The field of this invention is valves for subterranean use that are actuated with an indexing mechanism and more particularly flapper type valves actuated with pressure cycles on a plug that can be removed after use.
Various valve designs used in the past have incorporated sleeves indexed by j-slot devices to selectively align and misalign ports. In one example the ball that lands on a seat to allow application of pressure cycles to operate the j-slot is blown through the seat after a change in valve position. This is illustrated in U.S. Pat. No. 7,416,029. Another device is in essence a sliding sleeve that allows flow uphole and the sleeve, which is mounted to a j-slot, can be cycled from uphole as flow from uphole acts to close a flapper on top of the sleeve for pressure cycling. This is shown in US Publication 2008/0196898.
Other designs use a j-slot to unlock a lock in conjunction with a plug that can then disappear as illustrated in U.S. Pat. Nos. 5,765,641; 6,119,783 and 6,026,903. Other designs use relatively movable mandrel components where cycles of picking up and setting down weight actuate a j-slot to operate a flapper, as shown in U.S. Pat. No. 4,458,762. Some designs use a j-slot to unlock a lock so that a flapper can then operate. A plug is landed on a seat which then is dissolved. Some examples of combinations of some of these features are U.S. Pat. Nos. 7,270,191; 6,904,975 and US Publication 2009/0242199.
Other designs provide a flowpath constriction to create differential pressure on a flow tube to open a flapper. These designs such as the MC Injection Valves from Halliburton and the A Series Injection Valve from Schlumberger restrict access through the valve for advancing other tools. The Model J Wireline Retrievable Injection Valve from Baker Hughes opens on a predetermined flow through a restriction. Some hydraulically operated safety valves had a feature to lock a flapper open after the flapper was displaced with a flow tube driven by a hydraulic piston. In this design shown in U.S. Pat. No. 6,902,006 the flame holding the flapper was itself shifted when the flapper was open to catch the edge of the flapper in a top groove of a sleeve below. Yet a few other applications that use flow bore restrictions to create a force to move a tube to open a flapper are U.S. Ser. Nos. 12/433,134, filed on Apr. 30, 2009 entitled Innovative Flow Tube, 12/469,310, filed on May 20, 2009, entitled Flow-Actuated Actuator, and 12/469,272, filed on May 20, 2009, entitled Flow-Actuated Actuator and Method.
The present invention deals with flapper type valves with a preferred use in injection service. The design provides a way of operating the flapper without control lines. In deep applications there will be high hydrostatic pressure in the control line that would have to be offset with a very large return spring. While a dual control line system can offset this hydrostatic effect in deep applications there is additional expense and operational issues from doubling up the control lines and running them with a string into the subterranean location. In the preferred embodiment there is no need for control lines. A flapper is operated by a sleeve that responds to pressure cycles against a seated ball or plug to push the flapper open after a predetermined number of cycles. The ball, plug or other object is removed from its blocking position on a seat preferably by dissolving it so that flow can commence. The preferred application is injection service where water, salt water, chemicals, CO2 or steam can be the flowing fluid. When it is desired to close the flapper another object can be landed in the same seat and the cycling with pressure repeated to allow a return spring to raise the flow tube so that a torsion spring on the flapper pivot can move the flapper to the closed position against its seat. As few as a single application and removal of pressure cycle can be used to change the flapper position between open and closed.
In an alternative embodiment an actuation sleeve pushes the flapper open as well as engaging or contacting a counter sleeve below that is engaged to a j-slot. On release of pressure a return spring on the counter sleeve raises it to retain the flapper in the open position while a separate return spring biases the actuation sleeve up. A second ball or other object landed in the seat of the actuation sleeve once again displaces the actuation sleeve against the counter sleeve. This time the counter sleeve is held against its return spring by the j-slot so that on release of pressure the torsion spring on the flapper allows the flapper to pivot closed when the actuation sleeve is also pushed up by its return spring. After a use of either the first or the second object, either is removed preferably by dissolving to get either object out of the flow path.
The dissolving of the object can occur by fluids such as water, saltwater in the wellbore, acid added to the wellbore, or by other reactive or dissolving agents present or added to the wellbore. Other ways to fail the object to get it out of the flow path are also contemplated.
Those skilled in the art will better appreciate the scope of the invention from a review of the description of the preferred embodiment and the associated drawings while recognizing that the full scope of the invention is determined by the appended claims.
A flapper valve preferably used in injection application in deep subterranean locations has an actuating sleeve with a seat to accept an object. A j-slot connects the actuation sleeve movement to the housing so that with an object on the seat and an applied pressure cycle the sleeve moves the flapper to the open position. The plug is dissolved and the injection begins. The plug can have an opening so as to allow continuous injection flow as the flapper is operated. Closing the flapper involves a second object on the same seat and a pressure cycle so that a spring can push the sleeve away from the flapper to allow a torsion spring on the flapper to close it. In an alternative embodiment an actuation sleeve pushes a counter sleeve that is movable through a j-slot. The first object on the actuation sleeve pushes both sleeves such that removal of pressure allows the now open flapper to be retained in the open position and the object to be dissolved or otherwise removed.
Dropping the object 28 onto seat 30 and applying pressure moves the sleeve 24 axially and initially without rotation as the long passage 36 with pin 32 extending into it guides the axial movement. When the pin advances to passage 40 there is rotation of the sleeve 24 as the pin enters passage 42 and remains there as long as pressure is held against the object 28. When the pressure is removed in passage 12 on the object 28 the sleeve 24 reverses direction and resumes rotation as the pin 32 rides in passage 44 on the way to passage 38. This is the
The object 28 is then removed from the seat 30 in one of a variety of ways such as dissolving, chemical reaction, melting, or being ejected through the seat 30. Note that the sleeve 24 has been pushed down to contact the flapper 14 and rotate it 90 degrees so that in
Those skilled in the art will appreciate that a single application and removal of pressure cycle has gotten the flapper 14 to go from closed to open and that the landing of a second object (not shown) on seat 30 followed by a pressure cycle of application and removal of pressure will get the pin 32 into the next long passage 36 to allow the sleeve 24 to rise up and away from the flapper 14 so that the torsion spring 18 can close the flapper 14 against its seat 20. While the j-slot 34 is designed for a single cycle of pressure application and removal to move the flapper 14 the j-slot 34 can be designed for multiple cycles before the flapper moves. Since the second object (not shown) lands on the same seat 30, it can have the same shape as the object 28.
As an option to avoid stopping injection when trying to close the flapper while landing a second object (not shown) on seat 30, a small passage 46 (illustratively shown on object 28 but is actually used in the second object that is not shown) is put in so that there is some injection flow through it but the pressure difference across the object is sufficient to move the sleeve 24 so that it can be raised when pressure is removed so that the flapper 14 can close. If such a passage is used it is preferred that the object shape not be round but instead be a cylindrical plug for example so that the passage 46 is in fluid communication with the passage 12 when the object (not shown) lands on seat 30 as the second landed object.
Those skilled in the art will appreciate that the device eliminated the need for a hydraulic control system including control lines and a piston to move the sleeves for operating the flapper. The springs in the design simply offset the weight of the sleeve that they bias independent of the depth of the application. The passage is cleared after the operation of the flapper so that preferably injection can take place with the flapper held open. A second object can be used to release the flapper so it can close. A passage in the object can be optionally provided to continue injection flow with the object being seated. Dissolving the object with an introduced fluid is the preferred way to reopen the flowpath.
The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below: