The present invention relates to an injector, and more particularly to an injector with adjustable-dosing.
Injection devices for injection of medicaments into a patient are generally known. Such devices include, for example, traditional hypodermic needle syringes that contain a stock of medicament therein. Upon insertion of the needle under the patient's skin at an injection location, the medicament is forced out of the syringe and through the needle by depression of a plunger mechanism.
Injection devices also include needle-free injectors, some of which are described in U.S. Pat. Nos. 5,599,302; 5,062,830; and 4,790,824; and needle-assisted injectors, such as those described in U.S. Patent Publication No. 2005/0033234. These jet injectors administer medicaments as a fine, high velocity jet delivered under sufficient pressure to enable the jet to pass through the skin, or for improved dispersion of the injected medicament. Self-injectors or autoinjectors like the ones disclosed in U.S. Pat. Nos. 4,553,962 and 4,378,015, and PCT Publications WO 95/29720 and WO 97/14455 are constructed to inject medicament at a rate and in a manner similar to hand-operated hypodermic syringes.
These injectors often are made for a single use, or alternatively to be refilled after each injection. Some refillable injectors can be refilled with a desired dosage to be injected. Upon injection, the entire loaded dosage is injected.
An injector is needed that can deliver a medicament into a patient in an adjustable dose that is equal to or less than the full amount contained in the injector.
The invention is related to an injector. A preferred embodiment of the injector includes a container comprising a fluid chamber containing a first volume of a medicament, and an injection conduit associated with the fluid chamber for defining a fluid pathway therefrom to inject the medicament from the fluid chamber through the injection conduit to an injection location. The injector also includes a firing mechanism associated with the fluid chamber for expelling the medicament from the fluid chamber through the injection conduit, and a volume-control mechanism operable to control a fraction of the first volume of medicament that is injected when the firing mechanism is actuated to inject the medicament.
Preferably, the volume-control mechanism is used to select a second volume, which is a portion or fraction of the first volume. The volume-control mechanism preferably includes a threaded ram that is biased by an energy source against a plunger and configured for rotating about a longitudinal axis of the injector. The volume-control mechanism also preferably includes a stopping member in threaded association with the ram and including at least one lateral member disposed within a track that extends longitudinally along a portion of the housing of the injector and is slidable therein. Preferably, the stopping member includes a pair of opposing lateral members, each disposed in separate opposing tracks. The lateral member prevents rotation of the stopping member about the longitudinal axis with the ram when the ram is rotated thereabout. The stopping member is configured for limiting movement of the ram along the longitudinal axis, the position of the stopping member being adjustable along the longitudinal axis with respect to the ram. The volume-control mechanism also includes a cap associated, and preferably removeably engageable, with the ram and configured for rotating the ram about the longitudinal axis to select an injection volume such that when the ram is rotated, the position of the stopping member is adjusted along the longitudinal axis with respect to the ram. Upon actuation of the energy source, which is preferably a spring, biasing of the ram against the plunger is preferably limited when the lateral member abuts the distal end of the track.
In one embodiment, the housing includes a transparent window adjacent the length of the track such that the longitudinal position of the stopping member within the injector is visible through the window. Preferably, the transparent window includes indicia corresponding to the position of the stopping member and the selected injection volume.
Preferably, the injector also includes a bearing member, such as an annular bushing or other bearing, disposed between the energy source and the ram, and configured for preventing or substantially reducing friction therebetween when the ram is rotated. The injector is preferably configured for single-use injection of medicament therefrom. Alternatively, the injector is configured for multiple injections of medicament therefrom.
In the preferred embodiment, the container is a prefilled syringe, and further includes an injection-assisting needle disposed in fluid communication with the fluid chamber, the needle having an injecting tip configured for piercing the patient's skin at the injection location. The housing houses the prefilled syringe and is configured for allowing insertion of the needle at the injection location to an insertion point that is at a penetration depth below the patient's skin. The injector preferably includes a syringe support supportively mounting the prefilled syringe to the housing. In other embodiments, the container is a needle-free cartridge, or a cartridge comprising an injection-assisting needle associated therewith.
In the preferred embodiment, the housing includes a retractable guard that is movable between a protecting position, in which the injection conduit is disposed within the guard, and an injecting position, in which the tip of the injection conduit is exposed for injection of the medicament at the injection location. A trigger mechanism is preferably operably associated with the energy source for actuation of the energy source to inject the medicament. Preferably, the trigger mechanism is configured for actuation of the energy source after the retractable guard is retracted from the protecting position. The retractable guard is preferably operably associated with the trigger mechanism to cause the trigger mechanism to activate the energy source when the guard is retracted to the injecting position.
The present invention thus provides an injector that enables a user to control or adjust the dose of medicament that is intended to be delivered to the patient.
Referring to
At the distal end of the container 18 is an injection-assisting needle 24, which is in fluid communication with an injection port 25 of the fluid chamber 22. Needle 24 has an injecting tip 26 configured as known in the art to penetrate the tissue of a patient, preferably the skin, at the injection location. A needle bore extends through the needle 24, as known in the art. The bore is in fluid communication with the injection port 25 and the medicament in the fluid chamber 22, and is open at the needle tip 26 to inject the medicament.
In needle-free injector embodiments, the container does not include a needle and the injection port of the fluid chamber preferably defines a fluid pathway in fluid communication with the fluid chamber for injecting medicament as a jet from the chamber through the port to the injection location. An example of a suitable needle-free jet nozzle arrangement is disclosed in U.S. Pat. No. 6,309,371.
At a proximal side of the fluid chamber 22, opposite from the needle 24, is a plunger 28 that preferably seals the medicament in the fluid chamber 22. A container wall 30 preferably comprises a tubular portion, preferably closed at a distal end and open at a proximal end, to define the fluid chamber 22. Plunger 28 is slideably received in the tubular portion. The container 18 is configured such that when the plunger 28 is displaced in a distal direction, the volume of the fluid chamber 22 is decreased, forcing the medicament out therefrom and through the injection port 25 and the bore of needle 24.
At the distal end of the fluid chamber 22 is a needle hub portion 32 to which the needle is mounted. A container flange 34 extends radially, preferably from the proximal end of the container wall 30.
In the preferred embodiment, the container 18 has a container body 36 that includes the flange 34, wall 30, and hub portion 32 of unitary construction. A preferred material for the container body 36 is glass, but other materials can be used in other embodiments. For example, a suitable prefilled syringe is the BD Hypak™, which is available in various sizes and volumes and is sold prefilled with medicament. The glass of the syringe body is adhered to the needle. Typical medicaments and medicament categories include epinephrine, atropine, sumatriptan, antibiotics, antidepressants, and anticoagulants.
In some embodiments, the injector includes a container cushion configured for providing additional support to the container within the housing, such as disclosed in International Application No. PCT/US2006/0002429, now WO 2006/079064. The container cushion 38 is preferably made of an elastomeric material or other resilient material. A flange of the container cushion 38 extends radially and is disposed and serves as an interface between the distal side of the container support member 16 and the container flange 34. Elevated portions, such as nubs, preferably extend proximately from the cushion flange and are configured and dimensioned to abut the container flange 34. A sleeve portion of the container cushion 38 extends axially around the interior of the container support 16. The container cushion 38 is preferably received in the interior of the container support 16 and receives the container body 36, preferably fitting snugly therein.
Referring to
A trigger member of the trigger mechanism 52, such as a latch housing 64, is provided exterior to the inner housing 54 to retain the trigger protrusions 56 in the blocking association in the recess 58 to prevent premature firing of the injector 10. The latch housing 64 is slideable inside the outer housing 12 with respect to the inner housing 54, preferably in an axial direction, and the latch housing 64 preferably surrounds the inner housing 54.
The distal end of the outer housing 12 preferably includes a needle guard 66 that is moveable with respect to the outer housing 12. The needle guard 66 is shown in
The needle guard 66 is associated with the latch housing 64 such that when the guard 66 is displaced distally it slides the latch housing 64 also in a distal direction to release the trigger protrusions 56 from the recess 58. Preferably, the latch housing 64 has a latching portion that abuts the inner housing 54 in an association to bias and maintain the trigger protrusions 56 positioned in the blocking association with the ram 60 prior to the firing of the injector 10. When the latch housing 64 is slid proximately by the retracting of the guard 66 to the injecting position, the latching portion slides beyond the portion of inner housing 54 that it contacts, allowing the trigger protrusions 56 to move radially outwardly from the recess 58 and therefore from the blocking association. When this happens, i.e., when the trigger mechanism 52 is actuated, the spring 62 biases the ram 60 against plunger 28 to fire the injector 10. Latch housing 64 preferably defines trigger openings 70 adjacent to the latching portions, which are configured to receive a portion of the inner housing 54, such as the surface disposed radially outwardly from the trigger protrusions 56.
The guard 66 is preferably resiliently biased distally towards the protecting position by compression coil spring 72, or other biasing member. Also, the needle guard 66 has an axial opening 74 to allow the needle 24 pass therethrough, and which may be sized according to the type of injector desired. In embodiments of the injector that do not include a needle, the axial opening can be sized to allow the distal end of the fluid chamber and injection port to pass therethrough. The construction of the embodiment of
Other embodiments can incorporate alternative trigger mechanisms for actuating firing of the injector. For example, the injector can include a button or other suitable depressible member on the outer housing that, upon depression thereof, actuates firing of the injector.
Preferably, the injecting position of the guard 66 is such that a predetermined length of the end of needle 24 is exposed from the guard 66. In some embodiments, such as where the opening 74 is of a sufficiently large diameter, the skin of the patient may be allowed to extend into the opening 74 when the device 10 is pressed there against, and a needle or injection port that does not protrude beyond the distal end of the guard 66 can be used. Some embodiments have a guard with a distal, skin-contacting surface that is discontinuous. In most embodiments where the injector includes a needle, the distance by which the needle tip extends past the distal end of the guard will be fairly close to the depth of the insertion of the needle.
In the preferred embodiment, such as for subcutaneous injection, the guard 66 is configured to allow insertion of the needle to a penetration depth in the skin that is up to about 5 mm below the skin surface. More preferably, the penetration depth is less than about 4 mm, and in one embodiment is less than about 3 mm. Preferably, the insertion depth is at least about 0.5 mm and more preferably at least about 1 mm. In another embodiment, the distance by which the needle extends past the guard 66 or the distal surface of the guard 66 that contacts the skin is up to about 5 mm, more preferably up to about 4 mm, and in one embodiment up to about 3 mm. Preferably, extension distance is at least about 0.5 mm, more preferably at least about 1 mm, and most preferably at least about 2 mm. In a preferred embodiment, tip 26 extends by a distance of around 2.5 mm beyond the portion of the guard 66 that contacts the skin in the injecting position.
In another embodiment, such as for intramuscular injection, the injector is configured to allow the needle to be inserted into the patient to a penetration depth in the skin, or alternatively beyond the distal surface of the guard, by a distance of up to about 15 mm. In one embodiment, this distance is about between 10 mm and 14 mm. In an embodiment for jet injection of epinephrine for instance, a preferred penetration depth or distance beyond the guard is between about 12 mm and 13.5 mm, and most preferably around 12.7 mm. Jet injection with this length needle improves the distribution of the medicament in the patient tissue compared to non-jet injection. Other exposed needle lengths can be selected for jet injection to different depths below the skin, with a preferred overall penetration length of between about 0.5 mm and about 20 mm. In these embodiments, the needle guard is preferably configured for retracting from a protecting position, preferably covering the entire needle, to an injecting position, in which the desired length of the end of the needle is exposed. In alternative embodiments, the needle tip stops behind or proximal to the guard, and penetrates the skin that is pushed into the guard.
In some embodiments, the energy source, which is preferably spring 62, and the container, which is preferably prefilled syringe 18, are configured to jet inject the medicament into the patient to an injection site. The spring 62 applies a force on the plunger 28 that is preferably sufficient to elevate the pressure within the fluid chamber 22 to a level high enough to eject the medicament from the needle 24 as a jet. Jet injection is to be understood as an injection with sufficient velocity and force to drive the medicament to locations remote from the needle tip 26 or injection port 25. The jet injector embodiments deliver a jet injection, the medicament is jet injected distally or in other directions, such as generally radially by the elevated pressure jet, which beneficially improves the distribution of the medicament after the injection and keeps a large bolus from forming that can detrimentally force the medicament to leak back out of the patient around the needle or through the hole left behind by the needle after it is removed. In alternative autoinjector embodiments that use needles, the injection pressures are relatively very low, and the medicament exits the needle tip inside the patient and is typically deposited locally around the needle in a bolus.
Preferably, in embodiments where needles are used, the needles are between 26 and 28 gage, and are most preferably around 27 gage, but alternatively other needle gages can be used where the other components are cooperatively configured to produce the desired injection. Preferably, the components of the injector 10 are configured to jet inject the medicament to a subterraneous injection site.
Preferred injection rates are below about 0.75 mL/sec., more preferably below about 0.6 mL/sec., and preferably at least about 0.2 mL/sec., more preferably at least about 0.3 mL/sec, and most preferably at least about 0.4 mL/sec. Preferably, the injection of the entire amount of medicament is completed in less than about 4 seconds, more preferably in less than about 3 seconds, and most preferably in less than about 2.5 seconds. Preferably, the medicament injection takes at least about 1 second, and more preferably at least 1.5 seconds, and most preferably at least about 1.75 seconds. A preferred embodiment injects the medicament at about 0.5 mL/sec., completing the injection of 1 mL in about 2 seconds. Other alternative injection rates, injection volumes, and injections times can also be used.
The entire amount of medicament contained and injected from fluid chamber of the container is preferably between about 0.02 mL and 4 mL, and preferably less than about 3 mL, and in the preferred embodiment is around 1 mL. Larger volumes may also be selected depending on the particular medicament and dosage required. Preferably, the container 18 shown in
As shown in the preferred embodiment of
The ram 60, as previously described, preferably has a threaded portion 61 and is configured for rotating about its longitudinal axis 110 to permit the option of injecting less than all of the medicament. Stopping member 100 preferably includes a body portion 102, which can be configured as an internally threaded nut, and at least one lateral wing, and preferably two lateral wings 104 extending laterally, and preferably on opposing sides of the body portion 102. The body portion 102 is preferably in threaded association with the ram 60 and is longitudinally moveable therealong. Each of the lateral wings 104 is preferably disposed and slideable within respective tracks 106 that extend longitudinally. Tracks 106 are preferably associated with or are defined in the outer housing 12, and are positioned in the embodiment shown on opposite lateral sides of the outer housing 12. Each of the tracks 106 preferably has a proximal end 107 and a distal end 108, which define a track length therebetween. Upon rotation of the ram 60, tracks 106 prevent rotation of the lateral wings 104 about the longitudinal axis 110. Consequently, the position of the body portion 102 moves or is adjusted proximally or distally longitudinally along the threaded portion 61 of the ram 60, the lateral wings 104 sliding in the tracks 106 therewith. In the preferred embodiment, the distal end 108 of the track 106 acts as a blocking member and prevents distal movement of the stopping member 100, and enlarged portion 101 of the ram 60 prevents proximal movement thereof, but other structures can alternatively be used for this purpose.
By rotating the ram 60, the stopping member 100 is positioned to limit the throw of the ram 60 when the injector 10 is fired, allowing the selection of volume of medicament to be injected from the fluid chamber 22. Upon actuation of the spring 62 by the trigger mechanism 52, the ram 60 is biased distally against the plunger 28, thus displacing plunger 28 in a distal direction to force medicament out of the fluid chamber 22. Movement of the ram 60 distally against the plunger 28, and thus the volume of medicament that is injected from the fluid chamber 22 (i.e., the injection volume), is limited by the lateral wings 104 of the stopping member 100. For example, the ram 60 can only move distally upon actuation of the spring 62 until the lateral wings 104 are stopped by the distal ends 108 of the tracks 106. At that point, further movement of the ram 60 in the distal direction is prevented. The position of the stopping member 100 along the ram 60 thus effectively controls the injection volume of medicament injected from the fluid chamber 22.
The operable member for rotating the ram 60 about the longitudinal axis 110 to adjust the longitudinal position of the stopping member 100 is preferably cap 82 that is preferably removeably engageable with the ram 60. The cap 82 preferably includes an engagement portion 83 configured for mating receipt within a receiving portion 84 of the ram 60. In this configuration, twisting or rotation of the cap 82 while the engagement portion 83 is received in the receiving portion 84 results in rotation of the ram 60 about the longitudinal axis 110. By manipulating the cap 82, the position of the stopping member 100 can be adjusted proximately or distally along the ram 60 to select the fraction of medicament that is desired to be injected from the fluid chamber 22. The engagement and receiving portions 83,84 are preferably non-circular to prevent or restrict axial rotation therebetween.
In the preferred embodiment, for example, the length of the tracks 106 is substantially equal to the length between the distal end 109 of the fluid chamber 22 and the distal end of the plunger 28. Thus, when cap 82 is twisted to position the stopping member 100 in its most proximal position along the ram 60 (i.e., with the lateral wings 104 disposed against the proximal ends 107 of the tracks 106), actuation of the spring 62 causes the ram 60 to move distally against the plunger 28 as the lateral wings 104 slide along the entire length of the track 106 before abutting the distal ends 108 of the tracks, and the plunger 28 correspondingly is moved distally through the fluid chamber 22 to the distal end 109 thereof, injecting the entire volume of medicament therefrom.
If the cap 82 is twisted to position the stopping member 100 more distally along the ram 60, then the injection volume will only be a fraction of the entire volume of medicament in the fluid chamber 22 because upon actuation, the lateral wings 104 will slide along the tracks 106 and abut the distal ends 108 thereof to prevent the ram 60 from biasing the plunger 28 completely to the distal end 109 of the fluid chamber 22. As such, the entire volume of the medicament in the fluid chamber 22 is not injected. One of ordinary skill in the art would understand that the cap 82 can be twisted to adjust the position of the stopping member 100 relative to the ram 60 to select the appropriate injection volume of medicament that is desired to be injected.
Alternative embodiments can be provided with different throw and adjustment ranges to limit the range of adjustability to less than from 100% to 0% of the total volume of contained medicament. In one embodiment, the upper limit of volume fraction is less than 100%, e.g., about 90% or about 80%, and the lower limit is more than 0%, e.g., about 10%, 30%, or 50%. Additionally, other embodiments of the injector can include alternative mechanisms that are configured to limit the throw/adjustment ranges or the volume of medicament ejected from the injector.
Preferably, the outer housing 12 includes a window portion 110 adjacent the tracks 106 and along the length thereof, as shown in the preferred embodiment of
One of ordinary skill in the art would understand that other such indicia or marking schemes can be used as desired. For example, indicia can be included on the housing adjacent the window rather than directly on the window, or the indicia can correspond to absolute values of injection volumes rather than percentages of the entire volume of medicament in the fluid chamber.
The preferred embodiment of the injector 10 shown in
While the preferred embodiments disclosed herein have been described in terms of a single-use injector (i.e., where a single injection volume of medicament is injected from a container prior to replacing the used container with a new container), one of ordinary skill in the art would understand that in other embodiments of the present invention, multiple injection volumes can be injected from the same container. For example, a first injection volume of 80% of the entire volume of medicament in the fluid chamber may be injected, followed by a subsequent injection of a second injection volume of the same or different fraction of the remaining volume of medicament in the fluid chamber.
The preferred embodiment is a single-use injector, being configured to prevent a user from reloading and reusing the injector. As such, the embodiment of
The content of International Application No. PCT/US2006/0002429, now WO 2006/079064, is hereby expressly incorporated herein by reference thereto. The term “about,” as used herein, should generally be understood to refer to both the corresponding number and a range of numbers. Moreover, all numerical ranges herein should be understood to include each whole integer within the range.
While illustrative embodiments of the invention are disclosed herein, it will be appreciated that numerous modifications and other embodiments may be devised by those skilled in the art. For example, the features for the various embodiments can be used in other embodiments. Therefore, it will be understood that the appended claims are intended to cover all such modifications and embodiments that come within the spirit and scope of the present invention.
This application is a continuation of U.S. patent application Ser. No. 14/860,792 filed Sep. 22, 2015, which is a continuation of U.S. patent application Ser. No. 12/299,288 filed Jun. 3, 2009, now U.S. Pat. No. 9,144,648, which is a U.S. National Stage Entry of International Patent Application PCT/US2007/068010 filed May 2, 2007, which in turn claims the benefit of priority from U.S. Provisional Patent Application No. 60/796,942 filed May 3, 2006, each of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3563098 | Gley | Feb 1971 | A |
3688765 | Gasaway | Sep 1972 | A |
3712301 | Sarnoff | Jan 1973 | A |
3797489 | Sarnoff | Mar 1974 | A |
3882863 | Sarnoff et al. | May 1975 | A |
4484910 | Sarnoff et al. | Nov 1984 | A |
4558690 | Joyce | Dec 1985 | A |
4624660 | Mijers et al. | Nov 1986 | A |
4661098 | Bekkering et al. | Apr 1987 | A |
4664653 | Sagstetter et al. | May 1987 | A |
4678461 | Mesa | Jul 1987 | A |
4820286 | van der Wal | Apr 1989 | A |
4822340 | Kamstra | Apr 1989 | A |
4986816 | Steiner et al. | Jan 1991 | A |
5042977 | Bechtold et al. | Aug 1991 | A |
5062830 | Dunlap | Nov 1991 | A |
5078680 | Sarnoff | Jan 1992 | A |
5085641 | Sarnoff et al. | Feb 1992 | A |
5085642 | Sarnoff et al. | Feb 1992 | A |
5092842 | Bechtold et al. | Mar 1992 | A |
5102393 | Sarnoff et al. | Apr 1992 | A |
5114406 | Gabriel et al. | May 1992 | A |
5163907 | Szuszkiewicz | Nov 1992 | A |
5176643 | Kramer et al. | Jan 1993 | A |
5180370 | Gillespie | Jan 1993 | A |
5195983 | Boese | Mar 1993 | A |
5271744 | Kramer et al. | Dec 1993 | A |
5279543 | Glikfeld et al. | Jan 1994 | A |
5300030 | Crossman et al. | Apr 1994 | A |
5342308 | Boschetti | Aug 1994 | A |
5354286 | Mesa et al. | Oct 1994 | A |
5358489 | Wyrick | Oct 1994 | A |
5391151 | Wilmot | Feb 1995 | A |
5423752 | Haber | Jun 1995 | A |
5425715 | Dalling et al. | Jun 1995 | A |
5478316 | Bitdinger et al. | Dec 1995 | A |
5514097 | Knauer | May 1996 | A |
5540664 | Wyrick | Jul 1996 | A |
5567160 | Massino | Oct 1996 | A |
5569192 | van der Wal | Oct 1996 | A |
5593388 | Phillips | Jan 1997 | A |
5599302 | Lilley et al. | Feb 1997 | A |
5658259 | Pearson et al. | Aug 1997 | A |
5665071 | Wyrick | Sep 1997 | A |
5695472 | Wyrick | Dec 1997 | A |
5820602 | Kovelman et al. | Oct 1998 | A |
5836911 | Marzynski et al. | Nov 1998 | A |
5843036 | Olive et al. | Dec 1998 | A |
5851197 | Marano et al. | Dec 1998 | A |
5891085 | Lilley et al. | Apr 1999 | A |
5891086 | Weston | Apr 1999 | A |
5919159 | Lilley et al. | Jul 1999 | A |
5935949 | White | Aug 1999 | A |
6045534 | Jacobson et al. | Apr 2000 | A |
6077247 | Marshall et al. | Jun 2000 | A |
6090070 | Hager et al. | Jul 2000 | A |
6099504 | Gross et al. | Aug 2000 | A |
6203529 | Gabriel et al. | Mar 2001 | B1 |
6210369 | Wilmot et al. | Apr 2001 | B1 |
6221046 | Burroughs et al. | Apr 2001 | B1 |
6241709 | Bechtold et al. | Jun 2001 | B1 |
6245347 | Zhang et al. | Jun 2001 | B1 |
6270479 | Bergens et al. | Aug 2001 | B1 |
6371939 | Bergens et al. | Apr 2002 | B2 |
6391003 | Lesch, Jr. | May 2002 | B1 |
6428528 | Sadowski et al. | Aug 2002 | B2 |
6517517 | Farrugia et al. | Feb 2003 | B1 |
6530904 | Edwards et al. | Mar 2003 | B1 |
6544234 | Gabriel | Apr 2003 | B1 |
6565553 | Sadowski et al. | May 2003 | B2 |
6569123 | Alchas et al. | May 2003 | B2 |
6569143 | Alchas et al. | May 2003 | B2 |
6607508 | Knauer | Aug 2003 | B2 |
6641561 | Hill et al. | Nov 2003 | B1 |
6656150 | Hill et al. | Dec 2003 | B2 |
6673035 | Rice et al. | Jan 2004 | B1 |
6682504 | Nelson et al. | Jan 2004 | B2 |
6746429 | Sadowski et al. | Jun 2004 | B2 |
6767336 | Kaplan | Jul 2004 | B1 |
6830560 | Gross et al. | Dec 2004 | B1 |
6912417 | Bernard | Jun 2005 | B1 |
6932793 | Marshall et al. | Aug 2005 | B1 |
6932794 | Giambattista et al. | Aug 2005 | B2 |
6969370 | Langley et al. | Nov 2005 | B2 |
6969372 | Halseth | Nov 2005 | B1 |
6979316 | Rubin et al. | Dec 2005 | B1 |
6986758 | Schiffmann | Jan 2006 | B2 |
6997901 | Popovsky | Feb 2006 | B2 |
7066907 | Crossman et al. | Jun 2006 | B2 |
7118553 | Scherer | Oct 2006 | B2 |
7169132 | Bendek et al. | Jan 2007 | B2 |
7195616 | Diller et al. | Mar 2007 | B2 |
7218962 | Freyman | May 2007 | B2 |
7247149 | Beyerlein | Jul 2007 | B2 |
7291132 | DeRuntz et al. | Nov 2007 | B2 |
7292885 | Scott et al. | Nov 2007 | B2 |
7297136 | Wyrick | Nov 2007 | B2 |
7341575 | Rice et al. | Mar 2008 | B2 |
7361160 | Hommann et al. | Apr 2008 | B2 |
7390314 | Stutz, Jr. et al. | Jun 2008 | B2 |
7390319 | Friedman | Jun 2008 | B2 |
7407492 | Gurtner | Aug 2008 | B2 |
7407494 | Bostrom et al. | Aug 2008 | B2 |
7416540 | Edwards et al. | Aug 2008 | B2 |
7449012 | Young et al. | Nov 2008 | B2 |
7488308 | Lesch, Jr. | Feb 2009 | B2 |
7488313 | Segal et al. | Feb 2009 | B2 |
7488314 | Segal et al. | Feb 2009 | B2 |
7517342 | Scott et al. | Apr 2009 | B2 |
7519418 | Scott et al. | Apr 2009 | B2 |
7544188 | Edwards et al. | Jun 2009 | B2 |
7547293 | Williamson et al. | Jun 2009 | B2 |
7569035 | Wilmot et al. | Aug 2009 | B1 |
7611491 | Pickhard | Nov 2009 | B2 |
7621887 | Griffiths et al. | Nov 2009 | B2 |
7621891 | Wyrick | Nov 2009 | B2 |
7635348 | Raven et al. | Dec 2009 | B2 |
7637891 | Wall | Dec 2009 | B2 |
7648482 | Edwards et al. | Jan 2010 | B2 |
7648483 | Edwards et al. | Jan 2010 | B2 |
7654983 | De La Sema et al. | Feb 2010 | B2 |
7658724 | Rubin et al. | Feb 2010 | B2 |
7670314 | Wall et al. | Mar 2010 | B2 |
7704237 | Fisher et al. | Apr 2010 | B2 |
7717877 | Lavi et al. | May 2010 | B2 |
7722595 | Pettis et al. | May 2010 | B2 |
7731686 | Edwards et al. | Jun 2010 | B2 |
7731690 | Edwards et al. | Jun 2010 | B2 |
7736333 | Gillespie, III | Jun 2010 | B2 |
7744582 | Sadowski et al. | Jun 2010 | B2 |
7749186 | Kohlbrenner et al. | Jul 2010 | B2 |
7749194 | Edwards et al. | Jul 2010 | B2 |
7749195 | Hommann | Jul 2010 | B2 |
7762996 | Palasis | Jul 2010 | B2 |
7776015 | Sadowski et al. | Aug 2010 | B2 |
7794432 | Young et al. | Sep 2010 | B2 |
7811254 | Wilmot et al. | Oct 2010 | B2 |
7862543 | Potter et al. | Jan 2011 | B2 |
7896841 | Wall et al. | Mar 2011 | B2 |
7901377 | Harrison et al. | Mar 2011 | B1 |
7905352 | Wyrick | Mar 2011 | B2 |
7905866 | Haider et al. | Mar 2011 | B2 |
7918823 | Edwards et al. | Apr 2011 | B2 |
7927303 | Wyrick | Apr 2011 | B2 |
7931618 | Wyrick | Apr 2011 | B2 |
7947017 | Edwards et al. | May 2011 | B2 |
RE42463 | Landau | Jun 2011 | E |
7955304 | Guillermo | Jun 2011 | B2 |
7967772 | McKenzie | Jun 2011 | B2 |
7988675 | Gillespie, III et al. | Aug 2011 | B2 |
8016774 | Freeman et al. | Sep 2011 | B2 |
8016788 | Edwards et al. | Sep 2011 | B2 |
8021335 | Lesch, Jr. | Sep 2011 | B2 |
8048035 | Mesa et al. | Nov 2011 | B2 |
8048037 | Kohlbrenner et al. | Nov 2011 | B2 |
8057427 | Griffiths et al. | Nov 2011 | B2 |
8066659 | Joshi et al. | Nov 2011 | B2 |
8083711 | Enggaard | Dec 2011 | B2 |
8100865 | Spofforth | Jan 2012 | B2 |
8105272 | Williamson et al. | Jan 2012 | B2 |
8105281 | Edwards et al. | Jan 2012 | B2 |
8110209 | Prestrelski | Feb 2012 | B2 |
8123719 | Edwards et al. | Feb 2012 | B2 |
8123724 | Gillespie, III | Feb 2012 | B2 |
8162873 | Muto et al. | Apr 2012 | B2 |
8162886 | Sadowski et al. | Apr 2012 | B2 |
8167840 | Matusch | May 2012 | B2 |
8167866 | Klein | May 2012 | B2 |
8177758 | Brooks, Jr. et al. | May 2012 | B2 |
8187224 | Wyrick | May 2012 | B2 |
8216180 | Tschirren et al. | Jul 2012 | B2 |
8216192 | Burroughs et al. | Jul 2012 | B2 |
8226618 | Geertsen | Jul 2012 | B2 |
8226631 | Boyd et al. | Jul 2012 | B2 |
8233135 | Jansen et al. | Jul 2012 | B2 |
8235952 | Wikner | Aug 2012 | B2 |
8246577 | Schrul et al. | Aug 2012 | B2 |
8251947 | Kramer et al. | Aug 2012 | B2 |
8257318 | Thogersen et al. | Sep 2012 | B2 |
8257319 | Plumptre | Sep 2012 | B2 |
8267899 | Moller | Sep 2012 | B2 |
8267900 | Harms et al. | Sep 2012 | B2 |
8273798 | Bausch et al. | Sep 2012 | B2 |
8275454 | Adachi et al. | Sep 2012 | B2 |
8276583 | Farieta et al. | Oct 2012 | B2 |
8277412 | Kronestedt | Oct 2012 | B2 |
8277413 | Kirchhofer | Oct 2012 | B2 |
8298175 | Hirschel et al. | Oct 2012 | B2 |
8298194 | Moller | Oct 2012 | B2 |
8300852 | Terada | Oct 2012 | B2 |
RE43834 | Steenfeldt-Jensen et al. | Nov 2012 | E |
8308232 | Zamperla et al. | Nov 2012 | B2 |
8308695 | Laiosa | Nov 2012 | B2 |
8313466 | Edwards et al. | Nov 2012 | B2 |
8317757 | Plumptre | Nov 2012 | B2 |
8323237 | Radmer et al. | Dec 2012 | B2 |
8333739 | Moller | Dec 2012 | B2 |
8337472 | Edginton et al. | Dec 2012 | B2 |
8343103 | Moser | Jan 2013 | B2 |
8343109 | Marshall et al. | Jan 2013 | B2 |
8348905 | Radmer et al. | Jan 2013 | B2 |
8353878 | Moller et al. | Jan 2013 | B2 |
8357120 | Moller et al. | Jan 2013 | B2 |
8357125 | Grunhut et al. | Jan 2013 | B2 |
8361036 | Moller et al. | Jan 2013 | B2 |
8366680 | Raab | Feb 2013 | B2 |
8372031 | Elmen et al. | Feb 2013 | B2 |
8372042 | Wieselblad | Feb 2013 | B2 |
8376993 | Cox et al. | Feb 2013 | B2 |
8398593 | Eich et al. | Mar 2013 | B2 |
8409149 | Hommann et al. | Apr 2013 | B2 |
8435215 | Arby et al. | May 2013 | B2 |
9144648 | Lesch, Jr. et al. | Sep 2015 | B2 |
20010039394 | Weston | Nov 2001 | A1 |
20020016571 | Kirchhofer | Feb 2002 | A1 |
20020173752 | Polzin | Nov 2002 | A1 |
20030040697 | Pass et al. | Feb 2003 | A1 |
20030171717 | Farrugia et al. | Sep 2003 | A1 |
20040039337 | Letzing | Feb 2004 | A1 |
20040143213 | Hunter et al. | Jul 2004 | A1 |
20040220524 | Sadowski et al. | Nov 2004 | A1 |
20040267355 | Scott et al. | Dec 2004 | A1 |
20050027255 | Lavi et al. | Feb 2005 | A1 |
20050101919 | Brunnberg | May 2005 | A1 |
20050165363 | Judson et al. | Jul 2005 | A1 |
20050209569 | Ishikawa et al. | Sep 2005 | A1 |
20050215955 | Slawson | Sep 2005 | A1 |
20050240145 | Scott et al. | Oct 2005 | A1 |
20050256499 | Pettis et al. | Nov 2005 | A1 |
20050261634 | Karlsson | Nov 2005 | A1 |
20050273054 | Asch | Dec 2005 | A1 |
20060106362 | Pass et al. | May 2006 | A1 |
20060129122 | Wyrick | Jun 2006 | A1 |
20060224124 | Scherer | Oct 2006 | A1 |
20060258988 | Keitel et al. | Nov 2006 | A1 |
20060258990 | Weber | Nov 2006 | A1 |
20070017533 | Wyrick | Jan 2007 | A1 |
20070025890 | Joshi et al. | Feb 2007 | A1 |
20070027430 | Hommann | Feb 2007 | A1 |
20070100288 | Bozeman et al. | May 2007 | A1 |
20070123818 | Griffiths et al. | May 2007 | A1 |
20070129687 | Marshall et al. | Jun 2007 | A1 |
20070185432 | Etheredge et al. | Aug 2007 | A1 |
20070191784 | Jacobs et al. | Aug 2007 | A1 |
20070219498 | Malone et al. | Sep 2007 | A1 |
20080059133 | Edwards et al. | Mar 2008 | A1 |
20080154199 | Wyrick | Jun 2008 | A1 |
20080262427 | Hommann | Oct 2008 | A1 |
20080262436 | Olson | Oct 2008 | A1 |
20080262445 | Hsu et al. | Oct 2008 | A1 |
20090124981 | Evans | May 2009 | A1 |
20090124997 | Pettis et al. | May 2009 | A1 |
20090204062 | Muto et al. | Aug 2009 | A1 |
20090254035 | Kohlbrenner et al. | Oct 2009 | A1 |
20090292240 | KraMer | Nov 2009 | A1 |
20090299278 | Lesch, Jr. et al. | Dec 2009 | A1 |
20090304812 | Stainforth et al. | Dec 2009 | A1 |
20090318361 | Noera et al. | Dec 2009 | A1 |
20100036318 | Raday et al. | Feb 2010 | A1 |
20100049125 | James et al. | Feb 2010 | A1 |
20100069845 | Marshall et al. | Mar 2010 | A1 |
20100076378 | Runfola | Mar 2010 | A1 |
20100076400 | Wall | Mar 2010 | A1 |
20100087847 | Hong | Apr 2010 | A1 |
20100094214 | Abry et al. | Apr 2010 | A1 |
20100094324 | Huang et al. | Apr 2010 | A1 |
20100100039 | Wyrick | Apr 2010 | A1 |
20100152699 | Ferrari et al. | Jun 2010 | A1 |
20100152702 | Vigil et al. | Jun 2010 | A1 |
20100160894 | Julian et al. | Jun 2010 | A1 |
20100168677 | Gabriel et al. | Jul 2010 | A1 |
20100174268 | Wilmot et al. | Jul 2010 | A1 |
20100204678 | Imran | Aug 2010 | A1 |
20100217105 | Yodfat et al. | Aug 2010 | A1 |
20100228193 | Wyrick | Sep 2010 | A1 |
20100249746 | Klein | Sep 2010 | A1 |
20100256570 | Maritan | Oct 2010 | A1 |
20100258631 | Rueblinger et al. | Oct 2010 | A1 |
20100262082 | Brooks et al. | Oct 2010 | A1 |
20100274198 | Bechtold | Oct 2010 | A1 |
20100274273 | Schraga et al. | Oct 2010 | A1 |
20100288593 | Chiesa et al. | Nov 2010 | A1 |
20100292643 | Wilmot et al. | Nov 2010 | A1 |
20100298780 | Laiosa | Nov 2010 | A1 |
20100312196 | Hirschel et al. | Dec 2010 | A1 |
20100318035 | Edwards et al. | Dec 2010 | A1 |
20100318037 | Young et al. | Dec 2010 | A1 |
20100324480 | Chun | Dec 2010 | A1 |
20110021989 | Janek et al. | Jan 2011 | A1 |
20110054414 | Shang et al. | Mar 2011 | A1 |
20110077599 | Wozencroft | Mar 2011 | A1 |
20110087192 | Uhland et al. | Apr 2011 | A1 |
20110098655 | Jennings et al. | Apr 2011 | A1 |
20110125076 | Kraft et al. | May 2011 | A1 |
20110125100 | Schwirtz et al. | May 2011 | A1 |
20110137246 | Cali et al. | Jun 2011 | A1 |
20110144594 | Sund et al. | Jun 2011 | A1 |
20110190725 | Pettis et al. | Aug 2011 | A1 |
20110196300 | Edwards et al. | Aug 2011 | A1 |
20110196311 | Bicknell et al. | Aug 2011 | A1 |
20110224620 | Johansen et al. | Sep 2011 | A1 |
20110238003 | Bruno-Raimondi et al. | Sep 2011 | A1 |
20110269750 | Kley et al. | Nov 2011 | A1 |
20110319864 | Beiler et al. | Dec 2011 | A1 |
20120004608 | Lesch, Jr. | Jan 2012 | A1 |
20120016296 | Charles | Jan 2012 | A1 |
20120046609 | Mesa et al. | Feb 2012 | A1 |
20120053563 | Du | Mar 2012 | A1 |
20120059319 | Sega | Mar 2012 | A1 |
20120071829 | Edwards et al. | Mar 2012 | A1 |
20120095443 | Ferrari et al. | Apr 2012 | A1 |
20120101475 | Wilmot et al. | Apr 2012 | A1 |
20120116318 | Edwards et al. | May 2012 | A1 |
20120123350 | Giambattista et al. | May 2012 | A1 |
20120123385 | Edwards et al. | May 2012 | A1 |
20120130318 | Young | May 2012 | A1 |
20120130342 | Cleathero | May 2012 | A1 |
20120136303 | Cleathero | May 2012 | A1 |
20120136318 | Lanin et al. | May 2012 | A1 |
20120143144 | Young | Jun 2012 | A1 |
20120157931 | Nzike | Jun 2012 | A1 |
20120157965 | Wotton et al. | Jun 2012 | A1 |
20120172809 | Plumptre | Jul 2012 | A1 |
20120172811 | Enggaard et al. | Jul 2012 | A1 |
20120172812 | Plumptre et al. | Jul 2012 | A1 |
20120172813 | Plumptre et al. | Jul 2012 | A1 |
20120172814 | Plumptre et al. | Jul 2012 | A1 |
20120172815 | Holmqvist | Jul 2012 | A1 |
20120172816 | Boyd et al. | Jul 2012 | A1 |
20120172818 | Harms et al. | Jul 2012 | A1 |
20120179100 | Sadowski et al. | Jul 2012 | A1 |
20120179137 | Bartlett et al. | Jul 2012 | A1 |
20120184900 | Marshall et al. | Jul 2012 | A1 |
20120184917 | Bom et al. | Jul 2012 | A1 |
20120184918 | Bostrom | Jul 2012 | A1 |
20120186075 | Edginton | Jul 2012 | A1 |
20120191048 | Eaton | Jul 2012 | A1 |
20120191049 | Harms et al. | Jul 2012 | A1 |
20120197209 | Bicknell et al. | Aug 2012 | A1 |
20120197213 | Kohlbrenner et al. | Aug 2012 | A1 |
20120203184 | Selz et al. | Aug 2012 | A1 |
20120203185 | Kristensen et al. | Aug 2012 | A1 |
20120203186 | Vogt et al. | Aug 2012 | A1 |
20120209192 | Alexandersson | Aug 2012 | A1 |
20120209200 | Jones et al. | Aug 2012 | A1 |
20120209210 | Plumptre et al. | Aug 2012 | A1 |
20120209211 | Plumptre et al. | Aug 2012 | A1 |
20120209212 | Plumptre et al. | Aug 2012 | A1 |
20120215162 | Nielsen et al. | Aug 2012 | A1 |
20120215176 | Veasey et al. | Aug 2012 | A1 |
20120220929 | Nagel et al. | Aug 2012 | A1 |
20120220941 | Jones | Aug 2012 | A1 |
20120220953 | Holmqvist | Aug 2012 | A1 |
20120220954 | Cowe | Aug 2012 | A1 |
20120226226 | Edwards et al. | Sep 2012 | A1 |
20120230620 | Holdgate et al. | Sep 2012 | A1 |
20120232517 | Saiki | Sep 2012 | A1 |
20120245516 | Tschirren et al. | Sep 2012 | A1 |
20120245532 | Frantz et al. | Sep 2012 | A1 |
20120253274 | Karlsson et al. | Oct 2012 | A1 |
20120253287 | Giambattista et al. | Oct 2012 | A1 |
20120253288 | Dasbach et al. | Oct 2012 | A1 |
20120253289 | Cleathero | Oct 2012 | A1 |
20120253290 | Geertsen | Oct 2012 | A1 |
20120253314 | Harish et al. | Oct 2012 | A1 |
20120259285 | Schabbach et al. | Oct 2012 | A1 |
20120265153 | Jugl et al. | Oct 2012 | A1 |
20120267761 | Kim et al. | Oct 2012 | A1 |
20120271233 | Bruggemann et al. | Oct 2012 | A1 |
20120271243 | Plumptre et al. | Oct 2012 | A1 |
20120277724 | Larsen et al. | Nov 2012 | A1 |
20120283645 | Veasey et al. | Nov 2012 | A1 |
20120283648 | Veasey et al. | Nov 2012 | A1 |
20120283649 | Veasey et al. | Nov 2012 | A1 |
20120283650 | MacDonald et al. | Nov 2012 | A1 |
20120283651 | Veasey et al. | Nov 2012 | A1 |
20120283652 | MacDonald et al. | Nov 2012 | A1 |
20120283654 | MacDonald et al. | Nov 2012 | A1 |
20120283660 | Jones et al. | Nov 2012 | A1 |
20120283661 | Jugl et al. | Nov 2012 | A1 |
20120289907 | Veasey et al. | Nov 2012 | A1 |
20120289908 | Kouyoumjian et al. | Nov 2012 | A1 |
20120289909 | Raab et al. | Nov 2012 | A1 |
20120289929 | Boyd et al. | Nov 2012 | A1 |
20120291778 | Nagel et al. | Nov 2012 | A1 |
20120296276 | Nicholls et al. | Nov 2012 | A1 |
20120296287 | Veasey et al. | Nov 2012 | A1 |
20120302989 | Kramer et al. | Nov 2012 | A1 |
20120302992 | Brooks et al. | Nov 2012 | A1 |
20120310156 | Karlsson et al. | Dec 2012 | A1 |
20120310206 | Kouyoumjian et al. | Dec 2012 | A1 |
20120310208 | Kirchhofer | Dec 2012 | A1 |
20120310289 | Bottlang et al. | Dec 2012 | A1 |
20120316508 | Kirchhofer | Dec 2012 | A1 |
20120323177 | Adams et al. | Dec 2012 | A1 |
20120323186 | Karlsen et al. | Dec 2012 | A1 |
20120325865 | Forstreuter et al. | Dec 2012 | A1 |
20120330228 | Day et al. | Dec 2012 | A1 |
20130006191 | Jugl et al. | Jan 2013 | A1 |
20130006192 | Teucher et al. | Jan 2013 | A1 |
20130006193 | Veasey et al. | Jan 2013 | A1 |
20130006310 | Bottlang et al. | Jan 2013 | A1 |
20130012871 | Pommereu | Jan 2013 | A1 |
20130012884 | Pommerau et al. | Jan 2013 | A1 |
20130012885 | Bode et al. | Jan 2013 | A1 |
20130018310 | Boyd et al. | Jan 2013 | A1 |
20130018313 | Kramer et al. | Jan 2013 | A1 |
20130018317 | Bobroff et al. | Jan 2013 | A1 |
20130018323 | Boyd et al. | Jan 2013 | A1 |
20130018327 | Dasbach et al. | Jan 2013 | A1 |
20130018328 | Jugl et al. | Jan 2013 | A1 |
20130023830 | Bode | Jan 2013 | A1 |
20130030367 | Wotton et al. | Jan 2013 | A1 |
20130030378 | Jugl et al. | Jan 2013 | A1 |
20130030383 | Keitel | Jan 2013 | A1 |
20130030409 | Macdonald | Jan 2013 | A1 |
20130035641 | Moller | Feb 2013 | A1 |
20130035642 | Daniel | Feb 2013 | A1 |
20130035644 | Giambattista et al. | Feb 2013 | A1 |
20130035645 | Bicknell et al. | Feb 2013 | A1 |
20130035647 | Veasey et al. | Feb 2013 | A1 |
20130041321 | Cross et al. | Feb 2013 | A1 |
20130041324 | Daniel | Feb 2013 | A1 |
20130041325 | Helmer et al. | Feb 2013 | A1 |
20130041327 | Daniel | Feb 2013 | A1 |
20130041328 | Daniel | Feb 2013 | A1 |
20130041347 | Daniel | Feb 2013 | A1 |
20130060231 | Adlon et al. | Mar 2013 | A1 |
Number | Date | Country |
---|---|---|
00081651 | Oct 2012 | AR |
082053 | Nov 2012 | AR |
2007253481 | Nov 2007 | AU |
2007301890 | Apr 2008 | AU |
2008231897 | Oct 2008 | AU |
2008309660 | Apr 2009 | AU |
2009217376 | Oct 2009 | AU |
2009272992 | Jan 2010 | AU |
2009299888 | Apr 2010 | AU |
2009326132 | Aug 2011 | AU |
2009326321 | Aug 2011 | AU |
2009326322 | Aug 2011 | AU |
2009326323 | Aug 2011 | AU |
2009326324 | Aug 2011 | AU |
2009326325 | Aug 2011 | AU |
2009341040 | Sep 2011 | AU |
2010233924 | Nov 2011 | AU |
2010239762 | Dec 2011 | AU |
2010242096 | Dec 2011 | AU |
2010254627 | Jan 2012 | AU |
2010260568 | Feb 2012 | AU |
2010260569 | Feb 2012 | AU |
2010287033 | Apr 2012 | AU |
2010303987 | May 2012 | AU |
2010332857 | Jul 2012 | AU |
2010332862 | Jul 2012 | AU |
2010337136 | Jul 2012 | AU |
2010338469 | Jul 2012 | AU |
2010314315 | Aug 2012 | AU |
2011212490 | Aug 2012 | AU |
2011212556 | Aug 2012 | AU |
2011212558 | Aug 2012 | AU |
2011212561 | Aug 2012 | AU |
2011212564 | Aug 2012 | AU |
2011212566 | Aug 2012 | AU |
2011212567 | Aug 2012 | AU |
2011214922 | Aug 2012 | AU |
2011221472 | Aug 2012 | AU |
2011231688 | Sep 2012 | AU |
2011231691 | Sep 2012 | AU |
2011224884 | Oct 2012 | AU |
2011231570 | Oct 2012 | AU |
2011231697 | Oct 2012 | AU |
2011233733 | Oct 2012 | AU |
2011234479 | Oct 2012 | AU |
2011238967 | Nov 2012 | AU |
2011244232 | Nov 2012 | AU |
2011244236 | Nov 2012 | AU |
2011244237 | Nov 2012 | AU |
2011249098 | Nov 2012 | AU |
2011262408 | Dec 2012 | AU |
2011270934 | Jan 2013 | AU |
2011273721 | Jan 2013 | AU |
2011273722 | Jan 2013 | AU |
2011273723 | Jan 2013 | AU |
2011273724 | Jan 2013 | AU |
2011273725 | Jan 2013 | AU |
2011273726 | Jan 2013 | AU |
2011273727 | Jan 2013 | AU |
2011273728 | Jan 2013 | AU |
0208013 | Mar 2004 | BR |
0308262 | Jan 2005 | BR |
PI712805 | Oct 2012 | BR |
PI0713802-4 | Nov 2012 | BR |
0214721 | Dec 2012 | BR |
2552177 | Jul 1999 | CA |
2689022 | Nov 2002 | CA |
2473371 | Jul 2003 | CA |
2557897 | Oct 2005 | CA |
02702412 | Dec 2008 | CA |
101094700 | Dec 2007 | CN |
101128231 | Feb 2008 | CN |
101184520 | May 2008 | CN |
101400394 | Apr 2009 | CN |
101405582 | Apr 2009 | CN |
101479000 | Jul 2009 | CN |
101511410 | Aug 2009 | CN |
101516421 | Aug 2009 | CN |
101557849 | Oct 2009 | CN |
101563123 | Oct 2009 | CN |
101563124 | Oct 2009 | CN |
101594898 | Dec 2009 | CN |
101600468 | Dec 2009 | CN |
101605569 | Dec 2009 | CN |
101610804 | Dec 2009 | CN |
101626796 | Jan 2010 | CN |
101678166 | Mar 2010 | CN |
101678172 | Mar 2010 | CN |
101678173 | Mar 2010 | CN |
101687078 | Mar 2010 | CN |
101687079 | Mar 2010 | CN |
101687080 | Mar 2010 | CN |
101715371 | May 2010 | CN |
101909673 | Dec 2010 | CN |
101912650 | Dec 2010 | CN |
101939034 | Jan 2011 | CN |
101939036 | Jan 2011 | CN |
102548599 | Jul 2012 | CN |
102548601 | Jul 2012 | CN |
102548602 | Jul 2012 | CN |
102573955 | Jul 2012 | CN |
102573958 | Jul 2012 | CN |
102573960 | Jul 2012 | CN |
102573963 | Jul 2012 | CN |
102630172 | Aug 2012 | CN |
102630173 | Aug 2012 | CN |
102630174 | Aug 2012 | CN |
102639170 | Aug 2012 | CN |
102639171 | Aug 2012 | CN |
102648014 | Aug 2012 | CN |
102655899 | Sep 2012 | CN |
102665800 | Sep 2012 | CN |
102665802 | Sep 2012 | CN |
102686255 | Sep 2012 | CN |
102686256 | Sep 2012 | CN |
102686258 | Sep 2012 | CN |
102695531 | Sep 2012 | CN |
102695532 | Sep 2012 | CN |
102711878 | Oct 2012 | CN |
102727965 | Oct 2012 | CN |
102740907 | Oct 2012 | CN |
102753222 | Oct 2012 | CN |
102753223 | Oct 2012 | CN |
102753224 | Oct 2012 | CN |
102753227 | Oct 2012 | CN |
102770170 | Nov 2012 | CN |
102770173 | Nov 2012 | CN |
102781499 | Nov 2012 | CN |
102781500 | Nov 2012 | CN |
102802699 | Nov 2012 | CN |
102802702 | Nov 2012 | CN |
102802703 | Nov 2012 | CN |
102665801 | Dec 2012 | CN |
102821801 | Dec 2012 | CN |
102821802 | Dec 2012 | CN |
102821805 | Dec 2012 | CN |
102834133 | Dec 2012 | CN |
102869399 | Jan 2013 | CN |
102895718 | Jan 2013 | CN |
102905613 | Jan 2013 | CN |
102905742 | Jan 2013 | CN |
102905743 | Jan 2013 | CN |
102905744 | Jan 2013 | CN |
102905745 | Jan 2013 | CN |
102917738 | Feb 2013 | CN |
102917743 | Feb 2013 | CN |
102006041809 | Mar 2008 | DE |
202011110155 | Dec 2012 | DE |
1646844 | Dec 2009 | DK |
2229201 | Jul 2012 | DK |
2023982 | Oct 2012 | DK |
2274032 | Oct 2012 | DK |
02346552 | Nov 2012 | DK |
1888148 | Jan 2013 | DK |
2288400 | Jan 2013 | DK |
2373361 | Jan 2013 | DK |
1885414 | Feb 2013 | DK |
2174682 | Feb 2013 | DK |
2310073 | Feb 2013 | DK |
25844 | Sep 2012 | EG |
245895 | Nov 1987 | EP |
255044 | Feb 1988 | EP |
361668 | Apr 1990 | EP |
525525 | Feb 1993 | EP |
1067823 | Jan 2001 | EP |
1307012 | May 2003 | EP |
1140260 | Aug 2005 | EP |
1944050 | Jul 2008 | EP |
2174682 | Apr 2010 | EP |
2258424 | Dec 2010 | EP |
2258425 | Dec 2010 | EP |
02275158 | Jan 2011 | EP |
2364742 | Sep 2011 | EP |
2393062 | Dec 2011 | EP |
2471564 | Jul 2012 | EP |
02477681 | Jul 2012 | EP |
02484395 | Aug 2012 | EP |
2526987 | Nov 2012 | EP |
02529773 | Dec 2012 | EP |
02529774 | Dec 2012 | EP |
02529775 | Dec 2012 | EP |
2549789 | Jan 2013 | EP |
02385630 | Jul 2012 | ES |
2389866 | Nov 2012 | ES |
2392667 | Dec 2012 | ES |
02393173 | Dec 2012 | ES |
2394556 | Feb 2013 | ES |
2463034 | Mar 2010 | GB |
171247 | Aug 2012 | IL |
198750 | Oct 2012 | IL |
5016490 | May 2008 | JP |
5026411 | Nov 2008 | JP |
5033792 | Nov 2008 | JP |
5074397 | Feb 2009 | JP |
2009-529395 | Aug 2009 | JP |
5066177 | Sep 2009 | JP |
5039135 | Nov 2009 | JP |
5044625 | Dec 2009 | JP |
2010-005414 | Jan 2010 | JP |
2010-046507 | Mar 2010 | JP |
4970282 | Jul 2012 | JP |
4970286 | Jul 2012 | JP |
4972147 | Jul 2012 | JP |
4977209 | Jul 2012 | JP |
4977252 | Jul 2012 | JP |
4979686 | Jul 2012 | JP |
4982722 | Jul 2012 | JP |
2012515566 | Jul 2012 | JP |
2012515585 | Jul 2012 | JP |
2012515587 | Jul 2012 | JP |
2012516168 | Jul 2012 | JP |
2012516736 | Jul 2012 | JP |
2012516737 | Jul 2012 | JP |
4990151 | Aug 2012 | JP |
4992147 | Aug 2012 | JP |
4994370 | Aug 2012 | JP |
5001001 | Aug 2012 | JP |
2012143646 | Aug 2012 | JP |
2012148198 | Aug 2012 | JP |
2012519508 | Aug 2012 | JP |
2012519511 | Aug 2012 | JP |
2012519514 | Aug 2012 | JP |
2012176295 | Sep 2012 | JP |
2012183322 | Sep 2012 | JP |
2012520128 | Sep 2012 | JP |
2012521821 | Sep 2012 | JP |
2012521825 | Sep 2012 | JP |
2012521826 | Sep 2012 | JP |
2012521827 | Sep 2012 | JP |
2012521828 | Sep 2012 | JP |
2012521829 | Sep 2012 | JP |
2012521830 | Sep 2012 | JP |
2012521831 | Sep 2012 | JP |
2012521834 | Sep 2012 | JP |
2012522547 | Sep 2012 | JP |
2012-525172 | Oct 2012 | JP |
2012-525180 | Oct 2012 | JP |
2012-525185 | Oct 2012 | JP |
2012523876 | Oct 2012 | JP |
2012525200 | Oct 2012 | JP |
5084825 | Nov 2012 | JP |
2012232151 | Nov 2012 | JP |
2012528618 | Nov 2012 | JP |
2012528619 | Nov 2012 | JP |
2012528620 | Nov 2012 | JP |
2012528621 | Nov 2012 | JP |
2012528622 | Nov 2012 | JP |
2012528623 | Nov 2012 | JP |
2012528624 | Nov 2012 | JP |
2012528625 | Nov 2012 | JP |
2012528626 | Nov 2012 | JP |
2012528627 | Nov 2012 | JP |
2012528628 | Nov 2012 | JP |
2012528629 | Nov 2012 | JP |
2012528630 | Nov 2012 | JP |
2012528631 | Nov 2012 | JP |
2012528632 | Nov 2012 | JP |
2012528633 | Nov 2012 | JP |
2012528634 | Nov 2012 | JP |
2012528635 | Nov 2012 | JP |
2012528636 | Nov 2012 | JP |
2012528637 | Nov 2012 | JP |
2012528638 | Nov 2012 | JP |
2012528640 | Nov 2012 | JP |
2012530576 | Dec 2012 | JP |
2012532635 | Dec 2012 | JP |
2012532636 | Dec 2012 | JP |
2012532717 | Dec 2012 | JP |
2012532720 | Dec 2012 | JP |
2012532721 | Dec 2012 | JP |
2012532722 | Dec 2012 | JP |
5112330 | Jan 2013 | JP |
5113847 | Jan 2013 | JP |
101160735 | Jul 2012 | KR |
20120091009 | Aug 2012 | KR |
20120091153 | Aug 2012 | KR |
20120091154 | Aug 2012 | KR |
20120095919 | Aug 2012 | KR |
20120099022 | Sep 2012 | KR |
20120099101 | Sep 2012 | KR |
20120102597 | Sep 2012 | KR |
20120106754 | Sep 2012 | KR |
20120106756 | Sep 2012 | KR |
20120112503 | Oct 2012 | KR |
2012006694 | Jul 2012 | MX |
332622 | Oct 2003 | NO |
572765 | Aug 2012 | NZ |
587235 | Aug 2012 | NZ |
00590352 | Oct 2012 | NZ |
2023982 | Nov 2012 | PL |
2274032 | Oct 2012 | PT |
2346552 | Nov 2012 | PT |
2462275 | Mar 2011 | RU |
2459247 | Aug 2012 | RU |
2011104496 | Aug 2012 | RU |
2460546 | Sep 2012 | RU |
2011109925 | Oct 2012 | RU |
2011119019 | Nov 2012 | RU |
181710 | Jul 2012 | SG |
181790 | Jul 2012 | SG |
184182 | Oct 2012 | SG |
184328 | Nov 2012 | SG |
184500 | Nov 2012 | SG |
184501 | Nov 2012 | SG |
184502 | Nov 2012 | SG |
2274032 | Dec 2012 | SI |
2346552 | Dec 2012 | SI |
WO 8808724 | Nov 1988 | WO |
WO 9113299 | Sep 1991 | WO |
WO 9113430 | Sep 1991 | WO |
WO 9411041 | May 1994 | WO |
WO 9831369 | Jul 1998 | WO |
WO 9832451 | Jul 1998 | WO |
WO 9922789 | May 1999 | WO |
WO 9962525 | Dec 1999 | WO |
WO 0006228 | Feb 2000 | WO |
WO 02083216 | Oct 2002 | WO |
WO 02089805 | Nov 2002 | WO |
WO 03047663 | Jun 2003 | WO |
WO 3068290 | Aug 2003 | WO |
WO 03070296 | Aug 2003 | WO |
WO 03097133 | Nov 2003 | WO |
WO 2004041331 | May 2004 | WO |
WO 2004047892 | Jun 2004 | WO |
WO 2005005929 | Jan 2005 | WO |
WO 2005009515 | Feb 2005 | WO |
WO 2005053778 | Jun 2005 | WO |
WO 2006125328 | Nov 2006 | WO |
WO 2006130098 | Dec 2006 | WO |
WO 2007063342 | Jun 2007 | WO |
WO 2007100899 | Sep 2007 | WO |
WO 2007104636 | Sep 2007 | WO |
WO 2006079064 | Nov 2007 | WO |
WO 2007129106 | Nov 2007 | WO |
WO 2007131013 | Nov 2007 | WO |
WO 2007131025 | Nov 2007 | WO |
WO 2007143676 | Dec 2007 | WO |
WO 2008005315 | Jan 2008 | WO |
WO 2008009476 | Jan 2008 | WO |
WO 2008058666 | May 2008 | WO |
WO 2008100576 | Aug 2008 | WO |
WO 2008107378 | Sep 2008 | WO |
WO 2009049885 | Apr 2009 | WO |
WO 2008071804 | Aug 2009 | WO |
WO 2009114542 | Sep 2009 | WO |
WO 2009132778 | Nov 2009 | WO |
WO 2009141005 | Nov 2009 | WO |
WO 2010003569 | Jan 2010 | WO |
WO 2010043533 | Apr 2010 | WO |
WO 2010046394 | Apr 2010 | WO |
WO 2010097116 | Sep 2010 | WO |
WO 2010108116 | Sep 2010 | WO |
WO 2011023736 | Mar 2011 | WO |
WO 2011023882 | Mar 2011 | WO |
WO 2011035877 | Mar 2011 | WO |
WO 2011036133 | Mar 2011 | WO |
WO 2011036134 | Mar 2011 | WO |
WO 2011039163 | Apr 2011 | WO |
WO 2011039201 | Apr 2011 | WO |
WO 2011039202 | Apr 2011 | WO |
WO 2011039207 | Apr 2011 | WO |
WO 2011039208 | Apr 2011 | WO |
WO 2011039209 | Apr 2011 | WO |
WO 2011039211 | Apr 2011 | WO |
WO 2011039216 | Apr 2011 | WO |
WO 2011039217 | Apr 2011 | WO |
WO 2011039218 | Apr 2011 | WO |
WO 2011039219 | Apr 2011 | WO |
WO 2011039228 | Apr 2011 | WO |
WO 2011039231 | Apr 2011 | WO |
WO 2011039232 | Apr 2011 | WO |
WO 2011039233 | Apr 2011 | WO |
WO 2011039236 | Apr 2011 | WO |
WO 2011040861 | Apr 2011 | WO |
WO 2011042537 | Apr 2011 | WO |
WO 2011042540 | Apr 2011 | WO |
WO 2011045385 | Apr 2011 | WO |
WO 2011045386 | Apr 2011 | WO |
WO 2011045611 | Apr 2011 | WO |
WO 2011046756 | Apr 2011 | WO |
WO 2011048223 | Apr 2011 | WO |
WO 2011048422 | Apr 2011 | WO |
WO 2011050359 | Apr 2011 | WO |
WO 2011053225 | May 2011 | WO |
WO 2011054648 | May 2011 | WO |
WO 2011054775 | May 2011 | WO |
WO 2011056127 | May 2011 | WO |
WO 2011060087 | May 2011 | WO |
WO 201 1067268 | Jun 2011 | WO |
WO 2011067187 | Jun 2011 | WO |
WO 2011067320 | Jun 2011 | WO |
WO 2011067615 | Jun 2011 | WO |
WO 2011068253 | Jun 2011 | WO |
WO 2011069936 | Jun 2011 | WO |
WO 2011073302 | Jun 2011 | WO |
WO 2011073307 | Jun 2011 | WO |
WO 2011076280 | Jun 2011 | WO |
WO 2011080092 | Jul 2011 | WO |
WO 2011081867 | Jul 2011 | WO |
WO 2011081885 | Jul 2011 | WO |
WO 2011089206 | Jul 2011 | WO |
WO 2011089207 | Jul 2011 | WO |
WO 2011095478 | Aug 2011 | WO |
WO 2011095480 | Aug 2011 | WO |
WO 2011095483 | Aug 2011 | WO |
WO 2011095486 | Aug 2011 | WO |
WO 2011095488 | Aug 2011 | WO |
WO 2011095489 | Aug 2011 | WO |
WO 2011095503 | Aug 2011 | WO |
WO 2011099918 | Aug 2011 | WO |
WO 2011101349 | Aug 2011 | WO |
WO 2011101351 | Aug 2011 | WO |
WO 2011101375 | Aug 2011 | WO |
WO 2011101376 | Aug 2011 | WO |
WO 2011101377 | Aug 2011 | WO |
WO 2011101378 | Aug 2011 | WO |
WO 2011101379 | Aug 2011 | WO |
WO 2011101380 | Aug 2011 | WO |
WO 2011101381 | Aug 2011 | WO |
WO 2011101382 | Aug 2011 | WO |
WO 2011101383 | Aug 2011 | WO |
WO 2011107805 | Sep 2011 | WO |
WO 2011109205 | Sep 2011 | WO |
WO 2011110464 | Sep 2011 | WO |
WO 2011110465 | Sep 2011 | WO |
WO 2011110466 | Sep 2011 | WO |
WO 2011111006 | Sep 2011 | WO |
WO 2011112136 | Sep 2011 | WO |
WO 2011113806 | Sep 2011 | WO |
WO 2011117212 | Sep 2011 | WO |
WO 2011117284 | Sep 2011 | WO |
WO 2011117404 | Sep 2011 | WO |
WO 2011121003 | Oct 2011 | WO |
WO 2011121061 | Oct 2011 | WO |
WO 2011123024 | Oct 2011 | WO |
WO 2011124634 | Oct 2011 | WO |
WO 2011126439 | Oct 2011 | WO |
WO 2012020084 | Feb 2012 | WO |
WO 2012022771 | Feb 2012 | WO |
WO 2012090186 | Jul 2012 | WO |
WO 2011043714 | Aug 2012 | WO |
WO 2012122643 | Sep 2012 | WO |
WO 2011051366 | May 2015 | WO |
Entry |
---|
International Patent Application No. PCT/US14/23883, International Search Report, dated Jul. 10, 2014, 3 pages. |
International Patent Application No. PCT/US14/23485, International Search Report, dated Jul. 7, 2014, 2 pages. |
International Patent Application No. PCT/US14/24530, International Search Report, dated Jul. 15, 2014, 2 pages. |
International Patent Application No. PCT/US14/24543, International Search Report, dated Jul. 28, 2014, 2 pages. |
International Patent Application No. PCT/US2007068010, International Search Report, dated Sep. 9, 2007, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20200114081 A1 | Apr 2020 | US |
Number | Date | Country | |
---|---|---|---|
60796942 | May 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14860792 | Sep 2015 | US |
Child | 16713837 | US | |
Parent | 12299288 | US | |
Child | 14860792 | US |