Long standing and difficult problems with alternative fuels such as natural gas and various landfill fuels and mixtures that may be derived from anaerobic processes such as thermal dissociation, endothermic reformation, and/or digestion of sewage, garbage, farm wastes, and forest slash include: chemical and physical property variability, fuel heating value variability, condensates such as water including acid, and other contaminates.
Modern engines and fuel systems are designed to operate with specific fuel characteristics. The variability in the above described, less than optimum sources of fuel have compromised or defeated various past attempts to provide satisfactory power, operational control, drivability, fuel economy, and emissions in instances that alternative fuels have been substituted for gasoline or diesel fuel in internal combustion engines. Even in instances in which elaborate compensations are made to overcome these problems for a specific fuel, when the properties of that fuel vary or if it is desired to switch to another fuel, the fuel system is generally unable to compensate for such large changes in fuel properties.
Accordingly, there is a need for fuel systems and methods for operating internal combustion engines on various, less than optimal fuels while maintaining satisfactory power, operational control, drivability, fuel economy, and emissions standards.
Non-limiting and non-exhaustive embodiments of the devices, systems, and methods, including the preferred embodiment, are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
The representative embodiments disclosed herein include fuel systems and methods that include fuel characterization. Characterizing less than optimum fuels with the addition of a combustion modifier agent, such as hydrogen, allows an engine and fuel system, which are designed to operate with a specific type of fuel, to adapt to other types and grades of fuel. Thus, the disclosed technology allows an engine to operate cleanly and efficiently on plentiful, very low cost, but otherwise poor quality fuel. In addition, the disclosed technology allows an engine to operate on multiple different fuel selections with wide variation in properties. Specific details of several embodiments of the technology are described below with reference to
Some aspects of the technology described below may take the form of or make use of computer-executable instructions, including routines executed by a programmable computer or controller. Those skilled in the relevant art will appreciate that aspects of the technology can be practiced on computer systems other than those described herein. Aspects of the technology can be embodied in a special-purpose computer or data processor, such as an engine control unit (ECU), engine control module (ECM), fuel system controller, ignition controller, or the like, that is specifically programmed, configured, or constructed to perform one or more computer-executable instructions consistent with the technology described below. Accordingly, the term “computer,” “processor,” or “controller,” as may be used herein, refers to any data processor and can include ECUs, ECMs, and modules, as well as Internet appliances and hand-held devices (including diagnostic devices, palm-top computers, wearable computers, cellular or mobile phones, multi-processor systems, processor-based or programmable consumer electronics, network computers, mini computers, and the like). Information handled by these computers can be presented on any suitable display medium, including a CRT display, LCD, or dedicated display device or mechanism (e.g., a gauge).
The technology can also be practiced in distributed environments, where tasks or modules are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules or subroutines may be located in local and remote memory storage devices. Aspects of the technology described below may be stored or distributed on computer-readable media, including magnetic or optically readable or removable computer disks, as well as distributed electronically over networks. Such networks may include, for example and without limitation, Controller Area Networks (CAN), Local Interconnect Networks (LIN), and the like. In particular embodiments, data structures and transmissions of data particular to aspects of the technology are also encompassed within the scope of the technology.
A mixing valve 110 combines the fuel and hydrogen in the appropriate proportions based on the type of fuel. For example and without limitation, in the case of natural gas, about one to 99 percent (five to ten percent being commonly adjusted concentrations) hydrogen may be added to the fuel at mixing valve 110 prior to being injected into engine 104 by injector 106. In this embodiment, ECU 112 controls the engine 104, injector 106, and mixing valve 110. The ECU adaptively determines the proportion of combustion modifier to add to the fuel based on the chemical and physical properties, fuel heating value, and contaminants contained in the fuel. As known in the art, the ECU also accounts for engine operating parameters such as load, emissions (e.g., oxygen sensor input), speed, throttle position, and ambient conditions, for example. The addition of combustion modifier in the appropriate proportion improves the combustion properties of the fuel. In other words, the fuel is characterized for improved combustion and engine performance. Therefore, the disclosed technology allows an engine to run on poor quality fuel by characterizing the fuel with combustion modifiers. Furthermore, the disclosed technology facilitates switching fuels (e.g., from diesel to natural gas) without modification to the engine or fuel system.
Although the fuel and combustion modifier agent are described above as gaseous components, liquid components and combinations of liquid and gaseous components may also be used according to the disclosed technology. Furthermore, other fuels may be used, such as gasoline, diesel, various landfill fuels and mixtures that may be derived from anaerobic processes such as thermal dissociation, endothermic reformation, and/or digestion of sewage, garbage, farm wastes, and forest slash. Moreover, other suitable combustion modifier agents may be used.
Injector-igniter 300 includes a body 302 having a middle portion 304 extending between a base portion 306 and a nozzle portion 308. The nozzle portion 308 is configured to at least partially extend through an engine wall or head 310 to inject and ignite fuel and/or combustion modifier agents at or near an interface 311 and/or within a combustion chamber 312. Injector-igniter 300 includes a core assembly 313 extending from the base portion 306 to the nozzle portion 308. The core assembly 313 includes an ignition conductor 314, an ignition insulator 316, and a valve 318.
The ignition conductor 314 includes an end portion 315 proximate to the interface 311 of combustion chamber 312 that includes one or more ignition features that are configured to generate an ignition event. The ignition conductor 314 also includes a first flow channel 324 extending longitudinally through a central portion of the ignition conductor 314. The ignition conductor 314 is coupled to a first terminal 327 that supplies ignition energy (e.g., voltage), as well as fuel or combustion modifier agents, to channel 324 to produce distribution pattern 362. The ignition conductor 314 therefore dispenses the fuel or combustion modifier into the combustion chamber 312 via the first flow channel 324. The first terminal 327 is also coupled to a first ignition energy source via a first ignition source conductor 329.
Injector 300 also includes a second flow channel 333 extending longitudinally through the body 302 from the inlet passages 351 (identified individually as 351a and 351b) located on base portion 306 to the nozzle portion 308. More specifically, the second flow channel 333 extends coaxially with the stem portion of the valve 318 and is spaced radially apart from the stem portion of the valve 318. A fuel or combustion modifier agent can enter the second flow channel 333 from the base portion 306 of the injector 300 to pass to the combustion chamber 312 via valve 318. The valve 318 includes a first end portion in the base portion 306 that engages an actuator or valve operator assembly 325. The valve 318 also includes a sealing end portion 319 that contacts a valve seal 321. The valve operator assembly 325 actuates the valve 318 relative to the ignition insulator 316 between an open position and a closed position. In the open position, the sealing end portion 319 of the valve 318 is spaced apart from the valve seal 321 to allow the fuel or combustion modifier to flow past the valve seal 321 and out of the nozzle portion 308 to produce distribution pattern 360.
The injector 300 further includes an insulated second terminal 352 at the middle portion 304 or at the base portion 306. The second terminal 352 is electrically coupled to the second ignition feature 350 via a second ignition conductor 354. For example, the second ignition conductor 354 can be a conductive layer or coating disposed on the ignition insulator 316. The second ignition feature 350 is coaxial and radially spaced apart from the end portion 315 of the ignition conductor 314.
In operation, the injector-igniter 300 is configured to inject one, two or more fuels and combustion modifier agents into the combustion chamber 312. The injector 300 is also configured to ignite the fuels and modifier agents as they exit the nozzle portion 308, and/or provide projected ignition within the combustion chamber. For example, a combustion modifier, such as hydrogen, can be introduced into the first flow passage 324 in the ignition conductor 314 via the first inlet passage 323 in the first terminal 327. A fuel, such as natural gas can be introduced into the base portion 306 via the second inlet passages 351a and/or 351b. Alternative various other fuels such as ammonia can be introduced through inlet 351a and methanol, carbon monoxide, acetylene, dimethyl ether or diethyl ether can be introduced through 351b. The fuel selections can travel from the second inlet passages 351 through the second flow channel 333 extending longitudinally adjacent to the valve 318. The second flow channel 333 extends between an outer surface of the valve 318 and an inner surface of the body insulator 342 of the middle portion 304 and the nozzle portion 308.
The first ignition source conductor 329 can energize or otherwise transmit ignition energy (e.g., voltage) to an ignition feature carried by the ignition conductor 314 at the nozzle portion 308. As such, the ignition conductor 314 can ionize and/or ignite oxidant supplied by operation of the combustion chamber and the fuel at the interface 311 with the combustion chamber 312. The second ignition conductor 354 conveys DC and/or AC voltage to adequately heat and/or ionize and rapidly propagate and thrust the fuel and/or modifier agents toward the combustion chamber. A second terminal 352 can provide the ignition energy to the second ignition feature 350 via the second ignition conductor 354.
In other embodiments, combustion modifiers such as oxygen or nitrous oxide may be introduced into the combustion chamber at selected times such as before, during, or after introduction of fuels and/or other combustion modifiers into the combustion chamber. Illustratively, oxygen can be introduced into a combustion chamber through a selected inlet such as 327 and at the same or other times a fuel selection such as natural gas or naphtha can be introduced through 351a and another combustion modifier such as hydrogen can be introduced through 351b.
The system 400 can further include a source 450 of radiant energy (e.g., waste heat) and/or additional reactants, which provides constituents to a passage 418 within the reactor vessel 411. For example, the heat/reactant source 450 can include a combustion chamber 451 that provides hot combustion/exhaust products 452 to the passage 418, as indicated by arrows A. A combustion products collector 471b collects combustion products exiting the reactor vessel 411 for further recycling and/or other uses. In a particular embodiment, the combustion products 452 can include hot carbon monoxide, water vapor, and/or other constituents. One or more transmissive surfaces 419 are positioned between the reaction zone 412 (which can be disposed annularly around the passage 418) and an interior region 420 of the passage 418. The transmissive surface 419 can accordingly allow radiant energy and/or a chemical constituent to pass radially outwardly from the passage 418 into the reaction zone 412, as indicated by arrows B. By delivering the radiant energy (e.g., heat) and/or chemical constituent(s) provided by the flow of combustion products 452, the system 400 can enhance the reaction taking place in the reaction zone 412, for example, by increasing the reaction zone temperature and/or pressure, and therefore the reaction rate, and/or the thermodynamic efficiency of the reaction.
The system 400 can further include a controller 490 that receives input signals 491 (e.g., from sensors) and provides output signals 492 (e.g., control instructions) based at least in part on the inputs 491. Accordingly, the controller 490 can include suitable processor, memory and I/O capabilities. Thus, controller 490 may be connected to an ECU, such as ECU 112 or 212 discussed above with respect to
Such fuel mixtures may be further heated for the reaction typical to the endothermic process shown in qualitative process reactions summarized by Equations 1 and 2 within passageway 456 and/or on anode 457 by heat additions from resistive or inductive heater element 462 and/or by resistive heat generation by application of a suitable hydrogen separation voltage applied between cathode 458 and anode 457 through the wall of tube 455.
HEAT+CxHy+XH2O→XCO+(X+0.5Y)H2 Equation 1
HEAT+2NH3+XH2O→NOx+4H2 Equation 2
Tube 455 is made of material selections that selectively and immediately transport hydrogen ions or protons that are produced and that enable pressure addition to the hydrogen by galvanic impetus or pumping according to the voltage gradient in tube 455 between cathode 458 and anode 457. Materials suitable for this purpose include graphene composites with silicon carbide and/or graphite along with various pervoskite compositions such as (SrCeO3) oxide provide suitable media for such processes. Gases within passageway 168 that are heated to temperatures such as 800 to 1500° C. including hydrogen produced by reactions such as shown by Equations 1 or 2, can be separated at increased rates by doped perovskite-type oxides. Such enhanced proton conductivity is provided with membranes such as doped SrCeO3, CaZrO3, BaCeO3 and/or SrZrO3. Suitable dopants include yttrium, ytterbium, europium, samarium, neodymium, and gadolinium.
Hydrogen separation by such oxide ceramics can be further enhanced by an increased pressure gradient and/or by application of a DC bias. In embodiments that apply a DC bias or galvanic drive in the hydrogen separation process, the hydrogen can permeate from a lower hydrogen pressure on one side of the membrane to a higher hydrogen partial pressure on the other side of membrane 455.
Catalysts may be utilized at a reaction surface to influence surface exchange reactions such as various steps or the processes of Equations 1 or 2, and the hydrogen permeation can be enhanced by coating the membrane with a surface catalyst to reduce the activation energy for the surface exchange reactions. In particular embodiments, the selected anode material is also a favorable catalyst. Representative anodes for galvanic hydrogen pumps include porous films of Ni, Ag, Pt, and Ni/BCY porous layer. In such hydrogen pumping processes, the gas mixture in the anode and cathode zones compartments can include steam or be humidified with water vapor to improve the proton conductivity of the electrolyte and suppress its electronic conductivity.
The hydrogen separation rate increases as the applied current is increased in accordance with Faraday's law. Depending upon factors such as reactant pressure and temperature, dopant selection, membrane thickness, and humidity, the applied galvanic voltage gradients can have values in a representative range of from about 0.2 VDC to about 20 VDC, which are sufficient to produce and deliver from armored tube 431 through conduit 464 substantially higher pressure hydrogen such as 700 Bar (10,300 PSI) over the pressure within 456. Such net galvanic voltage gradients may be produced by much higher voltage AC or DC electricity delivered to the reactor heater assembly 458-455-457.
Thus various mixtures of reactants and products such as H2 along with CO, CO2, H2O, NOx and/or N2 in the anode zone can be separated to provide pressurized H2 delivery at the cathode zone. Such hydrogen pressurization driven by an applied external voltage can move hydrogen from a suitably pressurized gas mixture including reactants and products to higher pressure for delivery for denser storage, enhanced capability of providing heat release upon expansion and/or higher activation capabilities for combustion modifier and injection purposes. The remaining pressurized gases delivered through conduit 466 that can provide expansive cooling can collected on the anode side of membrane 455 for injection and expansive cooling into the combustion chamber of an engine, e.g., before the piston reaches top dead center. Pressurized hydrogen can be delivered from the cathode side at higher pressure through conduit 464 into the combustion chamber after top dead center to produce an enhanced rate of combustion by expansive heating, in accordance with the Joule-Thompson heating effect, and thus perform increased combustion modifier activities such as expediting ignition and completion of combustion to produce higher fuel efficiency and reduction or elimination of objectionable emissions.
Other combustion modifiers such as oxides of nitrogen and/or oxygen serve as increased activity combustion modifiers and can be injected before TDC to cool the nitrogen (NOx) and/or oxygen that are injected into the combustion chamber can perform additionally gases undergoing compression to reduce back work for further improvement in brake mean effective pressure (BMEP) along with accelerated initiation and completion of combustion after TDC by the host engine.
Combustion modifiers such as oxygen, ozone, and/or oxides of nitrogen can be provided as enhanced activity agents and be more effective when presented as stratified oxidation agents within compressed air in a combustion chamber. Similarly presentation of stratified hydrogen within the combustion chamber which consumes such concentrated oxidants synergistically enhances the combustion modification capabilities of hydrogen and/or hydrogen donors such as ammonia or urea. Such capabilities are enabled by various combinations and permutations of combustion modifier presentations by the fuel injection and/or ignition embodiment 300.
substance+H2O→MO+H2+HEAT+PRESSURE Equation 3
In operation, a feed stock in a suitable form such as wire 506 is fed through a pressure seal 504 into one or more traction and activation pinch rollers such as 508, 512, and/or 514. This provides increased velocity of travel of the high surface-to-volume formed thin coil of aluminum 520 that may be corrugated and/or perforated by suitable forming and/or distressing rollers 512 and/or 514 to provide activation. The aluminum coil 520 is presented as a highly stressed and/or curled high surface-to-volume coil to steam that is produced by exothermic reaction heating of water that is supplied through fitting 522 to annular distributor 524 and injection ports such as 526.
System 500 can produce high pressure hydrogen for dense storage and/or to perform enhanced combustion modification purposes which is the product of intermittent cycles in which low pressure water is loaded and converted to high pressure hydrogen and/or by continuous delivery of high pressure water that is added through fitting 522. As a result of the exothermic reaction with aluminum, gaseous steam and hydrogen products are produced that occupy much greater volume than the liquid water and solid aluminum and further as a result of the greater number of moles of hydrogen per mole of aluminum consumed as shown in Equation 4.
Al+3H2O→Al(OH)3+1.5H2+HEAT Equation 4
Hydrogen thus produced is filtered by suitable filter media 518F such as hydrophobic graphite foam, carbon, ceramic, or metal fibers compacted into a cylindrical body with collection passageways such as a helical annular groove or channel 518G on the outside diameter to feed filtered hydrogen to fitting 516 for delivery to applications utilizing the generated hydrogen, such as systems 100 and 200 described above.
An embodiment that provides very fast startup includes a suitable heating element such as 534, a portion of which is shown in
Upon heating the catalytic sodium and/or potassium hydroxide 532, the reaction of aluminum proceeds at a high rate of continued hydrogen production and additional heat is released. Upon reaching a sufficiently high temperature, the carbon reacts with the steam, releasing carbon monoxide and/or carbon dioxide. Thus, depending upon the desired gas delivery from fitting 516, embodiment 500 can be controlled with operating temperature to control the amount and type of pressurized gas supplied from fitting 516. The rate of hydrogen production is controlled by control of the rate that water is added through fitting 522 and/or the rate that reactant 506 is fed into reactor 500 and/or the temperature of operation as a function of the heat removal rate from the assembly.
Also disclosed herein are methods of characterizing fuels for improved operation of an internal combustion engine. The methods may include any procedural step inherent in the above described structures and systems. In a representative embodiment, the method comprises direct injecting a first fuel, such as natural gas, into a cylinder of the engine with an injector-igniter; providing the engine with a combustion modifier agent, such as hydrogen, in a first amount effective to improve the combustion properties of the first fuel; and igniting the first fuel with the injector-igniter. The method may further comprise direct injecting a second fuel different from the first, such as diesel, into the cylinder and providing the engine with the combustion modifier agent in a second amount effective to improve the combustion properties of the second fuel. In one embodiment, the method includes mixing the first fuel and combustion modifier agent prior to direct injecting the first fuel. In other embodiments, the combustion modifier agent and fuel are direct injected into the cylinder independently of each other.
From the foregoing it will be appreciated that, although specific embodiments of the technology have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the technology. Further, certain aspects of the new technology described in the context of particular embodiments may be combined or eliminated in other embodiments. Moreover, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein. The following examples provide additional embodiments of the present technology.
1. A fuel system with fuel characterization, comprising:
a combustion modifier source capable of supplying a combustion modifier agent;
a fuel tank capable of storing a fuel; and
an injector operative to inject the fuel and a proportionate amount of the modifier agent into a cylinder of an internal combustion engine.
2. The system according to example 1, further comprising a mixing valve operative to proportionately mix the fuel and modifier agent.
3. The system according to example 1, wherein the injector includes a first channel configured to inject the modifier agent.
4. The system according to example 3, wherein the injector includes a second channel configured to inject the fuel, wherein the second channel is separate from the first channel.
5. The system according to example 1, wherein the injector is an injector-igniter.
6. The system according to example 1, wherein the combustion modifier source comprises a tank containing hydrogen.
7. The system according to example 1, wherein the combustion modifier source comprises a thermo-chemical reactor.
8. The system according to example 1, further comprising an engine control unit operatively connectable to the combustion modifier source and the injector.
9. A vehicular fuel system with onboard fuel characterization, comprising:
a combustion modifier source capable of supplying a combustion modifier agent;
a fuel tank capable of storing a fuel;
an injector-igniter operative to direct inject the fuel and a proportionate amount of the modifier agent into a cylinder of an internal combustion engine; and
an engine control unit operatively connectable to the combustion modifier source and the injector.
10. The system according to example 9, further comprising a mixing valve operative to proportionately mix the fuel and modifier agent.
11. The system according to example 9, wherein the injector includes a first channel configured to inject the modifier agent.
12. The system according to example 11, wherein the injector includes a second channel configured to inject the fuel, wherein the second channel is separate from the first channel.
13. The system according to example 9, wherein the combustion modifier source is adapted for mounting onboard a vehicle.
14. The system according to example 13, wherein the combustion modifier source comprises a tank containing hydrogen.
15. The system according to example 13, wherein the combustion modifier source comprises a thermo-chemical reactor.
16. A method of characterizing fuels for improved operation of an internal combustion engine, the method comprising:
direct injecting a first fuel into a cylinder of the engine with an injector-igniter;
providing the engine with a combustion modifier agent in a first amount effective to improve the combustion properties of the first fuel; and
igniting the first fuel with the injector-igniter.
17. The method according to example 16, further comprising direct injecting a second fuel different from the first into the cylinder and providing the engine with the combustion modifier agent in a second amount effective to improve the combustion properties of the second fuel.
18. The method according to example 16, further comprising mixing the first fuel and combustion modifier agent prior to direct injecting the first fuel.
19. The method according to example 16, further comprising direct injecting the combustion modifier agent into the cylinder independently of the first fuel.
20. The method according to example 16, wherein the combustion modifier agent comprises hydrogen.
Number | Name | Date | Kind |
---|---|---|---|
1307088 | Drummond | Jun 1919 | A |
1451384 | Whyte | Apr 1923 | A |
1765237 | King | Jun 1930 | A |
2255203 | Wiegand | Sep 1941 | A |
2681212 | Fenley | Jun 1954 | A |
2744507 | Huber | May 1956 | A |
2864974 | Beye | Dec 1958 | A |
3058453 | May | Oct 1962 | A |
3060912 | May | Oct 1962 | A |
3081758 | May | Mar 1963 | A |
3243335 | Faile | Mar 1966 | A |
3373724 | Papst | Mar 1968 | A |
3520961 | Suda et al. | Jul 1970 | A |
3551738 | Young | Dec 1970 | A |
3594877 | Suda et al. | Jul 1971 | A |
3608050 | Carman et al. | Sep 1971 | A |
3689293 | Beall | Sep 1972 | A |
3866074 | Smith | Feb 1975 | A |
3926169 | Leshner et al. | Dec 1975 | A |
3931438 | Beall et al. | Jan 1976 | A |
3960995 | Kourkene | Jun 1976 | A |
3976039 | Henault | Aug 1976 | A |
3997352 | Beall | Dec 1976 | A |
4004554 | Kosaka | Jan 1977 | A |
4066046 | McAlister | Jan 1978 | A |
4087719 | Pratt, Jr. | May 1978 | A |
4095580 | Murray et al. | Jun 1978 | A |
4122816 | Fitzgerald et al. | Oct 1978 | A |
4135481 | Resler, Jr. | Jan 1979 | A |
RE29978 | Leshner et al. | May 1979 | E |
4203393 | Giardini | May 1980 | A |
4330732 | Lowther | May 1982 | A |
4332223 | Dalton | Jun 1982 | A |
4364342 | Asik | Dec 1982 | A |
4377455 | Kadija et al. | Mar 1983 | A |
4381740 | Crocker | May 1983 | A |
4382189 | Wilson | May 1983 | A |
4448160 | Vosper | May 1984 | A |
4469160 | Giamei | Sep 1984 | A |
4483485 | Kamiya et al. | Nov 1984 | A |
4511612 | Huther et al. | Apr 1985 | A |
4528270 | Matsunaga | Jul 1985 | A |
4536452 | Stempin et al. | Aug 1985 | A |
4567857 | Houseman et al. | Feb 1986 | A |
4574037 | Samejima et al. | Mar 1986 | A |
4677960 | Ward | Jul 1987 | A |
4688538 | Ward et al. | Aug 1987 | A |
4733646 | Iwasaki | Mar 1988 | A |
4736718 | Linder | Apr 1988 | A |
4742265 | Giachino et al. | May 1988 | A |
4760818 | Brooks et al. | Aug 1988 | A |
4760820 | Tozzi | Aug 1988 | A |
4774914 | Ward | Oct 1988 | A |
4774919 | Matsuo et al. | Oct 1988 | A |
4834033 | Larsen | May 1989 | A |
4841925 | Ward | Jun 1989 | A |
4922883 | Iwasaki | May 1990 | A |
4932263 | Wlodarczyk | Jun 1990 | A |
4967708 | Linder et al. | Nov 1990 | A |
4977873 | Cherry et al. | Dec 1990 | A |
4982708 | Stutzenberger | Jan 1991 | A |
5034852 | Rosenberg | Jul 1991 | A |
5055435 | Hamanaka et al. | Oct 1991 | A |
5056496 | Morino et al. | Oct 1991 | A |
5072617 | Weiss | Dec 1991 | A |
5076223 | Harden et al. | Dec 1991 | A |
5095742 | James et al. | Mar 1992 | A |
5109817 | Cherry | May 1992 | A |
5131376 | Ward et al. | Jul 1992 | A |
5193515 | Oota et al. | Mar 1993 | A |
5207208 | Ward | May 1993 | A |
5211142 | Matthews et al. | May 1993 | A |
5220901 | Morita et al. | Jun 1993 | A |
5267601 | Dwivedi | Dec 1993 | A |
5297518 | Cherry | Mar 1994 | A |
5305360 | Remark et al. | Apr 1994 | A |
5328094 | Goetzke et al. | Jul 1994 | A |
5377633 | Wakeman | Jan 1995 | A |
5390546 | Wlodarczyk | Feb 1995 | A |
5392745 | Beck | Feb 1995 | A |
5394838 | Chandler | Mar 1995 | A |
5421195 | Wlodarczyk | Jun 1995 | A |
5421299 | Cherry | Jun 1995 | A |
5435286 | Carroll, III et al. | Jul 1995 | A |
5439532 | Fraas | Aug 1995 | A |
5456241 | Ward | Oct 1995 | A |
5475772 | Hung et al. | Dec 1995 | A |
5497744 | Nagaosa et al. | Mar 1996 | A |
5517961 | Ward | May 1996 | A |
5531199 | Bryant et al. | Jul 1996 | A |
5549746 | Scott et al. | Aug 1996 | A |
5584490 | Inoue et al. | Dec 1996 | A |
5588299 | DeFreitas | Dec 1996 | A |
5605125 | Yaoita | Feb 1997 | A |
5607106 | Bentz et al. | Mar 1997 | A |
5662389 | Truglio et al. | Sep 1997 | A |
5676026 | Tsuboi et al. | Oct 1997 | A |
5694761 | Griffin, Jr. | Dec 1997 | A |
5699253 | Puskorius et al. | Dec 1997 | A |
5702761 | DiChiara, Jr. et al. | Dec 1997 | A |
5704321 | Suckewer et al. | Jan 1998 | A |
5715788 | Tarr et al. | Feb 1998 | A |
5738283 | Potz et al. | Apr 1998 | A |
5738818 | Atmur et al. | Apr 1998 | A |
5746171 | Yaoita | May 1998 | A |
5767026 | Kondoh et al. | Jun 1998 | A |
5797427 | Buescher | Aug 1998 | A |
5806581 | Haasch et al. | Sep 1998 | A |
5853175 | Udagawa | Dec 1998 | A |
5863326 | Nause et al. | Jan 1999 | A |
5876659 | Yasutomi et al. | Mar 1999 | A |
5915272 | Foley et al. | Jun 1999 | A |
5941207 | Anderson et al. | Aug 1999 | A |
5975032 | Iwata | Nov 1999 | A |
5975433 | Hasegawa et al. | Nov 1999 | A |
5983855 | Benedikt et al. | Nov 1999 | A |
6017390 | Charych et al. | Jan 2000 | A |
6026568 | Atmur et al. | Feb 2000 | A |
6029627 | VanDyne | Feb 2000 | A |
6062498 | Klopfer | May 2000 | A |
6065692 | Brinn, Jr. | May 2000 | A |
6081183 | Mading et al. | Jun 2000 | A |
6085990 | Augustin | Jul 2000 | A |
6092501 | Matayoshi et al. | Jul 2000 | A |
6092507 | Bauer et al. | Jul 2000 | A |
6093338 | Tani et al. | Jul 2000 | A |
6102303 | Bright et al. | Aug 2000 | A |
6131607 | Cooke | Oct 2000 | A |
6138639 | Hiraya et al. | Oct 2000 | A |
6155212 | McAlister | Dec 2000 | A |
6173913 | Shafer et al. | Jan 2001 | B1 |
6185355 | Hung | Feb 2001 | B1 |
6186419 | Kampmann et al. | Feb 2001 | B1 |
6189522 | Moriya | Feb 2001 | B1 |
6253728 | Matayoshi et al. | Jul 2001 | B1 |
6267307 | Pontoppidan | Jul 2001 | B1 |
6335065 | Steinlage et al. | Jan 2002 | B1 |
6338445 | Lambert et al. | Jan 2002 | B1 |
6360721 | Schuricht et al. | Mar 2002 | B1 |
6378485 | Elliott | Apr 2002 | B2 |
6386178 | Rauch | May 2002 | B1 |
6446597 | McAlister | Sep 2002 | B1 |
6453660 | Johnson et al. | Sep 2002 | B1 |
6455173 | Marijnissen et al. | Sep 2002 | B1 |
6478007 | Miyashita et al. | Nov 2002 | B2 |
6485852 | Miller et al. | Nov 2002 | B1 |
6506336 | Beall et al. | Jan 2003 | B1 |
6517011 | Ayanji et al. | Feb 2003 | B1 |
6532315 | Hung et al. | Mar 2003 | B1 |
6536405 | Rieger et al. | Mar 2003 | B1 |
6567599 | Hung | May 2003 | B2 |
6568362 | Whealton et al. | May 2003 | B2 |
6578775 | Hokao | Jun 2003 | B2 |
6583901 | Hung | Jun 2003 | B1 |
6584244 | Hung | Jun 2003 | B2 |
6587239 | Hung | Jul 2003 | B1 |
6615899 | Woodward et al. | Sep 2003 | B1 |
6647948 | Kyuuma et al. | Nov 2003 | B2 |
6663027 | Jameson et al. | Dec 2003 | B2 |
6672277 | Yasuoka et al. | Jan 2004 | B2 |
6687597 | Sulatisky et al. | Feb 2004 | B2 |
6700306 | Nakamura et al. | Mar 2004 | B2 |
6705274 | Kubo | Mar 2004 | B2 |
6712035 | Gottemoller et al. | Mar 2004 | B2 |
6722340 | Sukegawa et al. | Apr 2004 | B1 |
6725826 | Esteghlal | Apr 2004 | B2 |
6745744 | Suckewer et al. | Jun 2004 | B2 |
6748918 | Rieger et al. | Jun 2004 | B2 |
6749043 | Brown et al. | Jun 2004 | B2 |
6763811 | Tamol, Sr. | Jul 2004 | B1 |
6776358 | Arimoto | Aug 2004 | B2 |
6796516 | Maier et al. | Sep 2004 | B2 |
6814313 | Petrone et al. | Nov 2004 | B2 |
6832588 | Herden et al. | Dec 2004 | B2 |
6845608 | Klenk et al. | Jan 2005 | B2 |
6845920 | Sato et al. | Jan 2005 | B2 |
6850069 | McQueeney et al. | Feb 2005 | B2 |
6851413 | Tamol, Sr. | Feb 2005 | B1 |
6871630 | Herden et al. | Mar 2005 | B2 |
6881386 | Rabinovich et al. | Apr 2005 | B2 |
6883490 | Jayne | Apr 2005 | B2 |
6899076 | Funaki et al. | May 2005 | B2 |
6904893 | Hotta et al. | Jun 2005 | B2 |
6912998 | Rauznitz et al. | Jul 2005 | B1 |
6925983 | Herden et al. | Aug 2005 | B2 |
6940213 | Heinz et al. | Sep 2005 | B1 |
6959693 | Oda | Nov 2005 | B2 |
6976683 | Eckert et al. | Dec 2005 | B2 |
6994073 | Tozzi et al. | Feb 2006 | B2 |
7007658 | Cherry et al. | Mar 2006 | B1 |
7013863 | Shiraishi et al. | Mar 2006 | B2 |
7025358 | Ueta et al. | Apr 2006 | B2 |
7032845 | Dantes et al. | Apr 2006 | B2 |
7070126 | Shinogle | Jul 2006 | B2 |
7073480 | Shiraishi et al. | Jul 2006 | B2 |
7086376 | McKay | Aug 2006 | B2 |
7104246 | Gagliano et al. | Sep 2006 | B1 |
7104250 | Yi et al. | Sep 2006 | B1 |
7121253 | Shiraishi et al. | Oct 2006 | B2 |
7131426 | Ichinose et al. | Nov 2006 | B2 |
7140347 | Suzuki et al. | Nov 2006 | B2 |
7201136 | McKay et al. | Apr 2007 | B2 |
7249578 | Fricke et al. | Jul 2007 | B2 |
7255290 | Bright et al. | Aug 2007 | B2 |
7275374 | Stewart et al. | Oct 2007 | B2 |
7278392 | Zillmer et al. | Oct 2007 | B2 |
7278396 | Leone et al. | Oct 2007 | B2 |
7287492 | Leone et al. | Oct 2007 | B2 |
7293552 | Leone et al. | Nov 2007 | B2 |
7302933 | Kerns | Dec 2007 | B2 |
7309029 | Boecking | Dec 2007 | B2 |
7357101 | Boyarski | Apr 2008 | B2 |
7406947 | Lewis et al. | Aug 2008 | B2 |
7409929 | Miyahara et al. | Aug 2008 | B2 |
7412966 | Lewis et al. | Aug 2008 | B2 |
7418940 | Yi et al. | Sep 2008 | B1 |
7449034 | Mikkelsen et al. | Nov 2008 | B1 |
7481043 | Hirata et al. | Jan 2009 | B2 |
7513222 | Orlosky | Apr 2009 | B2 |
7554250 | Kadotani et al. | Jun 2009 | B2 |
7625531 | Coates et al. | Dec 2009 | B1 |
7626315 | Nagase | Dec 2009 | B2 |
7650873 | Hofbauer et al. | Jan 2010 | B2 |
7703775 | Matsushita et al. | Apr 2010 | B2 |
7707832 | Commaret et al. | May 2010 | B2 |
7714483 | Hess et al. | May 2010 | B2 |
7728489 | Heinz et al. | Jun 2010 | B2 |
7775188 | Ehrlich | Aug 2010 | B2 |
7849833 | Toyoda | Dec 2010 | B2 |
7861696 | Lund | Jan 2011 | B2 |
7918212 | Verdejo et al. | Apr 2011 | B2 |
8069836 | Ehresman | Dec 2011 | B2 |
8147599 | McAlister | Apr 2012 | B2 |
8312759 | McAlister | Nov 2012 | B2 |
8318131 | McAlister | Nov 2012 | B2 |
8387599 | McAlister | Mar 2013 | B2 |
8414288 | Tzriker | Apr 2013 | B2 |
8441361 | McAlister | May 2013 | B2 |
8555860 | McAlister | Oct 2013 | B2 |
8561598 | McAlister | Oct 2013 | B2 |
8601819 | Hammer et al. | Dec 2013 | B2 |
8646432 | McAlister et al. | Feb 2014 | B1 |
8747496 | Neels et al. | Jun 2014 | B2 |
8800527 | McAlister | Aug 2014 | B2 |
8820293 | McAlister | Sep 2014 | B1 |
8950182 | Roth | Feb 2015 | B2 |
9188086 | McAlister | Nov 2015 | B2 |
9200561 | McAlister | Dec 2015 | B2 |
9279398 | McAlister | Mar 2016 | B2 |
9341152 | McAlister | May 2016 | B2 |
20020017271 | Suckewer et al. | Feb 2002 | A1 |
20020017573 | Sturman | Feb 2002 | A1 |
20020084793 | Hung et al. | Jul 2002 | A1 |
20020131171 | Hung | Sep 2002 | A1 |
20020131666 | Hung et al. | Sep 2002 | A1 |
20020131673 | Hung | Sep 2002 | A1 |
20020131674 | Hung | Sep 2002 | A1 |
20020131706 | Hung | Sep 2002 | A1 |
20020131756 | Hung | Sep 2002 | A1 |
20020141692 | Hung | Oct 2002 | A1 |
20020150375 | Hung et al. | Oct 2002 | A1 |
20020151113 | Hung et al. | Oct 2002 | A1 |
20030012985 | McAlister | Jan 2003 | A1 |
20040008989 | Hung | Jan 2004 | A1 |
20040061006 | Petrone et al. | Apr 2004 | A1 |
20040256495 | Baker et al. | Dec 2004 | A1 |
20050045146 | McKay et al. | Mar 2005 | A1 |
20050056247 | Durling | Mar 2005 | A1 |
20050224043 | Vogel et al. | Oct 2005 | A1 |
20050255011 | Greathouse et al. | Nov 2005 | A1 |
20060005738 | Kumar | Jan 2006 | A1 |
20060005739 | Kumar | Jan 2006 | A1 |
20060037563 | Raab et al. | Feb 2006 | A1 |
20060071094 | Ehresman | Apr 2006 | A1 |
20060278195 | Hotta et al. | Dec 2006 | A1 |
20070108317 | Boecking | May 2007 | A1 |
20070189114 | Reiner et al. | Aug 2007 | A1 |
20070215071 | Dearth et al. | Sep 2007 | A1 |
20080098984 | Sakamaki | May 2008 | A1 |
20080223344 | Suzuki et al. | Sep 2008 | A1 |
20080245318 | Kuroki et al. | Oct 2008 | A1 |
20090014554 | Malek et al. | Jan 2009 | A1 |
20090093951 | McKay et al. | Apr 2009 | A1 |
20090223474 | Ehrlich | Sep 2009 | A1 |
20090230789 | Markert et al. | Sep 2009 | A1 |
20090271090 | Surnilla et al. | Oct 2009 | A1 |
20090320789 | Lund | Dec 2009 | A1 |
20100077986 | Chen | Apr 2010 | A1 |
20100183993 | McAlister | Jul 2010 | A1 |
20100199948 | Rogak et al. | Aug 2010 | A1 |
20100269775 | Chandes et al. | Oct 2010 | A1 |
20110036309 | McAlister | Feb 2011 | A1 |
20110042476 | McAlister | Feb 2011 | A1 |
20110056458 | McAlister | Mar 2011 | A1 |
20110132319 | McAlister | Jun 2011 | A1 |
20110146619 | McAlister | Jun 2011 | A1 |
20110220040 | McAlister | Sep 2011 | A1 |
20110226988 | McAlister | Sep 2011 | A1 |
20110233308 | McAlister | Sep 2011 | A1 |
20110239973 | Qin | Oct 2011 | A1 |
20110253104 | McAlister | Oct 2011 | A1 |
20110297753 | McAlister et al. | Dec 2011 | A1 |
20120060497 | Roth | Mar 2012 | A1 |
20130043323 | McAlister | Feb 2013 | A1 |
20130149621 | McAlister | Jun 2013 | A1 |
20130213256 | McAlister | Aug 2013 | A1 |
20140041631 | McAlister | Feb 2014 | A1 |
20140102407 | McAlister | Apr 2014 | A1 |
20140130756 | McAlister | May 2014 | A1 |
20140271449 | McAlister | Sep 2014 | A1 |
20150013650 | McAlister | Jan 2015 | A1 |
20150075486 | McAlister | Mar 2015 | A1 |
20150152825 | McAlister | Jun 2015 | A1 |
20150252757 | McAlister | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
2307927 | Nov 2001 | CA |
3443022 | May 1986 | DE |
392594 | Oct 1990 | EP |
0661446 | Jul 1995 | EP |
1745201 | Dec 2009 | EP |
1038490 | Aug 1966 | GB |
61-023862 | Feb 1986 | JP |
2008208759 | Sep 2008 | JP |
2009-287549 | Dec 2009 | JP |
WO9527845 | Oct 1995 | WO |
WO0165107 | Sep 2001 | WO |
WO2009064712 | May 2009 | WO |
WO2011071607 | Jun 2011 | WO |
Entry |
---|
U.S. Appl. No. 12/961,461, filed Dec. 6, 2010 and titled Integrated Fuel Injectors and Igniters Configured to Inject Multiple Fuels and/or Coolants and Associated Methods of Use and Manufacture. |
U.S. Appl. No. 13/864,192, filed Apr. 16, 2013 and titled Integrated Fuel Injector Igniters Configured to Inject Multiple Fuels and/or Coolants and Associated Methods of Use and Manufacture. |
U.S. Appl. No. 12/841,170, filed Mar. 21, 2010, and titled Integrated Fuel Injectors and Igniters and Associated Methods of Use and Manufacture. |
U.S. Appl. No. 13/843,976, filed Mar. 15, 2013 and titled Chemical Fuel Conditioning and Activation. |
U.S. Appl. No. 13/797,753, filed Mar. 12, 2013 and titled Method and Apparatus for Providing Adaptive Swirl Injection and Ignition. |
International Search Report and Written Opinion mailed Jul. 8, 2014 for PCT/US2014/026501, 14 pages. |
European Search Report mailed Nov. 13, 2015 for European Patent Application No. 10814045.0, 8 pages. |
European Search Report mailed Jul. 1, 2016 for European Patent Application No. 13854103.2, 10 pages. |
International Search Report and Written Opinion mailed Oct. 10, 2014 for PCT/US2014/029154, 17 pages. |
U.S. Appl. No. 13/844,240, filed Mar. 15, 2013, McAlister. |
U.S. Appl. No. 13/844,488, filed Mar. 15, 2013, McAlister. |
International Search Report and Written Opinion for Application No. PCT/US2010/002076; Applicant: McAlister Technologies, LLC.; Date of Mailing: Apr. 29, 2011 (8 pages). |
International Search Report and Written Opinion for Application No. PCT/US2010/059147; Applicant: McAlister Technologies, LLC.; Date of Mailing: Aug. 31, 2011, 11 pages. |
“Ford DIS/EDIS “Waste Spark” Ignition System.” Accessed: Jul. 15, 2010. Printed: Jun. 8, 2011. <http://rockledge.home.comcast.net/˜rockledge/RangerPictureGallery/DIS—EDIS.htm>. pp. 1-6. |
“P dV's Custom Data Acquisition Systems Capabilities.” PdV Consulting. Accessed: Jun. 28, 2010. Printed: May 16, 2011. <http://www.pdvconsult.com/capabilities%20-%20daqsys.html>. pp. 1-10. |
“Piston motion equations.” Wikipedia, the Free Encyclopedia. Published: Jul. 4, 2010. Accessed: Aug. 7, 2010. Printed: Aug. 7, 2010. <http://en.wikipedia.org/wiki/Dopant>. pp. 1-9. |
“Piston Velocity and Acceleration.” EPI, Inc. Accessed: Jun. 28, 2010. Printed: May 16, 2011. <http://www.epi-eng.com/piston—engine—technology/piston—velocity—and—acceleration.htm>. pp. 1-3. |
“SmartPlugs—Aviation.” SmartPlugs.com. Published: Sep. 2000. Accessed: May 31, 2011. <http://www.smartplugs.com/news/aeronews0900.htm>. pp. 1-3. |
Birchenough, Arthur G. “A Sustained-arc Ignition System for Internal Combustion Engines.” Nasa Technical Memorandum (NASA TM-73833). Lewis Research Center. Nov. 1977. pp. 1-15. |
Doggett, William. “Measuring Internal Combustion Engine In-Cylinder Pressure with LabVIEW.” National Instruments. Accessed: Jun. 28, 2010. Printed: May 16, 2011. <http://sine.ni.com/cs/app/doc/p/id/cs-217>. pp. 1-2. |
Erjavec, Jack. “Automotive Technology: a Systems Approach, vol. 2.” Thomson Delmar Learning. Clifton Park, NY. 2005. p. 845. |
Hollembeak, Barry. “Automotive Fuels & Emissions.” Thomson Delmar Learning. Clifton Park, NY. 2005. p. 298. |
Lewis Research Center. “Fabry-Perot Fiber-Optic Temperature Sensor.” NASA Tech Briefs. Published: Jan. 1, 2009. Accessed: May 16, 2011. <http://www.techbriefs.com/content/view/2114/32/>. |
Riza et al. “All-Silicon Carbide Hybrid Wireless-Wired Optics Temperature Sensor Network Basic Design Engineering for Power Plant Gas Turbines.” International Journal of Optomechatronics, vol. 4, Issue 1. Jan. 2010. pp. 1-9. |
Riza et al. “Hybrid Wireless-Wired Optical Sensor for Extreme Temperature Measurement in Next Generation Energy Efficient Gas Turbines.” Journal of Engineering for Gas Turbines and Power, vol. 132, Issue 5. May 2010. pp. 051601-1-51601-11. |
Number | Date | Country | |
---|---|---|---|
20140261303 A1 | Sep 2014 | US |