The present disclosure generally relates to intraocular lens (IOL) systems and related injectors. More specifically, the present disclosure relates to various embodiments of modular IOL systems and injector designs for improved injection of IOL components into an eye.
The human eye functions to provide vision by transmitting light through a clear outer portion called the cornea, and focusing the image by way of a crystalline lens onto a retina. The quality of the focused image depends on many factors including the size and shape of the eye, and the transparency of the cornea and the lens.
When age or disease causes the lens to become less transparent (e.g., cloudy), vision deteriorates because of the diminished light, which can be transmitted to the retina. This deficiency in the lens of the eye is medically known as a cataract.
An accepted treatment for this condition is surgical removal of the lens from the capsular bag and placement of an artificial intraocular lens (IOL) in the capsular bag. Cataractous lenses are removed by a surgical technique called phacoemulsification. During this procedure, an opening (capsulorhexis) is made in the anterior side of the capsular bag and a thin phacoemulsification-cutting tip is inserted into the diseased lens and vibrated ultrasonically. The vibrating cutting tip emulsifies the lens so that the lens may be aspirated out of the capsular bag.
The diseased lens, once removed, is replaced by an IOL that is inserted into the eye using an injector, and maneuvered into the empty capsular bag. In some instances, the IOL may become stuck in the injector, or the IOL may become damaged as a result of poor technique or training, as in the case of a damaged trailing IOL haptic. Improvements in injector design are needed to address this problem.
Embodiments of the present disclosure provide an injector for injecting one or more components of an IOL system into the eye, the injector having a housing, a cartridge for holding the IOL system component, a distal nozzle having a tapered lumen and a plunger having a tip disposed in a channel of the housing. The plunger tip may have two arms that change from an expanded configuration when disposed in the proximal end of the nozzle lumen and a contracted configuration when disposed in the distal end of the nozzle lumen.
The arms may have a gap between them that decreases as the arms pass through the nozzle. The arms may remain in contact with the inner wall of the nozzle lumen as the arms pass through the nozzle. The distal ends of the arms may be free or attached to a collapsible link, for example. The arms may include inwardly extending fingers that are offset relative to each other such that they bypass each other as the arms move toward each other. The fingers may be configured to prevent the IOL system component from passing through the gap between the arms.
The distal end of the arms or the distal end of the link may include a bevel with a distal-most edge and a distal-facing surface. The distal-facing surface may be configured to engage and push the IOL system component. The distal-most edge may be in contact with the inner wall of the nozzle lumen to prevent the IOL system component from passing between the arm and the inner wall as the IOL system component passes through the nozzle.
Embodiments of the present disclosure also provide a modular IOL system comprising a primary component, such as a base, and a secondary component, such as a lens.
According to one aspect of the present disclosure, an intraocular lens system may include a base that may include an annular body, an opening extending through the annular body in an axial direction of the annular body, and a recess extending circumferentially about the opening. The system also may include a lens that may be insertable into and removable from the recess. The lens may include a central optic, a first tab protruding radially away from the central optic, and a second tab protruding radially away from the central optic. The second tab may be more resistant to compression in a radial direction than the first tab. The first tab may include a first arm protruding radially away from the central optic, a second arm protruding radially away from the central optic and extending away from the first arm, and a third arm extending from the first arm to the second arm. Movement of one or more of the first, second, and third arms may result in deformation of the first tab.
According to another aspect of the present disclosure, an intraocular lens system may include a base including an annular body, an opening extending through the annular body in an axial direction of the annular body, and a recess extending circumferentially about the opening. The system also may include a lens configured for insertion into and removable from the recess. The lens may include a central optic, a first tab extending radially away from the central optic, and a second tab extending radially away from the central optic. The second tab may be more resistant to compression than the first tab. The first tab may include a first arm extending radially away from the central optic, a second arm extending radially away from the central optic, and a third arm extending between the first arm with the second arm. One or more of the first, second, and third arms is configured to deform to move the first tab between a compressed state and an extended state. In the extended state of the first tab, an obtuse angle may be formed between the first and second arms.
According to another aspect of the present disclosure, a method for assembling an intraocular lens system may include inserting one of: (a) a first tab and (b) a second tab, of a lens of the intraocular lens system, into a recess of a base of the intraocular lens system. The second tab may be more resistant to compression than the first tab. The lens may include a central optic, the first tab extending radially away from the central optic, and the second tab extending radially from the central optic. The first tab may include a first arm extending radially away from the central optic, a second arm extending radially away from the central optic and away from the first arm, and a third arm linking the first and second arms. The base may include an annular body and an opening extending through the annular body in an axial direction of the annular body. The recess may extend circumferentially about the opening. The method also may include inserting the other of the first and second tabs into the recess. The other of the first and second tabs may be inserted into the recess while the at least one of the first and second tabs is in the recess.
Various other aspects and advantages of embodiments of the present disclosure are described in the following detailed description and drawings. It may be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate exemplary embodiments of the present disclosure and together with the description, serve to explain the principles of the disclosure. The drawings are not necessarily to scale, may include similar elements that are numbered the same, and may include dimensions (in millimeters) and angles (in degrees) by way of example, not necessarily limitation. In the drawings:
The following detailed description describes various embodiments of IOL system injectors. Features described with reference to any one embodiment may be applied to and incorporated into other embodiments.
With reference to
The injector 10 is modular in nature such that the nozzle 50 may be inserted into the nozzle holder 24 of the housing 20, the cartridge may be inserted into the cartridge holder 26 of the housing 20, the spring 60 may be disposed on the distal shaft 36 of the plunger 30, and the plunger 30 together with spring 60 may be inserted into the channel 28 of the housing 20 to form an assembled IOL system injector 10 as shown in
With this arrangement, an IOL system component may be loaded or pre-loaded in the chamber 46 of the loading cartridge 40. The loading cartridge 40 is placed in the cartridge holder 26 in the housing 20. Then, the wings 42, 44 are folded or closed to essentially roll or fold the IOL system component such that it has a reduced profile suitable for injection. Using one hand with two fingers on the finger grips 22 of the housing 20 and a thumb on the thumb pad 32 of the plunger 30, the plunger 30 may be advanced distally through the channel 28 in the housing 20 until the tip 70 of the plunger 30 engages the IOL system component in the loading cartridge 40. With the tip 52 of the nozzle inserted into the incision in the eye, further advancement of the plunger 30 pushes the IOL system component out of the loading cartridge 40 and into the nozzle 50. As the plunger tip 70 and the IOL system component are pushed through the nozzle 50, the tapered lumen in the nozzle 50 further reduces the profile of the rolled IOL system component making it suitable for injection through a micro incision in the eye. The plunger 30 may then be advanced further until the IOL system component exits the tip 52 of the nozzle 50 and is thus delivered into the eye.
With the exception of the plunger 30 and its associated features (and the alternative loading cartridge and holder described hereinafter), the other components of the injector 10 may be similar to an injector sold under the trade name Accuject 2.2-HT from Medicel, Switzerland. As will be described in more detail hereinafter, the plunger 30 has a number of unique attributes. Thus, the features of the plunger 30 may be incorporated into other injector designs known in the art.
With reference to
The arms 72, 74 are flexible and pivot about their connection to the distal shaft 36 such that they that can change from an expanded configuration when disposed in the proximal end of the lumen in the nozzle 50 and a contracted configuration when disposed in the distal end of the lumen in the nozzle. The arms 72, 74 have a gap between them that decreases as the arms 72, 74 pass through the nozzle 50. In other words, the arms 72, 74 are squeezed together as the tip 70 passes through the nozzle 50. The outwards facing surfaces of the arms 72, 74 remain in contact with the inner wall of the lumen in the nozzle 50 as they pass therethrough.
Fingers 76, 78 extend inwardly in a proximal-turning curve from the arms 72, 74, respectfully. The proximal ends of the fingers 76, 78 may be attached to the arms 72, 74 at a location set back from the distal-most end of the arms 72, 74, and the distal ends of the fingers 76, 78 may be free, as shown. As best seen in
As seen in
With continued reference to
As seen best in
With reference to
With reference to
With reference to
The injector 10 may be used with a wide variety of IOL system components including modular IOL system components and non-modular IOLs (e.g., unitary and/or monolithic IOLs). By way of example, not limitation, the injector may be used to inject a base component and an optic component that form a modular IOL system when assembled. The base and optic may be injected into the eye separately and assembled in the eye, or assembled outside the eye and injected into the eye together. A description of an example base component 400 is provided with reference to
With reference to
The lower rim 408 may include a pair of diametrically opposed (180 degrees) folding notches 414, and the upper rim 410 may include a corresponding pair of folding notches 416. Folding notches 414, 416 may be aligned with the mid portions of the haptics 406 and are configured to provide a natural folding crease to fold the base in half in the loading cartridge 40 of the injector 10, thereby aligning the mid portion of the haptic with the plunger tip 70. Notches 414, 416 may also provide access for a probe (e.g., Sinskey hook) intra-operatively, which allows the base 400 to be more easily manipulated. The haptics 406 may include holes 415 adjacent the annular ring 402 for intraoperative manipulation with a probe. A series of vent holes 413 may be distributed around the upper rim 410.
With reference to
With reference to
Actuatable tab 506 may include two arms 510 and 512 that extend radially outward in different (e.g., opposite) directions. In one example, an obtuse angle may be formed between the directions. Each arm 510, 512 may have one end connected to the edge of the optic 502 and the other end connected to middle arm 511. Hinge portions may connect ends of arms 510 and 512 to optic 502, and may connect other ends of arms 510 and 512 to middle arm 511. Each of arms 510, 511, and 512 may include one or more linear portions. In one example, middle arm 511 may include two linear portions meeting at a mid-portion of middle arm 511. Middle arm 511 may be angled radially inward as shown with an apex in the mid-portion thereof. The apex may be a hinge portion. Portions of optic 502 and arms 510, 511, and 512 may form a ring around a aperture through actuatable tab 506. Dimensions of that aperture may change as actuatable tab 506 moves between compressed and extended states.
With this configuration, the actuatable tab 506 may bend along all three arms 510, 511, 512, and/or may bend along the hinge portions, when moving between its compressed and extended states, but may provide a single portion (apex of middle arm 511) for initial insertion into recess 412 of base 400. A rim 514 may extend around the perimeter of the optic 502, terminating shy of the arms 510 and 512, thus allowing the arms 510 and 512 to fully compress against the edge of the optic 502. The edge of optic 502 may be planar, and may contact one or more planar surfaces of arm 510 and/or arm 512. The rim 514 of the lens 500 may have an outside diameter that is greater than the inside diameter of the posterior rim 408 of the base 400 such that the lens 500 doesn't fall through the opening 404 of the base 400 and such that the lens 500 is circumferentially supported around its perimeter by the posterior rim 408 of the base 400. A gusset with a guide hole 516 may be disposed between the two arms 510 and 512 to facilitate manipulation by a probe. Similarly, a guide hole 508 may be provided in the fixed tab 504 to provide access for a probe (e.g., Sinskey hook) or similar device to manipulate the fixed tab 504 into the recess 412 in the base 400. A notch 518 may be provided in the fixed tab 504 to provide asymmetry as a visual indicator that the anterior side is up (rather than down) when the notch is counter-clockwise of the hole 508.
The base 400 and lens 500, including the alternative embodiments described herein, may be formed by cryogenically machining and polishing hydrophobic acrylic material. Optionally, the base 400 may be manufactured by forming two (anterior and posterior) components and adhesively connecting them together. For example, the two components may be cryogenically machined hydrophilic acrylic connected together by a U.V. curable adhesive. Alternatively, the two components may be formed of different materials adhesively connected together. For example, the anterior component may be formed of hydrophilic acrylic which does not adhere to ocular tissue, and the posterior component may be formed of hydrophobic acrylic which does adhere to ocular tissue.
As a further alternative, the base 400 may be manufactured by cryogenic machining the first component and over-molding the second component. The first component may include geometric features that become interlocked when over-molded, thus mitigating the need for adhesive to connect the components. For example, the base 400 may be manufactured by cryogenic machining of hydrophilic acrylic to form the posterior component, and over-molding the anterior component of a moldable material such as silicone.
Whether made of a single component, two components adhesively connected, or two components with one component molded over the other, all or a portion of the annular ring 402 may include coloration to enhance the ability to visualize the tabs 504, 506 relative to the recess 412 to better determine if the tabs 504, 506 are anterior to, inside or posterior to the recess 412. In this embodiment, the annular ring 402 may be a first color and the tabs 504, 506 may be a second (different) color. Alternatively, if the annular ring 402 comprises an anterior component and a posterior component, either or both of the anterior and posterior components may be a first color and the tabs 504, 506 may be a second (different) color. By way of example, the annular ring 402 may be a blue color (blue dye monomer additive) and the tabs 504, 506 may be a natural (transparent) color. In this example, when viewed anterior to posterior, and because the anterior rim 410 has a larger inside diameter than the posterior rim 408, the inside portion of the posterior rim 408 may appear light blue, and the overlap of the anterior rim 410 and posterior rim 408 may appear dark blue. With this differentiation in color, the position of the tabs 504, 506 relative to the recess 412 may be visually more apparent to more easily facilitate assembling the optic 500 to the base 400.
As may be appreciated from the forgoing description, the optic 500 may be similarly sized to a conventional IOL and the base 400 may be slightly larger to allow the optic 500 to fit therein. A conventional loading cartridge may be used for both the base 400 and the optic 500. However, it may be desirable to use a modified loading cartridge 40 for the base as described with reference to
With specific reference to
As described previously, the base 400 and/or optic 500 may be loaded or pre-loaded in the chamber 46 of the loading cartridge 40. If pre-loaded, a holder 100 may be used to hold the base 400 or optic 500 in the chamber 46 of the loading cartridge 40 while packaged and shipped as shown in
The foregoing discussion of the disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. Although the disclosure has included description of one or more embodiments and certain variations and modifications, other variations and modifications are within the scope of the disclosure, e.g., as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative embodiments to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
While principles of the present disclosure are described herein with reference to illustrative embodiments for particular applications, it should be understood that the disclosure is not limited thereto. Those having ordinary skill in the art and access to the teachings provided herein will recognize additional modifications, applications, embodiments, and substitution of equivalents all fall within the scope of the embodiments described herein. Accordingly, the invention is not to be considered as limited by the foregoing description.
This patent application claims the benefit under 35 U.S.C. § 119 to U.S. Provisional Patent Application No. 62/525,317, filed on Jun. 27, 2017; and to U.S. Provisional Patent Application No. 62/534,988, filed on Jul. 20, 2017, each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3937222 | Banko | Feb 1976 | A |
4092743 | Kelman | Jun 1978 | A |
4168547 | Konstantinov et al. | Sep 1979 | A |
4409691 | Levy | Oct 1983 | A |
4435856 | L'Esperance | Mar 1984 | A |
4681102 | Bartell | Jul 1987 | A |
4693245 | Pao | Sep 1987 | A |
4741330 | Hayhurst | May 1988 | A |
4769035 | Kelman | Nov 1988 | A |
4816031 | Pfoff | Mar 1989 | A |
4828558 | Kelman | May 1989 | A |
4842601 | Smith | Jun 1989 | A |
4878910 | Koziol et al. | Nov 1989 | A |
4911715 | Kelman | Mar 1990 | A |
4932971 | Kelman | Jun 1990 | A |
4950272 | Smirmaul | Aug 1990 | A |
4960418 | Tennant | Oct 1990 | A |
5026396 | Darin | Jun 1991 | A |
5030230 | White | Jul 1991 | A |
5098444 | Feaster | Mar 1992 | A |
5123905 | Kelman | Jun 1992 | A |
5133747 | Feaster | Jul 1992 | A |
5147369 | Wagner | Sep 1992 | A |
5152788 | Isaacson et al. | Oct 1992 | A |
5201762 | Hauber | Apr 1993 | A |
5222981 | Werblin | Jun 1993 | A |
5304182 | Rheinsish et al. | Apr 1994 | A |
5354335 | Lipshitz et al. | Oct 1994 | A |
5358520 | Patel | Oct 1994 | A |
5366502 | Patel | Nov 1994 | A |
5378475 | Smith et al. | Jan 1995 | A |
5391202 | Lipshitz et al. | Feb 1995 | A |
5395378 | McDonald | Mar 1995 | A |
5410375 | Fiala | Apr 1995 | A |
5417369 | Lipson | May 1995 | A |
5507805 | Koeniger | Apr 1996 | A |
5578081 | McDonald | Nov 1996 | A |
5616120 | Andrew et al. | Apr 1997 | A |
5628795 | Langerman | May 1997 | A |
5628798 | Eggleston et al. | May 1997 | A |
5728155 | Anello et al. | Mar 1998 | A |
5769890 | McDonald | Jun 1998 | A |
5814103 | Lipshitz et al. | Sep 1998 | A |
5824074 | Koch | Oct 1998 | A |
5860985 | Anschutz | Jan 1999 | A |
5876442 | Lipshitz et al. | Mar 1999 | A |
5895422 | Hauber | Apr 1999 | A |
5902598 | Chen et al. | May 1999 | A |
5928283 | Gross et al. | Jul 1999 | A |
5944725 | Cicenas et al. | Aug 1999 | A |
5964802 | Anello et al. | Oct 1999 | A |
5968094 | Werblin et al. | Oct 1999 | A |
5984962 | Anello et al. | Nov 1999 | A |
6027531 | Tassignon | Feb 2000 | A |
6066171 | Lipshitz et al. | May 2000 | A |
6113633 | Portney | Sep 2000 | A |
6136026 | Israel | Oct 2000 | A |
6197057 | Peyman et al. | Mar 2001 | B1 |
6197058 | Portney | Mar 2001 | B1 |
6197059 | Cumming | Mar 2001 | B1 |
6228113 | Kaufman | May 2001 | B1 |
6231603 | Lang et al. | May 2001 | B1 |
6277146 | Peyman et al. | Aug 2001 | B1 |
6280471 | Peyman et al. | Aug 2001 | B1 |
6358280 | Herrick | Mar 2002 | B1 |
6413276 | Werblin | Jul 2002 | B1 |
6423094 | Sarfarazi | Jul 2002 | B1 |
6454801 | Portney | Sep 2002 | B1 |
6464725 | Skotton | Oct 2002 | B2 |
6488708 | Sarfarazi | Dec 2002 | B2 |
6537281 | Portney | Mar 2003 | B1 |
6551354 | Ghazizadeh et al. | Apr 2003 | B1 |
6554859 | Lang et al. | Apr 2003 | B1 |
6558420 | Green | May 2003 | B2 |
6596026 | Gross et al. | Jul 2003 | B1 |
6599317 | Weinschenk, III et al. | Jul 2003 | B1 |
6616692 | Glick et al. | Sep 2003 | B1 |
6638304 | Azar | Oct 2003 | B2 |
6685741 | Landreville et al. | Feb 2004 | B2 |
6695881 | Peng et al. | Feb 2004 | B2 |
6764511 | Zadno-Azizi et al. | Jul 2004 | B2 |
6767363 | Bandhauer et al. | Jul 2004 | B1 |
6786934 | Zadno-Azizi et al. | Sep 2004 | B2 |
6797004 | Brady et al. | Sep 2004 | B1 |
6818017 | Shu | Nov 2004 | B1 |
6846326 | Zadno-Azizi et al. | Jan 2005 | B2 |
6858040 | Nguyen et al. | Feb 2005 | B2 |
6899732 | Zadno-Azizi et al. | May 2005 | B2 |
6926736 | Peng et al. | Aug 2005 | B2 |
6960231 | Tran | Nov 2005 | B2 |
6969403 | Peng et al. | Nov 2005 | B2 |
6972032 | Aharoni et al. | Dec 2005 | B2 |
6972034 | Tran et al. | Dec 2005 | B2 |
6991651 | Portney | Jan 2006 | B2 |
7008447 | Koziol | Mar 2006 | B2 |
7041134 | Nguyen et al. | May 2006 | B2 |
7081134 | Cukrowski | Jul 2006 | B2 |
7087080 | Zadno-Azizi et al. | Aug 2006 | B2 |
7097660 | Portney | Aug 2006 | B2 |
7101397 | Aharoni | Sep 2006 | B2 |
7118596 | Zadno-Azizi et al. | Oct 2006 | B2 |
7122053 | Esch | Oct 2006 | B2 |
7125422 | Woods et al. | Oct 2006 | B2 |
7186266 | Peyman | Mar 2007 | B2 |
7198640 | Nguyen | Apr 2007 | B2 |
7220278 | Peyman | May 2007 | B2 |
7223288 | Zhang et al. | May 2007 | B2 |
7226478 | Ting et al. | Jun 2007 | B2 |
7238201 | Portney et al. | Jul 2007 | B2 |
7300464 | Tran | Nov 2007 | B2 |
7316713 | Zhang | Jan 2008 | B2 |
7452378 | Zadno-Azizi et al. | Nov 2008 | B2 |
7582113 | Terwee | Sep 2009 | B2 |
7591849 | Richardson | Sep 2009 | B2 |
7645299 | Koziol | Jan 2010 | B2 |
7662179 | Sarfarazi | Feb 2010 | B2 |
7727277 | Aharoni et al. | Jun 2010 | B2 |
7736390 | Aharoni et al. | Jun 2010 | B2 |
7780729 | Nguyen et al. | Aug 2010 | B2 |
7811320 | Werblin | Oct 2010 | B2 |
7857850 | Mentak et al. | Dec 2010 | B2 |
7871437 | Hermans et al. | Jan 2011 | B2 |
7918886 | Aharoni et al. | Apr 2011 | B2 |
7985253 | Cumming | Jul 2011 | B2 |
7993399 | Peyman | Aug 2011 | B2 |
7998198 | Angelopoulos et al. | Aug 2011 | B2 |
8012204 | Weinschenk, III et al. | Sep 2011 | B2 |
8034106 | Mentak et al. | Oct 2011 | B2 |
8034107 | Stenger | Oct 2011 | B2 |
8034108 | Bumbalough | Oct 2011 | B2 |
8062361 | Nguyen et al. | Nov 2011 | B2 |
8066768 | Werblin | Nov 2011 | B2 |
8066769 | Werblin | Nov 2011 | B2 |
8128693 | Tran et al. | Mar 2012 | B2 |
8137399 | Glazier et al. | Mar 2012 | B2 |
8167941 | Boyd et al. | May 2012 | B2 |
8182531 | Hermans et al. | May 2012 | B2 |
8187325 | Zadno-Azizi et al. | May 2012 | B2 |
8197541 | Schedler | Jun 2012 | B2 |
8273123 | Ben Nun | Sep 2012 | B2 |
8287593 | Portney | Oct 2012 | B2 |
8377124 | Hong et al. | Feb 2013 | B2 |
8425597 | Glick et al. | Apr 2013 | B2 |
8486142 | Bumbalough | Jul 2013 | B2 |
8579972 | Rombach | Nov 2013 | B2 |
8663235 | Tassignon | Mar 2014 | B2 |
8728158 | Whitsett | May 2014 | B2 |
8758434 | Scott | Jun 2014 | B2 |
8900300 | Wortz | Dec 2014 | B1 |
9011532 | Bumbalough | Apr 2015 | B2 |
9095424 | Kahook et al. | Aug 2015 | B2 |
9125736 | Kahook | Sep 2015 | B2 |
9198752 | Woods | Dec 2015 | B2 |
9204961 | Cuevas | Dec 2015 | B2 |
9220590 | Beer | Dec 2015 | B2 |
9289287 | Kahook | Mar 2016 | B2 |
9364316 | Kahook | Jun 2016 | B1 |
9387069 | Kahook et al. | Jul 2016 | B2 |
9414907 | Wortz et al. | Aug 2016 | B2 |
9421088 | Kahook et al. | Aug 2016 | B1 |
9504558 | Wortz et al. | Nov 2016 | B2 |
9517127 | Wortz et al. | Dec 2016 | B2 |
9522059 | Wortz et al. | Dec 2016 | B2 |
9522060 | Wortz et al. | Dec 2016 | B2 |
9681946 | Kahook et al. | Jun 2017 | B2 |
9877825 | Kahook et al. | Jan 2018 | B2 |
9925040 | Kahook et al. | Mar 2018 | B2 |
10028824 | Kahook et al. | Jul 2018 | B2 |
10080648 | Kahook et al. | Sep 2018 | B2 |
20020138140 | Hanna | Sep 2002 | A1 |
20030088253 | Seil | May 2003 | A1 |
20030144733 | Brady et al. | Jul 2003 | A1 |
20030158560 | Portney | Aug 2003 | A1 |
20040010310 | Peymen | Jan 2004 | A1 |
20040106993 | Portney | Jun 2004 | A1 |
20040148022 | Eggleston | Jul 2004 | A1 |
20040236422 | Zhang et al. | Nov 2004 | A1 |
20040243142 | Siepser | Dec 2004 | A1 |
20050015144 | Tran | Jan 2005 | A1 |
20050021139 | Shadduck | Jan 2005 | A1 |
20050027354 | Brady et al. | Feb 2005 | A1 |
20050187621 | Brady | May 2005 | A1 |
20050125058 | Cumming et al. | Jun 2005 | A1 |
20050131535 | Woods | Jun 2005 | A1 |
20050273163 | Tran et al. | Dec 2005 | A1 |
20060111776 | Glick et al. | May 2006 | A1 |
20060253196 | Woods | Nov 2006 | A1 |
20060286147 | Salamone et al. | Dec 2006 | A1 |
20070052923 | Ayyagari et al. | Mar 2007 | A1 |
20070123981 | Tassignon | May 2007 | A1 |
20070156236 | Stenger | Jul 2007 | A1 |
20080046077 | Cumming | Feb 2008 | A1 |
20080103592 | Maloney | May 2008 | A1 |
20080215147 | Werblin | Sep 2008 | A1 |
20080281416 | Cumming | Nov 2008 | A1 |
20090005864 | Eggleston | Jan 2009 | A1 |
20100016964 | Werblin | Jan 2010 | A1 |
20100204787 | Noy | Aug 2010 | A1 |
20100204790 | Whitsett | Aug 2010 | A1 |
20100298933 | Knox et al. | Nov 2010 | A1 |
20110040378 | Werblin | Feb 2011 | A1 |
20110054600 | Bumbalough | Mar 2011 | A1 |
20110251686 | Masket | Oct 2011 | A1 |
20110257742 | Bumbalough | Oct 2011 | A1 |
20110307058 | Beer | Dec 2011 | A1 |
20110313521 | Angelopoulos | Dec 2011 | A1 |
20120078364 | Stenger | Mar 2012 | A1 |
20120179249 | Coleman | Jul 2012 | A1 |
20120209305 | Deodhar et al. | Aug 2012 | A1 |
20120323320 | Simonov et al. | Dec 2012 | A1 |
20130066422 | Dworschak | Mar 2013 | A1 |
20130184815 | Roholt | Jul 2013 | A1 |
20130190868 | Kahook et al. | Jul 2013 | A1 |
20130296694 | Ehlers et al. | Nov 2013 | A1 |
20130304204 | Bumbalough | Nov 2013 | A1 |
20130304206 | Pallikaris et al. | Nov 2013 | A1 |
20130310931 | Kahook et al. | Nov 2013 | A1 |
20140052246 | Kahook et al. | Feb 2014 | A1 |
20140081178 | Pletcher et al. | Mar 2014 | A1 |
20140084489 | Etzkorn | Mar 2014 | A1 |
20140085599 | Etzkorn | Mar 2014 | A1 |
20140085600 | Pletcher et al. | Mar 2014 | A1 |
20140085602 | Ho et al. | Mar 2014 | A1 |
20140087452 | Liu et al. | Mar 2014 | A1 |
20140088381 | Etzkorn et al. | Mar 2014 | A1 |
20140098226 | Pletcher et al. | Apr 2014 | A1 |
20140180411 | Tornambe et al. | Jun 2014 | A1 |
20140192311 | Pletcher et al. | Jul 2014 | A1 |
20140194710 | Ho et al. | Jul 2014 | A1 |
20140194713 | Liu | Jul 2014 | A1 |
20140194773 | Pletcher et al. | Jul 2014 | A1 |
20140371852 | Aharoni et al. | Dec 2014 | A1 |
20150157452 | Maliarov | Jun 2015 | A1 |
20150230981 | Kahook et al. | Aug 2015 | A1 |
20160074154 | Woods | Mar 2016 | A1 |
20160157995 | Beer | Jun 2016 | A1 |
20160184089 | Dudee et al. | Jun 2016 | A1 |
20160235524 | Wortz et al. | Aug 2016 | A1 |
20160235587 | Kahook et al. | Aug 2016 | A1 |
20160310264 | Akura | Oct 2016 | A1 |
20160338825 | Wortz et al. | Nov 2016 | A1 |
20170119521 | Kahook et al. | May 2017 | A1 |
20170319332 | Kahook | Nov 2017 | A1 |
20180271645 | Brady | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
3 002 085 | May 2017 | CA |
101039635 | Sep 2007 | CN |
101641060 | Feb 2010 | CN |
104936553 | Sep 2015 | CN |
10 2007 053 224 | May 2009 | DE |
0478929 | Apr 1992 | EP |
1 138 282 | Oct 2001 | EP |
1 457 170 | Sep 2004 | EP |
1 743 601 | Jan 2007 | EP |
1 862 147 | Dec 2007 | EP |
2 042 124 | Apr 2009 | EP |
2332501 | Jun 2011 | EP |
1 296 616 | May 2012 | EP |
1 871 299 | Aug 2012 | EP |
2491902 | Aug 2012 | EP |
62-022641 | Jan 1987 | JP |
01-097450 | Apr 1989 | JP |
04-505715 | Oct 1992 | JP |
06-165793 | Jun 1994 | JP |
06-189985 | Jul 1994 | JP |
63-089154 | Apr 1998 | JP |
2003-505197 | Feb 2003 | JP |
2003-524503 | Aug 2003 | JP |
2007-512907 | May 2007 | JP |
2008-532617 | Aug 2008 | JP |
2010-516394 | May 2010 | JP |
2012-040326 | Mar 2012 | JP |
2013-512033 | Apr 2013 | JP |
5705529 | Apr 2015 | JP |
2026652 | Jan 1995 | RU |
WO 9428825 | Dec 1994 | WO |
WO 9629956 | Oct 1996 | WO |
WO 03039335 | May 2003 | WO |
WO 2006023871 | Mar 2006 | WO |
WO 2006118452 | Nov 2006 | WO |
WO 2008094518 | Aug 2008 | WO |
WO 2008108524 | Sep 2008 | WO |
WO 2010002215 | Jan 2010 | WO |
WO 2011065833 | Jun 2011 | WO |
WO 2012023133 | Feb 2012 | WO |
WO 2013112589 | Aug 2013 | WO |
WO 2013158942 | Oct 2013 | WO |
WO 2014099604 | Jun 2014 | WO |
WO 2014197170 | Dec 2014 | WO |
WO 2014204575 | Dec 2014 | WO |
WO 2016022995 | Feb 2016 | WO |
WO 2016130209 | Aug 2016 | WO |
Entry |
---|
PCT International Search Report and Written Opinion for International Application No. PCT/US2013/022752, dated Apr. 19, 2013 (12 pages). |
PCT International Search Report and Written Opinion for International Application No. PCT/US2014/037646, dated Aug. 18, 2014 (14 pages). |
PCT International Search Report and Written Opinion for International Application No. PCT/US2015/014046, dated Apr. 9, 2015 (14 pages). |
PCT International Search Report and Written Opinion for International Application No. PCT/US2015/067035, dated Apr. 12, 2016 (17 pages). |
PCT International Search Report and Written Opinion for International Application No. PCT/US2016/060350, dated Jan. 27, 2017 (14 pages). |
Number | Date | Country | |
---|---|---|---|
20180368971 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
62534988 | Jul 2017 | US | |
62525317 | Jun 2017 | US |