not rotated. Rotating the nozzle 64 may also include oscillating the nozzle 64 rotationally back and forth as well as vertically, and may further include rotating the nozzle 64 in discrete increments. The nozzle 64 may also be maintained rotationally substantially stationary.
The circulation fluid may be substantially continuously circulated during excavation operations to circulate at least some of the plurality of solid material impactors 100 and the formation cuttings away from the nozzle 64. The impactors 100 and fluid circulated away from the nozzle 64 may be circulated substantially back to the excavation rig 5, or circulated to a substantially intermediate position between the excavation rig 5 and the nozzle 64.
If the drill bit 60 is used, the drill bit 60 may be rotated relative to the formation 52 and engaged therewith by an axial force (WOB) acting at least partially along the wellbore axis 75 near the drill bit 60. The bit 60 may also comprise a plurality of bit cones 62, which also may rotate relative to the bit 60 to cause bit teeth secured to a respective cone to engage the formation 52, which may generate formation cuttings substantially by crushing, cutting, or pulverizing a portion of the formation 52. The bit 60 may also be comprised of a fixed cutting structure that may be substantially continuously engaged with the formation 52 and create cuttings primarily by shearing and/or axial force concentration to fail the formation, or create cuttings from the formation 52. To rotate the bit 60, the entire pipe string 55 may be rotated or only the bit 60 on the end of the pipe string 55 may be rotated while the pipe string 55 is not rotated. Rotating the drill bit 60 may also include oscillating the drill bit 60 rotationally back and forth as well as vertically, and may further include rotating the drill bit 60 in discrete increments.
Also alternatively, the excavation system 1 may comprise a pump, such as a centrifugal pump, having a resilient lining that is compatible for pumping a solid-material laden slurry. The pump may pressurize the slurry to a pressure greater than the selected mud pump pressure to pump the plurality of solid material impactors 100 into the circulation fluid. The impactors 100 may be introduced through an impactor injection port, such as port 30. Other alternative embodiments for the system 1 may include an impactor injector for introducing the plurality of solid material impactors 100 into the circulation fluid.
As the slurry is pumped through the pipe string 55 and out the nozzles 64, the impactors 100 may engage the formation with sufficient energy to enhance the rate of formation removal or penetration (ROP). The removed portions of the formation may be circulated from within the wellbore 70 near the nozzle 64, and carried suspended in the fluid with at least a portion of the impactors 100, through a wellbore annulus between the OD of the pipe string 55 and the ID of the wellbore 70.
At the excavation ring 5, the returning slurry of circulation fluid, formation fluids (if any), cuttings, and impactors 100 may be diverted at a nipple 76, which may be positioned on a BOP stack 74. The returning slurry may flow from the nipple 76, into a return flow line 15, which maybe comprised of tubes 48, 45, 16, 12 and flanges 46, 47. The return line 15 may include an impactor reclamation tube assembly 44, as illustrated in
The reclamation tube assembly 44 may operate by rotating tube 45 relative to tube 16. An electric motor assembly 22 may rotate tube 44. The reclamation tube assembly 44 comprises an enlarged tubular 45 section to reduce the return flow slurry velocity and allow the slurry to drop below a terminal velocity of the impactors 100, such that the impactors 100 can no longer be suspended in the circulation fluid and may gravitate to a bottom portion of the tube 45. This separation function may be enhanced by placement of magnets near and along a lower side of the tube 45. The impactors 100 and some of the larger or heavier cuttings may be discharged through discharge port 20. The separated and discharged impactors 100 and solids discharged through discharge port 20 may be gravitationally diverted into a vibrating classifier 84 or may be pumped into the classifier 84. A pump (not shown) capable of handling impactors and solids, such as a progressive cavity pump may be situated in communication with the flow line discharge port 20 to conduct the separated impactors 100 selectively into the vibrating separator 84 or elsewhere in the circulation fluid circulation system.
The excavation system 1 creates a mass-velocity relationship in a plurality of the solid material impactors 100, such that an impactor 100 may have sufficient energy to structurally alter the formation 52 in a zone of a point of impact. The mass-velocity relationship may be satisfied as sufficient when a substantial portion by weight of the solid material impactors 100 may by virtue of their mass and velocity at the exit of the nozzle 64, create a structural alteration as claimed or disclosed herein. Impactor velocity to achieve a desired effect upon a given formation may vary as a function of formation compressive strength, hardness, or other rock properties, and as a function of impactor size and circulation fluid rheological properties. A substantial portion means at least five percent by weight of the plurality of solid material impactors that are introduced into the circulation fluid.
The impactors 100 for a given velocity and mass of a substantial portion by weight of the impactors 100 are subject to the following mass-velocity relationship. The resulting kinetic energy of at least one impactor 100 exiting a nozzle 64 is at least 0.075 Ft.Lbs or has a minimum momentum of 0.0003 Lbf.Sec.
Kinetic energy is quantified by the relationship of an object's mass and its velocity. The quantity of kinetic energy associated with an object is calculated by multiplying its mass times its velocity squared. To reach a minimum value of kinetic energy in the mass-velocity relationship as defined, small particles such as those found in abrasives and grits, must have a significantly high velocity due to the small mass of the particle. A large particle, however, needs only moderate velocity to reach an equivalent kinetic energy of the small particle because its mass may be several orders of magnitude larger.
The velocity of a substantial portion by weight of the plurality of solid material impactors 100 immediately exiting a nozzle 64 may be as slow as 100 feet per second and as fast as 1000 feet per second, immediately upon exiting the nozzle 64.
The velocity of a majority by weight of the impactors 100 may be substantially the same, or only slightly reduced, at the point of impact of an impactor 100 at the formation surface 66 as compared to when leaving the nozzle 64. Thus, it may be appreciated by those skilled in the art that due to the close proximity of a nozzle 64 to the formation being impacted, the velocity of a majority of impactors 100 exiting a nozzle 64 may be substantially the same as a velocity of an impactor 100 at a point of impact with the formation 52. Therefore, in many practical applications, the above velocity values may be determined or measured at substantially any point along the path between near an exit end of a nozzle 64 and the point of impact, without material deviation from the scope of this disclosure.
In addition to the impactors 100 satisfying the mass-velocity relationship described above, a substantial portion by weight of the solid material impactors 100 have an average mean diameter of between approximately 0.050 to 0.500 of an inch, including increments of 0.01 inches in this range
To excavate a formation 52, the excavation implement, such as a drill bit 60 or impactor 100, must overcome minimum, in-situ stress levels or toughness of the formation 52. These minimum stress levels are known to typically range from a few thousand pounds per square inch, to in excess of 65,000 pounds per square inch. To fracture cut, or plastically deform a portion of formation 52, force exerted on that portion of the formation 52 typically should exceed the minimum, in-situ stress threshold of the formation 52. When an impactor 100 first initiates contact with a formation, the unit stress exerted upon the initial contact point may be much higher than 10,000 pounds per square inch, and may be well in excess of one million pounds per square inch. The stress applied to the formation 52 during contact is governed by the force the impactor 100 contacts the formation with and the area of contact of the impactor with the formation. The stress is the force divided by the area of contact. The force is governed by Impulse Momentum theory whereby the time at which the contact occurs determines the magnitude of the force applied to the area of contact. In cases where the particle is contacting a relatively hard surface at an elevated velocity, the force of the particle when in contact with the surface is not constant, but is better described as a spike. However, the force need not be limited to any specific amplitude or duration. The magnitude of the spike load can be very large and occur in just a small fraction of the total impact time. If the area of contact is small the unit stress can reach values many times in excess of the in situ failure stress of the rock, thus guaranteeing fracture initiation and propagation and structurally altering the formation 52.
A substantial portion by weight of the solid material impactors 100 may apply at least 5000 pounds per square inch of unit stress to a formation 52 to create the structurally altered zone Z in the formation. The structurally altered zone Z is not limited to any specific shape or size, including depth or width. Further, a substantial portion by weight of the impactors 100 may apply in excess of 20,000 pounds per square inch of unit stress to the formation 52 to create the structurally altered zone Z in the formation. The mass-velocity relationship of a substantial portion by weight of the plurality of solid material impactors 100 may also provide at least 30,000 pounds per square inch of unit stress.
A substantial portion by weight of the solid material impactors 100 may have any appropriate velocity to satisfy the mass-velocity relationship. For example, a substantial portion by weight of the solid material impactors may have a velocity of at least 100 feet per second when exiting the nozzle 64. A substantial portion by weight of the solid material impactors 100 may also have a velocity of at least 100 feet per second and as great as 1200 feet per second when exiting the nozzle 64. A substantial portion by weight of the solid material impactors 100 may also have a velocity of at least 100 feet per second and as great as 750 feet per second when exiting the nozzle 64. A substantial portion by weight of the solid material impactors 100 may also have a velocity of at least 350 feet per second and as great as 500 feet per second when exiting the nozzle 64.
Impactors 100 may be selected based upon physical factors such as size, projected velocity, impactor strength, formation 52 properties and desired impactor concentration in the circulation fluid. Such factors may also include; (a) an expenditure of a selected range of hydraulic horsepower across the one or more nozzles, (b) a selected range of circulation fluid velocities exiting the one or more nozzles or impacting the formation, and (c) a selected range of solid material impactor velocities exiting the one or more nozzles or impacting the formation, (d) one or more rock properties of the formation being excavated, or (e), any combination thereof.
Referring to
A portion of the formation 52 ahead of the impactor 100 substantially in the direction of impactor travel T may be altered such as by micro-fracturing and/or thermal alteration due to the impact energy. In such occurrence, the structurally altered zone Z may include an altered zone depth D. An example of a structurally altered zone Z is a compressive zone Z1, which may be a zone in the formation 52 compressed by the impactor 100. The compressive zone Z1 may have a length L1, but is not limited to any specific shape or size. The compressive zone Z1 may be thermally, altered due to impact energy.
An additional example of a structurally altered zone 102 near a point of impaction may be a zone of micro-fractures Z2. The structurally altered zone Z may be broken or otherwise altered due to the impactor 100 and/or a drill bit 60, such as by crushing, fracturing, or micro-fracturing.
An additional theory for impaction mechanics in cutting a formation 52 may postulate that certain formations 52 may be highly fractured or broken up by impactor energy.
An impactor 100 may penetrate a small distance into the formation 52 and cause the displaced or structurally altered formation 52 to “splay out” or be reduced to small enough particles for the particles to be removed or washed away by hydraulic action. Hydraulic particle removal may depend at least partially upon available hydraulic horsepower and at least partially upon particle wet-ability and viscosity. Such formation deformation may be a basis for fatigue failure of a portion of the formation by “impactor contact,” as the plurality of solid material impactors 100 may displace formation material back and forth.
Each nozzle 64 may be selected to provide a desired circulation fluid circulation rate, hydraulic horsepower substantially at the nozzle 64, and/or impactor energy or velocity when exiting the nozzle 64. Each nozzle 64 may be selected as a function of at least one of (a) an expenditure of a selected range of hydraulic horsepower across the one or more nozzles 64, (b) a selected range of circulation fluid velocities exiting the one or more nozzles 64, and (c) a selected range of solid material impactor 100 velocities exiting the one or more nozzles 64.
One or more controllable variables or parameters may be altered, including at least one of: (a) rate of impactor 100 introduction into the circulation fluid, (b) impactor 100 size, (c) impactor 100 velocity, (d) drill bit nozzle 64 selection, (e) the selected circulation rate of the circulation fluid, (f) the selected pump pressure, and (g) any of the monitored excavation parameters.
To alter the rate of impactors 100 engaging the formation 52, the rate of impactor 100 introduction into the circulation fluid may be altered. The circulation fluid circulation rate may also be altered independent from the rate of impactor 100 introduction. Thereby, the concentration of impactors 100 in the circulation fluid may be adjusted separate from the fluid circulation rate. Introducing a plurality of solid material impactors 100 into the circulation fluid may be a function of impactor 100 size, circulation fluid rate, nozzle rotational speed, wellbore 70 size, and a selected impactor 100 engagement rate with the formation 52. The impactors 100 may also be introduced into the circulation fluid intermittently during the excavation operation. The rate of impactor 100 introduction relative to the rate of circulation fluid circulation may also be adjusted or interrupted as desired.
The plurality of solid material impactors 100 may be introduced into the circulation fluid at a selected introduction rate and/or concentration to circulate the plurality of solid material impactors 100 with the circulation fluid through the nozzle 64. The selected circulation rate and/or pump pressure, and nozzle selection may be sufficient to expend a desired portion of energy or hydraulic horsepower in each of the circulation fluid and the impactors 100.
An example of an operative excavation system 1 may comprise a bit 60 with an 8½ inch bit diameter. The solid material impactors 100 may be introduced into the circulation fluid at a rate of 12 gallons per minute. The circulation fluid containing the solid material impactors may be circulated through the bit 60 at a rate of 462 gallons per minute. In one embodiment, substantial portion by weight of the solid material impactors may have an average mean diameter of between about 0.05″ to about 0.15, in another embodiment impactor average diameter is about 0.075″ to about 0.125″, in another embodiment impactor average diameter is about 0.078″ in another embodiment impactor average diameter is about 0.100″. The following parameters will result in approximately a 27 feet per hour penetration rate into Sierra White Granite. In this example, the excavation system may produce 1413 solid material impactors 100 per cubic inch with approximately 3.9 million impacts per minute against the formation 52. On average, 0.00007822 cubic inches of the formation 52 are removed per impactor 100 impact. The resulting exit velocity of a substantial portion of the impactors 100 from each of the nozzles 64 would average 495.5 feet per second. The kinetic energy of a substantial portion by weight of the solid material impacts 100 would be approximately 1.14 Ft Lbs., thus satisfying the mass-velocity relationship described above.
Another example of an operative excavation system 1 may comprise a bit 60 with an 8½ inch bit diameter. The solid material impactors 100 may be introduced into the circulation fluid at a rate of 12 gallons per minute. The circulation fluid containing the solid material impactors may be circulated through the nozzle 64 at a rate of 462 gallons per minute. A substantial portion by weight of the solid material impactors may have an average mean diameter of 0.075″. The following parameters will result in approximately a 35 feet per hour penetration rate into Sierra White Granite. In this example, the excavation system 1 may produce 3350 solid material impactors 100 per cubic inch with approximately 9.3 million impacts per minute against the formation 52. On average, 0.0000428 cubic inches of the formation 52 are removed per impactor 100 impact. The resulting exit velocity of a substantial portion of the impactors 100 from each of the nozzles 64 would average 495.5 feet per second. The kinetic energy of a substantial portion by weight of the solid material impacts 100 would be approximately 0.240 Ft Lbs., thus satisfying the mass-velocity relationship described above.
In addition to impacting the formation with the impactors 100, the bit 60 may be rotated while circulating the circulation fluid and engaging the plurality of solid material impactors 100 substantially continuously or selectively intermittently. The nozzle 64 may also be oriented to cause the solid material impactors 100 to engage the formation 52 with a radially outer portion of the bottom hole surface 66. Thereby, as the drill bit 60 is rotated, the impactors 100, in the bottom hole surface 66 ahead of the bit 60, may create one or more circumferential kerfs. The drill bit 60 may thereby generate formation cuttings more efficiently due to reduced stress in the surface 66 being excavated, due to the one or more substantially circumferential kerfs in the surface 66.
The excavation system 1 may also include inputting pulses of energy in the fluid system sufficient to impart a portion of the input energy in an impactor 100. The impactor 100 may thereby engage the formation 52 with sufficient energy to achieve a structurally altered zone Z. Pulsing of the pressure of the circulation fluid in the pipe string 55, near the nozzle 64 also may enhance the ability of the circulation fluid to generate cuttings subsequent to impactor 100 engagement with the formation 52.
Each combination of formation type, bore hole size, bore hole depth, available weight on bit, bit rotational speed, pump rate, hydrostatic balance, circulation fluid rheology, bit type, and tooth/cutter dimensions may create many combinations of optimum impactor presence or concentration, and impactor energy requirements. The methods and systems of this disclosure facilitate adjusting impactor size, mass, introduction rate, circulation fluid rate and/or pump pressure, and other adjustable or controllable variables to determine and maintain an optimum combination of variables. The methods and systems of this disclosure also may be coupled with select bit nozzles, downhole tools, and fluid circulating and processing equipment to effect many variations in which to optimize rate of penetration.
Referring now to
A combined stream of impactor and fluid slurry and pressurized drilling fluid flows in a drilling system fluid feed line 327 collected downstream of the injection point 325. The combined stream is fed to a drill string 334 driven by one of a swivel 332 or a top drive disposed over a wellbore 338. The drill string 334 is used to create the wellbore 338 through a subterranean formation 340. As previously described, the combined flow of impactor fluid slurry and drilling fluid is injected into the drill string 334 where it is directed to a drill bit 336 attached to the lower terminal end of the drill string 334. The fluid exits the drill bit 336 through nozzles (not shown), an upward stream 342 of fluid, impactors, and formation cuttings flows from the bit 336 and through an annulus 335 formed between the drill string 334 and wellbore 338 walls. The upward flow 342 is collected at surface where the impactors can be reclaimed for future use.
The system described herein is not limited to injecting a slurry of impactors and fluid into a drilling fluid line, but can also be used to inject other fluids or solids into a stream being directed within a wellbore. In one example of use, a pump as described herein pressurizes a stream having a proppant that is directed downhole. The downhole operation involving the proppant may include a facing process that fractures subterranean formations for enhancing hydrocarbon production from within the formation. Other fluids considered for use with the pumping system include acidizing fluids, brines, alcohols, and other wellbore treating substances.
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, the pump is a Schwing BP8800 concrete pump having which includes Rock Valve, a Big Rock Valve, or a similar functioning valve. In certain exemplary embodiments, the concrete pump may be modified so that the output pressure of the cylinder is approximately the same as the piston pressure. Such modifications may include, but are not limited to, decreasing the area of the cylinder, increasing the operating pressure, and/or increasing the piston size. In certain embodiments, the output horsepower of the engine associated with the concrete pump may be increased. In certain other embodiments, the rock valve may be modified to include wings or shoulder (as described herein) to maintain a more constant output pressure and reduce a decrease in pressure between intake and discharge steps during pumping with the concrete pump. In certain embodiments, a check valve may also be employed with the rock valve and the wings/shoulders employed at the inlet of the valve. In certain other embodiments, a pressure compensation device may be employed with the pump.
In an exemplary embodiment, the slurry feed of solid material impactors and drilling fluid to the pump contains from 50-90% by volume of solid material impactors and from 10-50% by volume of drilling fluids. In another exemplary embodiment, the slurry feed to the pump contains from 55-75% by volume of solid material impactors and from 25-45% by volume of drilling fluids. In another exemplary embodiment, the slurry feed to the pump contains from 58-65% by volume of solid material impactors and from 35-42% by volume of drilling fluids. In another exemplary embodiment, the slurry feed to the pump contains approximately 62% by volume of weight solid material impactors and approximately 38% by volume of drilling fluids.
In an exemplary embodiment, the feed rate of impactors to the cement pump is at least about 2 gal/min. In another exemplary embodiment, the feed rate of impactors to the cement pump is at least about 10 gal/min. In yet another exemplary embodiment, the feed rate of impactors to the cement pump is at least about 15 gal/min. In yet another exemplary embodiment, the feed rate of impactors to the cement pump is at least about 20 gal/min. In yet another exemplary embodiment, the feed rate of impactors to the cement pump is at least about 30 gal/min. In yet another exemplary embodiment, the feed rate of impactors to the cement pump is at least about 40 gal/min. In yet another exemplary embodiment, the feed rate of impactors to the cement pump is at least about 50 gal/min. Optionally, the concrete pump cylinder angle with respect to horizontal may be adjusted to control the impactor feed rated.
In an exemplary experimental embodiment, a test was conducted using a Schwing BP8800 concrete pump for injection of a slurry of solid material impactors. The concrete pump was operated at 2,100 RPM, a piston pressure of 4,900 psi, a high cylinder pressure of 3,900 psi and a low cylinder pressure of 1,700 psi. The concrete pump was able to inject the slurry of solid material impactors at a rate of up to 17.0 gpm at a standpipe pressure of greater than 3,000 psi.
The pressure on port 814 shown in
In an exemplary embodiment, a valve is described for use with a concrete pump having a single material cylinder. The valve can be adapted to maintain pressure in the cylinder between intake and discharge cycles. In an exemplary embodiment, the valve includes a wing or shoulder, similar to the wings or shoulders 908a and 908b shown in
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, the pump 566 includes one or more pumps such as for example, one or more solids pumps, cavity pumps, positive displacement pumps, progressive cavity pumps, auger pumps, Moineau pumps and/or any combination thereof. In several exemplary embodiments, one or more of the pumps that comprise the pump 566 are configured to pump dry or almost-dry solid material impactors. In several exemplary embodiments, one or more of the pumps that comprise the pump 566 are similar to pumps used to pump concrete, and/or to pump slurries. Examples of these types of pumps are manufactured by a variety of manufacturers, including but not limited to, Schwing Bioset, Schwing, and Putzmeister.
In an exemplary embodiment, impactors may be supplied to the concrete pump via means of a volumetric feeder. In another exemplary embodiment, impactors may be supplied to the concrete pump via means of a hopper. In another exemplary embodiment, impactors which are recovered from the wellbore are processed to remove drill cuttings, small particulate materials, and drilling fluids and may be then resupplied to the concrete pump 566.
In an exemplary embodiment, a particle injection system, which may include concrete pump 566, may also include one or more abrasion resistant or longer-wear components, such as for example, non-hardened pipe, heat-treated pipe, abrasion resistant single wall pipe, and twin wall pipe, each of which may optionally include chrome carbide insert ends or chrome carbide liners. Similarly, the particle injection system, which may include the concrete pump 566, may also include one or more ceramic, cast manganese or cast steel hardened elbow or bends having chrome carbide ends and/or chrome carbide lining. Exemplary particle injection systems which employ concrete pumps for the injection of solid material impactors for drilling purposes, are particularly suited for the use of reinforced elbows, joints, pipes and other components. Exemplary abrasion resistant parts suitable for use for the present application include those manufactured by Schwing America, Inc., Schwing Bioset, Inc., and Construction Forms, Inc. of Port Washington, Wis.
In other exemplary embodiments, a wear ring can be included at the interface between piping components, such as between the standpipe and the elbow. Preferably, the wear ring is manufactured from a highly wear and abrasion resistant material. In certain exemplary embodiments, the material has a higher hardness than the particulate matter. In certain embodiments, the wear ring is a wearable surface which can resist chipping or cracking in a highly abrasive environments.
In an exemplary embodiment, the pump 566 may be connected to one or more hydraulic or manual diversion or shut-off valves which are designed for concrete pumping applications. In another exemplary embodiment, the pump 566 may be connected to one or more diversion or shut-off valves which are designed for high pressure applications. In another exemplary embodiment, the pump 566 may be connected to one or more diversion or shut-off valves which are designed for pumping highly abrasive slurries.
In exemplary embodiments, the concrete or slurry pump discharge pressure may range from about 1500 pounds per square inch and in excess of about 6000 pounds per square inch, from about 1500 pounds per square inch to about 2500 pounds per square inch, from about 2500 pounds per square inch to about 6000 pounds per square inch, and all values between about 1500 pounds per square inch and about 6000 pounds per square inch. Higher pressures likely lead to increased drilling capabilities and greater penetration of impactors. Accordingly, in an optional embodiment, pump discharge pressures may range from about 1000 pounds per square inch to about 10,000 pounds per square inch. In an exemplary embodiment, the pump 566 includes one or more concrete or slurry pumps. However, instead of pumping concrete, the pump 566 pumps the impactors 100, and any associated fluids, during the operation of the particle injection system, as described above.
Contact surfaces of the devices and systems disclosed herein, such as the contacting surface of a transfer tube (also referred to herein as a rock valve or big rock valve) may include: steels hardened past raw material specifications, tool steels, specialty materials such as Inconel®, Stellite®, titanium, and alloys having one of nickel, silver, bronze, molybdenum, and copper, and combinations thereof. Composites having an abrasion resistant material and a softer filler, such as tungsten carbide, nickel, copper, silver, alloyed metals, abrasive cloth, layered materials and combinations thereof. Coatings applied with a spray, fused thereon, cast, welded, brazed, burnished, or splattered. Super abrasive materials, such as cubic boron nitride, diamond like materials, diamond silicon carbide, aluminum oxide, and combinations thereof. Materials harder than steel that are allied by chemical vapor deposition technology. Elastomeric, and polymeric materials, such as urethane, and others including filled elastomers and polymers, including layered. Reinforced materials, including fibers, stands, or chopped materials.
In an exemplary embodiment, the pump 566 includes one or more concrete or slurry pumps manufactured by Schwing America Inc. of St. Paul, Minn. or Schwing Bioset, Inc. of Somerset, Wis. In an exemplary embodiment, the pump 566 includes one or more concrete pumps manufactured by Schwing America, Inc. of St. Paul, Minn., and at least one of the one or more concrete pumps includes a Rock Valve sequencing valve and/or a Big Rock Valve sequencing valve, which are manufactured by Schwing America, Inc. of St. Paul, Minn. Instead of pumping concrete, however, the pump 566 pumps the solid material impactors 100, and any associated fluids, during the operation of the particle injection system, as described above. In some exemplary embodiments, the concrete pump 566 can be used to pump dry particulate materials, and in other exemplary embodiments, the concrete pump 566 can be used to pump a slurry which may include particulate materials. In certain exemplary embodiments, the concrete pump 566 is used to introduce a particulate slurry into a wellbore.
Other pump manufacturers producing concrete or slurry pumps which may also be used to supply particulate material according to the present application include, but are not limited to, one or more of the pumps manufactured by any of the following manufactures: Putzmeister AG (Germany), Putzmeister America, Inc. (Sturtevant, Wis.); Multiquip/Mayco (Carson, Calif.); Reed Concrete Pumps (Chino, Calif.); Allentown Equipment (Allentown, Pa.) and Olin Engineering (CA). It is understood that other concrete and slurry pumps manufactured by other manufacturers not listed herein may also be used to pump particulate materials and slurries which include particulate materials. Exemplary concrete pumps may include one or more sequenced material cylinder for pumping particulate materials. Other exemplary pumps include any pump capable of taking a slurry at atmospheric pressure and discharging the slurry at a higher pressure. In certain exemplary embodiments, the cylinders may be hydraulically driven.
In an exemplary embodiment, the pump 566 is a positive displacement concrete pump which includes a sequencing valve having a transfer tube and at least one material cylinder. The sequencing valve may be a Rock Valve or a Big Rock Valve, produced by Schwing America, or a Rock Valve produced by Schwing Bioset, Inc., or a like sequencing valve. Other valves may also be employed to sequence between the intake and discharge of materials, such as for example, an S-tube valve, a C-tube valve, ball valves, or gate valves.
A perspective partially exploded view of a portion of an example of a concrete pump 322 is depicted in
The housing 344 sides and lower portion extend forward past the forward housing wall 345 and have a flanged surface 355 formed on the forward terminal end. An end cover 360 is shown in exploded view away from the housing 344, when the concrete pump 322 is assembled the end cover 360 mates onto the flanged surface 355. A mixing feed chamber 358 is defined between the forward housing wall 345 and end cover 360 and bounded on its lower end by the housing 344 sides and lower portion that extend past the forward housing wall 345. A pump discharge line 362 connected to the end cover 360 extends forward from the concrete pump 322 and is in fluid communication with one of the openings (354, 356) by a passage 361 formed through the end cover 360.
In one example of concrete pump 322 operation, a slurry of impactors 359 and fluid 357 are fed into the mixing feed chamber 358. The mixing feed chamber 358 is typically at approximately ambient pressure. The pistons (350, 352) are reciprocated within the cylinders (346, 348) and draw the slurry into a cylinder (346, 348) when the associated piston is moving in an aft direction (suction stroke) and then pressurize the slurry drawn into the cylinder when the piston is moved forward (pressurization or discharge stroke). As described below, a valve system selectively communicates each opening (354, 356) with the mixing feed chamber 358 when the respective piston (350, 352) is reciprocating aft. The valve then selectively seals the respective cylinder (346, 348) from the mixing feed chamber 358 when the associated piston (350, 352) changes its stroke from aft to forward and fluidly couples the opening (354, 356) with the pump discharge 361. When the piston (350, 352) moves forward in the cylinder (346, 348) impactor fluid slurry in the cylinder (346, 348) is pressurized and discharged from the pump 322 through the pump discharge 361. In the example shown in
Referring again to
a-12c illustrate an embodiment of a selector valve assembly 364 that selectively seals the openings (354, 356) of the cylinders (346, 348) from the feed mixing chamber 358 and selectively communicates the openings (354, 356) of the cylinders (346, 348) with the slurry discharge line 324 (
As seen in an overhead view in
a-13h illustrate another embodiment of a selector valve assembly 364a in various operational modes.
With reference now to
Also in
Pivoting the transfer tubes (382, 384) about their respective pivot pins (383, 385) can be accomplished via hydraulic power, electrical power, or mechanical means. It is within the capabilities of those skilled in the art to apply a pivoting force synchronized as described herein. As illustrated in
e and 13f represent the first transfer tube 382 and associated cylinder 346 and piston 350 in a discharge stroke whereas the second transfer tube 384 is pivoted into a suction mode (as illustrated by curved arrow PS) allowing communication between the mixing feed chamber 358 and the entrance 356. Arrows AIN and AOUT respectively represent impactor fluid slurry suction into the opening 356 and pressurized impactor slurry discharge from the first discharge 368. Pivoting the second transfer tube 384 into alignment with the entrance 356 (as illustrated by curved arrow PD) is depicted in
Another example of a selector valve assembly 364b is provided in perspective view in
An optional seal assembly 388 for sealing between the exit of a transfer tube (382, 384) and the end cover 360 is shown in an end view in
An optional seal 369 coupled with an end of a transfer tube 366a is illustrated in perspective view in
Optionally included with a seal assembly disposed between the transfer tube and the end cover is an anti-extrusion member. The anti-extrusion member may circumscribe the seal assembly and be combined with an O-ring. Yet further optionally, the backup O-rings may be included with all sealing components for the device and system disclosed herein.
Impactors were circulated in the system for 75 minutes with an impactor flow rate of about 15 gallons per minute, a hopper fill rate of 165 to 190 gallons per minute, with a total flow rate of 360 to 370 gallons per minute, a pump discharge pressure between 1000 pounds per square inch to 2500 pounds per square inch. A Schwing BPS800 was used for pressurizing impactor and fluid slurry.
Impactors were circulated in the system for 94 minutes with an impactor flow rate of about 15 gallons per minute, a hopper fill rate of 100 to 160 gallons per minute, with a total flow rate of 340 to 375 gallons per minute, a pump discharge pressure between 1000 pounds per square inch to 2500 pounds per square inch. A Schwing BP8800 was used for pressurizing impactor and fluid slurry.
It is understood that variations may be made in the foregoing without departing from the scope of the disclosure.
Any spatial references such as, for example, “upper,” “lower,” “above,” “below,” “radial,” “axial,” “between,” “vertical,” “horizontal,” “angular,” “upward,” “downward,” “side-to-side,” “left-to-right,” “right-to-left,” “top-to-bottom,” “bottom-to-top,” etc., are for the purpose of illustration only and do not limit the specific orientation or location of the structure described above.
As used herein, the terms “about” and “approximately” are understood to refer to values which are within 5% of the number being modified by the terms.
In several exemplary embodiments, one or more of the operational steps in each embodiment may be omitted. Moreover, in some instances, some features of the present disclosure may be employed without a corresponding use of the other features. Moreover, one or more of the above-described embodiments and/or variations may be combined in whole or in part with any one or more of the other above-described embodiments and/or variations.
Although several exemplary embodiments have been described in detail above, the embodiments described are exemplary only and are not limiting, and those skilled in the art will readily appreciate that many other modifications, changes and/or substitutions are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the present disclosure. Accordingly, all such modifications, changes and/or substitutions are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures.
This application claims priority to and the benefit of co-pending U.S. Provisional Application Ser. No. 60/959,207, filed Jul. 12, 2007, the full disclosure of which is hereby incorporated by reference herein. This application is a continuation in part of U.S. utility patent application Ser. No. 11/773,355, attorney docket number 13978.105084US, filed on Jul. 3, 2007, PCT patent application serial number PCT/US07/72794, attorney docket number 13978.105084WO, filed on Jul. 3, 2007, U.S. provisional patent application No. 60/899,135, filed on Feb. 2, 2007 (attorney docket number 37163.00061); U.S. provisional patent application Ser. No. 60/818,480, filed on Jul. 3, 2006 (attorney docket no. 37163.00059); and pending application Ser. No. 10/897,196, filed on Jul. 22, 2004 (attorney docket no. 13978.105012 formerly 37163.00012), the disclosures of which are incorporated herein by reference. This application is related to U.S. provisional patent application Ser. No. 60/463,903, filed on Apr. 16, 2003 (attorney docket no. 13978.105035 formerly 37163.00017); U.S. Pat. No. 6,386,300, issued on May 14, 2002, which was filed as application Ser. No. 09/665,586 on Sep. 19, 2000 (attorney docket no. 13978.105037 formerly 37163.00023); U.S. Pat. No. 6,581,700, issued on Jun. 24, 2003, which was filed as application Ser. No. 10/097,038 on Mar. 12, 2002 (attorney docket no. 13978.105034 formerly 37163.00024); U.S. Pat. No. 7,398,838, issued on Jul. 15, 2008, which was filed as application Ser. No. 11/204,981, filed on Aug. 16, 2005 (attorney docket no. 37163.00006); U.S. Pat. No. 7,343,987, issued on Mar. 18, 2008, which was filed as application Ser. No. 11/204,436, filed on Aug. 16, 2005 (attorney docket no. 13978.105041 formerly 37163.00007); pending application Ser. No. 11/204,862, filed on Aug. 16, 2005 (attorney docket no. 13978.105042 formerly 37163.00008); pending application Ser. No. 11/205,006, filed on Aug. 16, 2005 (attorney docket no. 13978.105038 formerly 37163.00009); pending application Ser. No. 11/204,722, filed on Aug. 16, 2005 (attorney docket no. 13978.105053 formerly 37163.00010); U.S. Pat. No. 7,398,839, issued on Jul. 15, 2008, which was filed as application Ser. No. 11/204,442, filed on Aug. 16, 2005 (attorney docket no. 13978.105018 formerly 37163.00011); U.S. Pat. No. 7,258,176, issued Aug. 21, 2007, which was filed as application Ser. No. 10/825,338, filed on Apr. 15, 2004 (attorney docket no. 13978.105060 formerly 37163.00018); pending application Ser. No. 10/558,181, filed on May 27, 2004 (attorney docket no. 13978.105032 formerly 37163.00045); pending application Ser. No. 11/344,805, filed on Feb. 1, 2006 (attorney docket no. 13978.105059 formerly 37163.00047); pending application No. 60/746,855, filed on May 9, 2006 (attorney docket no. 13978.105071 formerly 37163.00057); the disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60959207 | Jul 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11773355 | Jul 2007 | US |
Child | 12172760 | US |