Injector pressure calibration system and method

Information

  • Patent Grant
  • 11598664
  • Patent Number
    11,598,664
  • Date Filed
    Tuesday, August 28, 2018
    6 years ago
  • Date Issued
    Tuesday, March 7, 2023
    a year ago
Abstract
A calibration system for calibrating a pressure output of a fluid injector having a housing configured for connecting to the fluid injector; a drive member engagement portion configured for contacting a drive member of the fluid injector; a compressible member, which may have a known modulus of compression, connected at its proximal end to the drive member engagement portion, wherein the compressible member is compressed with movement of the drive member of the fluid injector between a first, uncompressed position and a second, at least partially compressed position of the fluid injector in a distal direction; and a sensor connected to the compressible member is described. The sensor is configured for measuring at least one of a force imparted by the drive member and a displacement of the drive member when the compressible member is in the second, at least partially compressed position. The system may generate a calibration curve for the drive member of the fluid injector and allow the generation of a fault condition. Methods for calibrating a fluid injector are also described.
Description
BACKGROUND OF THE DISCLOSURE
Field of the Disclosure

The present disclosure relates generally to systems and methods for calibrating a fluid injector, such as a medical fluid injector, and, further, to a system and method for pressure calibration of the fluid injector.


Description of Related Art

In many medical diagnostic and therapeutic procedures, a medical practitioner, such as a physician, injects a patient with one or more medical fluids. In recent years, a number of fluid delivery systems having injector-actuated syringes and fluid injectors for pressurized injection of fluids, such as a contrast solution (often referred to simply as “contrast”), a flushing agent, such as saline, and other medical fluids have been developed for use in procedures such as angiography (CV), computed tomography (CT), ultrasound, magnetic resonance imaging (MRI), positron emission tomography (PET), and other imaging procedures. In general, these fluid delivery systems are designed to deliver preset amounts of a contrast fluid, a saline flushing agent, and mixtures thereof at desired flow rates over a predetermined time.


An actual flow rate (or delivered volume) of fluid that is delivered to the patient is targeted to be as close as possible to the desired flow rate (or desired volume). However, the actual performance of the fluid delivery system is a function of many factors due to overall impedance and capacitance of the fluid delivery system. In certain delivery procedures, impedance and capacitance of the fluid delivery system may cause a fluid flow over-rate or under-rate (or volume over- or under-delivery) from a desired flow rate (or desired volume).


While various approaches exist for characterizing the performance of a fluid delivery system and correlating the desired performance with actual performance in terms of fluid flow rate and volume delivered, these approaches do not address the differences between desired and actual performance due to impedance and/or capacitance of the fluid delivery system in a comprehensive manner. As a result, existing approaches fail to address the under-delivery or over-delivery of fluid resulting from system impedance and/or capacitance. As a result, less than optimal injection boluses or discrepancies in actual fluid volume delivered may result and/or operation of the fluid delivery system can result in relatively large amounts of wasted fluid.


Accordingly, there is a need in the art for improved pressure characterization of a piston of a fluid injector. There is a further need for improved systems and methods for calibrating a fluid injector, as well as systems and methods for characterizing the performance of a fluid delivery system and correlating the desired performance with actual performance in terms of fluid flow rate and volume delivered.


SUMMARY OF DISCLOSURE

In some examples of the present disclosure, a calibration system for calibrating a pressure output of a drive member of a fluid injector. In specific embodiments, the calibration system may be a fluidless calibration system, which may be readily utilized between several different fluid injection systems on site and/or by an imaging technician without the presence of a trained service technician. The calibration system may store data on drive members of a fluid injector over a period of time and determine if, how, and when the drive member falls out of specification. The calibration system may be utilized for each drive member of a fluid injector, such as a fluid injector with one, two, three, or even more drive members. The calibration system may be suited to calibrate the motor force of a fluid injector having one or more pistons as drive members, such as a syringe based fluid injector system, for example a fluid injector having one, two, three, or more pistons for operatively engaging corresponding plungers or piston engagement members of one, two, three, or more syringes.


According to an embodiment, the calibration system may comprise a housing configured for connecting to the fluid injector; a drive member engagement portion configured for contacting a drive member of the fluid injector; a compressible member connected at its proximal end to the drive member engagement portion; and a sensor connected to the compressible member. The compressible member may be compressed with movement of the drive member of the fluid injector between a first, uncompressed position and a second, at least partially compressed position of the fluid injector in a distal direction. The sensor may be configured for measuring a force imparted by the drive member when the compressible member is in the second, at least partially compressed position compared to when the drive member is in the first, uncompressed position. The sensor may be a strain gauge, a force sensor, a load cell, a pressure sensor, a force transducer, and combination of any thereof. In specific embodiments, the sensor is a strain gauge and in other embodiments the sensor is a force sensor. According to various embodiments, the compressible member may be a spring, a plurality of springs, a pneumatic compression cell, a hydraulic compression cell, a compressible foam, an elastomer, and combinations of any thereof. In specific embodiments the compressible member is a spring. According to certain embodiments, the sensor may be in wired or wireless communication with a processor of the fluid injector and an output of the sensor may be transmitted to the processor. In certain aspects, the output of the sensor may be used to calibrate an input to one or more of a motor, the drive member, a ball screw in mechanical communication with the motor and the drive member, a frictional component from a disposable fluid delivery reservoir, and other compressible mechanical components. In various aspects, the output of the sensor may be used to generate a calibration curve for calibrating a pressure output of the drive member of the fluid injector. In specific aspects, the calibration curve is utilized to determine a fault condition, such as, for example, a warning that the drive member or motor may need servicing.


According to various embodiments, the present disclosure describes a calibration system for calibrating a pressure output of a drive member of fluid injector where the calibration system comprises: a housing configured for connecting to the fluid injector; a drive member engagement portion configured for contacting a drive member of the fluid injector; a compressible member having a known modulus of compression connected at its proximal end to the drive member engagement portion; and a sensor connected to the compressible member. The compressible member may be compressed with movement of the drive member of the fluid injector between a first, uncompressed position and a second, at least partially compressed position of the fluid injector in a distal direction. The sensor may be configured for measuring a displacement of the drive member when the compressible member is in the second, at least partially compressed position compared to when the drive member is in the first, uncompressed position. The compressible member may be selected from a spring, a plurality of springs, a pneumatic compression cell, a hydraulic compression cell, a compressible foam, an elastomer, or combinations of any thereof. According to specific embodiments, the compressible member is a spring. According to various embodiments, the sensor may be in wired or wireless communication with a processor of the fluid injector and an output of the sensor may be transmitted to the processor. The processor may determine the pressure output of the drive member of the fluid injector from the output of the sensor and the modulus of compression of the compressible member. In various embodiments, the output of the sensor may be used to generate a calibration curve for calibrating the pressure output of a drive member of the fluid injector. In specific aspects, the calibration curve is utilized to determine a fault condition, such as, for example, a warning that the drive member or motor may need servicing.


In certain embodiments, the calibration system can be regularly used to track changes in load for the drive member over time. The calibration system may be utilized daily, weekly, monthly, or at other regular or irregular intervals to track changes in the calibration of the injector. In certain embodiments, the calibrations may be done by the imaging technician without need for service calls from the injector manufacturer representatives or third party servicing technicians. In other embodiments, the calibrations may be recorded over a period of time and may be used by a servicing technician to determine whether specific services may be required. Changes in calibration of the injector that fall outside of expected values and tolerances may signify potential unexpected wear or defects with the injector system and allow early detection and servicing.


In other examples of the present disclosure, a method of calibrating a pressure output of a drive member of a fluid injector. According to various embodiments, the method may comprise: connecting a calibration system to the fluid injector; contacting a drive member of the fluid injector with the drive member engagement portion of the calibration system; driving a motor of the fluid injector to move the drive member and compress the compressible member from a first, uncompressed positon to a second, at least partially compressed position; and generating a measurement signal by a sensor based on the a force imparted on the compressible member by the drive member or the displacement of the drive member when the compressible member is in the second, at least partially compressed position. The methods may be used by any of the various embodiments of the calibration systems described herein. In certain embodiments, the method may further include sending the measurement signal to a processor of the fluid injector to calibrate a pressure output of the drive member based on the measurement signal. In still further embodiments, the methods may include generating a calibration curve for the pressure output of the drive member. The method may further include comparing a calibration measurement signal with one or more previous measurement signals and/or with a predetermined calibration value to determine if the injector calibration falls outside of tolerances.


Various aspects of the system and method for pressure calibration of the fluid injector are disclosed in one or more of the following numbered clauses:


Clause 1. A calibration system for calibrating a pressure output of a drive member of a fluid injector, the calibration system comprising: a housing configured for connecting to the fluid injector; a drive member engagement portion configured for contacting a drive member of the fluid injector; a compressible member connected at its proximal end to the drive member engagement portion, wherein the compressible member is compressed with movement of the drive member of the fluid injector between a first, uncompressed position and a second, at least partially compressed position of the fluid injector in a distal direction; and a sensor connected to the compressible member, wherein the sensor is configured for measuring a force imparted by the drive member when the compressible member is in the second, at least partially compressed position.


The various embodiments of the calibration system provide useful data related to force applied by a drive member in a single stroke across an entire expected load regime. Conventional fluid calibration has a fixed orifice which reaches a set pressure when the drive member is moved at a standard speed. This requires collection of multiple different pressure points to generate a calibration profile for several drive speeds. In the various embodiments of the methods described herein, the sensor determines all loads at a given speed in a single stroke of the drive member. As the compressible member is compressed, the system travels through the entire expected load regime in a single stroke.


Clause 2. The calibration system of clause 1, wherein the sensor is selected from the group consisting of a strain gauge, a force sensor, a load cell, a pressure sensor, a force transducer, and combination of any thereof.


Clause 3. The calibration system of clause 2, wherein the sensor comprises a strain gauge.


Clause 4. The calibration system of clause 2, wherein the sensor comprises a force sensor.


Clause 5. The calibration system of any of clauses 1 to 4, wherein the compressible member is selected from the group consisting of a spring, a plurality of springs, a pneumatic compression cell, a hydraulic compression cell, a compressible foam, an elastomer, and combinations of any thereof.


Clause 6. The calibration system of clause 5, wherein the compressible member is a spring.


Clause 7. The calibration system of any of clauses 1 to 6, wherein the sensor is in wired or wireless communication with a processor and an output of the sensor is transmitted to the processor.


Clause 8. The calibration system of any of clauses 1 to 7, wherein an output of the sensor is used to calibrate an input to one or more of a motor, the drive member, a ball screw in mechanical communication with the motor and the drive member, a frictional component from a disposable fluid delivery reservoir, and other compressible mechanical components.


Clause 9. The calibration system of any of clauses 1 to 8, wherein an output of the sensor is used to generate a calibration curve for calibrating a pressure output of the drive member of the fluid injector.


Clause 10. The calibration system of clause 9, wherein the calibration curve is utilized to determine or predict a fault condition.


Clause 11. A calibration system for calibrating a pressure output of a drive member of fluid injector, the calibration system comprising: a housing configured for connecting to the fluid injector; a drive member engagement portion configured for contacting a drive member of the fluid injector; a compressible member having a known modulus of compression connected at its proximal end to the drive member engagement portion, wherein the compressible member is compressed with movement of the drive member of the fluid injector between a first, uncompressed position and a second, at least partially compressed position of the fluid injector in a distal direction; and a sensor connected to the compressible member, wherein the sensor is configured for measuring a displacement of the drive member when the compressible member is in the second, at least partially compressed position.


Clause 12. The calibration system of clause 11, wherein the compressible member is selected from the group consisting of a spring, a plurality of springs, a pneumatic compression cell, a hydraulic compression cell, a compressible foam, an elastomer, and combinations of any thereof.


Clause 13. The calibration system of clause 12, wherein the compressible member is a spring.


Clause 14. The calibration system of any of clauses 11 to 13, wherein the sensor is in wired or wireless communication with a processor and an output of the sensor is transmitted to the processor.


Clause 15. The calibration system of clause 14, wherein the processor determines the pressure output of the fluid injector from the output of the sensor and the modulus of compression of the compressible member.


Clause 16. The calibration system of any of clauses 11 to 15, wherein an output of the sensor is used to generate a calibration curve for calibrating the pressure output of a drive member of the fluid injector.


Clause 17. The calibration system of clause 16, wherein the calibration curve is utilized to determine a fault condition.


Clause 18. A method of calibrating a pressure output of a drive member of a fluid injector, the method comprising: connecting a calibration system to the fluid injector, the calibration system comprising: a housing configured for connecting to the fluid injector; a drive member engagement portion configured for contacting a drive member of the fluid injector; a compressible member having a known modulus of compression connected at its proximal end to the drive member engagement portion, wherein the compressible member is compressed with movement of the drive member of the fluid injector between a first, uncompressed position and a second, at least partially compressed position of the fluid injector in a distal direction; and a sensor connected to the compressible member, wherein the sensor is configured for measuring one of a force imparted by the drive member and a displacement of the drive member when the compressible member is in the second, at least partially compressed position; contacting a drive member of the fluid injector with the drive member engagement portion of the calibration system; driving a motor of the fluid injector to move the drive member and compress the compressible member from the first, uncompressed positon to the second, at least partially compressed position; and generating a measurement signal by the sensor based on the a force imparted on the compressible member by the drive member or the displacement of the drive member when the compressible member is in the second, at least partially compressed position.


Clause 19. The method of clause 18, further comprising sending the measurement signal to a processor to calibrate a pressure output of the drive member based on the measurement signal.


Clause 20. The method of clause 18 or 19, further comprising generating a calibration curve for the pressure output of the drive member.


These and other features and characteristics of a system for pressure calibration of the fluid injector, as well as the methods of operation and functions of the related elements of structures and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a fluid delivery system according to an example of the present disclosure;



FIG. 2 is a side cross-sectional view of a syringe configured for use with the fluid delivery system of FIG. 1;



FIG. 3 is a perspective view of a fluid delivery system according to another example of the present disclosure;



FIG. 4 is a side cross-sectional view of a syringe configured for use with the fluid delivery system of FIG. 3;



FIG. 5 is a perspective view of a fluid delivery system according to another example of the present disclosure;



FIG. 6 is a front perspective view of a multi-use disposable system configured for use with the fluid delivery system of FIG. 5;



FIG. 7 is a front perspective view of a calibration fixture in accordance with an example of the present disclosure;



FIG. 8 is a front perspective view of the calibration fixture of FIG. 7 in use with the fluid delivery system shown in FIG. 5;



FIG. 9 is a two-dimensional graph showing a correlation between real pressure values with an output of a piston of a fluid injector;



FIG. 10 is a three-dimensional graph showing a correlation between real pressure values, an output of a piston of a fluid injector, and a flow rate corresponding to the movement of the piston;



FIG. 11 is a front perspective view of a drive mechanism calibration fixture in accordance with an example of the present disclosure; and



FIG. 12 is a graph showing a pressure calibration curve showing a force as a function of time.





DETAILED DESCRIPTION

As used in the specification and the claims, the singular form of “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.


For purposes of the description hereinafter, the terms “upper”, “lower”, “right”, “left”, “vertical”, “horizontal”, “top”, “bottom”, “lateral”, “longitudinal”, and derivatives thereof shall relate to the disclosure as it is oriented in the drawing figures.


Spatial or directional terms, such as “left”, “right”, “inner”, “outer”, “above”, “below”, and the like, are not to be considered as limiting as the invention can assume various alternative orientations.


All numbers used in the specification and claims are to be understood as being modified in all instances by the term “about”. The term “about” means a range of plus or minus ten percent of the stated value.


Unless otherwise indicated, all ranges or ratios disclosed herein are to be understood to encompass any and all subranges or subratios subsumed therein. For example, a stated range or ratio of “1 to 10” should be considered to include any and all subranges between (and inclusive of) the minimum value of 1 and the maximum value of 10; that is, all subranges or subratios beginning with a minimum value of 1 or more and ending with a maximum value of 10 or less, such as but not limited to, 1 to 6.1, 3.5 to 7.8, and 5.5 to 10.


The term “at least” means “greater than or equal to”.


The term “includes” is synonymous with “comprises”.


When used in relation to a syringe and/or a plunger, the term “proximal” refers to a portion of a syringe and/or a plunger nearest a fluid injector when a syringe and/or a plunger is oriented for connecting to a fluid injector. The term “distal” refers to a portion of a syringe and/or a plunger farthest away from a fluid injector when a syringe and/or a plunger is oriented for connecting to a fluid injector. The term “radial” refers to a direction in a cross-sectional plane normal to a longitudinal axis of a syringe, a plunger, and/or a piston extending between proximal and distal ends. The term “circumferential” refers to a direction around an inner or outer surface of a sidewall of a syringe, a plunger, and/or a piston. The term “axial” refers to a direction along a longitudinal axis of a syringe, a piston, and/or a piston extending between the proximal and distal ends. The term “open” when used to refer to a fluid delivery component means that the system is in fluid connection with an outlet, for example through a nozzle or the open end of a tubing component or catheter. In an open system, fluid flow may be constrained, for example by forcing a fluid through a small diameter fluid path where flow may be determined by physical parameters of the system and the fluid, such as tubing diameter, fluid path constrictions, applied pressure, viscosity, etc. The term “closed” when used to refer to a fluid delivery component means that the system is not in fluid connection with an outlet, for example where fluid flow is stopped by a valve, such as a stopcock, high crack pressure valve, pinch valve, and the like.


It is to be understood that the disclosure may assume alternative variations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification, are simply exemplary embodiments of the disclosure. Hence, specific dimensions and other physical characteristics related to the examples disclosed herein are not to be considered as limiting.


Referring to the drawings in which like reference characters refer to like parts throughout the several views thereof, the present disclosure is generally directed to fluid injector and a system and method for a pressure calibration of the fluid injector. Associated disclosure related to capacitance development and issues associated with fluid injection system is described in PCT International Application No. PCT/US2017/020637, filed 3 Mar. 2017, the disclosure of which is incorporated herein by this reference.


Characterizing an impedance of a fluid delivery system to minimize a difference between desired and actual fluid delivery system performance requires consideration of how energy from an energy source, such as a pressurizing mechanism, for example a drive member such as a piston attached to a motor, is used in or moves through the system. The energy output or loss from the fluid delivery system may be in the form of heat losses through frictional forces or of work done on the fluid delivery system. For example, some of the energy carried by the pressurized fluid as it is delivered under pressure through a catheter is lost through resistive, frictional, or dissipative heating of the fluid. Additionally, pressurized delivery of fluid can also increase the potential energy of the system in terms of an increase in overall volume of system components and/or compressive forces on system components, as discussed herein. For example, under the pressurized fluid force, system components may expand or may compress under the stress or load imparted by the pressurized fluid in a closed or open system. Furthermore, the kinetic energy of pressurized fluid moving through the fluid delivery system can affect the overall performance of the fluid delivery system. For example, inertial forces of moving contrast media, saline, compression of system mechanical components, and expansion of the reservoirs, syringes, and/or tubing associated with the system may cause a phase lag between movement of the syringe plunger within the injector syringe and movement of contrast material out of the catheter and into the patient.


Due to high injection pressures, which can range from 100 psi up to on the order of 1,200 psi in some angiographic procedures, there may be an expansion, deflection, or compression of various components of the fluid delivery system, such as expansion of the fluid reservoirs, such as syringes and tubing, and compression of mechanical components, such as gearing and drive components of the fluid injector that apply the pressure, such that there may be an increased volume of fluid in the syringe and tubing in excess of the desired quantity selected to be delivered in the injection procedure. Such increase in the volume of fluid in the fluid reservoir or tubing occurs due to increased system capacitance (i.e., increased fluid volume capacity). Total system capacitance (also referred to as compliance or elasticity) represents the volume of fluid (i.e., change in volume, such as excess volume) that is captured in the swelling of components of the fluid delivery system and compression of mechanical components. In general, capacitance is directly correlative to injection pressure and directly correlative to volume of contrast medium and saline in the syringes. In other words, capacitance increases with an increase in injection pressure and an increase in volume of fluid in the syringes. Total system capacitance is inherent to each fluid delivery system and depends on a plurality of factors beyond pressure and volume of fluid remaining in the system, including, without limitation, fluid properties (such as viscosity, temperature, etc.), injector construction, mechanical properties of materials used to construct the syringe or reservoir, plunger, pressure jacket surrounding the syringe, fluid lines delivering the fluid to the patient, size of the syringe, plunger, pressure jacket, diameter of tubing or other orifices through which the fluid must pass under pressure, and fluid properties, such as temperature, viscosity, and density. System capacitance may result in discrepancies between programed fluid volume delivery and actual volume delivery. For example, when beginning a pressurized fluid delivery, initial pressurization may result in swelling of system components under fluid pressure and/or compression of mechanical components under force, rather than delivery of a corresponding fluid volume to a patient. When the pressurizing force is reduced or released during a portion of the injection, for example when the desired fluid volume is delivered, the release of the stored capacitance-based volume may result in over delivery of fluid.


In some fluid delivery systems, such as fluid delivery systems having a single syringe, two syringes (for example a contrast media syringe and a saline flush syringe), three syringes (for example two contrast syringes, which may contain the same or different contrast media or different concentrations, and a saline flush syringe) or a plurality of syringes, each independently driven by pistons or drive members of the fluid injector, the accuracy of fluid delivery is based, at least in part, on the ability of the fluid injector to accurately characterize the pressure in the syringe(s) and fluid path(s). This characterization may be based, at least in part, on calibrating the piston/drive member using a calibration station configured for accurately measuring the pressure imparted on a fluid by the piston/drive member. Pressure calibration of fluid injectors may be performed by pushing fluid at varying rates through a frictionless fixture with a fixed orifice. Pressure of the fluid may then be measured using a pressure gauge, where a real pressure signal is either recorded or fed back into the fluid injector to correlate the load signal of the piston, such as voltage or current measurement, to a real pressure value. Conventional calibration stations which involve pressurization of fluid filled syringes and measurement of resulting fluid pressures can be cumbersome, difficult to set up and operate, and have compounded errors, leading to inaccurate pressure characterization of the piston or drive member. For example, errors which may affect calibration measurements may include friction in the fixture, air in the fluid path, lack of data points on a correlative timescale, fluid leakage inaccuracies, and gauge reading inaccuracies. Further, conventional calibration does not readily provide for real-time adjustment based on factors, such as component wear, differences in syringe tolerance, fluid characteristics, and volumes of syringes used since it is typically performed infrequently, such as when the injector is serviced. Changes in tolerances and system wear in injector components can add up over time to increase volume inaccuracies, creating error in previous calibrations of the volume accuracies of fluid delivery. According to various embodiments herein, a calibration system is described which can quickly and accurately measure and calibrate pressurization forces in a fluid injector system, such as for drive members or pistons. The calibration system may be readily used by a imaging technician, for example on a daily, weekly, and/or monthly basis to measure and monitor the calibration of a fluid injector system over time and further, may allow for calibration corrections for more accurate fluid delivery. In other embodiments, the calibration system may work with a processor to track system characteristics over time, providing information about component status over time to determine whether system components are operating within specification or are in need of servicing or replacement.


According to an embodiment, the calibration system may comprise a housing configured for connecting to and/or engaging with the fluid injector; a drive member engagement portion configured for contacting an a drive member of the fluid injector; a compressible member connected at its proximal end to the drive member engagement portion; and a sensor connected to the compressible member. The compressible member may be compressed with movement of the drive member of the fluid injector between a first, uncompressed position and a second, at least partially compressed position of the fluid injector in a distal direction. The sensor may be configured for measuring a force imparted by the drive member when the compressible member is in the second, at least partially compressed position compared to when the drive member is in the first, uncompressed position. The sensor may be a strain gauge, a force sensor, a load cell, a pressure sensor, a force transducer, and combination of any thereof. Alternatively, if the modulus of the compressible member is known, the force applied may be calculated utilizing an algorithm, such as Hooke's Law. In specific embodiments, the sensor is a strain gauge and in other embodiments the sensor is a force sensor. According to various embodiments, the compressible member may be a spring, a plurality of springs, a pneumatic compression cell, a hydraulic compression cell, a compressible foam, an elastomer, an opposing ferro- or electromagnetic repulsive force (which may be varied) to provide resistance to drive member movement, a deflectable metal member, and combinations of any thereof. In specific embodiments the compressible member is a spring. According to certain embodiments, the sensor may be in wired or wireless (e.g., by WiFi network, Bluetooth, Ethernet, or other conventional wireless communication technology) communication with one or more of a processor of the fluid injector, an external processor, and a hospital information network, and an output of the sensor may be transmitted to the one or more of a processor of the fluid injector, an external processor, and a hospital information network. In certain aspects, the output of the sensor may be used to calibrate an input to one or more of a motor, the drive member, a ball screw in mechanical communication with the motor and the drive member, a frictional component from a disposable fluid delivery reservoir, and other compressible mechanical components. In various aspects, the output of the sensor may be used to generate a calibration curve for calibrating a pressure output of the drive member of the fluid injector. In specific aspects, the calibration curve is utilized to determine a fault condition, such as, for example, a warning that the drive member or motor may need servicing. For example, by frequent calibration using a injector calibration system as described according to the various embodiments herein, a processor may notice gradual or sudden deviations in the pressure calibration which may be the result of degradation of or out-of-specification readings for one or more system components


According to various embodiments, the present disclosure describes a calibration system for calibrating a pressure output of a drive member of fluid injector where the calibration system comprises: a housing configured for connecting to the fluid injector; a drive member engagement portion configured for contacting a drive member of the fluid injector; a compressible member having a known modulus of compression connected at its proximal end to the drive member engagement portion; and a sensor connected to the compressible member. The compressible member may be compressed with movement of the drive member of the fluid injector between a first, uncompressed position and a second, at least partially compressed position of the fluid injector in a distal direction. The sensor may be configured for measuring a displacement of the drive member when the compressible member is in the second, at least partially compressed position compared to when the drive member is in the first, uncompressed position. The compressible member may be selected from a spring, a plurality of springs, a pneumatic compression cell, a hydraulic compression cell, a compressible foam, an elastomer, or combinations of any thereof. According to specific embodiments, the compressible member is a spring. According to various embodiments, the sensor may be in wired or wireless communication with a processor of the fluid injector and an output of the sensor may be transmitted to the processor. The processor may determine the pressure output of the drive member of the fluid injector from the output of the sensor and the modulus of compression of the compressible member. For example, when the modulus of compression of the compressible member and the distance between the first, uncompressed state and the second, at least partially compressed state are known, the force that must be applied to the compressible member to compress from the first state to the second state may be calculated. In certain embodiments, wherein the compressible member is a spring having a known spring constant, the force that must be applied to the spring to compress the spring may be calculated using Hooke's Law (Fs=−k·x, where Fs is the force applied, k is the spring constant and x is the distance compressed). According to other embodiments, where the compressible member comprises another compressible material, the modulus of compression may be initially determined by applying a known force of compression and measuring the distance of compression and developing an equation that shown the functional relationship between the force of compression and distance compressed. This equation may then be utilized by a processor to calculate the force of compression applied to the calibration system according to various embodiments. In various embodiments, the output of the sensor may be used to generate a calibration curve for calibrating the pressure output of a drive member of the fluid injector. In specific aspects, the calibration curve is utilized to determine a fault condition, such as, for example, a warning that the drive member or motor may need servicing.


In certain embodiments, the calibration system can be regularly used to track changes in load for the drive member over time. The calibration system may be utilized daily, weekly, monthly, or at other regular or irregular intervals to track changes in the calibration of the injector. In certain embodiments, the calibrations may be done by the imaging technician without need for service calls from the injector manufacturer representatives or third party servicing technicians. In other embodiments, the calibrations may be recorded over a period of time and may be used by a servicing technician to determine whether specific services may be required. Changes in calibration of the injector that fall outside of expected values, specifications, and tolerances may signify potential unexpected defects or general wear with one or more components of the injector system and allow early detection and servicing. Injector components that may show defects or wear include but are not limited to motors, drive trains, ball drives, gearing, drive member components, syringe and/or plunger engagement or locking mechanisms, restraining members and components that restrain or engage one or more disposable or reusable components, electromechanical components, etc.


In other examples of the present disclosure, a method of calibrating a pressure output of a drive member of a fluid injector. According to various embodiments, the method may comprise: connecting a calibration system to the fluid injector; contacting a drive member of the fluid injector with the drive member engagement portion of the calibration system; driving a motor of the fluid injector to move the drive member and compress the compressible member from a first, uncompressed positon to a second, at least partially compressed position; and generating a measurement signal by a sensor based on the a force imparted on the compressible member by the drive member or the displacement of the drive member when the compressible member is in the second, at least partially compressed position. The methods may be used by any of the various embodiments of the calibration systems described herein. In certain embodiments, the method may further include sending the measurement signal to one or more of a processor of the fluid injector, an external processor, a hospital information system, and to a manufacturer or service provider to calibrate a pressure output of the drive member based on the measurement signal. In still further embodiments, the methods may include generating a calibration curve for the pressure output of the drive member. The method may further include comparing a calibration measurement signal with one or more previous measurement signals and/or with a predetermined calibration value to determine if the injector calibration falls outside of specifications or tolerances. According to certain embodiments, a calibration curve may be created as a factory setting and/or may be generated and updated continuously by the processor, so that sudden deviations from the calibration curve may indicate degradation of operation outside of specifications or tolerances, imminent failure, or failure of one or more injector components.


With reference to FIG. 1, a fluid injector 10 (hereinafter referred to as “injector 10”), such as an automated or powered fluid injector, is adapted to interface with and actuate one or more syringes 12 (hereinafter referred to as “syringe 12”), which may be filed with a fluid F, such as contrast media, saline solution, or any desired medical fluid. The injector 10 may be used during a medical procedure to inject the medical fluid into the body of a patient by driving a plunger 14 of each syringe 12 with a drive member, such as piston 19 (shown in FIG. 2), such as linear actuator or a piston element. The injector 10 may be a multi-syringe injector having two, three or more syringes, wherein the several syringes 12 may be oriented in a side-by-side or other relationship and may be separately actuated by respective drive members/pistons 16 associated with the injector 10. In examples with two or more syringes, for example, arranged in a side-by-side or other relationship and filled with two different fluids, the injector 10 may be configured to deliver fluid from one or both of the syringes 12, sequentially or concurrently. According to one embodiment, the fluid injector 10 may be a dual head injector having two syringes 12a and 12b, a first syringe 12a for delivering a contrast media or other medical fluid and a second syringe 12b for delivering saline or other medically approved flushing agent to flush the contrast media to the patient. In other embodiments, the fluid injector 10 may have three syringes 12, a first and second syringe for delivering one or two different contrast media or other medical fluid and a third syringe for delivering saline or other medically approved flushing agent to flush the contrast media to the patient. According to various embodiments, the fluid injector 10 may be configured to deliver the contrast and saline separately (e.g., delivering a specific volume saline over a specific time followed by delivering a specific volume of contrast over a specific time, followed by a second volume of saline over a specified time to flush the contrast media from the tubing into the patient). According to various embodiments, the fluid injector 10 may be configured to deliver the contrast and saline separately or as a mixture (e.g., delivering a specific volume saline over a specific time followed by delivering a specific volume of contrast, delivering a specific volume contrast over a specific time followed by delivering a specific volume of saline, or a volume of contrast followed by a specified ratio of contrast and saline (i.e., in a “dual flow” process) over a specific time, followed by a second volume of saline over a specified time to flush the contrast media from the tubing into the patient). A technician may program a specific injection protocol into the injector (or use a pre-written protocol) to deliver the desired volumes of saline, contrast, specific ratios of contrast and saline mixtures, etc., at a desired flow rate, time, and volume for each solution. The fluid injector 10 may have at least one bulk fluid source (not shown) for filling the syringes 12a,b with fluid and in certain embodiments, the fluid injector 10 may have a plurality of bulk fluid source, one for each of the plurality of syringes, for filling each of the plurality of syringes with the desired fluid.


A fluid path set 17 may be in fluid communication with each syringe 12 to place each syringe in fluid communication with a catheter for delivering the fluid F from each syringes 12 to a catheter (not shown) inserted into a patient at a vascular access site. In certain embodiments, fluid flow from the one or more syringes 12 may be regulated by a fluid control module (not shown) that operates various valves, stopcocks, and flow regulating structures to regulate the delivery of the saline solution and contrast to the patient based on user selected injection parameters, such as injection flow rate, duration, total injection volume, and ratio of fluids from the syringes 12, including specific ratios of each fluid in a dual flow injection protocol.


With reference to FIG. 2, the drive member 19, such as a reciprocally driven piston moved by a motor 31, may be configured to extend into and from the respective syringe port 13 through an opening in the front end of the injector housing. In fluid injector embodiments comprising a plurality of syringes, a separate drive member/piston 19 may be provided for each syringe 12. Each drive member/piston 19 is configured to impart a motive force to at least a portion of the syringe 12, such as the plunger 14 or a distal end of a rolling diaphragm syringe (for example, as described in PCT/US2017/056747; WO 2016/172467; and WO 2015/164783, the disclosures of which are incorporated herein by this reference). The drive member or piston 19 may be reciprocally operable via electro-mechanical drive components such as a ball screw shaft driven by the motor 31, a voice coil actuator, a rack-and-pinion gear drive, a linear motor, a linear actuator, and the like. The motor 31 may be an electric motor.


Examples of suitable front-loading fluid injectors 10 are disclosed in U.S. Pat. Nos. 5,383,858; 7,553,294; 7,666,169; 9,173,995; 9,199,033; and 9,474,857; and in PCT Application Publication No. WO 2016/191485 and WO 2016/112163, the disclosures of which are incorporated by reference in their entirety.


Having described the general structure and function of specific embodiments of the fluid injector 10, an embodiment of syringe 12 configured for use with the injector 10 will now be described with reference to FIG. 2. The syringe 12 generally has a cylindrical syringe barrel 18 formed from glass, metal, or a suitable medical-grade plastic. The barrel 18 has a proximal end 20 and a distal end 24, with a sidewall 119 extending therebetween along a length of a longitudinal axis 15 extending through a center of the barrel 18. In some examples, the distal end 24 may have a conical shape that narrows in a distal direction from the cylindrical barrel 18. A nozzle 22 extends from the distal end 24. The barrel 18 has an outer surface 21 and an inner surface 23 with an interior volume 25 configured for receiving the fluid therein. The proximal end 20 of the barrel 18 may be sealed with the plunger 14 that is reciprocally movable through the barrel 18 by reciprocal movement of the corresponding piston 19 or drive member. The plunger 14 forms a liquid-tight seal against the inner surface 23 of the barrel 18 as the plunger 14 is advanced moved through the barrel 18.


With continued reference to FIG. 2, the proximal end 20 of the syringe 12 is sized and adapted for being removably inserted in a syringe port 13 of an injector 10 (shown in FIG. 1). In some examples, the proximal end 20 of the syringe 12 defines an insertion section 30 that is configured to be removably inserted into the syringe port 13 of the injector 10 while the remaining portion of the syringe 12 remains outside of the syringe port 13.


The syringe 12 may be made of any suitable medical-grade plastic or polymeric material, desirably a clear or substantially translucent plastic material. The material of the syringe 12 is desirably selected to meet the required tensile and planar stress requirements, water vapor transmission, and chemical/biological compatibility. Exemplary syringes suitable for use with the injector 10 depicted in FIG. 1 are described in U.S. Pat. Nos. 5,383,858; 6,322,535; 6,652,489; 9,173,995; and 9,199,033, the disclosures of which are all incorporated by reference in their entirety.


In some examples, such as shown in FIG. 3, the injector 10 may be configured for receiving and retaining a pressure jacket 32 within each syringe port 13 of the injector 10. While FIGS. 1 and 3 illustrate fluid injectors 10 with two syringe ports 13, which for the injector 10 shown in FIG. 3 each having a corresponding pressure jacket 32, other examples of the fluid injector 10 may include a single syringe port 13 and optionally, a corresponding pressure jacket 32 or more than two syringe ports 13 with an optional corresponding number of pressure jackets 32. In embodiments comprising pressure jackets, each pressure jacket 32 may be configured to receive a syringe, such as a syringe for an angiographic (CV) procedure, or a rolling diaphragm syringe 34 (suitable examples of which are described in described in PCT/US2017/056747; WO 2016/172467; and WO 2015/164783). A fluid path set, similar to the fluid path set 17 shown in FIG. 1, may be fluidly connected with a discharge end of each rolling diaphragm syringe 34 for delivering fluid from the syringes 34 through tubing connected to a catheter, needle, or other fluid delivery connection (not shown) inserted into a patient at a vascular access site. According to various embodiments, the syringe 12 or 34 may be a pre-filled syringe, i.e., the syringe may be prefilled with a medical fluid, such as a contrast agent or saline, when provided by the syringe manufacturer. According to certain embodiments, the pre-filled syringe may be required to be spiked or otherwise punctured at the discharge end prior to an injection procedure to allow fluid to be expelled from the syringe into a fluid line to the patient, as described herein.


With reference to FIG. 4, the rolling diaphragm syringe 34 generally includes a hollow body 36 defining an interior volume 38. The body 36 has a forward or distal end 40, a rearward or proximal end 42, and a flexible sidewall 44 extending therebetween. The proximal end 42 may be configured to act as piston to pressurize the syringe interior to draw in or expel fluid therefrom, as described herein. The sidewall 44 of the rolling diaphragm syringe 34 defines a soft, pliable or flexible, yet self-supporting body that is configured to roll upon itself, as a “rolling diaphragm”, under the action of the a drive member or piston of the fluid injector 10. The drive member/piston 19 may be configured to releasably engage a drive member engagement portion 52 at the proximal end 42 of the rolling diaphragm syringe 34 (examples of which are described in PCT/US2017/056747). In operation, the sidewall 44 is configured to roll such that its outer surface is folded and inverted in a radially inward direction as the drive member/piston 19 moves the proximal end 42 in a distal direction and unrolled and unfolded in the opposite manner in a radially outward direction as the drive member/piston 19 retract the proximal end 42 in a proximal direction.


With continued reference to FIG. 4, the rearward or proximal portion of the sidewall 44 connects to a closed end wall 46, and a forward or distal portion of the sidewall 44 defines a discharge neck 48 opposite the closed end wall 46. The closed end wall 46 may have a concave shape to facilitate the initiation of the inversion or rolling of the sidewall 44, enhance mechanical strength of the closed end wall 46, and/or to provide a receiving pocket to receive a distal end of drive member/piston 19. For example, the closed end wall 46 may define a receiving end pocket for interfacing directly with a similarly-shaped distal end of the drive member/piston 19. In some examples, at least a portion of the drive member/piston 19 may be shaped to substantially match the shape of the closed end wall 46 or, alternatively, pressure from the drive member/piston 19 as it is moved distally may conform the end wall 46 to substantially match the shape of at least a portion of the drive member/piston 19.


The end wall 46 may have a central portion 50 having a substantially dome-shaped structure and a drive member engagement portion 52 extending proximally from the central portion 50. The drive member engagement portion 52 is configured for releasably interacting with a corresponding engagement mechanism on the drive member/piston 19 of the fluid injector 10, for example as the drive member/piston is retracted. The rolling diaphragm syringe 34 may be made of any suitable medical-grade plastic or polymeric material, desirably a clear or substantially translucent plastic material. The material of the rolling diaphragm syringe 34 is desirably selected to meet the required tensile and planar stress requirements, water vapor transmission, and chemical/biological compatibility.


With reference to FIG. 5, a fluid injector 10 is illustrated in accordance with another example of the present disclosure. The injector 10 has a housing 54 that encloses various mechanical drive components and electrical and power components necessary to drive various mechanical drive components, control components, such as electronic memory and electronic control devices used to control operation of reciprocally movable drive members (not shown). The fluid injector 10 further has a multi-use disposable system (MUDS) 56 suitable for use over multiple injection protocols that is removably connectable with the fluid injector 10. The MUDS 56 may be connected with the fluid injector 10 by a retaining mechanism 57 that engages a distal portion of the three syringes 58 of the MUDS 56, to releasably secure the MUDS 56 within the injector 10. Injector 10 and the corresponding MUDS 56 as illustrated in FIG. 5 are described in detail in WO 2016/112163, the disclosure of which is incorporated herein by this reference.


The MUDS 56 may comprise one or more syringes or pumps 58. In some aspects, the number of syringes 58 corresponds to the number of drive members/pistons on the fluid injector 10. In some examples, such as shown in FIGS. 5 and 6, the MUDS 56 has three syringes 58 arranged in a side-by-side arrangement. Each syringe 58 has a bulk fluid connector 60 for connecting to a respective bulk fluid source (not shown) via a MUDS fluid path 62. The MUDS fluid path 62 may be formed as a flexible tube that connects to the bulk fluid connector 60 having a spike element at its terminal end.


With reference to FIG. 6, the MUDS 56 has a frame 64 for supporting the one or more syringes 58a-58c. The syringes 58a-58c may be removably or non-removably connected to the frame 64. Each syringe 58a-58c has an elongated, substantially cylindrical syringe body. Each syringe 58a-58c has a filling port 66 in fluid communication with the MUDS fluid path 62 for filling the syringe 58a-58c with fluid from a bulk fluid source. Each syringe 58a-58c further has a discharge outlet or conduit 68 at the terminal portion of its distal end. The discharge outlet 68 of each syringe 58a-58c is in fluid communication with a manifold 70. A valve 72 is associated with each discharge outlet 68 and is operable between a filling position, where the filling port 66 is in fluid communication with the syringe interior while the discharge outlet 68 is in fluid isolation from the syringe interior, and a delivery position, where the discharge outlet 68 is in fluid communication with the syringe interior while the filling port 66 is in fluid isolation from the syringe interior. The manifold 70 has a fluid pathway that is in fluid communication with each syringe 58a-58c and with a fluid outlet line 74 in fluid communication with a port 76 configured for connecting to a single use fluid path element (not shown) for delivering fluid to the patient.


In various embodiments, for fluid injector 10, for example any of the fluid injectors shown in FIGS. 1, 3, and 5, the motor 31 (FIG. 2) provides the motive force to reciprocally drive the drive member/piston 19 in a distal direction and discharges fluid within the syringes 12, 34 or MUDS 56. The motor 31 may have drive components, such as gears and shafts, that are operatively connected to the drive member/piston 19 to reciprocally move the drive member/piston 19. Each motor 31 must be calibrated to correlate its operating characteristics, such as input current or output torque, to a flow rate or pressure and tolerances associated therewith. As described herein, calibration may be desirable to compensate for any variations or out of specification behavior from any of the different components of the fluid injectors 10, such as any variations in motor performance characteristics, particularly in fluid injectors with two or more syringes driven by two or more motors. For example, conversion of motor input torque for one motor 31 to an injector output pressure may be different for another motor 31. This variation may be further compounded by variations in tolerances of the drivetrain of the fluid injector 10. The accuracy of flow rate or pressure in a fluid injector 10 is directly correlative to a system and method used to calibrate the motor 31.



FIG. 7 illustrates one example of an embodiment of a fluidless embodiment of pressure calibration system 80 (hereinafter referred to as “calibration system 80”) of the present disclosure. The calibration system 80 is configured for connecting to one or more drive members 19 of a fluid injector 10 (FIG. 8), such as any of the fluid injectors 10 shown in FIGS. 1, 3, and 5, for performing a calibration routine to calibrate the pressure output of the individual motors and drive systems of the fluid injector 10. While calibration system 80 is illustrated as being configured to engage with a single drive member of a fluid injector, calibration systems including multiple housing set-ups for engaging with two, three, or all drive members of a specific fluid injector are envisioned and within the bounds of the present disclosure. While traditional calibration systems use fluid-filled syringes having a pressure transducer at the syringe outlet, these calibration systems have inherent limitations, such as due to fluid contamination. The calibration system 80 disclosed herein avoids these limitations inherent in the prior art by eliminating the need for fluid in the calibration process while allowing for ready monitoring and calibration of a system without requiring a service technicians presence, allowing for early diagnosis of system issues, such as out of specification behavior of one or more injector components.


With continued reference to FIG. 7, the calibration system 80 has a housing 82 configured for connecting with the fluid injector 10. In some examples, the housing 82 is configured for connecting with the syringe port 13 of the fluid injector 10 (shown in FIG. 8) in a manner similar to the connection between the syringe 12 and the fluid injector 10 shown in FIGS. 1, 3, and 5. The housing 82 has a proximal end 84 and a distal end 86, with a sidewall extending therebetween along a length of a longitudinal axis 90 extending through a center of the housing 82. In some examples, the distal end 86 may have a conical shape that narrows in a distal direction, similar to the distal end of the syringe 12. When used with the fluid injector 10 shown in FIG. 5, the distal end 86 may be configured for engaging the retaining mechanism 57 (see, e.g., FIG. 8). The proximal end 84 of the housing 82 may be sized and adapted for being removably inserted in or otherwise engaged with the syringe port 13 of the injector 10 (shown in FIGS. 1, 3, 5, and 8). In some examples, the proximal end 84 of the housing 82 defines an engagement section 92 that is configured to be removably inserted into (or otherwise engaged with) the syringe port 13 of the injector 10 while the remaining portion of the housing 82 remains outside of the syringe port 13. In some examples, the housing 82 may have one or more position markers 88 which may be used by an optical system (not shown) to determine a position of the drive member/piston 19 or piston engagement portion 96, for example as the drive member/piston 19 or piston engagement portion 96 moves from a first, uncompressed positon to a second, at least partially compressed position. Alternatively, the drive system may determine the distance traveled by the drive member/piston 19 as it moves from the first, uncompressed positon to the second, at least partially compressed position, and deliver that distance information to a processor associated with the injector 10, as described herein.


With continued reference to FIG. 7, the housing 82 includes a compressible member 94 having a drive member engagement portion 96, and a sensor 100, such as a force gauge. The compressible member 94 may include a one or more compressible springs 98 or other compressible components as described herein. The drive member engagement portion 96 is configured for contacting or connecting with the drive member 19 of the fluid injector 10 (shown in FIG. 8). In certain embodiments, the drive member engagement portion 96 may connect with the drive member 19 in a manner similar to the connection between the plunger 16 and the drive member 19 described herein with reference to FIGS. 1-2. The drive member engagement portion 96 may have the same connection features as the plunger 16 to allow the compressible member 94 and sensor 100 to be connected to the drive member 19 such that the drive member engagement portion 96 and compressible member can be moved in a reciprocal manner within the housing 82 in a direction along the longitudinal axis 90. In other embodiments, the drive member 19 may abut and contact a proximal surface of the drive member engagement portion 96, such that when a distal force is applied by the drive member 19, the drive member engagement portion 96 is moved in the distal direction with concurrent compression of the compressible member 94.


With continued reference to FIG. 7, the compressible member 94, such as the one or more compressible springe 98 may have a proximal end 102 connected with the drive member engagement portion 96 and a distal end 104 connected with a sensor 100, such as a strain gauge, a force sensor, a load cell, a pressure sensor, a force transducer, and combination of any thereof. The compressible member 94 translates the force from the drive member 19 and motor 31 to the sensor 100 with a minimal loss of acoustic and/or frictional energy. The compressible member 94 is movable between a first, uncompressed position (shown in FIG. 7) and a second, at least partially compressed position (not shown), wherein the proximal end 102 of compressible member 94 is moved toward the distal end 104 due to the urging force imparted by the drive member 19 driven by the motor 31. Compression of the compressible member 94 between the first, uncompressed position and the second, at least partially compressed position requires the drive member 19 to move in the same manner as during delivery of fluid from a corresponding syringe 12. Rate of compression of the compressible member 94 due to the movement of the drive member 19 may be varied by varying the rate at which the drive member 19 is advanced to simulate different flow rates. The compressible member 94 may be resilient, wherein the compressible member 94 reverts to the uncompressed position from the compressed position after the urging force imparted by the drive member 19 is removed, such as due to retraction of the drive member 19. In some examples, the compressible member 94 may be one or more mechanical springs. In other examples, the compressible member 94 may be a spring, a plurality of springs, a pneumatic compression cell, a hydraulic compression cell, a compressible foam, an elastomer, a compressible rod, such as a rod made from a compressible elastomeric material, a material that changes at least one measurable property, for example electrical resistivity, when compressed, and combinations of any thereof. In certain embodiments, an incompressible engagement may be used between the drive member 19 and the sensor 100 such that the force translates directly from the drive member 19 to the sensor 100 and feeds back into the controller for calibration. According to certain embodiments, the system may use motor current translation (PID) to determine pressure, which may vary with motor speed. In other embodiments, one or more of a strain gauge, a force sensor may be used to determine applied force. The compressible member 94 may provide sufficient stroke length for different motor speeds.


With further reference to FIG. 7, the sensor 100 is configured to measure the force that the drive member 19 and the motor 31 impart on the calibration system 80. In some examples, the sensor 100 may be a force gauge or a strain gauge. In other examples, the sensor 100 may comprise a motor that pushes against the distal end 104 of the compressible member 94 based on the force imparted on the proximal end 102 of the compressible member 94 by the drive member 19 and the motor 31. In other examples, the sensor 100 may be an optical force measurement system, wherein the sensor 100 is configured to measure movement of the compressible member 94 (or a portion of the force gauge 100) relative to the housing 82 as the drive member 19 compresses the compressible member 94 from the first, uncompressed position to the second, at least partially compressed position. According to these embodiments, the output from the sensor 100 (i.e., the measured distance of compression) may be sent to a processor, for example by a wired connection 95 or by wireless communication (e.g., WiFi, Bluetooth, or other wireless communication technology) such as a processor associated with the fluid injector 10, an external processor, a hospital information system, or other processor, for a dynamic correlation of the measurement signal to pressure, for example using the modulus of compression for the compressible member 94 and an appropriate conversion algorithm, such as Hooke's Law for a compressible spring. According to other embodiments, the measurement signal of the sensor 100 may be a voltage signal that is sent a processor, described herein to be converted into a force measurement. Based on an input current of the motor 31 and the voltage signal of the sensor 100, a pressure calibration curve 106 (FIG. 9) can be generated with real pressure values correlated to system readings for motor current. With a plurality of pressure calibration curves 106 plotted for varying motor speeds, a three-dimensional surface profile (FIG. 10) can be created to generate a calibration equation to be used for the drive member 19 and motor 31 combination. By monitoring the pressure readings from the calibration system 80 and noting potential deviations from values on the calibration curve 106 or the three-dimensional surface profiles, fault conditions may be determined or predicted and appropriate remediation may be undertaken, such as a service call and repair or replacement of one or more injector system components that may be out of specification.


Having described the calibration system 80, a method of calibrating the pressure output of the fluid injector 10 will now be described according to an embodiment. After connecting the housing 82 of the calibration system 80 to the fluid injector 10, such as by connecting the proximal end 102 of the housing 82 with the syringe port 13 of the fluid injector 10 and/or by engaging the distal end 104 of the housing 82 with the retaining mechanism 57 of the fluid injector 10, the drive member 19 may be driven distally such that the drive member 19 contacts or connects with the drive member engagement portion 96 of the calibration system 80 for the first, uncompressed position of the compressible member 96. After contact, as the drive member 19 may be further driven distally at a set rate using the motor 31, the compressible member 94 is compressed from the first, uncompressed position to a second, at least partially compressed position associated with the applied force by the drive member 19 on the compressible member 94 and the force imparted may be transferred to the sensor 100. The sensor 100 may measure the force imparted by the drive member 19 and the motor 31 and send the measurement data to processor, such as described herein such that the input of the motor 31 can be adjusted based on a calibration curve 106 for each flow rate. The process can be repeated for various rates of movement of the drive member 19 that correspond to various flow rates to generate a three-dimensional calibration equation that calibrates the motor input/pressure output for various flow rates (see FIG. 10). In certain embodiments, the calibration curve may be utilized to adjust motor current or force such that multiple motors in a multi-fluid injector system may impart the accurate pressure to fluid within the syringe during an injection protocol. In various embodiments, the calibration equation or calibration data may be used to monitor injector calibration and highlight trends over time, such as weakening of motor strength or other injector components so that such wear or defect may be corrected before failure. An analysis of accumulated or stored data based on the distance of motor travel relative to the force sensed by the calibration unit may provide an indication of some wear, potential failure, or failure.


With reference to FIG. 11, a calibration fixture 200 is shown in accordance with an example of the present disclosure. The calibration fixture 200 can be used to test a drive mechanism 202 of an injector separately from the injector. In some examples, the calibration fixture 200 is configured for calibrating the pressure output of the drive mechanism 202 that is removable from the injector (not shown). In this manner, the calibration fixture 200 can be used to test a variety of different drive mechanisms 202 configured for use with a variety of different injectors separate from the injectors themselves. The drive mechanism 202 may comprise a motor 31 and a drive member 19, such as a piston.


With continued reference to FIG. 11, the calibration fixture 200 has a mounting platform 204 for mounting the drive mechanism 202. The mounting platform 204 has an opening (not shown) for receiving at least a portion of the drive mechanism 202, such as the piston 19. In this manner, the drive mechanism 202 may be fixedly mounted to the mounting platform 204 while the piston 19 extends through the opening to engage a force sensor 212. The calibration fixture 200 may have a piston engagement portion 208, a compressible member 210, and a force gauge 212. The piston engagement portion 208 is configured for contacting or connecting with the piston 19.


With continued reference to FIG. 11, the compressible member 210, which may be any of the compressible members described herein, translates the force from the drive member 19 and motor 31 to a sensor 212, such as a force gauge, a strain gauge, a force sensor, a load cell, a pressure sensor, a force transducer, and combination of any thereof. The compressible member 210 is movable between a first, uncompressed position and a second, at least partially compressed position due to the urging force imparted by the drive member 19 driven by the motor 31. Compression of the compressible member 210 between the uncompressed position and the at least partially compressed position allows the drive member 19 to move in the same manner as during delivery of fluid from a syringe 12. The compressible member 210 may be compressed by the drive member 19 at a varying force over time (see, FIG. 12) to simulate different flow rates. The compressible member 210 may be resilient, wherein the compressible member 210 reverts to the first, uncompressed position from the compressed second, at least partially position after the urging force imparted by the drive member 19 is removed, such as due to retraction of the drive member 19. In some examples, the compressible member 210 may be a mechanical spring. In certain embodiments, the compressible member 210 has sufficient length to be compressed over the entire stroke of the drive member 19.


With continued reference to FIG. 11, the sensor 212 may be configured to measure the force that the drive member 19 and the motor 31 impart on the calibration fixture 200. A plurality of sensors 212 may be used to provide redundant readings. The motor output, as measured by the sensor 212, can be correlated to a pressure value that would be generated if the drive member 19 was driving a fluid-filled syringe in a manner similar described herein with reference to FIG. 10.


Using the calibration fixture 200, the drive mechanism 202 can be pressure calibrated independently of the injector. In this manner, a defective drive mechanism 202 may be replaced with a new drive mechanism 202 that has been calibrated without causing any additional downtime to the injector due to further pressure calibration of a new drive mechanism.


Although the disclosure has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred examples, it is to be understood that such detail is solely for that purpose and that the disclosure is not limited to the disclosed examples, but, on the contrary, is intended to cover modifications and equivalent arrangements. For example, it is to be understood that the present disclosure contemplates that, to the extent possible, one or more features of any example can be combined with one or more features of any other example.

Claims
  • 1. A calibration system for calibrating a pressure output of a drive member of a fluid injector, the calibration system comprising: a housing configured for connecting to the fluid injector;a drive member engagement portion configured for contacting a drive member of the fluid injector;a compressible member connected at its proximal end to the drive member engagement portion, wherein the compressible member is compressed with movement of the drive member of the fluid injector in a distal direction between a first, uncompressed position and a second, at least partially compressed position; anda sensor connected to the compressible member, wherein the sensor is configured for measuring a force imparted by the drive member when the compressible member is in the second, at least partially compressed position.
  • 2. The calibration system of claim 1, wherein the sensor is selected from a group consisting of a strain gauge, a force sensor, a load cell, a pressure sensor, a force transducer, and combination of any thereof.
  • 3. The calibration system of claim 2, wherein the sensor comprises a strain gauge.
  • 4. The calibration system of claim 2, wherein the sensor comprises a force sensor.
  • 5. The calibration system of claim 1, wherein the compressible member is selected from a group consisting of a spring, a plurality of springs, a pneumatic compression cell, a hydraulic compression cell, a compressible foam, an elastomer, and combinations of any thereof.
  • 6. The calibration system of claim 5, wherein the compressible member is a spring.
  • 7. The calibration system of claim 1, wherein the sensor is in wired or wireless communication with a processor and an output of the sensor is transmitted to the processor.
  • 8. The calibration system of claim 1, wherein an output of the sensor is used to calibrate an input to one or more of a motor, the drive member, a ball screw in mechanical communication with the motor and the drive member, a frictional component from a disposable fluid delivery reservoir, and other compressible mechanical components.
  • 9. The calibration system of claim 1, wherein an output of the sensor is used to generate a calibration curve for calibrating a pressure output of the drive member of the fluid injector.
  • 10. The calibration system of claim 9, wherein the calibration curve is utilized to determine or predict a fault condition.
  • 11. A calibration system for calibrating a pressure output of a drive member of a fluid injector, the calibration system comprising: a housing configured for connecting to the fluid injector;a drive member engagement portion configured for contacting a drive member of the fluid injector;a compressible member having a known modulus of compression connected at its proximal end to the drive member engagement portion, wherein the compressible member is compressed with movement of the drive member of the fluid injector in a distal direction between a first, uncompressed position and a second, at least partially compressed position; anda sensor connected to the compressible member, wherein the sensor is configured for measuring a displacement of the drive member when the compressible member is in the second, at least partially compressed position.
  • 12. The calibration system of claim 11, wherein the compressible member is selected from a group consisting of a spring, a plurality of springs, a pneumatic compression cell, a hydraulic compression cell, a compressible foam, an elastomer, and combinations of any thereof.
  • 13. The calibration system of claim 12, wherein the compressible member is a spring.
  • 14. The calibration system of claim 11, wherein the sensor is in wired or wireless communication with a processor and an output of the sensor is transmitted to the processor.
  • 15. The calibration system of claim 14, wherein the processor determines the pressure output of the fluid injector from the output of the sensor and the modulus of compression of the compressible member.
  • 16. The calibration system of claim 11, wherein an output of the sensor is used to generate a calibration curve for calibrating the pressure output of a drive member of the fluid injector.
  • 17. The calibration system of claim 16, wherein the calibration curve is utilized to determine a fault condition.
  • 18. A method of calibrating a pressure output of a drive member of a fluid injector, the method comprising: connecting a calibration system to the fluid injector, the calibration system comprising: a housing configured for connecting to the fluid injector;a drive member engagement portion configured for contacting a drive member of the fluid injector;a compressible member having a known modulus of compression connected at its proximal end to the drive member engagement portion, wherein the compressible member is compressed with movement of the drive member of the fluid injector in a distal direction between a first, uncompressed position and a second, at least partially compressed position; anda sensor connected to the compressible member, wherein the sensor is configured for measuring one of a force imparted by the drive member and a displacement of the drive member when the compressible member is in the second, at least partially compressed position;contacting a drive member of the fluid injector with the drive member engagement portion of the calibration system;driving a motor of the fluid injector to move the drive member and compress the compressible member from the first, uncompressed position to the second, at least partially compressed position; andgenerating a measurement signal by the sensor based on the force imparted on the compressible member by the drive member or the displacement of the drive member when the compressible member is in the second, at least partially compressed position.
  • 19. The method of claim 18, further comprising sending the measurement signal to a processor to calibrate a pressure output of the drive member based on the measurement signal.
  • 20. The method of claim 19, further comprising generating a calibration curve for the pressure output of the drive member.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a § U.S. national phase application under 35 U.S.C. § 371 of PCT International Application No. PCT/US2018/048313, filed 28 Aug. 2018 and claims priority to U.S. Provisional Application No. 62/552,428, titled “Fluidless Injector Pressure Calibration System and Method”, filed on 31 Aug. 2017, the disclosures of which are incorporated herein in their entirety.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/048313 8/28/2018 WO
Publishing Document Publishing Date Country Kind
WO2019/046282 3/7/2019 WO A
US Referenced Citations (490)
Number Name Date Kind
383858 Campbell Jun 1888 A
508584 Stevens Nov 1893 A
945143 Iacques Jan 1910 A
1020166 Tibbott Mar 1912 A
2511291 Mueller Jun 1950 A
2583206 Borck et al. Jan 1952 A
3156236 Williamson Nov 1964 A
3159312 Van Sciver, II Dec 1964 A
3276472 Jinkens et al. Oct 1966 A
3349713 Fassbender Oct 1967 A
3520295 Paul Jul 1970 A
3523523 Heinrich et al. Aug 1970 A
3623474 Heilman Nov 1971 A
3635444 Charles Jan 1972 A
3671208 Wayne Jun 1972 A
3701345 Heilman Oct 1972 A
3719207 Takeda Mar 1973 A
3755655 Senegal Aug 1973 A
3793600 Grosbard Feb 1974 A
3812843 Wootten et al. May 1974 A
3817843 Barrett Jun 1974 A
3839708 Lyons et al. Oct 1974 A
3868967 Harding Mar 1975 A
3888239 Rubinstein Jun 1975 A
3895220 Nelson et al. Jul 1975 A
3898983 Elam Aug 1975 A
3927955 Spinosa et al. Dec 1975 A
3941126 Dietrich et al. Mar 1976 A
3958103 Oka et al. May 1976 A
3968195 Bishop Jul 1976 A
3995381 Manfred et al. Dec 1976 A
4001549 Corwin Jan 1977 A
4006736 Kranys et al. Feb 1977 A
4038981 Lefevre et al. Aug 1977 A
4044757 McWhorter et al. Aug 1977 A
4090502 Tajika May 1978 A
4135247 Gordon et al. Jan 1979 A
4151845 Clemens May 1979 A
4187057 Xanthopoulos Feb 1980 A
4191183 Mendelson Mar 1980 A
4199000 Edstrom Apr 1980 A
4204775 Speer May 1980 A
4207871 Jenkins Jun 1980 A
4208136 King et al. Jun 1980 A
4223675 Williams Sep 1980 A
4262824 Hrynewycz Apr 1981 A
4263916 Brooks et al. Apr 1981 A
4280494 Cosgrove et al. Jul 1981 A
4284073 Krause et al. Aug 1981 A
4315247 Germanton Feb 1982 A
4319568 Tregoning Mar 1982 A
4329067 Goudy, Jr. May 1982 A
4340153 Spivey Jul 1982 A
4341153 Bowser Jul 1982 A
4392847 Whitney et al. Jul 1983 A
4392849 Petre et al. Jul 1983 A
4396385 Kelly et al. Aug 1983 A
4402310 Kimura Sep 1983 A
4409966 Lambrecht et al. Oct 1983 A
4434820 Glass Mar 1984 A
4434822 Bellamy et al. Mar 1984 A
4441823 Power et al. Apr 1984 A
4444198 Petre Apr 1984 A
4447230 Gula et al. May 1984 A
4448200 Brooks et al. May 1984 A
4474476 Thomsen Oct 1984 A
4477923 Baumann et al. Oct 1984 A
4479760 Bilstad et al. Oct 1984 A
4479761 Bilstad et al. Oct 1984 A
4479762 Bilstad et al. Oct 1984 A
4504908 Riederer et al. Mar 1985 A
4509526 Barnes et al. Apr 1985 A
4512764 Wunsch Apr 1985 A
4542459 Riederer Sep 1985 A
4544949 Kurihara Oct 1985 A
4551133 Zegers et al. Nov 1985 A
4552130 Kinoshita Nov 1985 A
4559036 Wunsch Dec 1985 A
4563175 Lafond Jan 1986 A
4578802 Itoh Mar 1986 A
4585009 Barker et al. Apr 1986 A
4585941 Bergner Apr 1986 A
4610670 Spencer Sep 1986 A
4610790 Reti et al. Sep 1986 A
4611340 Okazaki Sep 1986 A
4612572 Komatsu et al. Sep 1986 A
4625494 Iwatschenko et al. Dec 1986 A
4626144 Berner Dec 1986 A
4633307 Honda Dec 1986 A
4634426 Kamen Jan 1987 A
4636144 Abe et al. Jan 1987 A
4655197 Atkinson Apr 1987 A
4662906 Matkovich et al. May 1987 A
4672651 Horiba et al. Jun 1987 A
4676776 Howson Jun 1987 A
4682170 Kubota et al. Jul 1987 A
4689670 Okazaki Aug 1987 A
4710166 Thompson et al. Dec 1987 A
4723261 Janssen et al. Feb 1988 A
4750643 Wortrich Jun 1988 A
4754786 Roberts Jul 1988 A
4781687 Wall Nov 1988 A
4783273 Knutsson et al. Nov 1988 A
4789014 DiGianfilippo et al. Dec 1988 A
4793357 Lindstrom Dec 1988 A
4795429 Feldstein Jan 1989 A
4798590 O'Leary et al. Jan 1989 A
4804454 Asakura et al. Feb 1989 A
4823833 Hogan et al. Apr 1989 A
4835521 Andrejasich et al. May 1989 A
4836187 Iwakoshi et al. Jun 1989 A
4838856 Mulreany et al. Jun 1989 A
4840620 Kobayashi et al. Jun 1989 A
4844052 Iwakoshi et al. Jul 1989 A
4853521 Claeys et al. Aug 1989 A
4854301 Nakajima Aug 1989 A
4854324 Hirschman et al. Aug 1989 A
4857056 Talonn Aug 1989 A
4874359 White et al. Oct 1989 A
4879880 Harrison Nov 1989 A
4880014 Zarowitz et al. Nov 1989 A
4887208 Schneider et al. Dec 1989 A
4887554 Whitford Dec 1989 A
4901731 Millar Feb 1990 A
4903705 Imamura et al. Feb 1990 A
4913154 Ermert et al. Apr 1990 A
4922916 Ermert et al. May 1990 A
4925444 Orkin et al. May 1990 A
4929818 Bradbury et al. May 1990 A
4935005 Haines Jun 1990 A
4936832 Vaillancourt Jun 1990 A
4943279 Samiotes et al. Jul 1990 A
4943779 Pedersen et al. Jul 1990 A
4943987 Asahina et al. Jul 1990 A
4946256 Woodruff Aug 1990 A
4946439 Eggers Aug 1990 A
4947412 Mattson Aug 1990 A
4950245 Brown et al. Aug 1990 A
4952068 Flint Aug 1990 A
4954129 Giuliani et al. Sep 1990 A
4965726 Heuscher et al. Oct 1990 A
4966579 Polaschegg Oct 1990 A
4976687 Martin Dec 1990 A
4978335 Arthur, III Dec 1990 A
4981467 Bobo, Jr. et al. Jan 1991 A
4995064 Wilson et al. Feb 1991 A
5002055 Merki et al. Mar 1991 A
5004472 Wallace et al. Apr 1991 A
5009654 Minshall et al. Apr 1991 A
5010473 Jacobs Apr 1991 A
5013173 Shiraishi May 1991 A
5018173 Komai et al. May 1991 A
5032112 Fairchild et al. Jul 1991 A
5034987 Fujimoto et al. Jul 1991 A
5040537 Katakura Aug 1991 A
5053002 Barlow Oct 1991 A
5054044 Audon et al. Oct 1991 A
5056568 DiGianfilippo et al. Oct 1991 A
5059171 Bridge et al. Oct 1991 A
5059173 Sacco Oct 1991 A
5061243 Winchell et al. Oct 1991 A
5069662 Bodden Dec 1991 A
5078683 Sancoff et al. Jan 1992 A
5088981 Howson et al. Feb 1992 A
5100380 Epstein et al. Mar 1992 A
5104374 Bishko et al. Apr 1992 A
5104387 Pokorney et al. Apr 1992 A
5108365 Woods, Jr. Apr 1992 A
5111492 Klausz May 1992 A
5113905 Pruitt et al. May 1992 A
5123056 Wilson Jun 1992 A
5123121 Broersma Jun 1992 A
5125018 Asahina Jun 1992 A
5128121 Berg et al. Jul 1992 A
5133336 Savitt et al. Jul 1992 A
5135000 Akselrod et al. Aug 1992 A
5140862 Pappalardo Aug 1992 A
5150292 Hoffmann et al. Sep 1992 A
5166961 Brunnett et al. Nov 1992 A
5180895 Briggs et al. Jan 1993 A
5180896 Gibby et al. Jan 1993 A
5190744 Rocklage et al. Mar 1993 A
5191878 Iida et al. Mar 1993 A
5196007 Ellman et al. Mar 1993 A
5199604 Palmer et al. Apr 1993 A
5207642 Orkin et al. May 1993 A
5215095 Macvicar et al. Jun 1993 A
5228070 Mattson Jul 1993 A
5230614 Zanger et al. Jul 1993 A
5242390 Goldrath Sep 1993 A
5249122 Stritzke Sep 1993 A
5249579 Hobbs et al. Oct 1993 A
5262946 Heuscher Nov 1993 A
5267174 Kaufman et al. Nov 1993 A
5269756 Dryden Dec 1993 A
5273537 Haskvitz et al. Dec 1993 A
5274218 Urata et al. Dec 1993 A
5276614 Heuscher Jan 1994 A
5286252 Tuttle et al. Feb 1994 A
5287273 Kupfer et al. Feb 1994 A
5295967 Rondelet et al. Mar 1994 A
5300031 Neer et al. Apr 1994 A
5301656 Negoro et al. Apr 1994 A
5301672 Kalender Apr 1994 A
5304126 Epstein et al. Apr 1994 A
5310997 Roach et al. May 1994 A
5311568 McKee, Jr. et al. May 1994 A
5313992 Graben May 1994 A
5317506 Coutre et al. May 1994 A
5328463 Barton et al. Jul 1994 A
5329459 Kaufman et al. Jul 1994 A
5334141 Carr et al. Aug 1994 A
5339799 Kami et al. Aug 1994 A
5349625 Born et al. Sep 1994 A
5349635 Scott Sep 1994 A
5352979 Conturo Oct 1994 A
5354273 Hagen Oct 1994 A
5361761 Van et al. Nov 1994 A
5362948 Morimoto Nov 1994 A
5368562 Blomquist et al. Nov 1994 A
5368567 Lee Nov 1994 A
5368570 Thompson et al. Nov 1994 A
5373231 Boll et al. Dec 1994 A
5376070 Purvis et al. Dec 1994 A
5378231 Johnson et al. Jan 1995 A
5382232 Hague et al. Jan 1995 A
5383231 Yamagishi Jan 1995 A
5383858 Reilly et al. Jan 1995 A
5385540 Abbott et al. Jan 1995 A
5388139 Beland Feb 1995 A
5392849 Matsunaga et al. Feb 1995 A
5400792 Hoebel et al. Mar 1995 A
5417213 Prince May 1995 A
5431627 Pastrone et al. Jul 1995 A
5433704 Ross et al. Jul 1995 A
5445621 Poli et al. Aug 1995 A
5450847 Kaempfe et al. Sep 1995 A
5453639 Cronin et al. Sep 1995 A
5456255 Abe et al. Oct 1995 A
5458128 Polanyi et al. Oct 1995 A
5459769 Brown Oct 1995 A
5460609 O'Donnell Oct 1995 A
5464391 Devale Nov 1995 A
5468240 Gentelia et al. Nov 1995 A
5469769 Sawada et al. Nov 1995 A
5469849 Sasaki et al. Nov 1995 A
5472403 Cornacchia et al. Dec 1995 A
5474683 Bryant et al. Dec 1995 A
5485831 Holdsworth et al. Jan 1996 A
5489265 Montalvo et al. Feb 1996 A
5494036 Uber, III et al. Feb 1996 A
5494822 Sadri Feb 1996 A
5496273 Pastrone et al. Mar 1996 A
5507412 Ebert et al. Apr 1996 A
5515851 Goldstein May 1996 A
5522798 Johnson et al. Jun 1996 A
5531679 Schulman et al. Jul 1996 A
5531697 Olsen et al. Jul 1996 A
5533978 Teirstein Jul 1996 A
5544215 Shroy, Jr. et al. Aug 1996 A
5547470 Johnson et al. Aug 1996 A
5552130 Kraus et al. Sep 1996 A
5553619 Prince Sep 1996 A
5560317 Bunyan et al. Oct 1996 A
5566092 Wang et al. Oct 1996 A
5569181 Heilman et al. Oct 1996 A
5569208 Woelpper et al. Oct 1996 A
5573515 Wilson et al. Nov 1996 A
5579767 Prince Dec 1996 A
5583902 Bae Dec 1996 A
5590654 Prince Jan 1997 A
5592940 Kampfe et al. Jan 1997 A
5601086 Pretlow, III et al. Feb 1997 A
5611344 Bernstein et al. Mar 1997 A
5616124 Hague et al. Apr 1997 A
5681285 Ford et al. Oct 1997 A
5687208 Bae et al. Nov 1997 A
5687708 Farnsworth et al. Nov 1997 A
5713358 Mistretta et al. Feb 1998 A
5724976 Mine et al. Mar 1998 A
5725500 Micheler Mar 1998 A
5739508 Uber, III Apr 1998 A
5743266 Levene et al. Apr 1998 A
5768405 Makram-Ebeid Jun 1998 A
5796862 Pawlicki et al. Aug 1998 A
5799649 Prince Sep 1998 A
5800397 Wilson et al. Sep 1998 A
5806519 Evans, III et al. Sep 1998 A
5808203 Nolan, Jr. et al. Sep 1998 A
5827219 Uber, III et al. Oct 1998 A
5827504 Yan et al. Oct 1998 A
5840026 Uber, III et al. Nov 1998 A
5843037 Uber, III Dec 1998 A
5846517 Unger Dec 1998 A
5865744 Lemelson Feb 1999 A
5873861 Hitchins et al. Feb 1999 A
5881124 Giger et al. Mar 1999 A
5882343 Wilson et al. Mar 1999 A
5902054 Coudray May 1999 A
5903454 Hoffberg et al. May 1999 A
5916165 Duchon et al. Jun 1999 A
5920054 Uber, III Jul 1999 A
5947935 Kazousky et al. Sep 1999 A
5987347 Khoury et al. Nov 1999 A
5988587 Duchon et al. Nov 1999 A
6046225 Maddock Apr 2000 A
6055985 Bae et al. May 2000 A
6056902 Hettinga May 2000 A
6063052 Uber, III et al. May 2000 A
6073042 Simonetti Jun 2000 A
6099502 Duchon et al. Aug 2000 A
6132396 Antanavich et al. Oct 2000 A
6149627 Uber, III Nov 2000 A
6186146 Glickman Feb 2001 B1
6201889 Vannah Mar 2001 B1
6221045 Duchon et al. Apr 2001 B1
6236706 Hsieh May 2001 B1
6248093 Moberg Jun 2001 B1
6306117 Uber, III Oct 2001 B1
6313131 Lawyer Nov 2001 B1
6317623 Griffiths et al. Nov 2001 B1
6322535 Hitchins et al. Nov 2001 B1
6344030 Duchon et al. Feb 2002 B1
6381486 Mistretta et al. Apr 2002 B1
6387098 Cole et al. May 2002 B1
6397093 Aldrich May 2002 B1
6397097 Requardt May 2002 B1
6402697 Calkins et al. Jun 2002 B1
6423719 Lawyer Jul 2002 B1
6442418 Evans, III et al. Aug 2002 B1
6470889 Bae et al. Oct 2002 B1
6471674 Emig et al. Oct 2002 B1
6478735 Pope et al. Nov 2002 B1
6503226 Martinell et al. Jan 2003 B1
6520930 Critchlow et al. Feb 2003 B2
6527718 Connor et al. Mar 2003 B1
6554819 Reich Apr 2003 B2
6556695 Packer et al. Apr 2003 B1
6572851 Muramatsu et al. Jun 2003 B2
6574496 Golman et al. Jun 2003 B1
6575930 Trombley, III et al. Jun 2003 B1
6597938 Liu Jul 2003 B2
6626862 Duchon et al. Sep 2003 B1
6635030 Bae et al. Oct 2003 B1
6643537 Zatezalo et al. Nov 2003 B1
6652489 Trocki et al. Nov 2003 B2
6656157 Duchon et al. Dec 2003 B1
6673033 Sciulli et al. Jan 2004 B1
6685733 Dae et al. Feb 2004 B1
6691047 Fredericks Feb 2004 B1
6699219 Emig et al. Mar 2004 B2
6731971 Evans et al. May 2004 B2
6754521 Prince Jun 2004 B2
6775764 Batcher Aug 2004 B1
6776764 Pinsky Aug 2004 B2
6866653 Bae Mar 2005 B2
6876720 Tsuyuki Apr 2005 B2
6879853 Meaney et al. Apr 2005 B2
6983590 Roelle et al. Jan 2006 B2
7094216 Trombley, III et al. Aug 2006 B2
7267666 Duchon et al. Sep 2007 B1
7267667 Houde et al. Sep 2007 B2
7292720 Horger et al. Nov 2007 B2
7351221 Trombley, III et al. Apr 2008 B2
7427281 Uber et al. Sep 2008 B2
7553294 Lazzaro et al. Jun 2009 B2
7553295 Susi Jun 2009 B2
7556619 Spohn et al. Jul 2009 B2
7563249 Schriver et al. Jul 2009 B2
7666169 Cowan et al. Feb 2010 B2
7688057 Foss et al. Mar 2010 B2
7766883 Reilly et al. Aug 2010 B2
7861893 Voegele et al. Jan 2011 B2
7925330 Kalafut et al. Apr 2011 B2
8007487 Patrick et al. Aug 2011 B2
8147464 Spohn et al. Apr 2012 B2
8162903 Reilly et al. Apr 2012 B2
8295914 Kalafut et al. Oct 2012 B2
8337456 Schriver et al. Dec 2012 B2
8377003 Wagner Feb 2013 B2
8403909 Spohn et al. Mar 2013 B2
8439863 Fago et al. May 2013 B2
8486017 Masuda et al. Jul 2013 B2
8540698 Spohn et al. Sep 2013 B2
8905969 Nystrom et al. Dec 2014 B2
8945051 Schriver et al. Feb 2015 B2
9101708 Small et al. Aug 2015 B2
9173995 Tucker et al. Nov 2015 B1
9199033 Cowan et al. Dec 2015 B1
9238099 Kalafut et al. Jan 2016 B2
9242083 Fago et al. Jan 2016 B2
9259527 Spohn et al. Feb 2016 B2
9314749 Yagi et al. Apr 2016 B2
9333293 Williams, Jr. et al. May 2016 B2
9474857 Riley Oct 2016 B2
9480788 Wagner Nov 2016 B2
9480791 Reilly Nov 2016 B2
9555379 Schriver et al. Jan 2017 B2
9855387 Small Jan 2018 B2
9901671 Toews et al. Feb 2018 B2
9987413 Seibold et al. Jun 2018 B2
10041483 Chappel et al. Aug 2018 B2
10112008 Neftel et al. Oct 2018 B2
10391234 Sams et al. Aug 2019 B2
10549084 Sokolov et al. Feb 2020 B2
20010018937 Nemoto Sep 2001 A1
20010027265 Prince Oct 2001 A1
20010056233 Uber et al. Dec 2001 A1
20020007116 Zatezalo et al. Jan 2002 A1
20020010551 Wang et al. Jan 2002 A1
20020026148 Uber et al. Feb 2002 A1
20020099254 Movahed Jul 2002 A1
20020123702 Cho Sep 2002 A1
20020151854 Duchon et al. Oct 2002 A1
20030050556 Uber et al. Mar 2003 A1
20030120171 Diamantopoulos et al. Jun 2003 A1
20030195462 Mann et al. Oct 2003 A1
20030212364 Mann et al. Nov 2003 A1
20030216683 Shekalim Nov 2003 A1
20030226539 Kim et al. Dec 2003 A1
20040011740 Bernard et al. Jan 2004 A1
20040025452 McLean Feb 2004 A1
20040044302 Bernard et al. Mar 2004 A1
20040064041 Lazzaro et al. Apr 2004 A1
20040092905 Azzolini May 2004 A1
20040097806 Hunter et al. May 2004 A1
20040154788 Symonds Aug 2004 A1
20040162484 Nemoto Aug 2004 A1
20040163655 Gelfand et al. Aug 2004 A1
20040167415 Gelfand et al. Aug 2004 A1
20040215144 Duchon et al. Oct 2004 A1
20040254533 Schriver et al. Dec 2004 A1
20050107697 Berke et al. May 2005 A1
20050113754 Cowan May 2005 A1
20050171487 Haury et al. Aug 2005 A1
20050234407 Spohn et al. Oct 2005 A1
20050234428 Spohn et al. Oct 2005 A1
20060052794 McGill et al. Mar 2006 A1
20060079765 Neer et al. Apr 2006 A1
20060079843 Brooks et al. Apr 2006 A1
20060167415 Nemoto Jul 2006 A1
20070068964 Tanaami et al. Mar 2007 A1
20070129705 Trombley, III et al. Jun 2007 A1
20070161970 Spohn et al. Jul 2007 A1
20070219496 Kamen et al. Sep 2007 A1
20070276327 Kalafut et al. Nov 2007 A1
20080015406 Dlugos Jan 2008 A1
20080045925 Stepovich et al. Feb 2008 A1
20080086087 Spohn et al. Apr 2008 A1
20080167621 Wagner et al. Jul 2008 A1
20080183131 Duchon et al. Jul 2008 A1
20090112164 Reilly et al. Apr 2009 A1
20090216192 Schriver et al. Aug 2009 A1
20090234226 Nemoto Sep 2009 A1
20090247865 Spohn et al. Oct 2009 A1
20090247961 Carlyon Oct 2009 A1
20090312744 Keeley et al. Dec 2009 A1
20100130809 Morello May 2010 A1
20100222768 Spohn et al. Sep 2010 A1
20100262078 Blomquist Oct 2010 A1
20100331779 Nystrom et al. Dec 2010 A1
20110275988 Davis et al. Nov 2011 A1
20120089114 Hemond et al. Apr 2012 A1
20120101472 Schroeder et al. Apr 2012 A1
20120123257 Stokes, Jr. May 2012 A1
20120178629 Hudson et al. Jul 2012 A1
20120203177 Lanier, Jr. et al. Aug 2012 A1
20120204997 Winn et al. Aug 2012 A1
20120217231 Moore et al. Aug 2012 A1
20120245560 Hochman Sep 2012 A1
20130030290 Nemoto Jan 2013 A1
20130245439 Small et al. Sep 2013 A1
20130245604 Kouyoumjian et al. Sep 2013 A1
20130261993 Ruchti et al. Oct 2013 A1
20140027009 Riley et al. Jan 2014 A1
20140142537 Gibson May 2014 A1
20140276550 Uram et al. Sep 2014 A1
20160030662 Uber, III et al. Feb 2016 A1
20160278725 Van Nijnatten Sep 2016 A1
20160331896 Nemoto et al. Nov 2016 A1
20160331951 Sokolov et al. Nov 2016 A1
20170035974 Berry et al. Feb 2017 A1
20170143898 Grosse-Wentrup et al. May 2017 A1
20170258982 Kemper Sep 2017 A1
20170290971 Hedmann et al. Oct 2017 A1
20170312430 Schleicher Nov 2017 A1
20170343446 Ciolkosz et al. Nov 2017 A1
20180133392 Dembo et al. May 2018 A1
20190083699 Spohn et al. Mar 2019 A1
20200129702 Pedersen Apr 2020 A1
Foreign Referenced Citations (121)
Number Date Country
2045070 Feb 1992 CA
2077712 Dec 1993 CA
2234050 Apr 1997 CA
1671428 Sep 2005 CN
103347552 Oct 2013 CN
3203594 Aug 1983 DE
3726452 Feb 1989 DE
4426387 Aug 1995 DE
19702896 Jul 1997 DE
19647701 May 1998 DE
19919572 Nov 2000 DE
0121216 Oct 1984 EP
0129910 Jan 1985 EP
0189491 Aug 1986 EP
0192786 Sep 1986 EP
0245160 Nov 1987 EP
0319275 Jun 1989 EP
0337924 Oct 1989 EP
0343501 Nov 1989 EP
0364966 Apr 1990 EP
0365301 Apr 1990 EP
0372152 Jun 1990 EP
0378896 Jul 1990 EP
0429191 May 1991 EP
0471455 Feb 1992 EP
0475563 Mar 1992 EP
0595474 May 1994 EP
0600448 Jun 1994 EP
0619122 Oct 1994 EP
0439711 May 1995 EP
0869738 Oct 1998 EP
1016427 Jul 2000 EP
2990073 Mar 2016 EP
2493708 May 1982 FR
2561949 Oct 1985 FR
201800 Aug 1923 GB
2252656 Aug 1992 GB
2328745 Mar 1999 GB
S5017781 Feb 1975 JP
S5815842 Jan 1983 JP
S59214432 Dec 1984 JP
S60194934 Oct 1985 JP
S60194935 Oct 1985 JP
S60253197 Dec 1985 JP
S62216199 Sep 1987 JP
S6340538 Feb 1988 JP
S63290547 Nov 1988 JP
H01207038 Aug 1989 JP
H02224647 Sep 1990 JP
H02234747 Sep 1990 JP
H0355040 Mar 1991 JP
H04115677 Apr 1992 JP
H0584296 Apr 1993 JP
H07178169 Jul 1995 JP
H0849598 Feb 1996 JP
H0999034 Apr 1997 JP
H10211198 Aug 1998 JP
2000175900 Jun 2000 JP
2003102724 Apr 2003 JP
2003116843 Apr 2003 JP
2003210456 Jul 2003 JP
2003225234 Aug 2003 JP
2004174008 Jun 2004 JP
2004236849 Aug 2004 JP
2004298550 Oct 2004 JP
4960180 Jun 2012 JP
5063593 Oct 2012 JP
5203971 Jun 2013 JP
5227791 Jul 2013 JP
5490840 May 2014 JP
8001754 Sep 1980 WO
8500292 Jan 1985 WO
8803815 Jun 1988 WO
9114232 Sep 1991 WO
9114233 Sep 1991 WO
9315658 Aug 1993 WO
9325141 Dec 1993 WO
9415664 Jul 1994 WO
9632975 Oct 1996 WO
9712550 Apr 1997 WO
9820919 May 1998 WO
9924095 May 1999 WO
0061216 Oct 2000 WO
0141835 Jun 2001 WO
03015633 Feb 2003 WO
2004012787 Feb 2004 WO
2004035116 Apr 2004 WO
2004091688 Oct 2004 WO
2005016165 Feb 2005 WO
2005035995 Apr 2005 WO
2006042093 Apr 2006 WO
2007079016 Jul 2007 WO
2007092618 Aug 2007 WO
2007116840 Oct 2007 WO
2007116862 Oct 2007 WO
2007116891 Oct 2007 WO
2007133942 Nov 2007 WO
2008078604 Jul 2008 WO
2008106108 Sep 2008 WO
2009051995 Apr 2009 WO
2010027636 Mar 2010 WO
2010117841 Oct 2010 WO
2011125303 Oct 2011 WO
2012048277 Apr 2012 WO
2012155035 Nov 2012 WO
2013043868 Mar 2013 WO
2014144651 Sep 2014 WO
2014179326 Nov 2014 WO
2014190264 Nov 2014 WO
2015106107 Jul 2015 WO
2015164783 Oct 2015 WO
2016112163 Jul 2016 WO
2016172467 Oct 2016 WO
2016191485 Dec 2016 WO
2017012781 Jan 2017 WO
2017038575 Mar 2017 WO
2017096072 Jun 2017 WO
2017152036 Sep 2017 WO
2018060505 Apr 2018 WO
2018075386 Apr 2018 WO
2018089882 May 2018 WO
Non-Patent Literature Citations (65)
Entry
“International Preliminary Report on Patentability from PCT Application No. PCT/US2018/048313”, dated Mar. 12, 2020.
“Angiography,” Catheterization and Cardiovascular Diagnosis, vol. 19, pp. 123-128, 1990.
Awai Kazuo; et al, “Aortic and Hepatic Enhancement and Tumor-to-Liver Contrast: Analysis of the Effect of Different Concentrations of Contrast Material at Multi-Detector Row Helical CT.”, Radiology, 2002, vol. 224; Issue 3., 757-763.
Angelini, P., “Use of mechanical injectors during percutaneous transluminal coronary angioplasty (PTCA),” Catheterization and Cardiovascular Diagnosis, vol. 16, Issue 3, pp. 193-194, Mar. 1989.
Awai, K., et al., “Effect of contrast material injection duration and rate on aortic peak time and peak enhancement at dynamic CT involving injection protocol with dose tailored to patient weight,” Radiology, vol. 230, Issue 1, pp. 142-150, 2004.
Bae, et al. “Aortic and Hepatic Contrast Medium Enhancement at CT—Part I, Prediction with a Computer Model”, Radiology 1998;207:647-655.
Bae, K.T., et al., “Multiphasic Injection Method for Uniform Prolonged Vascular Enhancement at CT Angiography: Pharmacokinetic Analysis and Experimental Porcine Model,” Radiology, vol. 216, Issue 3, pp. 872-880 (Sep. 2000).
Bae, K.T. et al., “Peak Contrast Enhancement in CT and MR Angiography: When Does it Occur and Why? Pharmacokinetic Study in a Porcine Model”, Radiology, vol. 227, Jun. 2003, pp. 809-816.
Bae, K.T., et al., “Uniform vascular contrast enhancement and reduced contrast medium vol. achieved by using exponentially decelerated contrast material injection method,” Radiology, vol. 231, Issue 3, pp. 732-736, 2004.
Baker, Aaron; et al. “Fluid Mechanics Analysis of a Spring-Loaded Jet Injector.” IEEE Transactions on Biomedical Engineering, vol. 46, No. 2, Feb. 1999.
Becker, C.R., et al., “Optimal contrast application for cardiac 4-detector-row computed tomography,” Investigative Radiology, vol. 38, Issue 11, pp. 690-694 (Nov. 2003).
Blomley, M.J.K. and Dawson, P., “Bolus Dynamics: Theoretical and Experimental Aspects,” The Brit. J. ofRadiology, vol. 70, No. 832, pp. 351-359 (Apr. 1997).
Brunette J.; et al., “Comparative rheology of low- and iso-osmolarity contrast agents at different temperature”, Catheterization and Cardiovascular Interventions, 2008, vol. 71 Issue No. 1, 78-83.
Cademartiri, F. and Luccichenti, G., et al. “Sixteen-row multislice computed tomography: basic concepts, protocols, and enhanced clinical applications,” Seminars in Ultrasound, CT and MRI, vol. 25, Issue 1, pp. 2-16, 2004.
Dardik, H. et al., “Remote Hydraulic Syringe Actuator,” Arch. Surg., vol. 115, Issue 1, Jan. 1980.
Dawson, P. and Blomley, M., “The value of mathematical modelling in understanding contrast enhancement in CT with particular reference to the detection of hypovascular liver metastases,” European Journal of Radiology, vol. 41, Issue 3, pp. 222-236 (Mar. 2002).
“Digital Injector for Angiography”, Sias. (Sep. 7, 1993).
Disposable Low-Cost Catheter Tip Sensor Measures Blood Pressure during Surgery, Sensor (Jul. 1989).
EZ Chem Brochure, E-Z-EM, Inc. (Jul. 2007).
Fisher, M.E. and Teo, K.L., “Optimal insulin infusion resulting from a mathematical model of blood glucose dynamics”, IEEE Transactions on Biomedical Engineering, vol. 36, Issue 4, pp. 479-486, 1989.
Flegal, K.M., et al., “Prevalence and trends in obesity among US adults,” JAMA, 2002, vol. 288, Issue 14, pp. 1-4, (1999-2000).
Fleischmann, D. and Hittmair, K., “Mathematical analysis of arterial enhancement and optimization of bolus geometry for CT angiography using the discrete Fourier transform,” Journal of Computer Assisted Tomography, vol. 23, Issue 3, pp. 474-484 (May/Jun. 1999).
Fleischmann, D., “Contrast Medium Injection Technique,” In: U. Joseph Schoepf: “Multidetector—Row CT of The Thorax,” pp. 47-59 (Jan. 22, 2004).
Fleischmann, D., “Present and Future Trends in Multiple Detector-Row CT Applications; CT Angiography”, European Radiology, vol. 12, Issue 2, Supplement 2, Jul. 2002, pp. s11-s15.
Gardiner, G. A., et al., “Selective Coronary Angiography Using a Power Injector,” AJR Am J Roentgenol., vol. 146, Issue 4, pp. 831-833 (Apr. 1986).
Garrett, J. S., et al., “Measurement of cardiac output by cine computed tomography,” The American Journal of Cardiology, vol. 56, Issue 10, pp. 657-661, 1985.
Gembicki, F.W., “Vector Optimization for Control with Performance and Parameter Sensitivity Indices,” PhD Thesis Case Western Reserve University, 1974.
Gentilini A., et al., “A new paradigm for the closed-loop intraoperative administration of analgesics in humans,” IEEE Transactions on Biomedical Engineering, vol. 49, Issue 4, pp. 289-299 (Apr. 2002).
Gerlowski L.E. and Jain R.K., “Physiologically Based Pharmacokinetic Modeling: Principles and Applications,” Journal of Pharmaceutical Sciences, vol. 72, pp. 1104-1125, Oct. 1983.
Goss, J. E., et al., “Power injection of contrast media during percutaneous transluminal coronary artery angioplasty,” Catheterization and Cardiovascular Diagnosis, vol. 16, Issue 3, pp. 195-198 (Mar. 1989).
Grant, S.C.D. et al., “Reduction of Radiation Exposure to the Cardiologist during Coronary Angiography by the Use of A Remotely Controlled Mechanical Pump for Injection of Contrast Medium,” Catheterization and Cardiovascular Diagnosis, vol. 25, Issue 2, pp. 107-109 (Feb. 1992).
Hackstein, N. et al., “Glomerular Filtration Rate Measured by Using Triphasic Helical CT with a Two-Point Patlak Plot Technique,” Radiology, vol. 230, Issue 1, pp. 221-226, Jan. 2004.
Hansen, P.C, Regularization tools: a MATLAB package for analysis and solution of discrete ill-posed problems, Numerical Algorithms, vol. 6, Issue 1, pp. 35, 1994.
Hansen, P.C., “The truncated SVD as a method for regularization,” BIT Numerical Mathematics, vol. 27, Issue 4, pp. 534-555, 1987.
Harris P., H. D. “The Human Pulmonary Circulation,” Edinburgh, Churchill Livingstone, (Appendix I), 1986.
Hayes, M., “Statistical Digital Signal Processing and Modeling”, New York, New York, Wiley and Sons, 1996, pp. 154-177, (Prony's method).
Heiken; J.P. et al., “Dynamic Contrast-Enhanced CT of the Liver: Comparison of Contrast Medium Injection Rates and Uniphasicand Biphasic Injection Protocols”, Radiology, May 1993, vol. 187, No. 2, pp. 327-331.
“Infus O.R. Multi-Drug Syringe Pump with Smart Labels,” Bard MedSystems Division Inc., pp. 2693-2696 (2005).
“International Preliminary Report on Patentability from PCT Application No. PCT/US2018/048282”, dated Mar. 12, 2020.
“International Search Report and Written Opinion from PCT Application No. PCT/US2018/048313”, dated Nov. 30, 2018.
Ireland, M.A., et al., “Safety and Convenience of a Mechanical Injector Pump for Coronary Angiography,”Catheterization and Cardiovascular Diagnosis, vol. 16, Issue 3, pp. 199-201 (1989).
Jacobs, J.R., “Algorithm for optimal linear model-based control with application to pharmacokinetic model-driven drug delivery,” IEEE Transactions on Biomedical Engineering, vol. 37, Issue 1, pp. 107-109 (Jan. 1990).
Korosec, F.R., “Physical Principles of Phase-Contrast, Time-of-Flight, and Contrast-Enhanced MR Angiography,” 41st Annual Meeting of American Association of Physicists in Medicine, Jul. 25-29, 1999.
Korosec, Frank, “Basic Principles of Phase-contrast, Time-of-flight, and Contrast-enhanced MR Angiography”, 1999.
Krause, W, “Application of pharmacokinetics to computed tomography: injection rates and schemes: mono-, bi-, or multiphasic?,” Investigative Radiology, vol. 31, Issue 2, pp. 91-100, Feb. 1996.
Krieger, R. A., “CO2-Power-Assisted Hand-Held Syringe: Better Visualization during Diagnostic and InterventionalAngiography,” Cathet Cardiovasc Diagn., vol. 19, Issue 2, pp. 123-128 (Feb. 1990).
Liebel-Flarsheim Company, “Angiomat 6000 Digital Injection System-Operator's Manual”, Document No. 600950, Rev. 1, Jan. 1990.
Mahnken, A. H., et al., “Determination of cardiac output with multislice spiral computed tomography: a validation study,” Investigative Radiology, vol. 39, Issue 8, pp. 451-454, Aug. 2004.
Mahnken, A. H., et al., “Measurement of cardiac output from a test-bolus injection in multislice computed tomography,” European Radiology, vol. 13, Issue 11, pp. 2498-2504, 2003.
Mark V/Mark V Plus Injector Operation Manual KMP 805P Rev. B. Medrad, Inc, 1990.
McClellan, J.H., “Parametric Signal Modeling,” Chapter 1 in Advanced Topics in Signal Processing, Pentice-Hall, Englewood Cliffs, NJ (1988).
MCT and MCT Plus Injection Systems Operation Manual KMP 810P, Medrad, Inc, 1991.
Morden Peter.; et al., “The Role of Saline Flush Injection Rate in Displacement of CT Injectable Peripherally Inserted Central Catheter Tip During Power Injection of Contrast Material”, AJR, Jan. 2014, 202, W13-W18.
Neatpisarnvanit, C. and Boston, J.R., “Estimation of plasma insulin from plasma glucose”, IEEE Transactions on Biomedical Engineering, vol. 49, Issue 11, pp. 1253-1259, 2002.
Ostergaard, L., et al., “High resolution measurement of cerebral blood flow using intravascular tracer boluspassages. Part 1: Mathematical approach and statistical analysis,” Magnetic Resonance in Medicine, vol. 36, Issue 5,pp. 715-725 (Nov. 1996).
Ostergaard, L., et al., “High resolution measurement of cerebral blood flow using intravascular tracer boluspassages. Part II: Experimental comparison and preliminary results,” Magn Reson Med, vol. 36, Issue 5, pp. 726-736(Nov. 1996).
Parker, K.J., et al., “A Particulate Contrast Agent With Potential For Ultrasound Imaging of Liver,” Ultrasound in Medicine & Biology, vol. 13, Issue 9, pp. 555-566 (Sep. 1987).
Rosen, B.R. et al., “Perfusion Imaging with NMR Contrast Agents,” Magentic Resonance in Medicine, vol. 14, No. 2, pp. 249-265, May 1, 1990.
Sablayrolles, J-L, “Cardiac CT: Experience from Daily Practice”, Advance CT, A GE Healthcare Publication. Aug. 2004.
Stevens, M.A., et al. “A Prospective Randomized Trial of Prevention Measures in Patients at High Risk for Contrast Nephropathy,” J. of the ACC, vol. 33, Issue 2, pp. 403-411, Feb. 1999.
“The Solution for Your IV Formulas”, Valley Lab. Inc., E-39-15, 3399, 3400, 2646.
Wada D.R. and Ward; D.S., “The hybrid model: a new pharmacokinetic model for computer-controlled infusion pumps”, IEEE Transactions on Biomedical Engineering, 1994, vol. 41, Issue 2, pp. 134-142.
Wada, D.R. and Ward, D.S., “Open loop control of multiple drug effects in anesthesia”, IEEE Transactions on Biomedical Engineering, vol. 42, Issue 7, pp. 666-677, 1995.
Yamashita, Y. et al., “Abdominal Helical CT: Evaluation of Optimal Doses of Intravenous Contrast Material—A Prospective Randomized Study,” Radiology, vol. 216, Issue 3, pp. 718-723, Sep. 1, 2000.
Swiss; Medical Care., “CT Expres Contrast Media Delivery System Operation Manual Rev 1”, 2004.
Related Publications (1)
Number Date Country
20200149948 A1 May 2020 US
Provisional Applications (1)
Number Date Country
62552428 Aug 2017 US