Injection training tool emitting omnidirectional light

Information

  • Patent Grant
  • 10235904
  • Patent Number
    10,235,904
  • Date Filed
    Wednesday, November 25, 2015
    9 years ago
  • Date Issued
    Tuesday, March 19, 2019
    5 years ago
  • Inventors
  • Original Assignees
    • Truinject Corp. (Irvine, CA, US)
  • Examiners
    • Bullington; Robert P
    Agents
    • Knobbe Martens Olson & Bear LLP
Abstract
Systems, methods, and apparatuses for providing substantially omnidirectional light emission from a tip of a needle for use with injection training systems are provided. The substantially omnidirectional light emission improves the angular range of detection of the emitted light. The approach uses principles of fluorescence and/or light diffusion to emit light in a substantially omnidirectional pattern from the needle tip in order to improve the detectability of the emitted light by a light detector.
Description
BACKGROUND

A variety of medical injection procedures are often performed in prophylactic, curative, therapeutic, or cosmetic treatments. Injections may be administered in various locations on the body, such as under the conjunctiva, into arteries, bone marrow, the spine, the sternum, the pleural space of the chest region, the peritoneal cavity, joint spaces, and internal organs. Injections can also be helpful in administering medication directly into anatomic locations that are generating pain. These injections may be administered intravenously (through the vein), intramuscularly (into the muscle), intradermally (beneath the skin), subcutaneously (into the fatty layer of skin), or intraperitoneally (into the body cavity). Injections can be performed on humans as well as on animals. The methods of administering injections typically vary for different procedures and may depend on the substance being injected, needle size, or area of injection.


Injections are not limited to treating medical conditions, but may be expanded to treating aesthetic imperfections or restorative cosmetic procedures. Many of these procedures are performed through injections of various products into different parts of the body. The aesthetics and therapeutic industry comprises two main categories of injectable products: neuromodulators and dermal fillers. The neuromodulator industry commonly uses nerve-inhibiting products such as Botox®, Dysport®, and Xeomin®. The dermal filler industry uses products administered by providers to patients for both cosmetic and therapeutic reasons, such as, for example, Juvederm®, Restylane®, Belotero®, Sculptra®, Artefill®, and others. These providers or injectors may include plastic surgeons, facial plastic surgeons, oculoplastic surgeons, dermatologists, nurse practitioners, dentists and nurses.


A problem in the administration of injections is that there is no official certification or training process. Anyone with a minimal medically-related license may inject a patient. These “injectors” may include primary care physicians, dentists, veterinarians, nurse practitioners, nurses, physician's assistants, or aesthetic spa physicians. However, the qualifications and training requirements for injectors vary by country, state, and county. For example, in most states in the United States, the only requirement to be permitted to inject patients with neuromodulators and/or fillers is to have a nursing degree or medical degree. Accordingly, there is a lack of uniformity and expertise in administering such injections. The drawbacks with this lack of uniformity in training and expertise are widespread throughout the medical industry. Doctors and practitioners often are not well-trained in administering injections of diagnostic, therapeutic, and cosmetic chemical substances. This lack of training has led to instances of chronic pain, headaches, bruising, swelling, or bleeding in patients.


Current injection training options are classroom-based, with hands-on training performed on live models. The availability of models is limited. Moreover, even when available, live models are limited in the number and types of injections they may receive. The need for live models is restrictive because injectors are unable to be exposed to a wide and diverse range of situations and anatomies in which to practice. For example, it may be difficult to find live models with different skin tones or densities. This makes the training process less effective because patients have diverse anatomical features as well as varying prophylactic, curative, therapeutic, or cosmetic needs. Live models are also restrictive because injectors are unable to practice injection methods on the internal organs of a live model due to safety and health considerations.


As a result of these limited training scenarios, individuals seeking treatments involving injections have a much higher risk of being treated by an inexperienced injector. This may result in low patient satisfaction with the results, or in failed procedures. In many instances, patients have experienced lumpiness from incorrect dermal filler injections. Some failed procedures may result in irreversible problems and permanent damage to a patient's body. For example, patients have experienced vision loss, direct injury to the globe of the eye, and brain infarctions where injectors have incorrectly performed dermal filler procedures. Additional examples of side effects include inflammatory granuloma, skin necrosis, endophthalmitis, injectable-related vascular compromise, cellulitis, biofilm formation, subcutaneous nodules, fibrotic nodules, and other infections.


There is currently no standard to train, educate, and certify providers on the proper and accurate process of various injection techniques. Patients seeking injections also have few resources for determining the qualifications or experience of a care practitioner.


SUMMARY

The present disclosure generally relates to systems, methods, and apparatuses for training and certification for prophylactic, curative, therapeutic, acupuncture, or cosmetic injection. Aspects of this technology are described in U.S. Pat. No. 8,764,449, entitled SYSTEM FOR COSMETIC AND THERAPEUTIC TRAINING; U.S. Pat. No. 8,961,189, entitled SYSTEM FOR COSMETIC AND THERAPEUTIC TRAINING; and U.S. patent application Ser. No. 14/598,614, entitled INJECTION SITE TRAINING SYSTEM, each of which is assigned to the assignee of the present application and incorporated by reference herein in its entirety.


In particular, the present application discloses injection training systems, methods, and apparatuses for radiating or reflecting light energy from a tip of an injection testing tool, such as syringe needle, to facilitate detection of the needle's position in an artificial injection apparatus (for example, an artificial face). The systems, methods, and/or apparatuses may be used for training caregivers on performing injections where accurate positioning is important, such as in facial/Botox injections and/or spinal injections, to name a few.


According to an embodiment of the present disclosure, an injection apparatus (for example, which is used with an artificial injection site, such as, for example, an artificial face) is penetrated by a testing tool, such as a needle mounted to a syringe. The position of the needle tip in the artificial injection site is an important piece of information to determine the skill level of the trainee. One way to track the needle tip position relies on a sensor interior to the artificial face configured to detect through a clear interior space of the artificial face emitted or reflected light from the needle tip as it penetrates the artificial face.


In one aspect of the present disclosure, a testing tool system comprises a needle having a central lumen, a distal end, a proximal end, and a tip at the distal end of the needle. The testing tool system includes a barrel cooperating with the proximal end of the needle and a light source, configured to emit light, positioned in the barrel. The system also includes an optical fiber positioned inside the central lumen of the needle and configured to receive the emitted light from the light source and to transmit the emitted light through the needle from the proximal end to the distal end so that the light is emitted from the needle tip, which is configured to radiate the emitted light. According to certain embodiments, the needle tip is configured to radiate the emitted light uniformly. In some embodiments, the needle tip comprises a fluorescent material configured to radiate the emitted light. The fluorescent material comprises one of a liquid material, a solid material, and a gaseous material, and in some embodiments, the fluorescent material comprises a combination of at least two of a liquid material, a solid material, and a gaseous material. The emitted light may be one or more of visible light, non-visible light, ultraviolet light, polarized light, infrared light, and fluorescent light. In an embodiment, the testing tool comprises a transparent barrier positioned between the optical fiber and the needle tip, where the transparent barrier is filled or coated with a fluorescent material.


In another aspect of the present disclosure, a system for training clinicians to provide injections is provided, the system comprising a testing tool having a needle tip configured to absorb light and to emit light. The system also includes an injection apparatus having an internal portion, where the injection apparatus is configured to receive a simulated injection by the testing tool. A light emitter is also included in the system. The light emitter is positioned within the internal portion of the injection apparatus, and is configured to illuminate the needle tip of the testing tool in response to the injection apparatus receiving the simulated injection by the testing tool. The system also comprises a light detector, positioned in the internal portion of the injection apparatus. The light detector is configured to detect a light emitted from the illuminated needle tip. In some embodiments, the light emitter emits a first light having a first wavelength, and the illuminated needle tip emits a second light having a second wavelength. In some embodiments the needle tip is configured to absorb the first light, and in response to absorbing the first light, emit the second light. According to certain embodiments, the light detector comprises a filter configured to prevent the first light from being detected by the light detector. The first light may comprise ultraviolet light and the second light may comprise visible light. In some embodiments, the needle tip comprises fluorescent material configured to uniformly radiate the emitted light. The fluorescent material may be a liquid, a solid or a gaseous, and in some embodiments, the fluorescent material comprises a combination of at least two of a liquid, a solid, and a gaseous material.


In yet another aspect of the present disclosure, an injection training system is provided. The injection training system comprises a testing tool having a needle and a needle tip. The needle tip comprises a fluorescent material. The injection training system also includes an injection apparatus having an interior. The injection apparatus is configured to receive a simulated injection by the testing tool wherein the needle tip penetrates the injection apparatus. The injection training system also includes a light emitter positioned in the interior of the injection apparatus and configured to emit light in a general direction of the simulated injection. A light detector is also included. The light detector is positioned in the interior of the injection apparatus and configured to detect light emitted from the needle tip of the testing tool. In accordance with some embodiments, the needle tip comprises a solid fluorescent material. The light emitter may be configured to emit a first light having a first wavelength, and the needle tip may be configured to absorb the first light, and in response to absorbing the first light, emit a second light having a second wavelength. In some embodiments, the light detector includes a filter configured to block the first light from being detected by the light detector. In some embodiments, the light emitter emits ultraviolet light and the needle tip emits visible light. In certain embodiments the light emitter includes a light reflector configured to reflect the emitted light in the general direction of the simulated injection.


For purposes of summarizing the disclosure, certain aspects, advantages, and novel features have been described herein. Of course, it is to be understood that not necessarily all such aspects, advantages, or features will be embodied in any particular embodiment.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings and the associated descriptions are provided to illustrate embodiments of the present disclosure and do not limit the scope of the claims.



FIG. 1A is a perspective schematic view of a needle tip emitting omnidirectional injection light according to an embodiment of the present disclosure.



FIG. 1B is a magnified perspective schematic view of the needle tip of FIG. 1A.



FIG. 2 is a sectional schematic view, cut along line 2-2, of an embodiment of the needle tip of FIG. 1B.



FIG. 3 is a sectional schematic view, cut along line 2-2, of an embodiment of needle tip of FIG. 1B in which the needle tip is made of solid fluorescing material.



FIG. 4 is a schematic sectional view of an embodiment of a needle tip that diffuses light emitted from the testing tool.



FIG. 5 is a sectional view of a surface fluorescing tip with an external source for driving light.





DETAILED DESCRIPTION

Embodiments will now be described with reference to the accompanying figures. The following description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or its uses. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements. The terminology used in the description presented herein is not intended to be interpreted in any limited or restrictive manner, simply because it is being used in conjunction with a detailed description of certain specific embodiments of the disclosure. Furthermore, embodiments of the disclosure may include several novel features, no single one of which is solely responsible for its desirable attributes or which is essential to practicing the present disclosure. It should be understood that steps within a method may be executed in different order without altering the principles of the present disclosure.


According to injection training systems disclosed herein, an injection apparatus (for example, an artificial face) is penetrated by an injection testing tool, such as for example, a needle mounted to a syringe to simulate a patient injection. The position of the needle tip in the injection apparatus reveals useful information regarding the skill level of the trainee. One method of tracking the needle tip position uses a sensor (such as, for example, a camera, a light detector, and the like) positioned in a clear interior of the injection apparatus. The sensor detects, through the clear interior of the injection apparatus, light emitted from the needle tip as the needle tip penetrates the injection apparatus during the simulated injection.


One embodiment of needle tip location technology utilizes light emitted from a light source, such as a light-emitting diode or a laser, through a needle tip, by means of an optical fiber positioned within the needle lumen. The emitted light is detectable by one or more sensors placed distal to the needle tip, such as sensors positioned within the interior of the injection apparatus. However, the light emitted from the exposed end of the optical fiber (radiating outwardly from the needle tip) travels substantially along the axis of the optical fiber. This axial light bias restricts the detectability of the emitted light to a limited angular range away from the axis of the optical fiber.


An important requirement of the training systems discussed herein is the ability to detect the needle tip as it travels along a path close to tangent with the external surface of the injection apparatus. Such a needle path is typical in many injection training scenarios, such as, for example, training to inject dermal filler material.


The present application discloses systems, methods, and apparatuses for providing omnidirectional light emission from the tip of the needle for use with injection training systems. The omnidirectional light emission improves the angular range of detection of the emitted light. The approach uses principles of fluorescence and/or diffusion to emit light in a substantially omnidirectional pattern from the needle tip in order to improve the detectability of the emitted light.



FIGS. 1A, 1B, and 2 illustrate a testing tool 100 in accordance with an embodiment of the present disclosure. The testing tool 100 contains a battery-powered light source (not shown) that emits light through the needle portion 116 of the testing tool 100. The light source may be configured to emit any type of light, including without limitation, one or more of visible light, non-visible light, ultraviolet light, polarized light, infrared light, and fluorescent light. The light source is used to aid in obtaining visual indications detectable by a light detector, such as a camera. The resulting light detected by the light detector can be used to determine many critical parameters associated with the injection such as, for example, the location of the injection, the pressure exerted by the user, the angle of the injection, the depth of the injection, and the like. This information can be detected by a light detector, for example by a camera, and communicated to a processing system and/or a user interface device or a display device for testing evaluation, display, and/or certification purposes.


The testing tool 100 includes a plunger 110, a barrel 112, a needle assembly 114, a needle, 116, and a needle tip 118. The testing tool 100 may be activated by pressing a switch (not shown) which activates a light source, such as a light-emitting diode (LED) or laser diode, to emit a source of light. The emitted light (which may also be referred to herein as the “driving light”) then travels through an optical fiber 124 positioned within a central lumen 122 of the needle 116. The optical fiber 124 entrains the driving light from the light source and directs the driving light in the longitudinal axis of the needle 116. The driving light travels through the optical fiber 124 and is delivered as a focused driving light to a distal portion of the needle tip 118. Between the optical fiber 124 and the needle tip 118 is a light-transmissible barrier 126 which forms a sealed transparent enclosure 120 at the needle tip 118. The sealed transparent enclosure is filled and/or coated with a fluorescent material. The optic fiber 124 positioned in the needle's central lumen 122 delivers the driving light at a wavelength that stimulates a fluorescing process in the fluorescent material located in the sealed transparent enclosure 120. Fluorescence is a process by which a driving light having a first wavelength is absorbed by a fluorescent material, and in response to the absorption, the fluorescent material emits a second light (referred to herein as a “fluorescent light”) at a second wavelength that is typically at a lower energy level than the first, absorbed light.


The fluorescent light is then emitted from the needle tip 118, which is surrounded by the transparent enclosure 120 having a closed point at a distal end of the needle tip 118. In one embodiment, the transparent enclosure 120 is a glass structure. One skilled in the art will appreciate that the transparent enclosure 120, including the light-transmissible barrier 126, may be made of many materials capable of containing the fluorescent material and permitting the fluorescent light to radiate through it. Advantageously, a property of fluorescent light is that it radiates substantially uniformly in all directions (also referred to herein as “omnidirectional”) and is therefore detectable over a much broader angular range than that of the driving light emitted by means of an optical fiber 124 alone. Thus, the fluorescent light emitted by the fluorescent material can be detected by sensors 140 lateral to the testing tool's 100 (syringe's) axis.



FIG. 3 is a sectional schematic view, cut along line 2-2, of an embodiment of needle tip 118 of FIG. 1B in which the needle tip is made of solid fluorescing material. In this embodiment, the optical fiber 124 abuts to the needle tip 118 made of the solid fluorescent material. The solid tip may be made of ruby, treated glass, or other fluorescing materials. In use, the needle tip 118 absorbs the high-energy driving light from the optical fiber 124 and emits a lower-energy fluorescent light that radiates substantially uniformly from the needle tip 118. Advantageously, this embodiment is simple to manufacture because it has fewer components than the embodiments described above with respect to FIG. 2. In particular, the transparent enclosure 120 can be challenging and/or costly to manufacture, fill with fluorescent material, seal, and test as compared to the solid-tip embodiment. The solid needle tip 118 embodiment disclosed in FIG. 3 also provides an improved durability, as the solid fluorescent material may be more robust than a hollow transparent enclosure 120. The solid needle tip 118 may resist damage from both normal use and accidental impact. The solid-tip embodiment also provides improved needle tip 118 sharpness. The solid-tip fluorescent material may be precision ground to a point, while a hollow tip transparent enclosure 120 has comparatively thin walls and may frequently break when ground to a sharp point. Additionally, the solid-tip embodiment eliminates the risk of leaks of fluorescing liquid or gaseous materials that may be contained in the embodiments using a transparent enclosure 120.


The fluorescent material used in the present embodiments may be liquid, solid, gaseous, or a combination such materials. Illustratively, by way of non-limiting example, fluorescent materials that may be used in the disclosed embodiments include ruby, ninhydrin, and fluorescein. A skilled artisan will appreciate that there are numerous fluorescent materials that may be used to implement the disclosed embodiments. For example, the International Mineralogist Association lists 989 luminescent minerals and varieties of such minerals along with their properties which may be found at http://www.fluomin.org/uk/list.php?liste=1. Similarly, a database of fluorescent dyes along with their properties and applications can be accessed at http://www.fluorophores.tugraz.at/.


Advantageously, in certain embodiments, the improved detection range resulting from use of fluorescent light emitting from the needle tip 118 can support use of this technology in living tissue. Illustratively, the frequency of light from the fluorescing material can be tuned so as to pass through living tissue and allow detection from sensors that are positioned outside of the body. This can provide a source of information that can be used to perform improved needle placement during actual injection procedures as well as simulated procedures during training sessions.



FIG. 4 is a schematic sectional view of an embodiment of a needle tip 118 that diffuses light emitted from the testing tool 100. Light diffusion is a process by which photons travel though a material without being absorbed; instead, the photons undergo a series of repeated scattering events which change the direction of the photons' paths. Thus, light-diffusing materials cause the light to radiate in a more omnidirectional manner. As described above, the optical fiber 124 is positioned within the central lumen 122 of the needle 116. The optical fiber 124 entrains the driving light from the light source and directs the driving light in the longitudinal axis of the needle 116. The light travels through the optical fiber 124 and is delivered as a focused driving light to a distal portion of the needle tip 118. The optical fiber 124 is configured to abut the distal end of the needle tip 118. The distal end of the needle tip 118 may be constructed of a light-diffusing material. One such light-diffusing material is glass having a diffusing agent 402 added. The diffusing agent 402 may be particles of white titanium dioxide, reflective metal powder, or other such agents. In some embodiments, the needle tip 118 may be coated with a light-diffusing material. Provision of light-diffusing material at the needle tip 118 enables the conversion of the narrow and intense straight driving light path exiting the optical fiber 124 to one that is substantially omnidirectional, at reduced intensity. The result is that the needle tip 118 is observable at high angles off of the needle axis.


In certain embodiments, the needle tip 118 includes both fluorescent material and light-diffusing material. For example, the transparent enclosure 120 may be filled with a fluorescent material and have a light-diffusing coating on an interior surface, an exterior surface, or both an interior and exterior surface of the transparent enclosure 120. In an embodiment, the transparent enclosure 120 may be made of glass having a light-diffusing agent added to the glass.


In some embodiments, the optical fiber 124 extends beyond the distal end of the needle to form the needle tip 118, having a point. The needle tip 118 formed by the optical fiber 124 may have a light-diffusing coating, or it may contain a light-diffusing material. In other embodiments, the needle tip 118 formed by the optical fiber 124 may be coated with a fluorescent material.



FIG. 5 is a sectional view of a surface fluorescing tip with an external source for driving light. FIG. 5 illustrates an injection training system 500 according to an embodiment of the present disclosure. The system 500 includes an injection apparatus 502 having a clear interior space 504 and configured to receive a simulated injection by a testing tool 100. The injection apparatus 502 is a synthetic anatomical structure that can be used for any type of injection training involved with administering diagnostic and therapeutic chemical substances. Illustratively, by way of non-limiting example, injection training can be provided for epidural techniques and for intra-cardiac injections. In one embodiment, as illustrated in FIG. 5, the injection apparatus 502 can anatomically model the face, neck, and head of a human. Although not shown in the accompanying drawings, the injection apparatus 502 can model other injection sites including the chest, arms, mouth, back, buttocks, etc. The injection apparatus 502 may also represent any body part of a human or animal, including internal organs. In some embodiments, the injection apparatus 502 may include a simulated skull and layers of muscle and skin. The injection apparatus 502 can be positioned on a base to facilitate use on flat surfaces, such as a table or desk.


Positioned within the interior 504 of the injection apparatus 502 is a light source 506 having one or more light reflectors 508. As illustrated in FIG. 5, the light source 506 is positioned within the interior 504 of the injection apparatus 502 so as to emit a driving light 520 generally in a direction of the simulated injection. Accordingly, the light source 506 and reflectors 508 are positioned toward a back portion of the head of the injection apparatus 502 and configured to emit the driving light 520 toward a face portion of the injection apparatus 502 where a simulated injection is performed.


A light detector 510 is also positioned within the interior 504 of the injection apparatus 502. The light detector 510 is positioned toward the back portion of the head of the injection apparatus 502 near the light source 506 and configured to detect fluorescent light 530 emitted from the tip 118 of testing tool 100 used to perform the simulated injection. In some embodiments, the light detector 510 includes a filter 512 configured to block one or more wavelengths of light from being detected by the light detector 510. For example, the filter 512 may be configured to block the driving light 520 emitted from the light source 506 so as to ensure that the light detector only detects the fluorescent light 530 emitted from the needle tip 118.


As described above, the needle tip 118 of the testing tool 100 includes fluorescent material. During a simulated injection, the light source 506 emits a driving light 520 that is delivered by, for example, a high-energy light emitter. In some embodiments, the light source 506 emits ultraviolet light 520 as the driving light. Advantageously, the fluorescent needle tip 118, which has penetrated into the interior 504 of the injection apparatus 502, absorbs the emitted driving ultraviolet light 520, and in response to the absorption, emits fluorescent light 530 having a wavelength in the visible spectrum. Since the fluorescent needle tip 118 radiates fluorescent light 530 at a different frequency (and corresponding wavelength) than the driving light 520 provided by the light source 506, the filter 512 can block the driving light 520 and pass only the fluorescent light 530 radiated by the fluorescent needle tip 118. This embodiment provides several benefits including eliminating the optical fiber 124 light path in the testing tool 100, offloading the power required for driving a light source 506 from the testing tool 100, extending battery life of the testing tool 100, and reducing the complexity of the testing tool 100.


An injection training system has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims that follow. One of ordinary skill in the art will appreciate from the disclosure herein any variations and modifications.


Terminology/Additional Embodiments


The term “injection” as used herein includes it usual and customary meaning of an injection, but is also to be interpreted broad enough to encompass, for example, the insertion of a catheter device or the use of simple needles, such as would be used in an acupuncture therapy. The techniques involved, particularly a camera embedded in a model of a living subject and a tool with a light emitter can be applied to any therapeutic procedure. For example, the tool can be a catheter and the procedure can be a minimally invasive procedure requiring the catheter to be located in a particular location.


Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or states. Thus, such conditional language is not generally intended to imply that features, elements and/or states are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without author input or prompting, whether these features, elements and/or states are included or are to be performed in any particular embodiment.


Depending on the embodiment, certain acts, events, or functions of any of the methods described herein can be performed in a different sequence, can be added, merged, or left out altogether (for example, not all described acts or events are necessary for the practice of the method). Moreover, in certain embodiments, acts or events can be performed concurrently, for example, through multi-threaded processing, interrupt processing, or multiple processors or processor cores, rather than sequentially.


While the above detailed description has shown, described, and pointed out novel features as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the devices or algorithms illustrated can be made without departing from the spirit of the disclosure. As will be recognized, certain embodiments of the disclosures described herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others. The scope of certain disclosures disclosed herein is indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims
  • 1. A testing tool comprising: a needle having a central lumen, a distal end, a proximal end, and a tip at the distal end of the needle, the tip comprising a fluorescent material;a barrel cooperating with the proximal end of the needle;a light source, positioned in the barrel, the light source configured to emit a first light having a first wavelength; andan optical fiber located inside the central lumen of the needle, the optical fiber configured to receive the emitted first light from the light source and to transmit the emitted first light through the needle from the proximal end to the distal end so that the first light is emitted to the tip;wherein the fluorescent material of the tip, upon receiving the first light, absorbs at least a portion of the first light and in response to absorbing the at least a portion of the first light emits a second light having a second wavelength from the tip.
  • 2. The testing tool of claim 1, wherein the first light is one or more of visible light, non-visible light, ultraviolet light, polarized light, infrared light, and fluorescent light.
  • 3. The testing tool of claim 1, wherein the tip comprises a transparent enclosure, the transparent enclosure filled with the fluorescent material.
  • 4. The testing tool of claim 3, wherein the transparent enclosure comprises a light-diffusing coating.
  • 5. The testing tool of claim 3, wherein the transparent enclosure comprises glass having a light-diffusing agent mixed into the glass.
  • 6. The testing tool of claim 1, wherein the tip comprises a solid fluorescent material having a point.
  • 7. The testing tool of claim 1, wherein the tip comprises a light-diffusing material.
  • 8. A testing tool comprising: a needle having a central lumen, a distal end, a proximal end, and a tip at the distal end of the needle, the tip comprising a light-diffusing material configured to radiate light in a substantially omnidirectional pattern;a barrel cooperating with the proximal end of the needle;a light source, positioned in the barrel, the light source configured to emit light; andan optical fiber located inside the central lumen of the needle, the optical fiber configured to receive the emitted light from the light source and to transmit the emitted light through the needle from the proximal end to the distal end so that the light is emitted to the light-diffusing material of the tip.
  • 9. The testing tool of claim 8, wherein the tip comprises a transparent enclosure filled with the light-diffusing material, the transparent enclosure having a point.
  • 10. The testing tool of claim 9, wherein the transparent enclosure comprises glass having a light-diffusing agent mixed into the glass, the transparent enclosure filled with a fluorescent material.
  • 11. The testing tool of claim 10, wherein the light emitter emits a first light having a first wavelength, and wherein the fluorescent material in the transparent enclosure is configured to absorb the first light, and in response to absorbing the first light, emit a second light having a second wavelength.
  • 12. The testing tool of claim 8, wherein the tip comprises a solid light-diffusing material.
  • 13. The testing tool of claim 8, wherein the tip comprises glass having a light-diffusing agent mixed into the glass.
  • 14. A system for training clinicians to provide injections, the system comprising: the testing tool of claim 1;an injection apparatus having an internal portion, the injection apparatus configured to receive a simulated injection by the testing tool;a light emitter, positioned in the internal portion of the injection apparatus, the light emitter configured to illuminate the tip with a first light having a first wavelength in response to the injection apparatus receiving the simulated injection by the testing tool; anda light detector, positioned in the internal portion of the injection apparatus, the light detector configured to detect a second light having a second wavelength emitted from the illuminated needle tip.
  • 15. The system of claim 14, wherein the tip comprises a transparent enclosure, the transparent enclosure filled with the fluorescent material.
  • 16. The system of claim 15, wherein the transparent enclosure comprises glass having a light-diffusing agent mixed into the glass.
  • 17. The system of claim 14, wherein the tip comprises a solid fluorescent material having a point.
  • 18. The system of claim 14, wherein the tip is configured to absorb the first light, and in response to absorbing the first light, emit the second light.
  • 19. The system of claim 14, wherein the light detector comprises a filter configured to prevent the first light from being detected by the light detector.
  • 20. The system of claim 14, wherein the first light comprises ultraviolet light and the second light comprises visible light.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

This application claims benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No. 62/085,935 filed on Dec. 1, 2014 entitled FLUORESCENCE-BASED NEEDLE POSITION DETECTION which is incorporated by reference herein in its entirety. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.

US Referenced Citations (220)
Number Name Date Kind
3237340 Knott Mar 1966 A
3941121 Olinger et al. Mar 1976 A
4142517 Contreras Guerrero de Stavropoulos et al. Mar 1979 A
4311138 Sugarman Jan 1982 A
4356828 Jamshidi Nov 1982 A
4410020 Lorenz Oct 1983 A
4515168 Chester et al. May 1985 A
4566438 Liese et al. Jan 1986 A
4836632 Bardoorian Jun 1989 A
4880971 Danisch Nov 1989 A
5197476 Nowacki et al. Mar 1993 A
5198877 Schulz Mar 1993 A
5241184 Menzel Aug 1993 A
5249581 Horbal et al. Oct 1993 A
5295483 Nowacki et al. Mar 1994 A
5321257 Danisch Jun 1994 A
5391081 Lampotang et al. Feb 1995 A
5518407 Greenfield et al. May 1996 A
5622170 Schulz Apr 1997 A
5651783 Reynard Jul 1997 A
5727948 Jordan Mar 1998 A
5817105 Van Der Brug Oct 1998 A
5828770 Leis et al. Oct 1998 A
5890908 Lampotang et al. Apr 1999 A
5899692 Davis et al. May 1999 A
5923417 Leis Jul 1999 A
5954648 Van Der Brug Sep 1999 A
5954701 Matalon Sep 1999 A
6024576 Bevirt et al. Feb 2000 A
6061644 Leis May 2000 A
6064749 Hirota et al. May 2000 A
6127672 Danisch Oct 2000 A
6217558 Zadini et al. Apr 2001 B1
6288785 Frantz et al. Sep 2001 B1
6353226 Khalil et al. Mar 2002 B1
6385482 Boksberger et al. May 2002 B1
6485308 Goldstein Nov 2002 B1
6553326 Kirsch et al. Apr 2003 B1
6564087 Pitris et al. May 2003 B1
6575757 Leight et al. Jun 2003 B1
6625563 Kirsch et al. Sep 2003 B2
6702790 Ross et al. Mar 2004 B1
6769286 Biermann et al. Aug 2004 B2
6774624 Anderson et al. Aug 2004 B2
6836745 Seiler et al. Dec 2004 B2
7015859 Anderson Mar 2006 B2
7137712 Brunner et al. Nov 2006 B2
7158754 Anderson Jan 2007 B2
7194296 Frantz et al. Mar 2007 B2
7204796 Seiler Apr 2007 B1
7247149 Beyerlein Jul 2007 B2
7383728 Noble et al. Jun 2008 B2
7500853 Bevirt et al. Mar 2009 B2
7553159 Arnal et al. Jun 2009 B1
7594815 Toly Sep 2009 B2
7665995 Toly Feb 2010 B2
7725279 Luinge et al. May 2010 B2
7761139 Tearney et al. Jul 2010 B2
7783441 Nieminen et al. Aug 2010 B2
7857626 Toly Dec 2010 B2
7912662 Zuhars et al. Mar 2011 B2
7945311 McCloy et al. May 2011 B2
8007281 Toly Aug 2011 B2
8040127 Jensen Oct 2011 B2
8072606 Chau et al. Dec 2011 B2
8131342 Anderson Mar 2012 B2
8165844 Luinge et al. Apr 2012 B2
8203487 Hol et al. Jun 2012 B2
8208716 Choi et al. Jun 2012 B2
8226610 Edwards et al. Jul 2012 B2
8250921 Nasiri et al. Aug 2012 B2
8257250 Tenger et al. Sep 2012 B2
8277411 Gellman Oct 2012 B2
8319182 Brady et al. Nov 2012 B1
8342853 Cohen Jan 2013 B2
8351773 Nasiri et al. Jan 2013 B2
8382485 Bardsley Feb 2013 B2
8403888 Gaudet Mar 2013 B2
8408918 Hu et al. Apr 2013 B2
8409140 Ejlersen et al. Apr 2013 B2
8437833 Silverstein May 2013 B2
8442619 Li et al. May 2013 B2
8450997 Silverman May 2013 B2
8467855 Yasui Jun 2013 B2
8525990 Wilcken Sep 2013 B2
8535062 Nguyen Sep 2013 B2
8556635 Toly Oct 2013 B2
8632498 Rimsa et al. Jan 2014 B2
8655622 Yen et al. Feb 2014 B2
8689801 Ritchey et al. Apr 2014 B2
8764449 Rios et al. Jul 2014 B2
8818751 Van Acht et al. Aug 2014 B2
8945147 Ritchey et al. Feb 2015 B2
8961189 Rios et al. Feb 2015 B2
8994366 Ashe Mar 2015 B2
9017080 Placik Apr 2015 B1
9024624 Brunner May 2015 B2
9031314 Clausen et al. May 2015 B2
9251721 Lampotang et al. Feb 2016 B2
9439653 Avneri et al. Sep 2016 B2
9443446 Rios et al. Sep 2016 B2
9456766 Cox et al. Oct 2016 B2
9460638 Baker et al. Oct 2016 B2
9486162 Zhuang et al. Nov 2016 B2
9626805 Lampotang et al. Apr 2017 B2
9792836 Rios et al. Oct 2017 B2
9922578 Foster et al. Mar 2018 B2
20020168618 Anderson et al. Nov 2002 A1
20030031993 Pugh Feb 2003 A1
20030055380 Flaherty Mar 2003 A1
20030108853 Chosack et al. Jun 2003 A1
20030114842 DiStefano Jun 2003 A1
20040009459 Anderson et al. Jan 2004 A1
20040092878 Flaherty May 2004 A1
20040118225 Wright Jun 2004 A1
20040175684 Kaasa et al. Sep 2004 A1
20050057243 Johnson et al. Mar 2005 A1
20050084833 Lacey et al. Apr 2005 A1
20050181342 Toly Aug 2005 A1
20060084050 Haluck Apr 2006 A1
20060194180 Bevirt et al. Aug 2006 A1
20060264745 Da Silva Nov 2006 A1
20070003917 Kitching et al. Jan 2007 A1
20070197954 Keenan Aug 2007 A1
20070238981 Zhu Oct 2007 A1
20080097378 Zuckerman Apr 2008 A1
20080107305 Vanderkooy et al. May 2008 A1
20080138781 Pellegrin et al. Jun 2008 A1
20080176198 Ansari et al. Jul 2008 A1
20090046140 Lashmet Feb 2009 A1
20090061404 Toly Mar 2009 A1
20090081619 Miasnik Mar 2009 A1
20090081627 Ambrozio Mar 2009 A1
20090123896 Hu et al. May 2009 A1
20090142741 Ault et al. Jun 2009 A1
20090208915 Pugh Aug 2009 A1
20090263775 Ullrich Oct 2009 A1
20090265671 Sachs et al. Oct 2009 A1
20090278791 Slycke et al. Nov 2009 A1
20090305213 Burgkart et al. Dec 2009 A1
20090326556 Diolaiti Dec 2009 A1
20100030111 Perriere Feb 2010 A1
20100071467 Nasiri et al. Mar 2010 A1
20100099066 Mire et al. Apr 2010 A1
20100120006 Bell May 2010 A1
20100167249 Ryan Jul 2010 A1
20100167254 Nguyen Jul 2010 A1
20100179428 Pederson et al. Jul 2010 A1
20100273135 Cohen Oct 2010 A1
20110027767 Divinagracia Feb 2011 A1
20110046915 Hol et al. Feb 2011 A1
20110071419 Liu et al. Mar 2011 A1
20110202012 Bartlett Aug 2011 A1
20110207102 Trotta et al. Aug 2011 A1
20110236866 Psaltis et al. Sep 2011 A1
20110257596 Gaudet Oct 2011 A1
20110269109 Miyazaki Nov 2011 A2
20110294103 Segal et al. Dec 2011 A1
20110301500 Maguire et al. Dec 2011 A1
20120015336 Mach Jan 2012 A1
20120026307 Price Feb 2012 A1
20120034587 Toly Feb 2012 A1
20120130269 Rea May 2012 A1
20120148994 Hori et al. Jun 2012 A1
20120171652 Sparks et al. Jul 2012 A1
20120214144 Trotta et al. Aug 2012 A1
20120219937 Hughes Aug 2012 A1
20120238875 Savitsky et al. Sep 2012 A1
20120251987 Huang et al. Oct 2012 A1
20120280988 Lampotang et al. Nov 2012 A1
20120282583 Thaler et al. Nov 2012 A1
20120301858 Park et al. Nov 2012 A1
20120323520 Keal Dec 2012 A1
20130018494 Amini Jan 2013 A1
20130046489 Keal Feb 2013 A1
20130100256 Kirk et al. Apr 2013 A1
20130131503 Schneider et al. May 2013 A1
20130179110 Lee Jul 2013 A1
20130189658 Peters et al. Jul 2013 A1
20130197845 Keal Aug 2013 A1
20130198625 Anderson Aug 2013 A1
20130203032 Bardsley Aug 2013 A1
20130236872 Laurusonis et al. Sep 2013 A1
20130267838 Fronk et al. Oct 2013 A1
20130296691 Ashe Nov 2013 A1
20130323700 Samosky Dec 2013 A1
20140102167 MacNeil et al. Apr 2014 A1
20140120505 Rios et al. May 2014 A1
20140121636 Boyden May 2014 A1
20140162232 Yang et al. Jun 2014 A1
20140212864 Rios et al. Jul 2014 A1
20140240314 Fukazawa et al. Aug 2014 A1
20140244209 Lee et al. Aug 2014 A1
20140260704 Lloyd et al. Sep 2014 A1
20140278183 Zheng et al. Sep 2014 A1
20140278205 Bhat et al. Sep 2014 A1
20140278215 Keal et al. Sep 2014 A1
20150079545 Kurtz Mar 2015 A1
20150182706 Wurmbauer et al. Jul 2015 A1
20150206456 Foster et al. Jul 2015 A1
20150262512 Rios et al. Sep 2015 A1
20150352294 O'Mahoney et al. Dec 2015 A1
20150379899 Baker et al. Dec 2015 A1
20150379900 Samosky et al. Dec 2015 A1
20160000411 Raju et al. Jan 2016 A1
20160001016 Poulsen et al. Jan 2016 A1
20160155363 Rios et al. Jun 2016 A1
20160193428 Perthu Jul 2016 A1
20160213856 Despa et al. Jul 2016 A1
20160293058 Gaillot et al. Oct 2016 A1
20170136185 Rios et al. May 2017 A1
20170178540 Rios et al. Jun 2017 A1
20170186339 Rios et al. Jun 2017 A1
20170245943 Foster et al. Aug 2017 A1
20170252108 Rios et al. Sep 2017 A1
20170254636 Foster et al. Sep 2017 A1
20180012516 Rios et al. Jan 2018 A1
20180197441 Rios et al. Jul 2018 A1
20180211562 Rios et al. Jul 2018 A1
20180240365 Foster et al. Aug 2018 A1
Foreign Referenced Citations (71)
Number Date Country
2011218649 Sep 2011 AU
2015255197 Dec 2015 AU
2865236 Sep 2013 CA
2751386 Jan 2006 CN
201213049 Mar 2009 CN
102708745 Oct 2012 CN
104703641 Jun 2015 CN
105118350 Dec 2015 CN
205541594 Aug 2016 CN
106710413 May 2017 CN
107067856 Aug 2017 CN
202005021286 Sep 2007 DE
0316763 May 1989 EP
1504713 Feb 2005 EP
1723977 Nov 2006 EP
1884211 Feb 2008 EP
2425416 Mar 2015 EP
2538398 Aug 2015 EP
2756857 May 2016 EP
2288686 Jul 1997 GB
2309644 Aug 1997 GB
2508510 Jun 2014 GB
201202900 Nov 2013 IN
2013-037088 Feb 2013 JP
52-21420 Jun 2013 JP
2013-250453 Dec 2013 JP
2014-153482 Aug 2014 JP
2012009379 Feb 2012 KR
20140047943 Apr 2014 KR
201207785 Feb 2012 TW
WO 0053115 Sep 2000 WO
WO 02083003 Oct 2002 WO
WO 2005083653 Sep 2005 WO
WO 2007109540 Sep 2007 WO
WO 2008005315 Jan 2008 WO
WO 2008122006 Oct 2008 WO
WO 2009023247 Feb 2009 WO
WO 2009094646 Jul 2009 WO
WO 2009141769 Nov 2009 WO
WO 2011043645 Apr 2011 WO
WO 2011127379 Oct 2011 WO
WO 2011127379 Oct 2011 WO
WO 2011136778 Nov 2011 WO
WO 2012075166 Jun 2012 WO
WO 2012088471 Jun 2012 WO
WO 2012101286 Aug 2012 WO
WO 2012106706 Aug 2012 WO
WO 2012155056 Nov 2012 WO
WO 2013025639 Feb 2013 WO
WO 2013064804 May 2013 WO
WO 2014070799 May 2014 WO
WO 2014100658 Jun 2014 WO
WO 2015109251 Jul 2015 WO
WO 2015110327 Jul 2015 WO
WO 2015136564 Sep 2015 WO
WO 2015138608 Sep 2015 WO
WO 2015171778 Nov 2015 WO
WO 2016089706 Jun 2016 WO
WO 2016123144 Aug 2016 WO
WO 2016162298 Oct 2016 WO
WO 2016191127 Dec 2016 WO
WO 2017048929 Mar 2017 WO
WO 2017048931 Mar 2017 WO
WO 2017050781 Mar 2017 WO
WO 2017060017 Apr 2017 WO
WO 2017070391 Apr 2017 WO
WO 2017151441 Sep 2017 WO
WO 2017151716 Sep 2017 WO
WO 2017151963 Sep 2017 WO
WO 2017153077 Sep 2017 WO
WO 2018136901 Jul 2018 WO
Non-Patent Literature Citations (46)
Entry
“B-Smart disposable manometer for measuring peripheral nerve block injection pressures”, Bbraun USA, 2016, in 4 pages.
Bergamini et al., “Estimating Orientation Using Magnetic and Inertial Sensors and Different Sensor Fusion Approaches: Accuracy Assessment in Manual and Locomotion Tasks”, Oct. 2014, 18625-18649.
Correa et al., “Virtual Reality Simulator for Dental Anesthesia Training in the Inferior Alveolar Nerve Block,” Journal of Applied Oral Science, vol. 25, No. 4, Jul./Aug. 2017, pp. 357-366.
“EPGL Medical Invents Smart Epidural Needle, Nerve Ablation and Trigger Point Treatment Devices: New Smart Medical Devices Will Give Physicians Advanced Situational Awareness During Critical Procedures,” EPGL Medical, dated Aug. 12, 2013, in 3 pages. Retrieved from http://www.prnewswire.com/news-releases/epgl-medical-invents-smart-epidural-needle-nerve-ablation-and-trigger-point-treatment-devices-219344621.html#.
“The EpiAccess System: Access with Confidence”, EpiEP Epicardial Solutions, dated 2015, in 2 pages.
Garg et al., “Radial Artery cannulation-Prevention of pain and Techniques of cannulation: review of literature,” The Internet Journal of Anesthesiology, vol. 19, No. 1, 2008, in 6 pages.
Helen, L., et al. “Investigation of tissue bioimpedance using a macro-needle with a potential application in determination of needle-to-nerve proximity”, Proceedings of the 8th International Conference on Sensing Technology, Sep. 2-4, 2014, pp. 376-380.
International Search Report and Written Opinion for Appl. No. PCT/US2015/062798, dated Mar. 14, 2016, 12 pages.
Jafarzadeh et al., “Design and construction of an automatic syringe injection pump,” Pacific Science Review A: Natural Science and Engineering 18, 2016, in 6 pages.
Kalvoy, H., et al., “Detection of intraneural needle-placement with multiple frequency bioimpedance monitoring: a novel method”, Journal of Clinical Monitoring and Computing, Apr. 2016, 30(2):185-192.
Kettenbach et al., “A robotic needle-positioning and guidance system for CT-guided puncture: Ex vivo results,” Minimally Invasive Therapy and Allied Technologies, vol. 23, 2014, in 8 pages.
Ladjal, et al., “Interactive Cell Injection Simulation Based on 3D Biomechanical Tensegrity Model,” 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, in 9 pages.
Lee et al., “An Intravenous Injection Simulator Using Augmented Reality for Veterinary Education and its Evaluation,” Proceedings of the 11th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry, Dec. 2-4, 2012, in 4 pages.
MPU-9150, Product Specification, Revision 4.3, 50 pp., Sep. 18, 2013, http//www.invensense.com.
PST Iris Tracker, Plug and Play, 3D optical motion tracking specifications, 1 p., Dec. 4, 2014, www.pstech.com.
Truinject Corp., “Smart Injection Platform,” http://truinject.com/technology/, in 3 pages.
Afzal, et al., “Use of Earth's Magnetic Field for Mitigating Gyroscope Errors Regardless of Magnetic Perturbation,” Sensors 2011, 11, 11390-11414; doi:10.3390/s111211390, 25 pp. published Nov. 30, 2011.
Andraos et al., “Sensing your Orientation” Address 2007, 7 pp.
Arms, S.W., “A Vision for Future Wireless Sensing Systems,” 44 pp., 2003.
Bao, et al., “A Novel Map-Based Dead-Reckoning Algorithm for Indoor Localization”, J. Sens. Actuator Netw, 2014, 3, 44-63; doi:10.3390/jsan3010044, 20 pp., Jan. 3, 2014.
Benbasat et al., “An Inertial Measurement Framework for Gesture Recognition and Applications,” I. Wachsmuth and T. Sowa (Eds.): GW 2001, Springer-Verlag Berlin Heidelberg, 12 pp., 2002.
Brunet et al., “Uncalibrated Stereo Vision,” A CS 766 Project, University of Wisconsin—Madison, 6 pp, Fall 2004, http://pages.cs.wisc.edu/˜chaol/cs766/.
Brunet et al., “Uncalibrated Stereo Vision,” A CS 766 Project, University of Wisconsin—Madison, 13 pp, Fall 2004, http://pages.cs.wisc.edu/˜chaol/cs766/.
Desjardins, et al. “Epidural needle with embedded optical fibers for spectroscopic differentiation of tissue: ex vivo feasibility study”, Biomedical Optics Express, vol. 2(6): pp. 1-10. Jun. 2011.
Esteve, Eric, “Why do you need 9D Sensor Fusion to support 3D orientation?”, 5 pp., Aug. 23, 2014, https://www.semiwiki.com/forum/content/3794-why-do-you-need-9d-sensor-fusion-support-3d-orientation.html.
Grenet et al., “spaceCoder: a Nanometric 3D Position Sensing Device,” CSEM Scientific & Technical Report, 1 page, 2011.
Inition. Virtual Botox: Haptic App Simulated Injecting the Real Thing. Retrieved from http://inition.co.uk/case-study/virtual-botox-haptic-app-simulates-injecting-real-thing.
Madgwick, Sebastian O.H., “An efficient orientation filter for intertial and inertial/magnetic sensor arrays,” 32 pp., Apr. 30, 2010.
Microsoft, “Integrating Motion and Orientation Sensors,” 85 pp., Jun. 10, 2013.
Miller, Nathan L., Low-Power, Miniature Inertial Navigation System with Embedded GPS and Extended Kalman Filter, Microstrain, Inc., 12 pp., 2012.
MPU-9150 9-Axis Evaluation Board User Guide, Revision 1.0, 15 pp., May 11, 2011, http//www.invensense.com.
MPU-9150, Register Map and Descriptions, Revision 4.2, 52 pp., Sep. 18, 2013, http//www.invensense.com.
PCT International Search Report and Written Opinion of the International Searching Authority, dated Apr. 29, 2015, issued in International Application No. PCT/US2015/011845, in the Application of Truinject Medical Corp.
PST Iris Tracker, Instruction Manual, 3D optical motion tracking specifications, 42 pp., Jul. 27, 2012, www.pstech.com.
Search and Examination Report for Appl. No. GB1319193.7 in 6 pages dated Mar. 28, 2014.
Search and Examination Report, dated Feb. 23, 2015, by the UK Intellectual Property Office, in the matter of Application No. GB1414892.8 of Trulnject Medical Corporation, 6 pp.
Search Report and Written Opinion for Appl. No. PCT/US2013/067352 dated Mar. 31, 2014 in 10 pages.
Struik, Pieter, “Ultra Low-Power 9D Fusion Implementation: A Case Study,” Synopsis, Inc., 7 pp., Jun. 2014.
Sutherland, et al. “An Augmented Reality Haptic Training Simulator for Spinal Needle Procedures,” IEEE, 2011.
Varesano, Fabio, “FreelMU: An Open Hardware Framework for Orientation and Motion Sensing,” Dipartimento di Informatica, Univ. Torino, http://www.di.unito.it/˜varesano, Mar. 20, 2013, 10 pp.
Varesano, Fabio, “Prototyping Orientation and Motion Sensing Objects with Open Hardware,” Dipartimento di Informatica, Univ. Torino, http://www.di.unito.it/˜varesano, Feb. 10 2013, 4 pp.
“A beginner's guide to accelerometers,” Dimension Engineering LLC, accessed Jul. 11, 2018, in 2 pages, https://www.dimensionengineering.com/info/accelerometers.
“Accelerometer: Introduction to Acceleration Measurement,” Omega Engineering, Sep. 17, 2015, 3 pages, https://www.omega.com/prodinfo/accelerometers.html.
Poyade et al., “Development of a Haptic Training Simulation for the Administration of Dental Anesthesia Based Upon Accurate Anatomical Data,” Conference and Exhibition of the European Association of Virtual and Augmented Reality, 2014, in 5 pages.
Quio, “Smartinjector,” available at https://web.archive.org/web/20161017192142/http://www.quio.com/smartinjector, Applicant believes to be available as early as Oct. 17, 2016, in 3 pages.
State Electronics, “Sensofoil Membrane Potentiometer,” Product Information and Technical Specifications, in 6 pages.
Related Publications (1)
Number Date Country
20160155363 A1 Jun 2016 US
Provisional Applications (1)
Number Date Country
62085935 Dec 2014 US