The invention relates to an injection valve comprising a transmission unit.
Existing disclosures, for example, WO 2008/003347 A1, U.S. Pat. No. 6,575,138 B2 and U.S. Pat. No. 6,298,829, disclose injection valves in which a hydraulic transmission unit is provided between an actuator and the nozzle needle.
In some existing disclosures, the deflection of the actuator is transmitted into a corresponding deflection of the nozzle needle.
In one embodiment, an injection valve for injecting fuel into an internal combustion engine includes an actuator, a nozzle needle associated with a sealing seat, and a transmission unit that establishes an effective connection between the actuator and the nozzle needle. The transmission unit has a pressure chamber bounded by two movable pistons which are guided in a movable pot, wherein the first piston is guided through a bottom of the pot with a first sealing gap, wherein the second piston is guided in a sleeve-shaped section of the pot with a second sealing gap, and wherein one piston is operatively connected to the nozzle needle and the other piston is operatively connected to the actuator.
In a further embodiment, the first piston bounds the pressure chamber with a larger end face than an annular face, adjoining the first piston, of the pot. In a further embodiment, a spring element is arranged in the pressure chamber and is inserted between the second piston and the bottom of the pot. In a further embodiment, the second piston has a sleeve-shaped pot shape, wherein an end of the nozzle needle projects into the sleeve-shaped section of the second piston, wherein the nozzle needle is attached in a positively locking fashion to the pot via a connecting part. In a further embodiment, the connecting part is embodied in the form of a partial ring plate which is open on one side and which comprises in a positively locking fashion a notch of the nozzle needle in a central region and is connected to the pot in an external region. In a further embodiment, the sleeve-shaped section of the second piston has free-standing wall sections in a lower end region, wherein the wall sections are guided through the cutouts and rest on a stop face. In a further embodiment, the connecting part has a partial-ring-shaped web whose external diameter corresponds substantially to the internal diameter of the sleeve-shaped section of the pot, and wherein the sleeve-shaped section of the pot is plugged over the web.
Example embodiments will be explained in more detail below with reference to figures, in which:
Certain embodiments of the present disclosure provide an improved transmission unit for an injection valve.
In some embodiments, the transmission unit has a pressure chamber which is bounded by two movable pistons, wherein the movable pistons are guided in a movable pot. A first piston is guided through a bottom of the pot with a first sealing gap. The second piston is guided in a sleeve section of the pot with a second sealing gap. One of the pistons is operatively connected to the nozzle needle and the other piston is operatively connected to the actuator. On the basis of this embodiment, a robust transmission unit is made available which, for a brief activation, transmits the deflection of the actuator directly into a deflection of the nozzle needle and additionally permits, via the sealing gaps, a chronologically slow change in the volume of the pressure chamber.
In one embodiment, the second piston is bound to the sealing chamber with a larger end face and an annular face of the bottom of the pot through which the first piston is guided. In this way, the deflection of the actuator is transmitted into a relatively large deflection of the nozzle needle. In this way, for example small deflections of a piezoelectric actuator can be converted into a sufficiently large deflection of the nozzle needle.
In a further embodiment, a spring element is arranged in the sealing chamber, wherein the spring element is clamped in between the second piston and the bottom of the pot. In this way it is ensured that the second piston is in abutment with a stop of the injection valve and the pressure chamber has a maximum volume. The operative connection between the actuator and the nozzle needle is thereby defined precisely.
In a further embodiment, the second piston has a sleeve-shaped pot shape, wherein an end of the nozzle needle projects into the sleeve-shaped section of the second piston. The nozzle needle is connected in a positively locking fashion to the pot via a connecting part. This permits simple attachment of the nozzle needle to the pot, wherein the installation space is also reduced.
In a further embodiment, the connecting element is embodied in the form of a partial ring plate which is open on one side and comprises a notch of the nozzle needle in a central region and is connected to the pot in an external region, in particular welded thereto. In this way, simple and reliable attachment of the nozzle needle to the pot is made possible.
In a further embodiment, the ring element has cutouts, wherein the sleeve-shaped section of the second piston has free-standing wall sections in a lower end region, wherein the wall sections are guided through the cutouts and rest on a stop face. Owing to this embodiment, reliable support of the second piston on the stop face is possible, and in addition an operative connection between the nozzle needle and the pot is made available with little installation space.
In a further embodiment, the connecting part has a partial-ring-shaped web whose external diameter corresponds substantially to the internal diameter of the sleeve-shaped pot, wherein the sleeve-shaped wall of the pot is plugged onto the web and surrounds the web. This permits additional securement of the connecting part to the pot. In this way, the connection between the connecting part and the pot becomes less sensitive to mechanical influences.
The actuator 7 can be embodied, for example, as a piezo-electric actuator or as a magnetic actuator. As a result of electrical energization of the actuator 7, the actuator 7 may become longer and may therefore act on the transmission unit 6. The transmission unit 6 may be embodied in such a way that the deflection of the actuator 7 is transmitted to the nozzle needle 5. The deflection of the actuator 7 in the direction of the nozzle needle 5 may be advantageously converted into an opposing movement of the nozzle needle 5 in the direction of the actuator 7 using the transmission unit 6.
The second piston 15 may be seated with lower edge faces 27 on an upper side of the stop plate 18. The upper side of the stop plate 18 may constitute a stop face for the second piston 15.
The first piston 12 may bound a pressure chamber 24 with an end face 28. The pot 14 may bound the pressure chamber 24 with an annular face 29, wherein the annular face 29 may be formed on the inner side of the bottom 13, adjacent to the first piston 12.
A spring element 21 may be clamped in between an inner side of the bottom 13 and a step on the second piston 14. The first piston 12 may be guided through the bottom 13 via a first sealing gap 22. The first sealing gap 22 may be of a magnitude in the range from 3 to 15 μm, in particular in the region of 8 μm. The second piston 15 may be spaced apart from the inner wall of the sleeve 14 by means of a second sealing gap 23. The second sealing gap 23 may be of a magnitude from 3 to 15 μm, in particular in the range of 8 μm. The first piston 12, the sleeve 14 and the second piston 15 bound the pressure chamber 24. The pressure chamber 24 may be filled with fuel and is connected via the sealing gaps 22, 23 to the interior of the housing 2, which is also filled with fuel. Fuel with a low pressure may be arranged between the housing 2 and the transmission unit 6. A second spring element 26 may be clamped in between an underside of the stop plate 18 and a second step 25 on the nozzle needle 5. The second spring element 26 may prestress the nozzle needle 5 in the direction of the sealing seat 10. The second spring element 26 may have a larger spring force than the spring element 21. The annular face 29 may be advantageously smaller than the end face 28. In particular, the annular face 29 may be half as large as the end face 28. The surface area ratio between the annular face 29 and the end face 28 may define a transmission ratio between the deflection of the actuator and of the nozzle needle and can be correspondingly selected.
In some embodiments, the transmission unit 6 according to
If the actuator 7 is then deflected, for example by energization, the actuator 7 presses the first piston 12 downward in the direction of the nozzle needle 5, since the actuator 7 is supported in the upper region against the housing 2. As a result of this, the end face 28 forces fuel in the pressure chamber 24, as a result of which the increased fuel pressure acts on the annular face 29, and the pot 14 moves upward counter to the direction of movement of the first piston 12. The pot 14 is connected via the connecting part 20 to the nozzle needle 5, with the result that the nozzle needle 5 is lifted off from the assigned sealing seat 10 by the movement of the pot 14. As a result, fuel can be injected via the injection holes 9. In this context, the second spring element 26 is compressed. In addition, the spring element 21 is deflected since the distance between the step on the second piston 15 and the annular face 29 increases. As stated above, the volume of the pressure chamber 24 is substantially constant during this process.
In order to end the injection, the increase in length of the actuator 7 is shortened, with the result that the first piston 12 is moved upward out of the pressure chamber 24, the pressure in the pressure chamber 24 decreases. Consequently, the pot 14 is moved downward in the direction of the stop plate 18, with the result that the nozzle needle 5 moves again into abutment on the sealing seat 10 with the sealing face 11. The injection is therefore interrupted.
The pressure chamber 24 may be supplied with fuel via the sealing gaps 22, 23, said fuel being present in the housing of the injection valve. The pressure chamber 24 may therefore always be filled with fuel. The sealing gaps 22, 23 may be selected in such a way that the sealing gaps 22, 23 are sealed for chronologically short increases in pressure which occur during injection processes. Chronologically longer lasting pressure differences may lead to the flowing in or flowing out of fuel in or out of the pressure chamber via the sealing gaps, such that the volume of the pressure chamber can change.
For the purpose of mounting, the connecting part 20 may be inserted upward with the web 33 into the notch 19, as is illustrated in the right-hand region of
Number | Date | Country | Kind |
---|---|---|---|
10 2009 024 595.2 | Jun 2009 | DE | national |
This application is a U.S. National Stage Application of International Application No. PCT/EP2010/058132 filed Jun. 10, 2010, which designates the United States of America, and claims priority to German Application No. 10 2009 024 595.2 filed Jun. 10, 2009, the contents of which are hereby incorporated by reference in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/058132 | 6/10/2010 | WO | 00 | 3/5/2012 |