The present disclosure relates to a fuel injector. More particularly, the present disclosure relates to an injector tip for a fuel injector having a reduced possibility of fuel dribble during and upon completion of a fuel discharge event.
Fuel injectors are used to deliver fuel to a combustion chamber of an engine. In many cases, these fuel injectors have high fuel pressure within that would be provided from a pump and rail arrangement located upstream of the fuel injectors. This high pressure of the fuel combined with an inter-relative geometry of a sac region and a needle tip of the fuel injector may influence one or more parameters associated with discharge and combustion of the fuel. These parameters in turn, affect the quality of emissions before being released into the atmosphere. For instance, during a fuel discharge event, many conventional fuel injectors have been known to dribble fuel to at least about a droplet size from their sac regions into the combustion chamber of the engine. This could lead to undesired effects including, amongst other things, the presence of unburned hydrocarbons in the emissions released by the combustion chamber.
Many strategies have been developed to reduce this dribble effect so that the quality of emissions from combustion chambers of an engine can be improved. One such strategy is disclosed in PCT Publication WO 1992/019859 (hereinafter referred to as ‘the '859 publication’). The '859 publication discloses a fuel injection nozzle having a nozzle body in which is formed a bore having a seating defined at one end. A valve member is movable in the bore and is shaped to cooperate with the seating to control fuel flow into a sac volume defined by a blind drilling formed in the body. Outlet orifices extend to an exterior of the body from the drilling and in order to reduce the volume of the sac volume an insert is positioned in the drilling. However, this insert may be displaceable in position when subject to extreme working pressures typically encountered in fuel injection nozzles. Moreover, due to a possibility of displacement in position of the insert, the body, and in particular, the sac region of the injection nozzle may be subject to collisions or abrasion from the insert thereby reducing a service life of the injection nozzle.
Hence, there is a need for a fuel injector having a sac region that is capable of withstanding high operational forces while also being configured to minimize fuel dribble from occurring during or after a fuel discharge event.
In an aspect of the present disclosure, an injector tip for a fuel injector includes an exterior surface, and an interior surface defining a sac region therein. The injector tip is also configured to define at least one orifice radially extending from the interior surface to the exterior surface. The orifice is disposed in communication with the sac region located adjacent to the interior surface. Further, the injector tip also includes a mound that is defined on the interior surface such that the mound is integrally formed with the interior surface adjacent to the sac region. The mound is configured to extend along an axis of the sac region and terminate prior to a perimeter of the at least one orifice. In aspects of this disclosure, the mound is convex in shape.
In another aspect of this disclosure, ends of the mound may terminate tangentially with respect to the perimeter of the at least one orifice. Optionally, a concave ridge portion could be disposed between the mound and the at least one orifice.
In yet another aspect of this disclosure, a fuel injector includes a body having an injector tip according to the present disclosure.
In yet another aspect of this disclosure, claims have been directed to an engine having a combustion chamber, and the fuel injector of the present disclosure partially received in the combustion chamber to deliver a pressurized supply of fuel into the combustion chamber.
Other features and aspects of this disclosure will be apparent from the following description and the accompanying drawings.
Reference numerals appearing in more than one figure indicate the same or corresponding parts in each of them. References to elements in the singular may also be construed to relate to the plural and vice-versa without limiting the scope of the disclosure to the exact number or type of such elements unless set forth explicitly in the appended claims.
Referring to
Moreover, although a single fuel injector 104 is shown associated with each of the combustion chambers 102a-102d in the exemplary engine 100 of
Each of the fuel injectors 104a-104d is disposed in fuel communication with a fuel rail 106 with the help of a supply line 108, one supply line 108a-108d for corresponding ones of the fuel injectors 104a-104d. A pump 110 located upstream of the fuel rail 106 is configured to draw fuel from a tank 112 via a suction line 111. The pump 110 pressurizes the fuel drawn within and supplies the pressurized fuel into the fuel rail 106. From the fuel rail 106, fuel is supplied, independently and selectively, to each of the fuel injectors 104a-104d via corresponding ones of the supply lines 108a-108d respectively.
As shown, the injector tip 222 includes an exterior surface 230, and an interior surface 232 defining the sac region 228 therein. The injector tip 222 is also configured to define at least one orifice 234 radially extending from the interior surface 232 to the exterior surface 230. For example, the injector tip 222 shown in the illustrated embodiment of
Further, the injector tip 222 also includes a mound 236 that is defined on the interior surface 232. As shown, the mound 236 is convex in shape. In embodiments of this disclosure, it may be noted that the mound 236 is integrally formed with the interior surface 232 adjacent to the sac region 228. As shown, the mound 236 is configured to extend along an axis AA′ of the sac region 228.
In the illustrated embodiment of
However, in other embodiments, the ends 238 of the mound 236 may be configured to terminate tangentially with the perimeter P of each orifice 234. That is, the ends 238 of the mound 236 could be disposed on a smallest locus of points subtended from the axis AA′ on the interior surface 232 and coinciding with the perimeters P of the orifices 234. Further, although it is shown in the illustrated embodiment of
Since the mound 236 protrudes into the sac region 228, the sac region 228 is rendered with a reduced volume. This reduced volume of the sac region 228 helps obviate a presence of excess fuel in the sac region 228 during and upon completion of a fuel discharge event by the fuel injector 104 into the combustion chamber 102. In fact, with the help of embodiments disclosed herein, it is envisioned that the mound 236 can be configured to help ensure that the sac region 228 is devoid of excess fuel during receipt, containment, and upon discharge of fuel from the sac region 228 of the fuel injector 104 into the combustion chamber 102 via the orifices 234 when the needle 224 travels towards the valve seat 226 (in a direction D as shown in
In the illustrated embodiment of
Moreover, in this embodiment, the mound 336 extends substantially to a height H along axis AA′. For sake of the present disclosure, this height H of the mound 336 may be regarded as being greater than a height h associated with the mound 236 shown in the illustrated embodiment of
In embodiments herein, it may be noted that the mounds 236/336 are also configured to impart additional strength to the injector tip 222/322 as these mounds 236/336 are integrally formed with interior surfaces 232/332 of corresponding ones of the injector tips 222/322 disclosed herein. Various processes including, but not limited to, end milling, 3D printing, or any other material removal or material additive processes known to persons skilled in the art are contemplated for forming the mounds 236/336 integrally with the interior surfaces 232/332 of corresponding ones of the injector tips 222/322 respectively.
Also, when forming the mounds 236/336 disclosed herein, ends 238/338 of corresponding mounds 236/336 may be configured to, optionally, terminate at regions of the interior surfaces 232/332 between successive ones of corresponding orifices 238/338. These regions may be located on a locus of points that are different from that where the ends 238/338 of the mounds 236/336 terminate prior to, or tangentially with the perimeters P/P1 of the corresponding orifices 234/334. The ends 238/338 of the mounds 236/336 at these regions may be contoured with corresponding ones of the interior surfaces 232/332 itself so that these ends 238/338 of the corresponding mounds 236/336 can help improve a flow of fuel from the orifices 234/334 of corresponding ones of the injector tips 222/322 into the combustion chamber 102.
Various embodiments disclosed herein are to be taken in the illustrative and explanatory sense, and should in no way be construed as limiting of the present disclosure. All joinder references (e.g., connected, coupled and the like) are only used to aid the reader's understanding of the present disclosure, and may not create limitations, particularly as to the position, orientation, or use of the systems and/or methods disclosed herein. Therefore, joinder references, if any, are to be construed broadly. Moreover, such joinder references do not necessarily infer that two elements are directly connected to each other.
Additionally, all numerical terms, such as, but not limited to, “first”, “second”, or any other ordinary and/or numerical terms, should also be taken only as identifiers, to assist the reader's understanding of the various elements, embodiments, variations and/or modifications of the present disclosure, and may not create any limitations, particularly as to the order, or preference, of any element, embodiment, variation and/or modification relative to or over another element, embodiment, variation and/or modification.
It is to be understood that individual features shown or described for one embodiment may be combined with individual features shown or described for another embodiment. The above described implementation does not in any way limit the scope of the present disclosure. Therefore, it is to be understood although some features are shown or described to illustrate the use of the present disclosure in the context of functional segments, such features may be omitted from the scope of the present disclosure without departing from the spirit of the present disclosure as defined in the appended claims.
Embodiments of the present disclosure have applicability for use and implementation in reducing fuel dribble out of fuel injectors and into combustion chambers of engines during fuel-injection events. With implementation of the injector tips 222/322 disclosed herein, manufacturers and users of engines can improve a quality of emissions released from an engine. A reduced level of unburned hydrocarbons (UHC) could be present in the released emissions that would otherwise increase if fuel-dribble occurred from the injectors into the combustion chamber/s of an engine.
In many countries, efforts have been made to regulate the quality of emissions with the help of various emissions norms that mandate the level of UHC permitted in a pre-determined amount of emissions released by an engine. With use of embodiments disclosed herein, manufacturers can improve an overall performance of engines in terms of emission quality while, optionally or additionally, helping the engines to reduce fuel consumption for improving fuel mileage as the injector tips 222/322 of the present disclosure define sac regions 228/328 that are rendered with a reduced volume as opposed to a volume associated with previously known configurations of conventional sac regions.
Additionally, with inclusion of the mound 236/336, additional strength may be imparted to corresponding ones of the injector tips 222/322 thereby improving a service life and reliability of the injector tips 222/322 in withstanding extreme forces encountered during operation. Therefore, use of the injector tips 222/322 may also reduce costs, time, and effort typically incurred with frequent service of conventionally configured fuel injector tips and/or replacement of previously known fuel injectors.
While aspects of the present disclosure have been particularly shown and described with reference to the embodiments above, it will be understood by those skilled in the art that various additional embodiments may be contemplated by the modification of the disclosed machines, systems, methods and processes without departing from the spirit and scope of what is disclosed. Such embodiments should be understood to fall within the scope of the present disclosure as determined based upon the claims and any equivalents thereof.